JP2007301567A - Method of manufacturing cooling plate, and cooling plate - Google Patents

Method of manufacturing cooling plate, and cooling plate Download PDF

Info

Publication number
JP2007301567A
JP2007301567A JP2006129205A JP2006129205A JP2007301567A JP 2007301567 A JP2007301567 A JP 2007301567A JP 2006129205 A JP2006129205 A JP 2006129205A JP 2006129205 A JP2006129205 A JP 2006129205A JP 2007301567 A JP2007301567 A JP 2007301567A
Authority
JP
Japan
Prior art keywords
cooling plate
substrate
groove
tool
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006129205A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakada
寛 中田
Masashi Taniguchi
正志 谷口
Kenji Azuma
健司 東
Seong-Wook Jeong
盛旭 鄭
Hideki Hagino
秀樹 萩野
Tomotake Hirata
智丈 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Osaka Industrial Promotion Organization
Nakata Manufacturing Co Ltd
Original Assignee
Osaka Prefecture
Osaka Industrial Promotion Organization
Nakata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture, Osaka Industrial Promotion Organization, Nakata Manufacturing Co Ltd filed Critical Osaka Prefecture
Priority to JP2006129205A priority Critical patent/JP2007301567A/en
Publication of JP2007301567A publication Critical patent/JP2007301567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of efficiently manufacturing a cooling plate having a joined portion with sufficient strength and high reliability at low cost while a refrigerant is infiltrated in a space of the joined portion without any storage thereof only by performing the friction stirring and joining without using any sealant in a conventional method. <P>SOLUTION: A recessed groove 11 is formed on the surface of a metal substrate 10, the groove is covered by a flat metal lid plate 20, and overlapping portions of the substrate 10 around the recessed groove and the lid plate 20 are subjected to the friction stirring and joining to form the recessed groove 11 in a refrigerant flow passage. The friction stirring and joining is performed by setting a probe 41 of a tool 40 of a friction stirring and joining device so that the horizontal distance from an upper end of a side wall of the recessed groove 11 to an outer circumference of the probe 41 is within 4 mm, preferably within 1 mm. A material of the metal substrate and the metal lid plate is preferably aluminum or its alloy. The rotational speed of the tool 40 is 600 to 1,800 rpm, and the joining speed is 100-600 mm/minute, preferably. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体製造装置やスパッタリング装置など各種装置の温度調節に用いられる冷却板の製造方法およびこの製造方法により得られる冷却板に関する。 The present invention relates to a manufacturing method of a cooling plate used for temperature control of various apparatuses such as a semiconductor manufacturing apparatus and a sputtering apparatus, and a cooling plate obtained by this manufacturing method.

例えば、半導体製造用のスパッタリング装置には、ターゲットを取り付けるバッキングプレートが用いられている。このようなバッキングプレートは、ターゲットを冷却するために、その内部に例えば全体として蛇行状或いは分岐・合流状に形成され、互いに平行して配置された冷媒の流路を形成した冷却板からなる。 For example, a backing plate for attaching a target is used in a sputtering apparatus for manufacturing a semiconductor. In order to cool the target, such a backing plate is formed of a cooling plate, for example, formed in a meandering shape or in a branched / merged shape as a whole inside thereof and formed with coolant flow paths arranged parallel to each other.

この種の冷却板として、下記の特許文献1には、アルミニウムまたはその合金等からなる金属板の表面に凹溝を設けその上に同様な凹溝を設けた金属板を重ね合わせ、金属板の周縁部および隣り合う各凹溝に挟まれた中央部に沿って摩擦撹拌接合することにより、上記両方の金属板に形成された一対の凹溝を冷媒の流路とする冷却板およびその製造方法が開示されている。 As this type of cooling plate, in Patent Document 1 below, a metal plate made of aluminum or an alloy thereof or the like is provided with a concave groove on the surface, and a metal plate provided with a similar concave groove thereon is overlaid. A cooling plate using a pair of concave grooves formed in both the metal plates as a refrigerant flow path by friction stir welding along a peripheral portion and a central portion sandwiched between adjacent concave grooves, and a method for manufacturing the same Is disclosed.

摩擦撹拌接合は、重ね合わせ部に高速回転するツールのプローブを強い力で挿入し、このツールを高速回転させながら凹溝の周辺に沿って移動させ、その時に発生する摩擦熱により重ね合わせ部の板材を可塑化して、ツールのショルダ部によって圧力を負荷しながら固相状態で接合するので、アーク溶接などの溶融溶接に比べて、接合部における接合強度が強いという利点がある。 In friction stir welding, a probe of a tool that rotates at high speed is inserted into the overlapping part with a strong force, and the tool is moved along the periphery of the groove while rotating at high speed. Since the plate material is plasticized and bonded in a solid phase state while applying pressure by the shoulder portion of the tool, there is an advantage that the bonding strength at the bonded portion is stronger than fusion welding such as arc welding.

ところが、上記従来の冷却板およびその製造方法にあっては、冷媒の流路は全面に蛇行状或いは分岐・合流状に形成され、平行に配置された隣り合う凹溝に挟まれた中央部に沿って摩擦撹拌接合が行われるため、凹溝から接合部に至る上下の金属板との間にはかなりの隙間が生じており、冷却板の使用中にこの隙間に冷媒が滲み込んで滞留し、その結果として腐蝕の進み具合が早くなるという欠点がある。 However, in the conventional cooling plate and the manufacturing method thereof, the flow path of the refrigerant is formed in a meandering shape, a branching / merging shape on the entire surface, and in the central portion sandwiched between adjacent concave grooves arranged in parallel. Therefore, there is a considerable gap between the upper and lower metal plates from the groove to the joint, and the refrigerant permeates and stays in this gap during use of the cooling plate. As a result, there is a drawback that the progress of corrosion is accelerated.

このような欠点を改善するために、特許文献1には、金属板の凹溝および重ね合わせ面に陽極酸化皮膜を形成し、さらに凹溝から接合部に至る上下の金属板の隙間を、金属素材からなる封止材(メタルフィッテイング)またはエポキシ樹脂などの耐水性接着剤からなる封止材により液密状態に封止する方法が提案されている。 In order to improve such a defect, Patent Document 1 discloses that an anodized film is formed on the groove and the overlapping surface of the metal plate, and a gap between the upper and lower metal plates extending from the groove to the joint is formed in the metal. A method of sealing in a liquid-tight state with a sealing material made of a material (metal fitting) or a sealing material made of a water-resistant adhesive such as an epoxy resin has been proposed.

しかしながら、このような封止材などを用いる方法は、その作業に手間がかかり冷却板の製造効率が低下するという問題がある。また、上下両方の金属板の表面に冷媒の流路となる一対の凹溝を設けるので、両方の金属板が厚肉となるうえに切削による凹溝の形成作業に手間がかかり、そのため冷却板がコスト高になり、また製造効率が低下するという問題がある。
再公表特許WO2003/001136号公報
However, the method using such a sealing material has a problem that the work takes time and the manufacturing efficiency of the cooling plate is lowered. In addition, since a pair of concave grooves serving as a refrigerant flow path is provided on the surfaces of both the upper and lower metal plates, both the metal plates become thick and it takes time to form the concave grooves by cutting. However, there is a problem that the cost is increased and the production efficiency is lowered.
Republished patent WO2003 / 001136

本発明は、上記のような従来の問題に鑑みてなされたものであり、その目的とするところは、封止材などを用いることなく、単に摩擦撹拌接合するだけで、接合部の隙間に冷媒が滲み込んで滞留することがなく、且つ接合部は十分な強度を有し信頼性の高い冷却板を低コストで効率よく製造する方法および冷却板を提供することにある。 The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a refrigerant in the gap between the joints simply by friction stir welding without using a sealing material or the like. It is an object of the present invention to provide a method and a cooling plate for efficiently manufacturing a reliable cooling plate at a low cost, in which a bonding portion has sufficient strength and does not stagnate.

上記の目的は、次のような特徴を有する冷却板の製造方法により達成される。
すなわち、請求項1に係る発明は、金属基板の表面に凹溝を設けその上を平たい金属蓋板で覆い、凹溝周辺の基板と蓋板との重ね合わせ部を摩擦撹拌接合することにより、上記凹溝を冷媒の流路とする冷却板の製造方法であって、摩擦撹拌接合装置のツールのプローブを、上記凹溝の側壁上端からプローブの外周に至る水平距離が4mm以内となるように設定して摩擦撹拌接合することを特徴とする冷却板の製造方法である。
The above object is achieved by a method for manufacturing a cooling plate having the following characteristics.
That is, the invention according to claim 1 is provided by forming a groove on the surface of the metal substrate, covering it with a flat metal cover plate, and friction stir welding the overlapping portion of the substrate and the cover plate around the groove, A method of manufacturing a cooling plate using the concave groove as a refrigerant flow path, wherein the horizontal distance from the upper end of the side wall of the concave groove to the outer periphery of the probe is within 4 mm. It is a manufacturing method of the cooling plate characterized by setting and carrying out friction stir welding.

また、請求項2に係る発明は、請求項1に係る発明において、摩擦撹拌接合装置のツールのプローブを、上記凹溝の側壁上端からプローブの外周に至る水平距離が1mm以内となるように設定して摩擦撹拌接合することを特徴とする冷却板の製造方法である。 The invention according to claim 2 is the invention according to claim 1, wherein the probe of the tool of the friction stir welding apparatus is set so that the horizontal distance from the upper end of the side wall of the groove to the outer periphery of the probe is within 1 mm. Then, the manufacturing method of the cooling plate is characterized by performing friction stir welding.

請求項3に係る発明は、請求項1および2に係る発明において、金属基板および金属蓋板が、アルミニウムまたはその合金からなることを特徴とする冷却板の製造方法である。 A third aspect of the invention is a method of manufacturing a cooling plate according to the first and second aspects of the invention, wherein the metal substrate and the metal cover plate are made of aluminum or an alloy thereof.

さらに、請求項4に係る発明は、金属基板の表面に凹溝が設けられ、その上に平たい金属蓋板が覆われており、凹溝周辺の基板と蓋板との重ね合わせ部が摩擦撹拌接合されることにより上記凹溝を冷媒の流路とされた冷却板であって、摩擦撹拌接合による接合部が凹溝の側壁上端に達していることを特徴する冷却板である。 Further, in the invention according to claim 4, a groove is provided on the surface of the metal substrate, and a flat metal cover plate is covered thereon, and the overlapping portion of the substrate and the cover plate around the groove is friction stir. It is a cooling plate in which the groove is used as a coolant flow path by being joined, and a joining portion formed by friction stir welding reaches the upper end of the side wall of the groove.

以下、図面を参照しながら本発明を詳細に説明する。
図1は本発明の冷却板の製造方法の一例を示す一部切欠斜視図、図2は図1のツール部における断面図である。図1および図2において、10は金属基板であって、この基板10の材質としては、摩擦撹拌接合が可能な金属、例えばアルミニウムおよびその合金をはじめ、マグネシウム合金、銅合金、チタン合金、ステンレス鋼などが使用される。また、基板10の厚みは、通常、10〜30mmとされるが、これに限定されない。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a partially cutaway perspective view showing an example of a method for manufacturing a cooling plate according to the present invention, and FIG. 2 is a cross-sectional view of the tool portion of FIG. 1 and 2, reference numeral 10 denotes a metal substrate. The material of the substrate 10 is a metal capable of friction stir welding, such as aluminum and its alloys, magnesium alloys, copper alloys, titanium alloys, and stainless steels. Etc. are used. Moreover, although the thickness of the board | substrate 10 shall be 10-30 mm normally, it is not limited to this.

そして、上記基板10の表面に、エンドミルやフライスなどの切削加工により凹溝11が設けられる。この凹溝11の断面形状は、通常、図示のような角型やU字型とされるが、これ等に限定されない。また、凹溝11の平面形状は、通常、基板10の全面に広がった蛇行形状や分岐・合流形状(1本の一端の凹溝から多数の凹溝が分岐し、これ等の凹溝が互いに平行に全面に延ばされたあと、1本の他端の凹溝に合流する)とされるが、これ等に限定されない。なお、凹溝11を含む基板10の表面には、陽極酸化皮膜処理や金属めっき処理を施して、強度向上や、耐冷媒腐蝕性を向上させてもよい。 And the groove 11 is provided in the surface of the said board | substrate 10 by cutting processes, such as an end mill and a mill. The cross-sectional shape of the concave groove 11 is usually a square shape or a U shape as shown in the figure, but is not limited thereto. In addition, the planar shape of the concave groove 11 is usually a meandering shape or a branching / merging shape spreading over the entire surface of the substrate 10 (a number of concave grooves branch from one concave groove at one end, and these concave grooves are mutually connected. After extending over the entire surface in parallel, it is merged into the concave groove at one other end), but is not limited thereto. Note that the surface of the substrate 10 including the concave grooves 11 may be subjected to an anodic oxide film treatment or metal plating treatment to improve the strength and the coolant corrosion resistance.

次に、上記凹溝11が設けられた基板10の上が平たい金属蓋板20で覆われる。この蓋板20の材質としては、基板10と同様に摩擦撹拌接合が可能な金属、例えばアルミニウムおよびその合金をはじめ、マグネシウム合金、銅合金、チタン合金、鉄鋼などが使用される。また、蓋板20の厚みは、通常、2〜6mmとされるが、これ等に限定されない。なお、金属蓋板20の表面(基板10と対抗する面)には、上記基板10と同様に陽極酸化皮膜処理や金属めっき処理を施しておいてもよい。 Next, the top of the substrate 10 provided with the concave groove 11 is covered with a flat metal lid plate 20. As the material of the cover plate 20, metals capable of friction stir welding similar to the substrate 10, for example, aluminum and its alloys, magnesium alloys, copper alloys, titanium alloys, steels and the like are used. Moreover, although the thickness of the cover plate 20 shall be 2-6 mm normally, it is not limited to these. The surface of the metal lid plate 20 (the surface facing the substrate 10) may be subjected to an anodic oxide film treatment or metal plating treatment in the same manner as the substrate 10.

その後、凹溝11の周辺の基板10と蓋板20との重ね合わせ部が摩擦撹拌接合される。摩擦撹拌接合は、蓋板20の表面の一端に、高速回転するツール40のプローブ41を強い力で挿入し、上記ツール40(ショルダ部42とプローブ41)を高速回転させながら凹溝11の周辺の基板10と蓋板20との重ね合わせ部に沿って他端に移動させ、その時に発生する摩擦熱により重ね合わせ部30を可塑化し、ツール40のショルダ部42によって圧力を負荷しながら固相状態で接合される。なお、21はツール40の回転と移動により形成された加工痕、30は重ね合わせ部に沿って接合された接合部である。 Thereafter, the overlapping portion of the substrate 10 and the cover plate 20 around the groove 11 is friction stir welded. In the friction stir welding, the probe 41 of the tool 40 that rotates at a high speed is inserted into one end of the surface of the lid plate 20 with a strong force, and the tool 40 (the shoulder portion 42 and the probe 41) is rotated at a high speed to surround the groove 11. Is moved to the other end along the overlapping portion of the substrate 10 and the cover plate 20, the overlapping portion 30 is plasticized by the frictional heat generated at that time, and a solid phase is applied while applying pressure by the shoulder portion 42 of the tool 40. Joined in state. Reference numeral 21 denotes a processing mark formed by the rotation and movement of the tool 40, and reference numeral 30 denotes a joining portion joined along the overlapping portion.

上記ツール40は、径の大きいショルダ部42とその先端にプローブ41とを有し、基板10および蓋板20の材質よりも硬いSKD61等のSK或いはSKD工具鋼やPCBN(polycrystalline cubic boron nitride)などからなる。そして、通常、プローブ41にはねじが切ってあるが、ねじが切ってないものも使用できる。また、厚みが3〜6mm程度の蓋板20を使用する場合は、上記ツール40のショルダ部42の直径は12〜15mm程度で、プローブ41の直径は4〜6mm程度のものが好適に使用される。また、上記プローブ41の長さは、基板10の中へ到達できるように蓋板20の厚みよりも0.5〜3mm程度長くされる。 The tool 40 has a shoulder portion 42 having a large diameter and a probe 41 at its tip, and is SK or SKD tool steel, such as SKD61, which is harder than the material of the substrate 10 and the cover plate 20, PCBN (polycrystalline cubic boron), etc. Consists of. Usually, the probe 41 is threaded, but a probe that is not threaded can also be used. Moreover, when using the cover plate 20 having a thickness of about 3 to 6 mm, the diameter of the shoulder portion 42 of the tool 40 is about 12 to 15 mm, and the diameter of the probe 41 is about 4 to 6 mm. The In addition, the length of the probe 41 is about 0.5 to 3 mm longer than the thickness of the cover plate 20 so that it can reach into the substrate 10.

また、ショルダ部42の面は、重ね合わせ部に沿った基板10と蓋板20とを押圧する必要があり、通常は蓋板20と当接する面が平面であるもの或いはプローブ41を中心としてやや円弧状または円錐状に凹んだものが使用されるが、場合によっては、プローブ41を中心としてやや円弧状または円錐状に突起したもの或いは凹んだものも使用できる。さらに、これ等のショルダ部42の面に渦巻き状の凹溝を形成したものも使用できる。 Further, the surface of the shoulder portion 42 needs to press the substrate 10 and the lid plate 20 along the overlapping portion. Usually, the surface abutting against the lid plate 20 is a plane or is slightly centered around the probe 41. An arcuate or conical recess is used, but depending on the case, a slightly arcuate or conical projection or a concavity with the probe 41 as the center can also be used. Further, those in which a spiral groove is formed on the surface of the shoulder portion 42 can also be used.

ツール40の回転速度は、基板10および蓋板20の材質や蓋板20の厚みなどにより異なるが、一般に数百〜数千回転/分、接合速度は一般に数十〜数百mm/分であるが、条件によっては1〜2m/分も可能である。特に、本発明においては、基板10および蓋板20の材質がアルミニウムまたはその合金で、且つ蓋板20の厚みが2〜6mmの場合は、ツール40の回転速度は600〜1800回転/分、接合速度は100〜600mm/分が、十分な接合強度を得るうえで好ましい。 The rotation speed of the tool 40 varies depending on the material of the substrate 10 and the cover plate 20, the thickness of the cover plate 20, and the like, but is generally several hundred to several thousand rotations / minute, and the joining speed is generally several tens to several hundreds mm / minute. However, depending on conditions, 1 to 2 m / min is possible. In particular, in the present invention, when the material of the substrate 10 and the cover plate 20 is aluminum or an alloy thereof and the thickness of the cover plate 20 is 2 to 6 mm, the rotation speed of the tool 40 is 600 to 1800 rotations / minute, The speed is preferably 100 to 600 mm / min for obtaining sufficient bonding strength.

しかして、本発明においては、図2に示すように、摩擦撹拌接合装置のツール40のプローブ41を、上記基板10の凹溝11の側壁上端からプローブ41の外周に至る水平距離Dが常に4mm以内、好ましくは1mm以内となるように設定して摩擦撹拌接合を行う。この水平距離Dが4mmを越えると、凹溝11から接合部30に至る上下の金属板との間の隙間の幅(非接合部の幅)が大きくなり過ぎて、冷却板の使用中にこの隙間に冷媒が滲み込んで滞留しやすくなり、その結果として腐蝕の進み具合が早くなる。 Accordingly, in the present invention, as shown in FIG. 2, the horizontal distance D from the upper end of the side wall of the groove 11 of the substrate 10 to the outer periphery of the probe 41 is always 4 mm. And preferably within 1 mm, friction stir welding is performed. If this horizontal distance D exceeds 4 mm, the width of the gap between the upper and lower metal plates from the groove 11 to the joint 30 (the width of the non-joint) becomes too large, and this is not possible during use of the cooling plate. The refrigerant soaks into the gap and tends to stay, and as a result, the progress of corrosion is accelerated.

また、上記隙間は亀裂と同様に振舞うので、この隙間の幅が4mmを越えて大きくなり過ぎると隙間の奥の接合境界部に応力が集中して接合強度の低下を招き、冷却板の長期使用中や耐圧試験の際に破断しやすくなる。冷却板の長期使用中や耐圧試験の際に破断に至らないときでも、上記隙間の幅が4mmを越えて大きくなると、冷媒の圧力により凹溝11により形成された冷媒の流路上の蓋板20が膨らんで平面性が損なわれ、その結果この種の冷却板として重要な面接触により被冷却体を冷却放熱する性能が損なわれる。 In addition, since the gap behaves like a crack, if the width of the gap exceeds 4 mm and becomes too large, stress concentrates on the junction boundary at the back of the gap, leading to a decrease in bonding strength, and long-term use of the cooling plate. It tends to break during medium and pressure tests. Even when the cooling plate does not break during long-term use or during a pressure test, when the width of the gap increases beyond 4 mm, the cover plate 20 on the refrigerant flow path formed by the groove 11 is formed by the pressure of the refrigerant. Swells and the flatness is impaired, and as a result, the ability to cool and dissipate the object to be cooled by surface contact important as this type of cooling plate is impaired.

上述のように、隙間への冷媒の滲み込み滞留、接合強度の低下および平面性の低下を総合的に検討した結果、上記水平距離Dの限界を4mm以内とすれば、確実に本発明の目的が達成され信頼性の高い冷却板を得ることができることを見出した。特に、上記水平距離Dを1〜2mmに設定するのが望ましい。なお、上記水平距離Dを0mmに設定すると凹溝11の側壁が崩れることがあり、この条件は採用できない。一方、上記水平距離Dの上限は、ツール40のショルダ部42の外周が凹溝11の側壁と同じ垂直位置となるようにするのが望ましい。 As described above, as a result of comprehensively examining the penetration and retention of the refrigerant in the gap, the decrease in bonding strength, and the decrease in flatness, the object of the present invention is ensured if the limit of the horizontal distance D is within 4 mm. It was found that a highly reliable cooling plate can be obtained. In particular, it is desirable to set the horizontal distance D to 1 to 2 mm. If the horizontal distance D is set to 0 mm, the side wall of the concave groove 11 may collapse, and this condition cannot be adopted. On the other hand, it is desirable that the upper limit of the horizontal distance D is such that the outer periphery of the shoulder portion 42 of the tool 40 is at the same vertical position as the side wall of the groove 11.

上記ツール40は、通常、定盤軸(X)と横行軸(Y)と昇降軸(Z)の機械3軸および揺動軸(A)と旋回軸(C)のツール2軸とからなる公知の5軸枠型の摩擦撹拌接合装置に取り付けられ、コンピュータ制御により所定の方向に回転および移動するように使用される。また、三つの関節軸と二つの回転軸を具備した公知のロボットアームの先端に搭載されたマシンヘッドに取り付けて使用されるが、これ等に限定されない。 The above-mentioned tool 40 is generally composed of a machine axis of a platen axis (X), a transverse axis (Y), a lifting axis (Z), and a tool axis of two swing axes (A) and a pivot axis (C). And is used so as to rotate and move in a predetermined direction by computer control. Moreover, although it attaches and uses for the machine head mounted in the front-end | tip of the well-known robot arm provided with three joint axes and two rotating shafts, it is not limited to these.

なお、ツール40は一方向に回転しながら一端から他端に移動していくので、左右非対称の接合面となる。したがって、本発明においては、できるだけ左右対称の接合面が得られるように、ツール40を往復の2パスで行うのが均一な接合強度を得るうえで好ましい。ツール40を片道の1パスで行う場合はツール40の回転方向は、凹溝11のある側において、ツール40の回転方向と移動方向とが同じ方向、すなわち、図1に示すようにツール40をA方向に回転させながらB方向に移動させるのが接合強度の点で好ましい。 Since the tool 40 moves from one end to the other while rotating in one direction, it becomes a left-right asymmetric joint surface. Therefore, in the present invention, in order to obtain a uniform joining strength, it is preferable to perform the tool 40 in two reciprocating passes so that a joining surface as symmetrical as possible is obtained as much as possible. When the tool 40 is performed in one way in one way, the rotation direction of the tool 40 is the same direction as the rotation direction and the movement direction of the tool 40 on the side where the concave groove 11 is present, that is, as shown in FIG. It is preferable in terms of bonding strength to move in the B direction while rotating in the A direction.

こうして、基板10と蓋板20とで囲まれた凹溝11を冷媒の流路とする本発明の冷却板が得られる。本発明方法で得られる冷却板は、金属基板の表面に凹溝が設けられ、その上に平たい金属蓋板が覆われており、凹溝周辺の基板と蓋板との重ね合わせ部が摩擦撹拌接合されることにより上記凹溝を冷媒の流路とされた冷却板であって、特に摩擦撹拌接合による接合部が凹溝の側壁上端に達しているものが、本発明の目的を達成するうえで好ましい。そして、本発明で得られる冷却板は、薄型とすることが可能で、半導体製造装置やスパッタリング装置など各種装置の温度調節に好適に用いられる。 Thus, the cooling plate of the present invention is obtained in which the concave groove 11 surrounded by the substrate 10 and the cover plate 20 is used as the coolant flow path. The cooling plate obtained by the method of the present invention is provided with a groove on the surface of the metal substrate, covered with a flat metal lid plate, and the overlapping portion of the substrate and the lid plate around the groove is friction stir. In order to achieve the object of the present invention, a cooling plate in which the concave groove is used as a refrigerant flow path by being joined, and in particular, a joint portion by friction stir welding reaches the upper end of the side wall of the concave groove. Is preferable. And the cooling plate obtained by this invention can be made thin, and it is used suitably for temperature control of various apparatuses, such as a semiconductor manufacturing apparatus and a sputtering apparatus.

本発明によれば、アルミニウム合金等の金属基板の表面に凹溝を設けその上をアルミニウム合金等の平たい金属蓋板で覆い、凹溝周辺の基板と蓋板との重ね合わせ部を摩擦撹拌接合するという簡単な操作で冷却板が得られるので、従来のように両方の金属板に凹溝を形成する必要がなく、そのうえ冷却板の厚さを薄くすることが可能で、接合強度に優れ信頼性が高く、低コストで非常に効率よく冷却板を製造することができる。 According to the present invention, a groove is provided on the surface of a metal substrate such as an aluminum alloy, and the groove is covered with a flat metal lid plate such as an aluminum alloy, and the overlapping portion of the substrate and the lid plate around the groove is friction stir welded. Since the cooling plate can be obtained by a simple operation, there is no need to form concave grooves on both metal plates as in the past, and the thickness of the cooling plate can be reduced and the joint strength is excellent and reliable. The cooling plate can be manufactured very efficiently at a low cost.

しかも、本発明によれば、摩擦撹拌接合装置のツールのプローブを、上記凹溝の側壁上端からプローブの外周に至る水平距離が4mm以内、好ましくは1mm以内となるように設定することにより、凹溝から接合部に至る基板と蓋板との間の隙間の幅(非接合部の幅)がゼロとなるか或いは著しく小さくなる。したがって、従来のように封止材を用いなくても、冷却板の使用中にこの隙間に冷媒が滲み込んで滞留することが抑制され、その結果として腐食の進行が抑制される。 In addition, according to the present invention, the probe of the tool of the friction stir welding apparatus is set so that the horizontal distance from the upper end of the side wall of the groove to the outer periphery of the probe is within 4 mm, preferably within 1 mm. The width of the gap between the substrate extending from the groove to the joint and the cover plate (the width of the non-joint) becomes zero or significantly smaller. Therefore, even if a sealing material is not used as in the prior art, it is possible to suppress the refrigerant from seeping into and staying in the gap during use of the cooling plate, and as a result, the progress of corrosion is suppressed.

また、凹溝から接合部に至る基板と蓋板との間の隙間の幅(非接合部の幅)がゼロとなるか或いは著しく小さくなること、摩擦撹拌接合による接合部の接合強度の改善とが相俟って、冷却板の使用中に強い液圧がかかっても隙間と接合部との境界からの亀裂や破断が防止できる。また、冷却板の使用中に通常よりも強い液圧がかかっても、凹溝により形成された冷媒の流路上の蓋板が膨らんで平面性が損なわれることがなく、その結果冷却板として重要な冷却体を冷却放熱する性能の低下が防止される。 In addition, the width of the gap between the substrate and the cover plate from the concave groove to the bonded portion (the width of the non-bonded portion) becomes zero or significantly reduced, and the bonding strength of the bonded portion is improved by friction stir welding. In combination, even if a strong hydraulic pressure is applied during use of the cooling plate, cracks and breaks from the boundary between the gap and the joint can be prevented. In addition, even when a hydraulic pressure higher than usual is applied during use of the cooling plate, the cover plate on the refrigerant flow path formed by the concave groove does not swell and the flatness is not impaired, and as a result, it is important as a cooling plate. Deterioration of the performance of cooling and dissipating heat from a cooling body is prevented.

以下、本発明の具体的な実施例を挙げる。なお、本発明はこれ等の実施例に限定されるものではない。 Specific examples of the present invention will be given below. The present invention is not limited to these examples.

(試験用の冷却板の製造)
図1に示すように、アルミニウム合金(A5052−H112)からなる基板10(長さ300mm、幅150mm、厚さ30mm)の表面の中央部の長さ方向に沿って、フライス切削加工により凹溝11(長さ300mm、幅15mm、高さ15mm)を設けた。次に、上記凹溝11を設けた基板10の上に全面にわたって、アルミニウム合金(A5052−H3)からなる平たい蓋板20(長さ300mm、幅150mm、厚さ2mm)を重ね合わせ、基板10と蓋板20とがずれないように周縁の数箇所をビス止めして、基板10と蓋板20との重ね合わせ体を得た。
(Manufacture of test cooling plates)
As shown in FIG. 1, the groove 11 is formed by milling along the length direction of the center portion of the surface of the substrate 10 (length 300 mm, width 150 mm, thickness 30 mm) made of an aluminum alloy (A5052-H112). (Length 300 mm, width 15 mm, height 15 mm). Next, a flat lid plate 20 (length 300 mm, width 150 mm, thickness 2 mm) made of an aluminum alloy (A5052-H3) is overlaid on the entire surface of the substrate 10 provided with the concave groove 11 to form the substrate 10 and Several places on the periphery were screwed so that the cover plate 20 was not displaced, and an overlapped body of the substrate 10 and the cover plate 20 was obtained.

その後、定盤軸(X)と横行軸(Y)と昇降軸(Z)の機械3軸および揺動軸(A)と旋回軸(C)のツール2軸とからなる公知の5軸枠型の摩擦撹拌接合装置に取り付けられたツール40を、上記基板10の凹溝11の側壁上端からプローブ41の外周に至る水平距離Dが常に1mmとなるように設定し、このプローブ41を1200rpmで回転させながら上記重ね合わせ体接合線33の一端部に挿入し、400mm/分の送り速度で他端部にコンピュータ制御により移動させて摩擦撹拌接合を行った。 Thereafter, a known 5-axis frame type comprising a machine axis of a platen axis (X), a transverse axis (Y), a lifting axis (Z), and a tool axis of a swing axis (A) and a pivot axis (C). The tool 40 attached to the friction stir welding apparatus is set so that the horizontal distance D from the upper end of the side wall of the groove 11 of the substrate 10 to the outer periphery of the probe 41 is always 1 mm, and the probe 41 is rotated at 1200 rpm. Then, it was inserted into one end portion of the superposed body joining line 33 and moved to the other end portion by computer control at a feed rate of 400 mm / min to perform friction stir welding.

上記ツール40は、プローブ41の直径が4.0mm、長さが2.9mmであり、ねじが切ってあり、ショルダ部42の直径は12mmで、上記重ね合わせ体を押圧するためのショルダ面は平面であった。また、ツール40への負荷は9800Nであった。ここで、ツール40は片道の1パスとし、ツール40の回転方向は、図1に示すようにツール40をA方向に回転させながらB方向に移動させた。 The tool 40 has a probe 41 having a diameter of 4.0 mm, a length of 2.9 mm, a threaded portion, a shoulder portion 42 having a diameter of 12 mm, and a shoulder surface for pressing the overlapped body. It was a plane. The load on the tool 40 was 9800N. Here, the tool 40 is a one-way path, and the rotation direction of the tool 40 is moved in the B direction while rotating the tool 40 in the A direction as shown in FIG.

なお、摩擦撹拌接合の終了位置に残るプローブ穴が、後述の耐圧試験の際の耐圧性に影響を及ぼさないように、摩擦撹拌接合の終了位置は凹溝の側壁から20mm程度離した。また、摩擦撹拌接合の開始位置も開始直後の状態が安定しない領域による悪影響を避けるために、凹溝の側壁から20mm程度離した(図2参照)。   The end position of the friction stir welding was separated from the side wall of the concave groove by about 20 mm so that the probe hole remaining at the end position of the friction stir welding did not affect the pressure resistance in the pressure resistance test described later. Further, the start position of the friction stir welding was separated from the side wall of the concave groove by about 20 mm in order to avoid the adverse effect due to the region where the state immediately after the start is not stable (see FIG. 2).

こうして、基板10と蓋板20とで囲まれた凹溝11を冷媒の流路とする試験用の冷却板を製造した。この試験用の冷却板を蓋板20の側から撮影した写真を図3に示す。この写真から明らかなように、表面にはツール40による細長い加工痕21が存在するが、変形やバリ等の欠陥はなく接合部の外観は極めて良好であった。 In this way, a test cooling plate having the groove 11 surrounded by the substrate 10 and the cover plate 20 as the coolant flow path was manufactured. FIG. 3 shows a photograph of the test cooling plate taken from the lid plate 20 side. As is apparent from this photograph, a long and narrow processing mark 21 due to the tool 40 exists on the surface, but there was no defect such as deformation or burrs, and the appearance of the joint was extremely good.

(試験用の冷却板の耐圧試験)
先ず、予備試験として、試験用の冷却板の気密性を調べるために、図4に写真で示すように、冷却板の凹溝の一端に栓をして塞ぎ他端に導管を気密に連結し、凹溝からなる冷媒の流路に0.49MPaの空気圧を加えて水中に5分間放置し、空気の漏れを調べたところ、連続した気泡の発生は認められず、気密性に問題はなかった。
(Pressure test of cooling plate for testing)
First, as a preliminary test, in order to investigate the airtightness of the test cooling plate, as shown in the photograph in FIG. 4, one end of the groove of the cooling plate is plugged and closed, and a conduit is connected to the other end in an airtight manner. Then, when 0.49 MPa air pressure was applied to the refrigerant flow path composed of the concave grooves and left in the water for 5 minutes and the air leakage was examined, no occurrence of continuous bubbles was observed, and there was no problem with airtightness. .

次に、本試験として、「給水装置の構造及び材質の基準に関する省令」(厚生労働省令)の第1条に記載された耐圧性能試験に基づいて、水圧試験機(山本水圧社製PH10)を用いて、上記省令で規定されている「1.75MPaの静水圧を1分間加えて、水漏れ、変形、破損、その他の異常が生じないこと」という条件を満たすかどうかを調べたところ、異常は全く認められなかった。また、この水圧試験後の冷却板を切断して、接合端部(凹溝上端と蓋板との境界部)を観察した結果、この接合端部は完全に接合されていて隙間がなく、隙間への水の浸入は認められなかった。 Next, based on the pressure resistance test described in Article 1 of the "Ministerial Ordinance on Water Supply System Structure and Material Standards" (Ministry of Health, Labor and Welfare), the water pressure tester (PH10 manufactured by Yamamoto Water Pressure Co., Ltd.) Using this, it was examined whether or not the condition specified by the above-mentioned ministerial ordinance was met by “applying a hydrostatic pressure of 1.75 MPa for 1 minute to prevent water leakage, deformation, breakage, and other abnormalities”. Was not recognized at all. Moreover, as a result of cutting the cooling plate after the water pressure test and observing the joining end portion (boundary portion between the upper end of the groove and the cover plate), the joining end portion is completely joined and there is no gap. No water intrusion was observed.

さらに、上記水圧試験機による加圧力を上げて破壊圧力を測定したが、水圧試験機の加圧力の限界である25MPaの静水圧でも直線中央が少し盛り上がり、曲線部も変形するが破壊には至らず、25MPaの静水圧が実用上の水圧にくらべて遥かに高いことを勘案すると、優れた耐圧性を有することが証明された。 Further, the breaking pressure was measured by increasing the pressure applied by the hydraulic pressure tester, but even at the hydrostatic pressure of 25 MPa, which is the limit of the pressure applied by the hydraulic pressure tester, the center of the straight line swells slightly and the curved portion is deformed, but the failure is not reached. In view of the fact that the hydrostatic pressure of 25 MPa is much higher than the practical water pressure, it was proved to have excellent pressure resistance.

ツール40を、上記基板10の凹溝11の側壁上端からプローブ41の外周に至る水平距離Dが常に2mmとなるように設定したこと以外は実施例1と同様に行って、試験用の冷却板を製造した。 The test plate was tested in the same manner as in Example 1 except that the horizontal distance D from the upper end of the side wall of the groove 11 of the substrate 10 to the outer periphery of the probe 41 was always 2 mm. Manufactured.

得られた試験用の冷却板について、1.75MPaの静水圧を1分間加える耐圧試験では、異常は全く認められなかった。この水圧試験後の冷却板を切断して、接合端部(凹溝上端と蓋板との境界部)を観察した結果、この接合端部は完全に接合されていて隙間がなく、隙間への水の浸入は認められなかった。また、23MPaの静水圧で直線中央が盛り上がり、曲線部が変形した後、直線部で破壊するが、23MPaの静水圧が実用上の水圧にくらべて遥かに高いことを勘案すると、優れた耐圧性を有することが証明された。 No abnormality was observed in the pressure-resistant test in which a hydrostatic pressure of 1.75 MPa was applied for 1 minute with respect to the obtained cooling plate for testing. As a result of cutting the cooling plate after the water pressure test and observing the joining end portion (boundary portion between the upper end of the groove and the lid plate), the joining end portion is completely joined and there is no gap. No water intrusion was observed. In addition, the center of the straight line swells at a hydrostatic pressure of 23 MPa, and after the curved portion is deformed, it breaks at the straight portion, but considering that the hydrostatic pressure of 23 MPa is much higher than the practical water pressure, it has excellent pressure resistance. Proved to have

ツール40を、上記基板10の凹溝11の側壁上端からプローブ41の外周に至る水平距離Dが常に4mmとなるように設定したこと以外は実施例1と同様に行って、試験用の冷却板を製造した。 The test plate was tested in the same manner as in Example 1 except that the horizontal distance D from the upper end of the side wall of the groove 11 of the substrate 10 to the outer periphery of the probe 41 was always set to 4 mm. Manufactured.

得られた試験用の冷却板について、1.75MPaの静水圧を1分間加える耐圧試験では、異常は認められなかった。この水圧試験後の冷却板を切断して、接合端部(凹溝上端と蓋板との境界部)を観察した結果、この接合端部は完全に接合されていて隙間がなく、隙間への水の浸入は認められなかった。また、16MPaの静水圧で直線中央が大きく盛り上がり、曲線部が変形した後、直線部で破壊するが、16MPaの静水圧が実用上の水圧にくらべて遥かに高いことを勘案すると、優れた耐圧性を有することが証明された。 No abnormality was observed in the pressure-resistant test in which a hydrostatic pressure of 1.75 MPa was applied for 1 minute with respect to the obtained cooling plate for testing. As a result of cutting the cooling plate after the water pressure test and observing the joining end portion (boundary portion between the upper end of the groove and the lid plate), the joining end portion is completely joined and there is no gap. No water intrusion was observed. In addition, the center of the straight line swells greatly at a hydrostatic pressure of 16 MPa, and after the curved portion is deformed, it breaks at the straight portion, but considering the fact that the hydrostatic pressure of 16 MPa is far higher than the practical water pressure, Proven to have sex.

本発明の冷却板の製造方法の一例を示す一部切欠斜視図である。It is a partially notched perspective view which shows an example of the manufacturing method of the cooling plate of this invention. 図1のツール部における断面図である。It is sectional drawing in the tool part of FIG. 実施例1により得られた冷却板の写真である。2 is a photograph of a cooling plate obtained in Example 1. 実施例1により得られた冷却板の気密試験の状態を示す写真である。2 is a photograph showing a state of an airtight test of a cooling plate obtained in Example 1. FIG.

符号の説明Explanation of symbols

10 金属基板
11 凹溝
20 金属蓋板
21 加工痕
30 接合部
40 ツール
41 ツールのプローブ
42 ツールのショルダ部

DESCRIPTION OF SYMBOLS 10 Metal substrate 11 Concave groove 20 Metal lid plate 21 Process mark 30 Joint part 40 Tool 41 Tool probe 42 Tool shoulder part

Claims (4)

金属基板の表面に凹溝を設けその上を平たい金属蓋板で覆い、凹溝周辺の基板と蓋板との重ね合わせ部を摩擦撹拌接合することにより、上記凹溝を冷媒の流路とする冷却板の製造方法であって、摩擦撹拌接合装置のツールのプローブを、上記凹溝の側壁上端からプローブの外周に至る水平距離が4mm以内となるように設定して摩擦撹拌接合することを特徴とする冷却板の製造方法。   A concave groove is formed on the surface of the metal substrate, and the flat groove is covered with a flat metal lid plate, and the overlapping portion of the substrate and the lid plate around the concave groove is friction stir welded, whereby the concave groove is used as a refrigerant flow path. A method of manufacturing a cooling plate, characterized in that a frictional stir welding is performed by setting a probe of a tool of a friction stir welding apparatus so that a horizontal distance from the upper end of the side wall of the concave groove to the outer periphery of the probe is within 4 mm. A manufacturing method of a cooling plate. 摩擦撹拌接合装置のツールのプローブを、上記凹溝の側壁上端からプローブの外周に至る水平距離が1mm以内となるように設定して摩擦撹拌接合することを特徴とする請求項1に記載の冷却板の製造方法。   2. The cooling according to claim 1, wherein the probe of the tool of the friction stir welding apparatus is friction stir welded by setting a horizontal distance from the upper end of the side wall of the concave groove to the outer periphery of the probe to be within 1 mm. A manufacturing method of a board. 金属基板および金属蓋板が、アルミニウムまたはその合金からなることを特徴とする請求項1または2に記載の冷却板の製造方法。   The method of manufacturing a cooling plate according to claim 1 or 2, wherein the metal substrate and the metal cover plate are made of aluminum or an alloy thereof. 金属基板の表面に凹溝が設けられ、その上に平たい金属蓋板が覆われており、凹溝周辺の基板と蓋板との重ね合わせ部が摩擦撹拌接合されることにより上記凹溝を冷媒の流路とされた冷却板であって、摩擦撹拌接合による接合部が凹溝の側壁上端に達していることを特徴する冷却板。
A concave groove is provided on the surface of the metal substrate, and a flat metal lid plate is covered thereon, and the overlapping portion of the substrate and the lid plate around the concave groove is joined by friction stir welding so that the concave groove is made into a coolant. A cooling plate, characterized in that a joint portion by friction stir welding reaches the upper end of the side wall of the concave groove.
JP2006129205A 2006-05-08 2006-05-08 Method of manufacturing cooling plate, and cooling plate Pending JP2007301567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006129205A JP2007301567A (en) 2006-05-08 2006-05-08 Method of manufacturing cooling plate, and cooling plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006129205A JP2007301567A (en) 2006-05-08 2006-05-08 Method of manufacturing cooling plate, and cooling plate

Publications (1)

Publication Number Publication Date
JP2007301567A true JP2007301567A (en) 2007-11-22

Family

ID=38835959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006129205A Pending JP2007301567A (en) 2006-05-08 2006-05-08 Method of manufacturing cooling plate, and cooling plate

Country Status (1)

Country Link
JP (1) JP2007301567A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240671A (en) * 2009-04-02 2010-10-28 Nippon Light Metal Co Ltd Method of manufacturing heat transfer plate
JP2015196180A (en) * 2014-04-01 2015-11-09 日本軽金属株式会社 Manufacturing method for heat transfer plate and friction agitation joint method
CN106271023A (en) * 2015-05-27 2017-01-04 上海航天设备制造总厂 A kind of method using agitating friction weldering that cold drawing is sealed

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095532A (en) * 2004-09-28 2006-04-13 Mitsubishi Heavy Ind Ltd Friction stir welding method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095532A (en) * 2004-09-28 2006-04-13 Mitsubishi Heavy Ind Ltd Friction stir welding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240671A (en) * 2009-04-02 2010-10-28 Nippon Light Metal Co Ltd Method of manufacturing heat transfer plate
JP2015196180A (en) * 2014-04-01 2015-11-09 日本軽金属株式会社 Manufacturing method for heat transfer plate and friction agitation joint method
CN106271023A (en) * 2015-05-27 2017-01-04 上海航天设备制造总厂 A kind of method using agitating friction weldering that cold drawing is sealed

Similar Documents

Publication Publication Date Title
JP4072558B2 (en) Joined body of steel and aluminum, and spot welding method thereof
US11185945B2 (en) Method for manufacturing liquid cooling jacket
Xu et al. Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints
Liu et al. Mechanical properties of underwater friction stir welded 2219 aluminum alloy
Zhao et al. Effects of tool geometry on friction stir welding of AA6061 to TRIP steel
US8888069B2 (en) Valves having high wear-resistance and high corrosion-resistance
US20200353558A1 (en) Method for manufacturing liquid cooling jacket
Buffa et al. Micro and macro mechanical characterization of friction stir welded Ti–6Al–4V lap joints through experiments and numerical simulation
JP4475239B2 (en) Manufacturing method of heat sink plate
Hsieh et al. Friction stir spot fusion welding of low-carbon steel to aluminum alloy
Soni et al. Defects formation during friction stir welding: a review
JP6950569B2 (en) How to manufacture a liquid-cooled jacket
JP2000301364A (en) Rotation friction agitation joining method of dissimiliar metal material
Beygi et al. Friction stir butt welding of Al-Cu bilayer laminated composites: analysis of force, torque, and temperature
Lee et al. Effect of nickel coating on the shear strength of FSW lap joint between Ni–Cu alloy and steel
CN109623132A (en) A kind of device and method improving 7 line aluminium alloy friction stir welding performances
JP2007301567A (en) Method of manufacturing cooling plate, and cooling plate
Ciliberto et al. FSW of T joints in overlap configuration: process optimization in joining dissimilar aluminium alloys for the aeronautic application
Ji et al. Microstructure and mechanical properties of friction stir repaired Al–cu casting alloy
Fratini et al. Experimental characterization of FSW T-joints of light alloys
Horton Microhardness, strength and strain field characterization of self-reacting friction stir and plug welds of dissimilar aluminum alloys
Ahmed et al. On increasing productivity of micro-friction stir welding with aid of tool shoulder micro-features
Mahto et al. Friction stir lap welding of thin AA6061-T6 and AISI304 sheets at different values of pin penetrations
JP7347235B2 (en) Liquid cooling jacket manufacturing method and friction stir welding method
Nordal Design, development and analysis of tools for hybrid friction stir channeling

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

A521 Written amendment

Effective date: 20080215

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080311

A977 Report on retrieval

Effective date: 20100614

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101214

Free format text: JAPANESE INTERMEDIATE CODE: A02