JP2007297854A - Building structure - Google Patents

Building structure Download PDF

Info

Publication number
JP2007297854A
JP2007297854A JP2006127335A JP2006127335A JP2007297854A JP 2007297854 A JP2007297854 A JP 2007297854A JP 2006127335 A JP2006127335 A JP 2006127335A JP 2006127335 A JP2006127335 A JP 2006127335A JP 2007297854 A JP2007297854 A JP 2007297854A
Authority
JP
Japan
Prior art keywords
building
roof
steel plate
vibration
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006127335A
Other languages
Japanese (ja)
Inventor
Toru Maruyama
亨 丸山
Keisuke Taguchi
圭介 田口
Makoto Ukai
真 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006127335A priority Critical patent/JP2007297854A/en
Publication of JP2007297854A publication Critical patent/JP2007297854A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building structure capable of suppressing any shake during an earthquake by using its structural body such as a roof as a mass damper and also withstanding against any impact by flying objects. <P>SOLUTION: A building structure 3 comprises a roof 1 made of a steel plate or a steel plate plus a concrete slab having a shape capable of resisting against any flying objects by using a dead load of the structure; a building body 10 built to a lower portion of the structure 3; a laminated rubber portion 4 built between the roof 1 and the building body 10; and a damping device 6 containing a vibration control damper 5 using a viscous flow resistance of a viscous body which can be obtained by connecting together both the roof 1 and the building body 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、安全機能を有する建築構造物である建屋に係り、特に外部飛来物の衝撃に耐え地震時の揺れを抑制できる建築構造物に関する。   The present invention relates to a building that is a building structure having a safety function, and more particularly to a building structure that can withstand the impact of an external flying object and can suppress shaking during an earthquake.

一般に、安全機能を有する建築構造物である建屋においてはその耐震重要度に鑑みて地震時においても建屋構造の健全性を保つ必要があり、建屋各層の地震時応答値に対して耐え得るように設計される。特に、原子力プラントにおける建屋上部構造は地震時に大きく応答するので、できるだけ重量を軽く設計して鉄骨構造を採用する場合が多い。この建屋上部構造の軽量化を図ることにより、建屋転倒モーメントを少なく抑えて建屋の安定性の向上を図っている。   In general, a building that is a building structure having a safety function needs to maintain the soundness of the building structure even during an earthquake in view of its seismic importance, so that it can withstand the response values of each layer of the building during an earthquake. Designed. In particular, since the superstructure of a building in a nuclear power plant responds greatly during an earthquake, it is often designed to be as light as possible and adopt a steel structure. By reducing the weight of the upper structure of the building, the building overturning moment is reduced to improve the stability of the building.

しかしながら、建屋の上部構造は地震時応答加速度が大きく、特に軽量化した鉄骨構造では剛性の差から応答値が増幅する。このために、高地震帯地域では建屋の上部構造の耐震性の向上を図るためには大きな補強物量が必要となり、建屋の軽量化と相反する結果になることがしばしば見受けられる。   However, the superstructure of the building has a large response acceleration during an earthquake, and the response value is amplified due to the difference in rigidity, particularly in a steel structure that is lightened. For this reason, a large amount of reinforcement is required in order to improve the earthquake resistance of the superstructure of the building in the high seismic zone region, and it is often seen that the result is contrary to the weight reduction of the building.

上述の事情に鑑みて、原子力プラント建屋屋根部の耐震性の向上を図るために、建屋屋根部における地震時制振構造が知られている(例えば、特許文献1参照)。   In view of the above circumstances, a seismic damping structure in a building roof part is known in order to improve the earthquake resistance of the nuclear plant building roof part (see, for example, Patent Document 1).

この地震時制振構造は、図4に示すように、建屋11と鉄骨構造の屋根トラス15または壁19との間に制振ダンパ18を設置するものである。この地震時制振構造により地震エネルギを吸収し屋根トラス15のホイッピング現象を防止して、建屋の地震時安定性の向上および構造材の合理化を図ることができる。   In this earthquake-damping structure, as shown in FIG. 4, a damping damper 18 is installed between the building 11 and a steel-structure roof truss 15 or wall 19. This seismic damping structure absorbs seismic energy and prevents the roof truss 15 from whipping, improving the seismic stability of the building and rationalizing the structural material.

また、安全機能を有する建築構造物である建屋は、航空機などの外部飛来物に対しても健全でなければならず、そのために航空機落下を確率的に考慮する必要のないサイトに立地することが一般的である。ところが、立地点が航空機落下を考慮する必要がある地点の場合は、1mから1.5m程度の鉄筋コンクリートで覆うことにより、建屋内に収納する安全機能を有する系統・機器を航空機落下等の外部飛来物の衝撃から防護している。   In addition, buildings that are building structures with safety functions must be healthy against external flying objects such as aircraft, and for that reason they may be located at sites that do not need to take into account the probability of aircraft falling. It is common. However, when the location point needs to take into account the aircraft fall, cover with 1 to 1.5m reinforced concrete to bring the system / equipment with the safety function to be stored in the building to the outside, such as aircraft fall Protects against impact of objects.

しかしながら、この1mから1.5m程度の鉄筋コンクリートである厚い構造物の要求は、上述の地震時構造健全性確保または建屋地震時安定性確保の観点から相反するものであり、このような事情に鑑みて原子力プラント建屋屋根部の外部飛来物に対処した耐衝撃兼制振屋根の構造が知られている(例えば、特許文献2参照)。   However, the demand for a thick structure made of reinforced concrete of about 1 m to 1.5 m is contrary to the above-mentioned viewpoint of ensuring structural integrity during an earthquake or ensuring stability during a building earthquake. In addition, a structure of an impact-resistant and vibration-damping roof that copes with external projectiles on the roof of a nuclear power plant building is known (for example, see Patent Document 2).

この耐衝撃兼制振屋根13の構造は、図5に示すように、建屋の屋根13を屋根スラブとその上部にアスファルト状の制振層17とし、さらにその上面に鉄筋コンクリートの耐衝撃層18で構成した構造となっている。この制振層17および耐衝撃層18を形成することにより、鉄筋コンクリートの屋根13の重量によって制振作用を機能させると共に航空機落下等の耐衝撃性を持たせている。
特開平9−101388号公報 特開平2−281192号公報
As shown in FIG. 5, the structure of the shock-resistant and vibration-damping roof 13 includes a roof slab with a roof slab and an asphalt-like vibration-damping layer 17 on the top, and a reinforced concrete shock-resistant layer 18 on the upper surface. It has a structured structure. By forming the vibration damping layer 17 and the impact resistant layer 18, the vibration damping function is functioned by the weight of the reinforced concrete roof 13, and impact resistance such as aircraft dropping is given.
JP-A-9-101388 JP-A-2-281192

上述した従来の原子力プラントの屋根構造は重量を軽くして、その応答値を少なくする目的から鉄骨構造とすることが一般的である。この耐震上の目的から鉄骨構造屋根と制振ダンパを組み合わせた技術は建屋の地震時応答値を低減する技術として知られている。   The roof structure of the conventional nuclear power plant described above is generally a steel structure for the purpose of reducing the weight and reducing the response value. For this seismic purpose, a technique combining a steel structure roof and a vibration damper is known as a technique for reducing the response value of a building during an earthquake.

しかし、原子力プラント屋根構造は単に軽量化した被蓋構造では不十分である。特に近年の航空機落下事故やテロに対抗するためには、外部飛来物に対する衝撃に耐えうる充分な強度を持った構造として1mから1.5m程度の鉄筋コンクリートで覆うことが必要とされている。上記の屋根構造として1mから1.5m程度の鉄筋コンクリートで覆うことは耐震上上部構造を軽量化する考え方と相反する要求事項であり、事実上鉄骨構造の屋根には使用できない、という課題があった。   However, a cover structure with a lighter weight is not sufficient for the roof structure of a nuclear power plant. In particular, in order to counter recent aircraft drop accidents and terrorism, it is necessary to cover with reinforced concrete of about 1 m to 1.5 m as a structure having sufficient strength to withstand impacts on external flying objects. Covering with 1 to 1.5 m of reinforced concrete as the above roof structure is a requirement contrary to the idea of reducing the weight of the upper structure in terms of seismic resistance, and there is a problem that it cannot be used for roofs of steel structures in practice. .

一方、外部飛来物に対しては屋根を厚いコンクリートで覆うことを想定し、さらにそのコンクリートを制振上有効なばね乗数を具備したアスファルト状の制振層で積層化する技術も知られている。   On the other hand, a technique is also known in which it is assumed that the roof is covered with thick concrete for external projectiles, and that the concrete is laminated with an asphalt-like damping layer having a spring multiplier effective for damping. .

しかしながら、沸騰水 (BWR)型原子炉建屋においては、この屋根は約60m×40mの面積があり、平面構造で1mから1.5m程度の鉄筋コンクリートで覆うことは多大な屋根支持構造物が必要となり不合理となってしまう、という課題があった。また、アスファルト状の制振層を埋め込んだ形で原子力プラントの寿命中長期間にわたって均一な制振ばね乗数を保障するのは困難であり、またこれを確認する手段がとれない、という課題があった。   However, in the boiling water (BWR) type reactor building, this roof has an area of about 60m x 40m, and covering it with reinforced concrete of about 1m to 1.5m in plan structure requires a huge roof support structure. There was a problem that it would become irrational. In addition, it is difficult to guarantee a uniform damping spring multiplier over the long term of the life of a nuclear power plant by embedding an asphalt damping layer, and there is a problem that means for confirming this cannot be taken. It was.

本発明は上記課題を解決するためになされたもので、原子力プラント建屋の屋根を外部飛来物の衝撃に耐えかつその構造体をマスダンパーとして地震時の揺れを抑制することのできる建築構造物を提供することを目的とする。   The present invention was made in order to solve the above-mentioned problems, and a building structure capable of withstanding the impact of external flying objects on the roof of a nuclear power plant building and suppressing the shaking at the time of an earthquake using the structure as a mass damper. The purpose is to provide.

上記目的を達成するため、本発明の建築構造物においては、自重で形状を維持できる形状の建屋屋根と、この建屋屋根の下部に構築された建屋本体と、この建屋屋根と建屋本体との間に設けられた制振装置と、を備えることを特徴とするものである。   In order to achieve the above object, in the building structure of the present invention, the building roof having a shape capable of maintaining its shape under its own weight, the building main body constructed at the lower part of the building roof, and the building roof and the building main body And a vibration damping device provided in the above.

本発明の建築構造物によれば、航空機等の外部飛来物による衝撃力に耐え更に地震力による応答を抑制することができる。   According to the building structure of the present invention, it is possible to withstand an impact force caused by an external flying object such as an aircraft and to further suppress a response due to an earthquake force.

以下、本発明に係る建築構造物の実施の形態について、図面を参照して説明する。ここで、同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a building structure according to the present invention will be described with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

図1は、本発明の実施の形態の制振型原子力プラント建屋屋根構造を適用した原子炉建屋の構成を示す縦断面図であり、図2は、図1のA−A矢視方向の概略構成を示す縦断面図であり、図3は、図1のB部を拡大して示す斜視断面図である。   FIG. 1 is a longitudinal sectional view showing a configuration of a nuclear reactor building to which a vibration-damping nuclear plant building roof structure according to an embodiment of the present invention is applied, and FIG. 2 is a schematic view in the direction of arrows AA in FIG. FIG. 3 is a perspective cross-sectional view showing an enlarged portion B of FIG. 1.

上述の安全機能を有する建築構造物である建屋として、一例として、原子炉建屋3について説明する。本図に示すように、制振型原子力プラント建屋屋根構造を適用した建築構造物である原子炉建屋3は、建屋屋根1を有する。この建屋屋根1は鉄筋コンクリートまたは鋼板コンクリートから構築されている。この建屋屋根1の厚みは1m〜1.5mあり、外部飛来物の衝突衝撃に充分耐えるように構築されている。また、この建屋屋根1の形状は自重で形状を維持できるようにドーム状又はアーチ状になっている。   As an example of a building that is a building structure having the above-described safety function, the reactor building 3 will be described. As shown in the figure, a nuclear reactor building 3 that is a building structure to which a vibration-damping nuclear plant building roof structure is applied has a building roof 1. This building roof 1 is constructed from reinforced concrete or steel plate concrete. The building roof 1 has a thickness of 1 m to 1.5 m, and is constructed so as to sufficiently withstand the impact of external flying objects. The shape of the building roof 1 is a dome shape or an arch shape so that the shape can be maintained by its own weight.

一方、建屋屋根1の下部には建屋本体10が建立されている。この建屋本体10も鉄筋コンクリート製または鋼板コンクリート構造から構築される。この建屋本体10の厚みは、必要に応じて外部飛来物の衝突衝撃に充分耐える厚みを有する。この建屋本体10の上部には、天井クレーン2が走行するためのレールが敷設されたガーダー壁が構築されている。   On the other hand, a building body 10 is erected at the lower part of the building roof 1. The building body 10 is also constructed from a reinforced concrete or steel plate concrete structure. The thickness of the building main body 10 has a thickness that can sufficiently withstand the impact of an external projectile as necessary. In the upper part of the building main body 10, a girder wall is constructed in which rails for running the overhead crane 2 are laid.

この建屋屋根1と建屋本体10との間には、制振装置6が設けられている。上記の制振装置6は、積層ゴム4とおよび制振ダンパ5を有する。この積層ゴム4複数個が、建屋屋根1を形成する壁面の下部と建屋本体10を形成する壁面の上部との間に間隔を置いて設置されている。上記の建屋屋根1からの地震による荷重をこの積層ゴム4で受け変形することにより、地震エネルギを吸収することができる。すなわち、積層ゴム4は、地震エネルギの吸収材として使用されている。   A vibration damping device 6 is provided between the building roof 1 and the building body 10. The vibration damping device 6 includes a laminated rubber 4 and a vibration damper 5. A plurality of the laminated rubbers 4 are disposed with a space between the lower part of the wall surface forming the building roof 1 and the upper part of the wall surface forming the building body 10. Seismic energy can be absorbed by receiving and deforming the load from the building roof 1 by the laminated rubber 4. That is, the laminated rubber 4 is used as a seismic energy absorber.

一方、制振ダンパ5は、建屋屋根1の下部と建屋本体10の上部との間を設けられ、埋込金物5aを介して相互に連結されている。この制振ダンパ5は、流体動圧ダンパ、オイルダンパ、ショックアブソーサとも呼ばれている。制振ダンパ5は、シリンダ内にピストンで押し込められた油がオリフィスから逃げるとき、ピストンの両面に生ずる圧力差が運動物体への抵抗力となる原理を用いたものである。この制振ダンパ5は、上記の抵抗力を地震時の運動速度の関数として定められるために、オリフィスの部分に調整弁を設ける場合がある。かくして、建屋屋根1と建屋本体10との水平方向の相対変位をこの制振ダンパ5で受けることにより、地震エネルギを吸収することができる。すなわち、制振ダンパ5は、粘性体流動抵抗力を利用した地震エネルギの吸収機構として使用されている。   On the other hand, the vibration damper 5 is provided between the lower part of the building roof 1 and the upper part of the building main body 10 and is connected to each other via the embedded metal 5a. The vibration damper 5 is also called a fluid dynamic pressure damper, an oil damper, or a shock absorber. The damping damper 5 uses the principle that when the oil pushed into the cylinder by the piston escapes from the orifice, the pressure difference generated on both surfaces of the piston becomes a resistance force to the moving object. The damping damper 5 may be provided with a regulating valve in the orifice portion because the resistance force is determined as a function of the motion speed during an earthquake. Thus, the seismic energy can be absorbed by receiving the relative displacement in the horizontal direction between the building roof 1 and the building body 10 with the vibration damper 5. That is, the vibration damper 5 is used as a mechanism for absorbing seismic energy using viscous flow resistance.

なお、制振ダンパ5は埋込金物5aを介して接続されているので、シリンダ内のオイルの交換、オリフィスの外観検査等の定期的な点検のために自在に取り外し又は取り付けが可能なように構成されている。   Since the vibration damper 5 is connected via the embedded metal 5a, it can be freely removed or attached for periodic inspections such as replacement of oil in the cylinder and appearance inspection of the orifice. It is configured.

このように構成された本実施の形態において、建屋構造1は屋根も含めて鉄筋コンクリートまたは鋼板コンクリートで構築されているので、外部飛来物による衝撃力に耐えることができる。特に鋼板コンクリート構造の場合は飛来物の衝撃により生じるコンクリートの剥離が建屋内表面の鋼板により抑えられることにより、建屋内に収納している安全機能を有する系統や機器に対して、剥離したコンクリートの衝突による二次的波及効果が抑制できる。かくして、鋼板コンクリート製の構造の場合は鉄筋コンクリート製の構造に比べ薄い厚さで構成することが可能である。また、屋根構造を施工し易くする為に屋根スラブ下面をデッキプレートまたは仮設鉄板型枠を用いた鉄筋コンクリート構造とする場合もある。   In this Embodiment comprised in this way, since the building structure 1 is constructed | assembled with the reinforced concrete or the steel plate concrete also including the roof, it can endure the impact force by an external projectile. Especially in the case of steel plate concrete structure, the peeling of concrete caused by the impact of flying objects is suppressed by the steel plate on the surface of the building, so that the peeled concrete can be removed from the system and equipment with safety functions stored in the building. Secondary ripple effects due to collision can be suppressed. Thus, in the case of a structure made of steel plate concrete, it can be formed with a thinner thickness than a structure made of reinforced concrete. In order to facilitate the construction of the roof structure, the bottom surface of the roof slab may be a reinforced concrete structure using a deck plate or a temporary iron plate formwork.

また、地震時には建屋屋根1と建屋本体10との相対変位が生じる。この相対変位量に応じて制振装置6も変位し、原子炉建屋3に大きな減衰力を与えることができる。この建屋屋根1は、上述のように鉄筋コンクリートあるいは鋼板コンクリートで構築されているので重量的には原子炉建屋3全体に対して数%になり、さらに建屋全体の振動を充分抑制する作用を発揮することができる。   In addition, relative displacement between the building roof 1 and the building body 10 occurs during an earthquake. The damping device 6 is also displaced according to the relative displacement amount, and a large damping force can be applied to the reactor building 3. Since the building roof 1 is constructed of reinforced concrete or steel plate concrete as described above, the weight of the building roof 1 is several percent with respect to the entire reactor building 3, and further exhibits an effect of sufficiently suppressing vibration of the entire building. be able to.

本実施の形態により、建屋屋根1および建屋本体10を鉄筋コンクリートまたは鋼板コンクリートから構築することにより、航空機等の外部飛来物による衝撃力に耐えることができる。   By constructing the building roof 1 and the building main body 10 from reinforced concrete or steel plate concrete according to the present embodiment, it is possible to withstand the impact force of an external flying object such as an aircraft.

また、建屋屋根1と建屋本体10との間に制振装置6を設けることにより、地震力による応答を抑制することができる。かくして、上述の地震力による応答を抑制した制振型原子力プラント建屋屋根構造を有する原子力プラントを高耐震地域にも立地することができるようになる。   Further, by providing the vibration damping device 6 between the building roof 1 and the building main body 10, the response due to the seismic force can be suppressed. Thus, a nuclear power plant having a vibration-damping nuclear plant building roof structure that suppresses the response due to the above-described seismic force can be located in a highly earthquake-resistant region.

また、制振型原子力プラント建屋屋根構造の有する制振効果により建屋内機器・配管系の応答値削減が図れ、機器基礎構造や配管サポート構造の簡素化による物量削減を図ることができる。   Moreover, the response value of the building equipment and piping system can be reduced by the vibration control effect of the vibration control type nuclear power plant building roof structure, and the quantity can be reduced by simplifying the equipment basic structure and the piping support structure.

さらに、本発明は、上述したような各実施の形態に何ら限定されるものではなく、制振型原子力プラント建屋屋根構造を原子炉建屋3だけでなく、タービン建屋にも適用してもよく、本発明の主旨を逸脱しない範囲で種々変形して実施することができる。   Furthermore, the present invention is not limited to the embodiments as described above, and the vibration-damping nuclear plant building roof structure may be applied not only to the reactor building 3 but also to the turbine building, Various modifications can be made without departing from the spirit of the present invention.

本発明の実施の形態の制振型原子力プラント建屋屋根構造を適用した原子炉建屋の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the nuclear reactor building to which the vibration suppression type nuclear power plant building roof structure of embodiment of this invention is applied. 図1のA−A矢視方向の概略構成を示す縦断面図。The longitudinal cross-sectional view which shows schematic structure of the AA arrow direction of FIG. 図1のB部を拡大して示す斜視断面図。The perspective sectional view which expands and shows the B section of FIG. 従来の原子力プラントの建築構造物の制振装置を示す概略縦断面図。The schematic longitudinal cross-sectional view which shows the vibration control apparatus of the building structure of the conventional nuclear power plant. 従来の原子力プラントの建築構造物の外部飛来物防護装置を示す概略斜視図。The schematic perspective view which shows the external projectile protection apparatus of the building structure of the conventional nuclear power plant.

符号の説明Explanation of symbols

1…建屋屋根、2…天井クレーン、3…原子炉建屋、4…積層ゴム、5…制振ダンパ、5a…埋込金物、6…制振装置、10…建屋本体。   DESCRIPTION OF SYMBOLS 1 ... Building roof, 2 ... Overhead crane, 3 ... Reactor building, 4 ... Laminated rubber, 5 ... Damping damper, 5a ... Embedded metal, 6 ... Damping device, 10 ... Building body.

Claims (5)

自重で形状を維持できる形状の建屋屋根と、この建屋屋根の下部に構築された建屋本体と、この建屋屋根と建屋本体との間に設けられた制振装置と、を備えることを特徴とする建築構造物。   A building roof having a shape capable of maintaining its shape under its own weight, a building main body constructed at a lower portion of the building roof, and a vibration control device provided between the building roof and the building main body. Building structure. 前記建屋屋根がドーム型又はアーチ型として構築されていること、を特徴とする請求項1記載の建築構造物。   The building structure according to claim 1, wherein the building roof is constructed as a dome shape or an arch shape. 前記建屋屋根が鋼板コンクリート又は鋼板コンクリートで構築されていること、を特徴とする請求項1又は2記載の建築構造物。   The building structure according to claim 1 or 2, wherein the building roof is constructed of steel plate concrete or steel plate concrete. 前記建屋本体が鋼板コンクリート又は鋼板コンクリートで構築されていること、を特徴とする請求項1記載の建築構造物。   The building structure according to claim 1, wherein the building body is constructed of steel plate concrete or steel plate concrete. 前記制振装置は、前記建屋屋根と建屋本体との間に設けられた積層ゴムと、前記建屋屋根と建屋本体とを連結し粘性体流動抵抗力を用いた制振ダンパと、を具備すること特徴とする請求項1記載の建築構造物。   The vibration damping device includes a laminated rubber provided between the building roof and the building main body, and a vibration damping damper that connects the building roof and the building main body and uses viscous flow resistance. The building structure according to claim 1, wherein
JP2006127335A 2006-05-01 2006-05-01 Building structure Pending JP2007297854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006127335A JP2007297854A (en) 2006-05-01 2006-05-01 Building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006127335A JP2007297854A (en) 2006-05-01 2006-05-01 Building structure

Publications (1)

Publication Number Publication Date
JP2007297854A true JP2007297854A (en) 2007-11-15

Family

ID=38767569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006127335A Pending JP2007297854A (en) 2006-05-01 2006-05-01 Building structure

Country Status (1)

Country Link
JP (1) JP2007297854A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5337320B1 (en) * 2013-04-30 2013-11-06 株式会社免制震ディバイス Vibration suppression device
EP2767653A2 (en) 2013-02-14 2014-08-20 Hitachi-GE Nuclear Energy, Ltd. Higher-order vibration control device
JP2015021848A (en) * 2013-07-19 2015-02-02 日立Geニュークリア・エナジー株式会社 Nuclear reactor building
JP2015522804A (en) * 2012-05-21 2015-08-06 エスエムアール・インベンテック・エルエルシー Passive containment protection system
JP2016061031A (en) * 2014-09-16 2016-04-25 清水建設株式会社 Building
CN105839971A (en) * 2016-06-01 2016-08-10 漳浦县圆周率工业设计有限公司 Indoor strengthening structural device capable of protecting people during building collapse
JP2016164352A (en) * 2015-03-06 2016-09-08 三菱重工業株式会社 Anti-flying object protective equipment
US10665354B2 (en) 2012-05-21 2020-05-26 Smr Inventec, Llc Loss-of-coolant accident reactor cooling system
US10672523B2 (en) 2012-05-21 2020-06-02 Smr Inventec, Llc Component cooling water system for nuclear power plant
US10720249B2 (en) 2012-05-21 2020-07-21 Smr Inventec, Llc Passive reactor cooling system
JP2021021296A (en) * 2019-07-30 2021-02-18 株式会社東芝 Projectile collision protection device and projectile collision protection method
CN113882722A (en) * 2021-11-11 2022-01-04 深圳市凯丰建筑设计有限公司 Mute building board house and muting method thereof
US11901088B2 (en) 2012-05-04 2024-02-13 Smr Inventec, Llc Method of heating primary coolant outside of primary coolant loop during a reactor startup operation
US11935663B2 (en) 2012-05-21 2024-03-19 Smr Inventec, Llc Control rod drive system for nuclear reactor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291373A (en) * 1986-06-10 1987-12-18 東急建設株式会社 Dynamic vibration damping method and apparatus utilizing weight of roof of building
JPH02281192A (en) * 1989-04-21 1990-11-16 Shimizu Corp Structure for shock tolerant and aseismatic roof
JPH03241177A (en) * 1990-02-15 1991-10-28 Kajima Corp Device for reducing out-of-plane deformation of planar damper
JPH0414543A (en) * 1990-05-01 1992-01-20 Ohbayashi Corp Opening and closing type roof
JPH04169895A (en) * 1990-11-01 1992-06-17 Takenaka Komuten Co Ltd Earthquake response reducer of shielded building in nuclear power plant
JPH08326351A (en) * 1995-05-30 1996-12-10 Shimizu Corp Base isolation structure
JPH1162306A (en) * 1997-08-08 1999-03-05 Shimizu Corp Damping frame
JPH1162304A (en) * 1997-08-25 1999-03-05 Shimizu Corp Damping reinforcement structure
JP2005147723A (en) * 2003-11-12 2005-06-09 Hitachi Ltd Reactor building and method for constructing it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291373A (en) * 1986-06-10 1987-12-18 東急建設株式会社 Dynamic vibration damping method and apparatus utilizing weight of roof of building
JPH02281192A (en) * 1989-04-21 1990-11-16 Shimizu Corp Structure for shock tolerant and aseismatic roof
JPH03241177A (en) * 1990-02-15 1991-10-28 Kajima Corp Device for reducing out-of-plane deformation of planar damper
JPH0414543A (en) * 1990-05-01 1992-01-20 Ohbayashi Corp Opening and closing type roof
JPH04169895A (en) * 1990-11-01 1992-06-17 Takenaka Komuten Co Ltd Earthquake response reducer of shielded building in nuclear power plant
JPH08326351A (en) * 1995-05-30 1996-12-10 Shimizu Corp Base isolation structure
JPH1162306A (en) * 1997-08-08 1999-03-05 Shimizu Corp Damping frame
JPH1162304A (en) * 1997-08-25 1999-03-05 Shimizu Corp Damping reinforcement structure
JP2005147723A (en) * 2003-11-12 2005-06-09 Hitachi Ltd Reactor building and method for constructing it

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901088B2 (en) 2012-05-04 2024-02-13 Smr Inventec, Llc Method of heating primary coolant outside of primary coolant loop during a reactor startup operation
US10720249B2 (en) 2012-05-21 2020-07-21 Smr Inventec, Llc Passive reactor cooling system
US10665354B2 (en) 2012-05-21 2020-05-26 Smr Inventec, Llc Loss-of-coolant accident reactor cooling system
US10672523B2 (en) 2012-05-21 2020-06-02 Smr Inventec, Llc Component cooling water system for nuclear power plant
US9786393B2 (en) 2012-05-21 2017-10-10 Smr Inventec, Llc Passive reactor containment protection system
US11935663B2 (en) 2012-05-21 2024-03-19 Smr Inventec, Llc Control rod drive system for nuclear reactor
JP2015522804A (en) * 2012-05-21 2015-08-06 エスエムアール・インベンテック・エルエルシー Passive containment protection system
EP2767653A2 (en) 2013-02-14 2014-08-20 Hitachi-GE Nuclear Energy, Ltd. Higher-order vibration control device
EP2767653A3 (en) * 2013-02-14 2015-12-30 Hitachi-GE Nuclear Energy, Ltd. Higher-order vibration control device
JP5337320B1 (en) * 2013-04-30 2013-11-06 株式会社免制震ディバイス Vibration suppression device
JP2015021848A (en) * 2013-07-19 2015-02-02 日立Geニュークリア・エナジー株式会社 Nuclear reactor building
JP2016061031A (en) * 2014-09-16 2016-04-25 清水建設株式会社 Building
JP2016164352A (en) * 2015-03-06 2016-09-08 三菱重工業株式会社 Anti-flying object protective equipment
CN105839971A (en) * 2016-06-01 2016-08-10 漳浦县圆周率工业设计有限公司 Indoor strengthening structural device capable of protecting people during building collapse
CN105839971B (en) * 2016-06-01 2018-05-11 永春县庆旺食品有限公司 It is a kind of to build the indoor reinforcement structure device for being disintegrated and protecting people
JP7374647B2 (en) 2019-07-30 2023-11-07 株式会社東芝 Flying object collision protection device and projecting object collision protection method
JP2021021296A (en) * 2019-07-30 2021-02-18 株式会社東芝 Projectile collision protection device and projectile collision protection method
CN113882722A (en) * 2021-11-11 2022-01-04 深圳市凯丰建筑设计有限公司 Mute building board house and muting method thereof
CN113882722B (en) * 2021-11-11 2023-12-15 东营市成功石油科技有限责任公司 Mute type building board house and mute method thereof

Similar Documents

Publication Publication Date Title
JP2007297854A (en) Building structure
Kiakojouri et al. Strengthening and retrofitting techniques to mitigate progressive collapse: A critical review and future research agenda
KR102597607B1 (en) Reactor effective core melt core catcher
Roke et al. Self-centering seismic-resistant steel concentrically-braced frames
JP2011252800A (en) Nuclear reactor building
JP5567094B2 (en) Long-period building
CN109610685A (en) Outsourcing pressure-bearing not tension concrete embed damping interlayer double steel plate compound shear wall
KR100540929B1 (en) Girder bridge protection apparatus, sacrifice bracing, sacrifice bracing restrainer composing it and reinforcement construction method thereof
JP5918282B2 (en) Long-period building
Rai et al. Effectiveness of multiple TSWDs for seismic response control of masonry-infilled RC framed structures
CN207553345U (en) A kind of achievable skyscraper isolation structure
JP2006009477A (en) Intermediate base isolating structure of existing building
JP5727690B2 (en) Long-period building
US4587779A (en) System for protecting a body from motions transmitted through the ground
Starossek Avoiding disproportionate collapse of tall buildings
JP2008297727A (en) Seismic reinforcing structure of existing building
JP4837145B1 (en) Seismic retrofitting structure
Nawrotzki Tuned-mass systems for the dynamic upgrade of buildings and other structures
Javanmardi Seismic Behaviour Investigation of a Cablestayed Bridge with Hybrid Passive Control System
JPH10280725A (en) Damping skeleton construction
JP6692665B2 (en) Impact reduction device and power plant
CN218894247U (en) Anti-seismic shear wall
Das Design and Analysis of Seismic Forces in Multi-Storey Building with Water Tank as Liquid Damper
CN115821938A (en) Base shock insulation dual-defense line system
Soleimanloo et al. Mechanical characteristics and application of fiber-reinforced elastomeric bearings for seismic isolation and retrofitting of bridges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207