JP2007298244A - Exhaust heat recovery boiler - Google Patents

Exhaust heat recovery boiler Download PDF

Info

Publication number
JP2007298244A
JP2007298244A JP2006128346A JP2006128346A JP2007298244A JP 2007298244 A JP2007298244 A JP 2007298244A JP 2006128346 A JP2006128346 A JP 2006128346A JP 2006128346 A JP2006128346 A JP 2006128346A JP 2007298244 A JP2007298244 A JP 2007298244A
Authority
JP
Japan
Prior art keywords
evaporator
heat recovery
primary
pressure
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006128346A
Other languages
Japanese (ja)
Other versions
JP4842007B2 (en
Inventor
Kazuhiro Takenaga
和弘 武永
Mitsugi Musashi
貢 武蔵
Hideyuki Uchimura
英幸 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006128346A priority Critical patent/JP4842007B2/en
Publication of JP2007298244A publication Critical patent/JP2007298244A/en
Application granted granted Critical
Publication of JP4842007B2 publication Critical patent/JP4842007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat recovery boiler capable of properly maintaining a steam-water mixing ratio in a primary evaporator outlet and the degree of superheating of a secondary evaporator outlet throughout a wide operation range. <P>SOLUTION: In the exhaust heat recovery boiler, the high pressure secondary evaporator 13 is installed in a flow direction upstream side of exhaust gas from a gas turbine, the high pressure primary evaporator 17 is installed in a downstream side, a steam-water mixed flow of the high pressure primary evaporator 17 outlet is introduced into the high pressure secondary evaporator 13, and a steam-water separator 12 is connected to the outlet of the high pressure secondary evaporator 13. A bypass passage 34 and a damper 35 are provided in the high pressure secondary evaporator 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排熱回収ボイラに係り、特に大容量高効率化に好適な排熱回収ボイラに関する。   The present invention relates to an exhaust heat recovery boiler, and more particularly to an exhaust heat recovery boiler suitable for increasing the capacity and efficiency.

一般的なコンバインドサイクル発電設備のプラント構成について図7,図8を参照して説明する。
ガスタービン36では天然ガス等の燃焼により発電を行い、高温のガスタービン排ガスは排熱回収ボイラ37に送られる。排熱回収ボイラ37では排ガスからの熱回収により給水が蒸気になり、発生した蒸気は蒸気タービン39に送られて発電を行う。
A plant configuration of a general combined cycle power generation facility will be described with reference to FIGS.
The gas turbine 36 generates power by burning natural gas or the like, and the high-temperature gas turbine exhaust gas is sent to the exhaust heat recovery boiler 37. In the exhaust heat recovery boiler 37, the feed water becomes steam by heat recovery from the exhaust gas, and the generated steam is sent to the steam turbine 39 to generate electric power.

この際、図7に示すようにガスタービン36,蒸気タービン39,発電機40のそれぞれ1台が同軸で接続されて、排熱回収ボイラ37が1台設置された一軸システムと、図8に示すように2台以上のガスタービン36及び排熱回収ボイラ37に1台の蒸気タービン39が組み合わされ、それぞれに発電機40,41が設置された多軸システムがある。多軸システムは、排熱回収ボイラ37から蒸気タービン39に送られる蒸気量がガスタービン負荷だけでなく運転台数によっても変化することから、一軸システムに比べて蒸気システムでの運用範囲が広くなる。   At this time, as shown in FIG. 7, each of the gas turbine 36, the steam turbine 39, and the generator 40 is coaxially connected, and one exhaust heat recovery boiler 37 is installed, and FIG. As described above, there is a multi-shaft system in which one steam turbine 39 is combined with two or more gas turbines 36 and an exhaust heat recovery boiler 37, and generators 40 and 41 are respectively installed. In the multi-axis system, the amount of steam sent from the exhaust heat recovery boiler 37 to the steam turbine 39 varies depending not only on the gas turbine load but also on the number of units in operation, so the operating range of the steam system is wider than that of the single-axis system.

従来の貫流式排熱回収ボイラの断面図を図9,図10に示す。図9は貫流式排熱回収ボイラの側面断面図、図10はその貫流式排熱回収ボイラの平面断面図である。   9 and 10 are sectional views of a conventional once-through exhaust heat recovery boiler. FIG. 9 is a side sectional view of the once-through exhaust heat recovery boiler, and FIG. 10 is a plan sectional view of the once-through exhaust heat recovery boiler.

これらの図において、1はガス入口、2はガス出口、3は入口ダクト、4は本体ケーシング、5は出口ダクト、6は高圧三次過熱器、7は二次再熱器、8は助燃バーナ、9は高圧二次過熱器、10は再熱器、11は高圧一次過熱器、12は高圧汽水分離器、13は高圧二次蒸発器、14は高圧分配管、15は高圧分配管、16は高圧一次蒸発器出口管、17は高圧一次蒸発器、18は排煙脱硝触媒、19は中圧過熱器、20は高圧三次節炭器、21は低圧過熱器、22は中圧汽水分離器、23は中圧二次蒸発器、24は中圧分配管、25は中圧分配管、26は中圧一次蒸発器出口管、27は中圧一次蒸発器、28は高圧二次節炭器、29は中圧節炭器、30は高圧一次節炭器、31は低圧蒸気ドラム、32は低圧蒸発器、33は低圧節炭器である。   In these drawings, 1 is a gas inlet, 2 is a gas outlet, 3 is an inlet duct, 4 is a main body casing, 5 is an outlet duct, 6 is a high-pressure tertiary superheater, 7 is a secondary reheater, 8 is an auxiliary burner, 9 is a high-pressure secondary superheater, 10 is a reheater, 11 is a high-pressure primary superheater, 12 is a high-pressure steam separator, 13 is a high-pressure secondary evaporator, 14 is a high-pressure distribution pipe, 15 is a high-pressure distribution pipe, and 16 is High pressure primary evaporator outlet pipe, 17 is a high pressure primary evaporator, 18 is a flue gas denitration catalyst, 19 is a medium pressure superheater, 20 is a high pressure tertiary economizer, 21 is a low pressure superheater, 22 is a medium pressure brackish water separator, 23 is a medium pressure secondary evaporator, 24 is a medium pressure distribution pipe, 25 is a medium pressure distribution pipe, 26 is a medium pressure primary evaporator outlet pipe, 27 is a medium pressure primary evaporator, 28 is a high pressure secondary economizer, 29 Is a medium pressure economizer, 30 is a high pressure primary economizer, 31 is a low pressure steam drum, 32 is a low pressure evaporator, and 33 is a low pressure economizer. That.

図10に示されているように、排ガスGの流れ方向前流側に高圧二次蒸発器13,後流側に高圧一次蒸発器17が設置され、高圧一次蒸発器17の出口の汽水混合流は高圧二次蒸発器13に導入され、高圧二次蒸発器13の出口に高圧汽水分離器12が接続されている。   As shown in FIG. 10, a high-pressure secondary evaporator 13 is installed on the upstream side in the flow direction of the exhaust gas G, a high-pressure primary evaporator 17 is installed on the downstream side, and a brackish water mixed flow at the outlet of the high-pressure primary evaporator 17. Is introduced into the high pressure secondary evaporator 13, and a high pressure brackish water separator 12 is connected to the outlet of the high pressure secondary evaporator 13.

排熱回収ボイラには助燃バーナ8が設置されており、発生蒸気量を増やし、蒸気タービンの出力を増加させることができる。助燃バーナ8は通常、高圧蒸発器より排ガス前流側の高圧過熱器と再熱器の中間あるいは排熱回収ボイラの入口側に設置されて、排ガス温度のみを上昇させる。   An auxiliary combustion burner 8 is installed in the exhaust heat recovery boiler, so that the amount of generated steam can be increased and the output of the steam turbine can be increased. The auxiliary burner 8 is usually installed between the high pressure superheater and the reheater on the exhaust gas upstream side of the high pressure evaporator or on the inlet side of the exhaust heat recovery boiler and raises only the exhaust gas temperature.

そのため蒸気量増加に伴い、蒸気タービンの運用範囲が広がるだけでなく、排熱回収ボイラ内での排ガス特性が変化することから、一次蒸発器出口での汽水混合割合や二次蒸発器出口の過熱度の変化幅が大きく広がる。   Therefore, not only the operating range of the steam turbine is expanded with the increase in steam volume, but also the exhaust gas characteristics in the exhaust heat recovery boiler change, so the brackish water mixing ratio at the outlet of the primary evaporator and the overheating of the outlet of the secondary evaporator The degree of change is greatly expanded.

ここで高圧一次蒸発器及び高圧二次蒸発器の分割に当たっては、高圧一次蒸発器出口における汽水混合割合を通常50%から70%程度になるように設定し、高圧ニ次蒸発器出口の過熱度は通常20℃から50℃程度になるように設計する。   Here, when dividing the high-pressure primary evaporator and the high-pressure secondary evaporator, the mixing ratio of the brackish water at the outlet of the high-pressure primary evaporator is usually set to about 50% to 70%, and the degree of superheat at the outlet of the high-pressure secondary evaporator Is normally designed to be about 20 ° C to 50 ° C.

運転時には高圧二次蒸発器出口の過熱度を監視し、設定温度になるよう給水流量を制御する。その際、高圧一次蒸発器出口における汽水混合割合は設計の範囲内で運用されることとなる。しかし、ガスタービンの負荷の高低に伴うガスタービンからの排ガスの流量と温度の傾向によっては、高圧一次蒸発器出口における汽水混合割合及び高圧二次蒸発器出口の過熱度は前記適正値を外れる傾向となり、多軸システム及び助燃付の貫流式排熱回収ボイラでは特に顕著になる。   During operation, the superheat degree at the outlet of the high-pressure secondary evaporator is monitored, and the feed water flow rate is controlled so as to reach the set temperature. At that time, the brackish water mixing ratio at the outlet of the high-pressure primary evaporator is operated within the design range. However, depending on the trends in the flow rate and temperature of the exhaust gas from the gas turbine due to the gas turbine load, the mixing ratio of the brackish water at the outlet of the high-pressure primary evaporator and the superheat degree at the outlet of the high-pressure secondary evaporator tend to deviate from the appropriate values. This is particularly noticeable in multi-axis systems and once-through exhaust heat recovery boilers with auxiliary combustion.

この種のボイラに関しては、例えば下記の特許文献1を挙げることができる。
特表2001-505645号公報
Regarding this type of boiler, for example, the following Patent Document 1 can be cited.
JP-T-2001-505645

ところで前述した従来の排熱回収ボイラでは、一次蒸発器、特に高圧一次蒸発器の出口における汽水混合割合及び二次蒸発器、特に高圧二次蒸発器の出口の過熱度を広運用域で適正に維持することが難しい。   By the way, in the conventional exhaust heat recovery boiler described above, the mixing ratio of the brackish water at the outlet of the primary evaporator, particularly the high-pressure primary evaporator, and the superheat degree at the outlet of the secondary evaporator, particularly the high-pressure secondary evaporator, are appropriately adjusted in a wide operation area. Difficult to maintain.

本発明の目的は、このような従来技術の欠点を解消し、一次蒸発器出口における汽水混合割合及び二次蒸発器出口の過熱度を広運用域で適正に維持できる排熱回収ボイラを提供することにある。   The object of the present invention is to provide a waste heat recovery boiler that can eliminate such drawbacks of the prior art and can appropriately maintain the mixing ratio of the brackish water at the outlet of the primary evaporator and the degree of superheat at the outlet of the secondary evaporator in a wide operation area. There is.

前記目的を達成するため本発明の第1の手段は、ガスタービンからの排ガスの流れ方向前流側に二次蒸発器を設置し、その二次蒸発器の排ガス流れ方向後流側に一次蒸発器を設置して、その一次蒸発器出口の汽水混合流を前記二次蒸発器に導入し、その二次蒸発器の出口に汽水分離器を接続した排熱回収ボイラにおいて、
前記二次蒸発器に、前記排ガスの一部を直接前記一次蒸発器に導入するバイパス通路と、そのバイパス通路のガスバイパス量を調節するためのダンパーとを設けたことを特徴とするものである。
In order to achieve the above object, the first means of the present invention is to install a secondary evaporator on the upstream side in the exhaust gas flow direction from the gas turbine, and to perform primary evaporation on the downstream side in the exhaust gas flow direction of the secondary evaporator. In the exhaust heat recovery boiler in which a steam water mixed stream at the outlet of the primary evaporator is introduced into the secondary evaporator, and a steam separator is connected to the outlet of the secondary evaporator,
The secondary evaporator is provided with a bypass passage for introducing a part of the exhaust gas directly into the primary evaporator and a damper for adjusting a gas bypass amount of the bypass passage. .

本発明の第2の手段は、ガスタービンからの排ガスの流れ方向前流側に二次蒸発器を設置し、その二次蒸発器の排ガス流れ方向後流側に一次蒸発器を設置して、その一次蒸発器出口の汽水混合流を前記二次蒸発器に導入し、その二次蒸発器の出口に汽水分離器を接続し、前記一次蒸発器の排ガス流れ方向後流側に他の熱交換器を設置した排熱回収ボイラにおいて、
前記一次蒸発器に、前記排ガスの一部を直接前記他の熱交換器に導入するバイパス通路と、そのバイパス通路のガスバイパス量を調節するためのダンパーとを設けたことを特徴とするものである。
The second means of the present invention is to install a secondary evaporator on the upstream side in the exhaust gas flow direction from the gas turbine, and to install a primary evaporator on the downstream side in the exhaust gas flow direction of the secondary evaporator, Introducing the brackish water mixed flow at the outlet of the primary evaporator into the secondary evaporator, connecting a brackish water separator to the outlet of the secondary evaporator, and other heat exchange on the downstream side in the exhaust gas flow direction of the primary evaporator In the exhaust heat recovery boiler installed
The primary evaporator is provided with a bypass passage for introducing a part of the exhaust gas directly into the other heat exchanger, and a damper for adjusting a gas bypass amount of the bypass passage. is there.

本発明の第3の手段は、ガスタービンからの排ガスの流れ方向前流側に二次蒸発器を設置し、その二次蒸発器の排ガス流れ方向後流側に一次蒸発器を設置して、その一次蒸発器出口の汽水混合流を前記二次蒸発器に導入し、その二次蒸発器の出口に汽水分離器を接続し、前記一次蒸発器の排ガス流れ方向後流側に他の熱交換器を設置した排熱回収ボイラにおいて、
前記二次蒸発器に、前記排ガスの一部を直接前記一次蒸発器に導入する第1のバイパス通路と、その第1のバイパス通路のガスバイパス量を調節するための第1のダンパーとを設け、
前記一次蒸発器に、前記排ガスの一部を直接前記他の熱交換器に導入する第2のバイパス通路と、その第2のバイパス通路のガスバイパス量を調節するための第2のダンパーとを設けたことを特徴とするものである。
The third means of the present invention is to install a secondary evaporator on the upstream side in the exhaust gas flow direction from the gas turbine, and install a primary evaporator on the downstream side in the exhaust gas flow direction of the secondary evaporator, Introducing the brackish water mixed flow at the outlet of the primary evaporator into the secondary evaporator, connecting a brackish water separator to the outlet of the secondary evaporator, and other heat exchange on the downstream side in the exhaust gas flow direction of the primary evaporator In the exhaust heat recovery boiler installed
The secondary evaporator is provided with a first bypass passage for introducing a part of the exhaust gas directly into the primary evaporator, and a first damper for adjusting a gas bypass amount of the first bypass passage. ,
A second bypass passage for introducing a part of the exhaust gas directly into the other heat exchanger, and a second damper for adjusting a gas bypass amount of the second bypass passage in the primary evaporator; It is characterized by providing.

本発明の第4の手段は前記第1ないし第3の手段のいずれかにおいて、前記二次蒸発器ならびに一次蒸発器が、高圧二次蒸発器ならびに高圧一次蒸発器または中圧二次蒸発器ならびに中圧一次蒸発器であることを特徴とするものである。   According to a fourth means of the present invention, in any one of the first to third means, the secondary evaporator and the primary evaporator are a high pressure secondary evaporator and a high pressure primary evaporator or a medium pressure secondary evaporator, and It is a medium pressure primary evaporator.

本発明の第5の手段は前記第1ないし第4の手段のいずれかにおいて、前記二次蒸発器の排ガス流れ方向前流側に前記ガスタービンの排ガス熱量を補う助燃装置を設けたことを特徴とするものである。   According to a fifth means of the present invention, in any one of the first to fourth means, an auxiliary combustion device is provided on the upstream side in the exhaust gas flow direction of the secondary evaporator to supplement the exhaust gas heat quantity of the gas turbine. It is what.

本発明は前述のような構成になっており、二次蒸発器と一次蒸発器の吸収熱量の割合を調節することができ、一次蒸発器出口における汽水混合割合及び二次蒸発器出口の過熱度を広運用域で適正に維持できる排熱回収ボイラを提供することができる。   The present invention is configured as described above, the ratio of the amount of heat absorbed by the secondary evaporator and the primary evaporator can be adjusted, the mixing ratio of brackish water at the outlet of the primary evaporator and the degree of superheat at the outlet of the secondary evaporator It is possible to provide an exhaust heat recovery boiler that can properly maintain a wide operating area.

ガスタービンの排ガスから熱を回収し蒸気を発生して、その蒸気により蒸気タービンを駆動して発電する、所謂、コンバインドサイクル発電設備において、ガスタービンの排ガスから熱を回収する設備として排熱回収ボイラが設置される。このコンバインド発電設備の特長を生かし、急速起動・停止運用による起動損失の低減,蒸気条件の高級化のよる発電効率向上策として貫流式の排熱回収ボイラが採用される。また大型のコンバインドサイクル発電設備では、この排熱回収ボイラの蒸気系統を高圧系,中圧再熱系,低圧系の3系統で構成して、排熱回収の効率向上を図っている。   In a so-called combined cycle power generation facility that recovers heat from the exhaust gas of the gas turbine to generate steam and drives the steam turbine to generate electric power, the exhaust heat recovery boiler is used as a facility for recovering heat from the exhaust gas of the gas turbine. Is installed. Taking advantage of this combined power generation facility, a once-through exhaust heat recovery boiler is adopted as a measure to improve power generation efficiency by reducing start-up loss by rapid start / stop operation and upgrading steam conditions. In a large combined cycle power generation facility, the steam system of this exhaust heat recovery boiler is composed of three systems: a high pressure system, an intermediate pressure reheat system, and a low pressure system, to improve the efficiency of exhaust heat recovery.

このような再熱三重圧方式で貫流式を構成した場合、蒸発器の構成は貫流式の設計上、一次蒸発器と二次蒸発器の組み合わせとなる。排ガス流れ方向前流側に二次蒸発器、後流側に一次蒸発器を配置し、一次蒸発器出口の汽水混合流を二次蒸発器に導入して、二次蒸発器の出口に汽水分離器を設備する。   When the once-through type is constituted by such a reheat triple pressure method, the structure of the evaporator is a combination of the primary evaporator and the secondary evaporator in terms of the once-through type design. A secondary evaporator is arranged on the upstream side in the exhaust gas flow direction, a primary evaporator is arranged on the downstream side, and the brackish water mixture at the outlet of the primary evaporator is introduced into the secondary evaporator, and brackish water is separated at the outlet of the secondary evaporator. Install equipment.

その際、二次蒸発器の出口温度については、過熱度を一定の温度内で維持し続けることが求められる。また一次蒸発器出口での蒸気含有率についても、安定した管内流動を維持するため一定の範囲内で運用する必要がある。   At that time, regarding the outlet temperature of the secondary evaporator, it is required to keep the superheat degree within a certain temperature. Also, the steam content at the outlet of the primary evaporator must be operated within a certain range in order to maintain a stable flow in the pipe.

ここで二次蒸発器の管群の間に排ガスをバイパスして直接一次蒸発器に導入できる通路を設け、且つその通路のガスバイパス量を調節するためのダンパーを設けることにより、一次蒸発器と二次蒸発器の吸収熱量を調節している。一次蒸発器と二次蒸発器の吸収熱量を調節は、一次蒸発器バイパスまたは一次蒸発器およびニ次蒸発器の両方のバイパスによっても可能である。   Here, a passage through which exhaust gas can be bypassed and introduced directly into the primary evaporator is provided between the tube groups of the secondary evaporator, and a damper for adjusting the gas bypass amount of the passage is provided, so that the primary evaporator and the The amount of heat absorbed by the secondary evaporator is adjusted. The amount of heat absorbed by the primary and secondary evaporators can also be adjusted by primary evaporator bypass or by bypass of both primary and secondary evaporators.

このように各蒸発器での吸収熱量を調節可能とすることにより、二次蒸発器出口の過熱器及び一次蒸発器出口の蒸気含有率を最適な値とすることができる。貫流式の採用は、前記貫流式の利点から高圧系のみ或いは高圧系と中圧系の2系統の場合が多い。   Thus, by making it possible to adjust the amount of absorbed heat in each evaporator, the superheater at the outlet of the secondary evaporator and the steam content at the outlet of the primary evaporator can be set to optimum values. The adoption of the once-through type is often the case of only the high-pressure system or two systems of the high-pressure system and the intermediate-pressure system because of the advantage of the once-through type.

本発明はプラント出力の運用範囲が比較的広い,助燃付排熱回収ボイラ及び多軸方式のコンバインドサイクルプラントに対し特に有効である。   The present invention is particularly effective for a waste heat recovery boiler with auxiliary combustion and a multi-shaft combined cycle plant having a relatively wide operating range of plant output.

次に本発明の実施形態を図とともに説明する。図1ないし図3は第1実施形態を説明するための図であり、図1は排熱回収ボイラの側面断面図、図2はその排熱回収ボイラの平面断面図、図3(a),(b)は排ガスバイパスダンパー部の動作を説明するための図である。   Next, embodiments of the present invention will be described with reference to the drawings. 1 to 3 are views for explaining the first embodiment, FIG. 1 is a side sectional view of the exhaust heat recovery boiler, FIG. 2 is a plan sectional view of the exhaust heat recovery boiler, FIG. (B) is a figure for demonstrating operation | movement of an exhaust gas bypass damper part.

図1ならびに図2に示すように、ガスタービンからの排ガスGは排熱回収ボイラ入口1から導入され、入口ダクト3で流路を拡大された後、本体ケーシング4内に設置された最初の熱交換部である高圧三次過熱器6,二次再熱器7で熱交換される。その後、助燃バーナ8で再度温度が上昇され、高圧二次過熱器9,一次再熱器10,高圧一次過熱器11で順次熱交換される。   As shown in FIG. 1 and FIG. 2, the exhaust gas G from the gas turbine is introduced from the exhaust heat recovery boiler inlet 1, expanded in the flow path by the inlet duct 3, and then the initial heat installed in the main body casing 4. Heat is exchanged by the high-pressure tertiary superheater 6 and the secondary reheater 7 which are exchange parts. Thereafter, the temperature is increased again by the auxiliary combustion burner 8, and heat is sequentially exchanged by the high-pressure secondary superheater 9, the primary reheater 10, and the high-pressure primary superheater 11.

一方、高圧給水は高圧一次節炭器30,高圧二次節炭器28,高圧三次節炭器20を通過することにより予熱され、高圧一次蒸発器17で50%〜70%程度蒸発され、出口連絡管で分配器15に供給されて、汽水二相流をこの分配器15で均等に分配させ、さらに分配管14で高圧二次蒸発器13に導入し、個々で過熱度20℃から50℃過熱されて、汽水分配器12で汽水分離の後,高圧一次過熱器11に供給される。   On the other hand, the high-pressure feed water is preheated by passing through the high-pressure primary economizer 30, the high-pressure secondary economizer 28, and the high-pressure tertiary economizer 20, and is evaporated by about 50% to 70% in the high-pressure primary evaporator 17 and communicates with the outlet. It is supplied to the distributor 15 by a pipe, and the brackish water two-phase flow is evenly distributed by the distributor 15 and further introduced into the high-pressure secondary evaporator 13 by the distribution pipe 14, and the superheat degree is 20 ° C to 50 ° C individually heated. Then, after the brackish water separation by the brackish water distributor 12, it is supplied to the high pressure primary superheater 11.

ここで高圧一次蒸発器17と高圧二次蒸発器13の出口における蒸気の状態は、前記汽水混合比および過熱度の状態にあるのが好ましいが、ガスタービンの負荷あるいは助燃の量によっては運用全域において適切な状態にすることが困難になる。   Here, the state of steam at the outlets of the high-pressure primary evaporator 17 and the high-pressure secondary evaporator 13 is preferably in the state of the brackish water mixing ratio and superheat, but depending on the load of the gas turbine or the amount of auxiliary combustion, It becomes difficult to achieve an appropriate state.

そこで図2に示すように、高圧二次蒸発器13の管群の一部にガスバイパス路34をガスの流れ方向と交叉する方向に数箇所設け、各ガスバイパス路34にガスのバイパス量を調節するためのバイパスダンパー35を設ける。そしてガスタービンの負荷,助燃量に基いて、前記バイパスダンパー35の開度を調整することにより、高圧一次蒸発器17と高圧二次蒸発器13の吸熱割合を調節する。   Therefore, as shown in FIG. 2, several gas bypass passages 34 are provided in a part of the tube group of the high-pressure secondary evaporator 13 in a direction crossing the gas flow direction, and the gas bypass amount is set in each gas bypass passage 34. A bypass damper 35 for adjustment is provided. The heat absorption ratio of the high-pressure primary evaporator 17 and the high-pressure secondary evaporator 13 is adjusted by adjusting the opening degree of the bypass damper 35 based on the load of the gas turbine and the amount of auxiliary combustion.

排熱回収ボイラの伝熱管群はガス流路断面に対しガス流れ方向の幅が非常に短いことから従来型ボイラにおける節炭器バイパスのような外部への排ガスのバイパス流路の採用は構造的に困難であり,バイパス後の排ガス混合が適切に行われず性能に悪影響を与える可能性が高い。そのため図3に示す排ガスバイパスが最適であり、図3に示すバイパスダンパーはルーバータイプで流路幅方向に数箇所設置される。   The heat transfer tube group of the exhaust heat recovery boiler has a very short width in the gas flow direction relative to the cross section of the gas flow path, so the adoption of an external exhaust gas bypass path such as a economizer bypass in a conventional boiler is structural. It is difficult to mix the exhaust gas after bypassing, and there is a high possibility that the performance will be adversely affected. Therefore, the exhaust gas bypass shown in FIG. 3 is optimal, and the bypass damper shown in FIG. 3 is a louver type and is installed at several places in the flow path width direction.

図3はこのバイパス部の詳細を示す図で、高圧二次蒸発器13の管群の一部にガスバイパス路34が設けられ、そのガスバイパス路34のガス入口側にバイパスダンパー35が設けられている。同図(a)はバイパスダンパー35が開いた状態、同図(b)はバイパスダンパー35が閉じた状態を、それぞれ示している。   FIG. 3 is a diagram showing details of the bypass section. A gas bypass path 34 is provided in a part of a tube group of the high-pressure secondary evaporator 13, and a bypass damper 35 is provided on the gas inlet side of the gas bypass path 34. ing. FIG. 4A shows a state where the bypass damper 35 is opened, and FIG. 4B shows a state where the bypass damper 35 is closed.

図4は、ガスタービン100%負荷とさらに助燃をした場合の高圧一次蒸発器17と高圧二次蒸発器13の吸収熱量特性を示す図である。本実施形態では、高圧二次蒸発器13の管群内に設置されているバイパスダンパー35を開いて、高圧二次蒸発器13での吸熱量を減少して、その分後流側に設置されている高圧一次蒸発器17での吸熱量を増加することができる。助燃時にも非助燃時の状態近くに高圧一次蒸発器17および高圧二次蒸発器13の状態を維持することができる。   FIG. 4 is a diagram showing the absorption heat quantity characteristics of the high-pressure primary evaporator 17 and the high-pressure secondary evaporator 13 when the gas turbine 100% load and further auxiliary combustion are performed. In the present embodiment, the bypass damper 35 installed in the tube group of the high-pressure secondary evaporator 13 is opened to reduce the amount of heat absorbed by the high-pressure secondary evaporator 13 and is installed on the downstream side accordingly. The amount of heat absorbed by the high-pressure primary evaporator 17 can be increased. The state of the high-pressure primary evaporator 17 and the high-pressure secondary evaporator 13 can be maintained near the non-supporting state even during the auxiliary combustion.

図9はガスバイパス調節が行なわれていない従来技術の同様の吸収熱量特性を示す図で、図4に示す吸収熱量特性と大きく異なり、従来技術においては前述のような技術的課題を有している。   FIG. 9 is a diagram showing a similar absorption heat quantity characteristic of the prior art in which gas bypass adjustment is not performed. Unlike the absorption heat quantity characteristic shown in FIG. 4, the conventional technique has the above-described technical problems. Yes.

図5は、本発明の第2実施形態に係る排熱回収ボイラの平面断面図である。この実施形態の場合、高圧一次蒸発器17側にガスバイパス路34とそれを開閉するバイパスダンパー35が設けられている。   FIG. 5 is a plan sectional view of an exhaust heat recovery boiler according to the second embodiment of the present invention. In the case of this embodiment, a gas bypass path 34 and a bypass damper 35 that opens and closes the gas bypass path 34 are provided on the high-pressure primary evaporator 17 side.

図6は、本発明の第3実施形態に係る排熱回収ボイラの平面断面図である。この実施形態の場合、二次蒸発器13に第1のバイパス通路34aと、第1のダンパー35aとを設け、一次蒸発器17に第2のバイパス通路34bと第2のダンパー35bとを設けている。   FIG. 6 is a plan sectional view of an exhaust heat recovery boiler according to the third embodiment of the present invention. In the case of this embodiment, the secondary evaporator 13 is provided with a first bypass passage 34a and a first damper 35a, and the primary evaporator 17 is provided with a second bypass passage 34b and a second damper 35b. Yes.

この第2,3実施形態においても高圧一次蒸発器17と高圧二次蒸発器13の吸収熱量の割合を適宜調整することができる。   Also in the second and third embodiments, the ratio of the amount of heat absorbed by the high-pressure primary evaporator 17 and the high-pressure secondary evaporator 13 can be adjusted as appropriate.

本実施形態は高圧系の場合について説明したが、中圧系も同様である。なお、低圧系は貫流式の利点がないので自然循環式を採用するのが通常である。   Although the present embodiment has been described for the case of the high pressure system, the same applies to the intermediate pressure system. Since the low pressure system does not have the advantage of the once-through type, the natural circulation type is usually adopted.

本発明の第1実施形態に係る排熱回収ボイラの側面断面図である。It is side surface sectional drawing of the waste heat recovery boiler which concerns on 1st Embodiment of this invention. その排熱回収ボイラの平面断面図である。It is a plane sectional view of the exhaust heat recovery boiler. その排熱回収ボイラにおける排ガスバイパスダンパー部の動作を説明する図である。It is a figure explaining operation | movement of the exhaust gas bypass damper part in the exhaust heat recovery boiler. 本発明の第1実施形態に係る排熱回収ボイラにおける高圧一次蒸発器と高圧二次蒸発器の吸収熱量特性を示す図である。It is a figure which shows the heat absorption characteristic of the high pressure primary evaporator and high pressure secondary evaporator in the waste heat recovery boiler which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る排熱回収ボイラの平面断面図である。It is a plane sectional view of the exhaust heat recovery boiler concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る排熱回収ボイラの平面断面図である。It is a plane sectional view of the exhaust heat recovery boiler concerning a 3rd embodiment of the present invention. コンバインドサイクル発電設備の一軸構成とした場合のプラント構成図である。It is a plant block diagram at the time of setting it as the uniaxial structure of a combined cycle power generation equipment. コンバインドサイクル発電設備の多軸構成とした場合のプラント構成図である。It is a plant block diagram at the time of setting it as the multi-axis structure of a combined cycle power generation equipment. 従来の排熱回収ボイラの側面断面図である。It is side surface sectional drawing of the conventional waste heat recovery boiler. その排熱回収ボイラの平面断面図である。It is a plane sectional view of the exhaust heat recovery boiler. 従来の排熱回収ボイラにおける高圧一次蒸発器と高圧二次蒸発器の吸収熱量特性を示す図である。It is a figure which shows the heat absorption characteristic of the high pressure primary evaporator and the high pressure secondary evaporator in the conventional waste heat recovery boiler.

符号の説明Explanation of symbols

1:ガス入口、2:ガス出口、3:入口ダクト、4:本体ケーシング、5:出口ダクト、6:高圧三次過熱器、7:二次再熱器、8:助燃バーナ、9:高圧二次過熱器、10:一次再熱器、11:高圧一次過熱器、12:高圧汽水分離器、13:高圧二次蒸発器、14:高圧分配管、15:高圧分配器、16:高圧一次蒸発器出口管、17:高圧一次蒸発器、18:排煙脱硝触媒、19:中圧過熱器、20:高圧三次節炭器、21:低圧過熱器、22:中圧汽水分離器、23:中圧二次蒸発器、24:中圧分配管、25:中圧分配器、26:中圧一次蒸発器出口管、27:中圧一次蒸発器、28:高圧二次節炭器、29:中圧節炭器、30:高圧一次節炭器、31:低圧蒸気ドラム、32:低圧蒸発器、33:低圧節炭器、34:排ガスバイパス、35:排ガスバイパスダンパー、36:ガスタービン、37:排熱回収ボイラ、39:蒸気タービン、40:蒸気タービン発電機、41:ガスタービン発電機、42:高圧主蒸気管、43:高温再熱蒸気管、44:低温再熱蒸気管、45:低圧主蒸気、G:排ガス。 1: Gas inlet, 2: Gas outlet, 3: Inlet duct, 4: Main body casing, 5: Outlet duct, 6: High pressure tertiary superheater, 7: Secondary reheater, 8: Auxiliary burner, 9: High pressure secondary Superheater, 10: Primary reheater, 11: High pressure primary superheater, 12: High pressure brack separator, 13: High pressure secondary evaporator, 14: High pressure distribution pipe, 15: High pressure distributor, 16: High pressure primary evaporator Outlet pipe, 17: High pressure primary evaporator, 18: Flue gas denitration catalyst, 19: Medium pressure superheater, 20: High pressure tertiary economizer, 21: Low pressure superheater, 22: Medium pressure brackish water separator, 23: Medium pressure Secondary evaporator, 24: Medium pressure distribution pipe, 25: Medium pressure distributor, 26: Medium pressure primary evaporator outlet pipe, 27: Medium pressure primary evaporator, 28: High pressure secondary economizer, 29: Medium pressure node Carbonizer, 30: High pressure primary economizer, 31: Low pressure steam drum, 32: Low pressure evaporator, 33: Low pressure economizer, 34: Exhaust gas 35: exhaust gas bypass damper, 36: gas turbine, 37: exhaust heat recovery boiler, 39: steam turbine, 40: steam turbine generator, 41: gas turbine generator, 42: high-pressure main steam pipe, 43: high temperature Thermal steam pipe, 44: low-temperature reheat steam pipe, 45: low-pressure main steam, G: exhaust gas.

Claims (5)

ガスタービンからの排ガスの流れ方向前流側に二次蒸発器を設置し、その二次蒸発器の排ガス流れ方向後流側に一次蒸発器を設置して、その一次蒸発器出口の汽水混合流を前記二次蒸発器に導入し、その二次蒸発器の出口に汽水分離器を接続した排熱回収ボイラにおいて、
前記二次蒸発器に、前記排ガスの一部を直接前記一次蒸発器に導入するバイパス通路と、そのバイパス通路のガスバイパス量を調節するためのダンパーとを設けたことを特徴とする排熱回収ボイラ。
A secondary evaporator is installed on the upstream side in the exhaust gas flow direction from the gas turbine, a primary evaporator is installed on the downstream side in the exhaust gas flow direction of the secondary evaporator, and the brackish water mixed flow at the outlet of the primary evaporator In the exhaust heat recovery boiler in which a steam separator is connected to the outlet of the secondary evaporator,
Waste heat recovery characterized in that the secondary evaporator is provided with a bypass passage for introducing a part of the exhaust gas directly into the primary evaporator and a damper for adjusting a gas bypass amount of the bypass passage. boiler.
ガスタービンからの排ガスの流れ方向前流側に二次蒸発器を設置し、その二次蒸発器の排ガス流れ方向後流側に一次蒸発器を設置して、その一次蒸発器出口の汽水混合流を前記二次蒸発器に導入し、その二次蒸発器の出口に汽水分離器を接続し、前記一次蒸発器の排ガス流れ方向後流側に他の熱交換器を設置した排熱回収ボイラにおいて、
前記一次蒸発器に、前記排ガスの一部を直接前記他の熱交換器に導入するバイパス通路と、そのバイパス通路のガスバイパス量を調節するためのダンパーとを設けたことを特徴とする排熱回収ボイラ。
A secondary evaporator is installed on the upstream side in the exhaust gas flow direction from the gas turbine, a primary evaporator is installed on the downstream side in the exhaust gas flow direction of the secondary evaporator, and the brackish water mixed flow at the outlet of the primary evaporator In the exhaust heat recovery boiler in which a steam separator is connected to the outlet of the secondary evaporator, and another heat exchanger is installed on the downstream side in the exhaust gas flow direction of the primary evaporator. ,
Waste heat, characterized in that the primary evaporator is provided with a bypass passage for introducing a part of the exhaust gas directly into the other heat exchanger, and a damper for adjusting a gas bypass amount of the bypass passage. Recovery boiler.
ガスタービンからの排ガスの流れ方向前流側に二次蒸発器を設置し、その二次蒸発器の排ガス流れ方向後流側に一次蒸発器を設置して、その一次蒸発器出口の汽水混合流を前記二次蒸発器に導入し、その二次蒸発器の出口に汽水分離器を接続し、前記一次蒸発器の排ガス流れ方向後流側に他の熱交換器を設置した排熱回収ボイラにおいて、
前記二次蒸発器に、前記排ガスの一部を直接前記一次蒸発器に導入する第1のバイパス通路と、その第1のバイパス通路のガスバイパス量を調節するための第1のダンパーとを設け、
前記一次蒸発器に、前記排ガスの一部を直接前記他の熱交換器に導入する第2のバイパス通路と、その第2のバイパス通路のガスバイパス量を調節するための第2のダンパーとを設けたことを特徴とする排熱回収ボイラ。
A secondary evaporator is installed on the upstream side in the exhaust gas flow direction from the gas turbine, a primary evaporator is installed on the downstream side in the exhaust gas flow direction of the secondary evaporator, and the brackish water mixed flow at the outlet of the primary evaporator In the exhaust heat recovery boiler in which a steam separator is connected to the outlet of the secondary evaporator, and another heat exchanger is installed on the downstream side in the exhaust gas flow direction of the primary evaporator. ,
The secondary evaporator is provided with a first bypass passage for introducing a part of the exhaust gas directly into the primary evaporator, and a first damper for adjusting a gas bypass amount of the first bypass passage. ,
A second bypass passage for introducing a part of the exhaust gas directly into the other heat exchanger, and a second damper for adjusting a gas bypass amount of the second bypass passage in the primary evaporator; An exhaust heat recovery boiler characterized by being provided.
請求項1ないし3のいずれか1項記載の排熱回収ボイラにおいて、前記二次蒸発器ならびに一次蒸発器が、高圧二次蒸発器ならびに高圧一次蒸発器または中圧二次蒸発器ならびに中圧一次蒸発器であることを特徴とする排熱回収ボイラ。   The exhaust heat recovery boiler according to any one of claims 1 to 3, wherein the secondary evaporator and the primary evaporator are a high-pressure secondary evaporator, a high-pressure primary evaporator or an intermediate-pressure secondary evaporator, and an intermediate-pressure primary. An exhaust heat recovery boiler characterized by being an evaporator. 請求項1ないし4のいずれか1項記載の排熱回収ボイラにおいて、前記二次蒸発器の排ガス流れ方向前流側に前記ガスタービンの排ガス熱量を補う助燃装置を設けたことを特徴とする排熱回収ボイラ。   The exhaust heat recovery boiler according to any one of claims 1 to 4, wherein an auxiliary combustion device is provided on the upstream side in the exhaust gas flow direction of the secondary evaporator to supplement the heat amount of the exhaust gas from the gas turbine. Heat recovery boiler.
JP2006128346A 2006-05-02 2006-05-02 Waste heat recovery boiler Expired - Fee Related JP4842007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006128346A JP4842007B2 (en) 2006-05-02 2006-05-02 Waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006128346A JP4842007B2 (en) 2006-05-02 2006-05-02 Waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JP2007298244A true JP2007298244A (en) 2007-11-15
JP4842007B2 JP4842007B2 (en) 2011-12-21

Family

ID=38767873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006128346A Expired - Fee Related JP4842007B2 (en) 2006-05-02 2006-05-02 Waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP4842007B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216749A (en) * 2009-03-18 2010-09-30 Mitsubishi Heavy Ind Ltd Heat exchanger
WO2014108980A1 (en) * 2013-01-10 2014-07-17 パナソニック株式会社 Rankine cycle device and cogeneration system
WO2014185007A1 (en) * 2013-05-17 2014-11-20 パナソニックIpマネジメント株式会社 Combined heat and power system
JP2020180779A (en) * 2020-07-27 2020-11-05 三菱パワー株式会社 Boiler and power generation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626606A (en) * 1992-03-16 1994-02-04 Siemens Ag Method of operating steam generator and steam generator
JP2001505645A (en) * 1996-12-12 2001-04-24 シーメンス アクチエンゲゼルシヤフト boiler
JP2002147701A (en) * 2000-11-08 2002-05-22 Babcock Hitachi Kk Exhaust heat recovery steam generating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626606A (en) * 1992-03-16 1994-02-04 Siemens Ag Method of operating steam generator and steam generator
JP2001505645A (en) * 1996-12-12 2001-04-24 シーメンス アクチエンゲゼルシヤフト boiler
JP2002147701A (en) * 2000-11-08 2002-05-22 Babcock Hitachi Kk Exhaust heat recovery steam generating device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216749A (en) * 2009-03-18 2010-09-30 Mitsubishi Heavy Ind Ltd Heat exchanger
US9400102B2 (en) 2009-03-18 2016-07-26 Mitsubishi Hitachi Power Systems, Ltd. Heat exchanger including flow regulating plates
WO2014108980A1 (en) * 2013-01-10 2014-07-17 パナソニック株式会社 Rankine cycle device and cogeneration system
US9638066B2 (en) 2013-01-10 2017-05-02 Panasonic Intellectual Property Management Co., Ltd. Rankine cycle apparatus and combined heat and power system
WO2014185007A1 (en) * 2013-05-17 2014-11-20 パナソニックIpマネジメント株式会社 Combined heat and power system
JPWO2014185007A1 (en) * 2013-05-17 2017-02-23 パナソニックIpマネジメント株式会社 Combined heat and power system
US9891003B2 (en) 2013-05-17 2018-02-13 Panasonic Intellectual Property Management Co., Ltd. Combined heat and power system
JP2020180779A (en) * 2020-07-27 2020-11-05 三菱パワー株式会社 Boiler and power generation system
JP6995944B2 (en) 2020-07-27 2022-01-17 三菱パワー株式会社 Boiler and power generation system

Also Published As

Publication number Publication date
JP4842007B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
US8959917B2 (en) Method for operating a forced-flow steam generator operating at a steam temperature above 650°C and forced-flow steam generator
KR101594323B1 (en) Power plant with integrated fuel gas preheating
JP2009092372A (en) Supercritical steam combined cycle and its method
CN102840575A (en) Composite cycle power generation system improved in efficiency
EP2698507B1 (en) System and method for temperature control of reheated steam
EP2604821B1 (en) System and method for thermal control in a gas turbine engine
US20160273406A1 (en) Combined cycle system
WO2014131272A1 (en) Boiler provided with external steam heater
JP4842007B2 (en) Waste heat recovery boiler
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
JP4718333B2 (en) Once-through exhaust heat recovery boiler
EP3219940B1 (en) Combined cycle power plant and method for operating such a combined cycle power plant
WO2016047400A1 (en) Boiler, combined cycle plant, and steam cooling method for boiler
JP4898722B2 (en) Coal gasification combined power generation facility
JP4842071B2 (en) Operation method of once-through exhaust heat recovery boiler and operation method of power generation equipment
KR101887971B1 (en) Low load turndown for combined cycle power plants
JP2002147701A (en) Exhaust heat recovery steam generating device
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
EP3318733B1 (en) Feedwater bypass system for a desuperheater
JP6101604B2 (en) Steam turbine plant, combined cycle plant equipped with the same, and method of operating a steam turbine plant
WO2024038724A1 (en) Combined cycle power generator
EP2644849B1 (en) Circulating fluidized bed boiler device
JP2009063205A (en) Once-through exhaust heat recovery boiler
JP2019148377A (en) Existing boiler utilization high steam condition boiler plant
JPH10153301A (en) Exhaust heat recovery boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Ref document number: 4842007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees