JP2007296500A - Membrane separation apparatus and membrane filtration method - Google Patents

Membrane separation apparatus and membrane filtration method Download PDF

Info

Publication number
JP2007296500A
JP2007296500A JP2006128903A JP2006128903A JP2007296500A JP 2007296500 A JP2007296500 A JP 2007296500A JP 2006128903 A JP2006128903 A JP 2006128903A JP 2006128903 A JP2006128903 A JP 2006128903A JP 2007296500 A JP2007296500 A JP 2007296500A
Authority
JP
Japan
Prior art keywords
membrane
filtration
backwashing
washing
permeability coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006128903A
Other languages
Japanese (ja)
Inventor
Sang-Hoon Park
常燻 朴
Hiroaki Kubo
広明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006128903A priority Critical patent/JP2007296500A/en
Publication of JP2007296500A publication Critical patent/JP2007296500A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane separation apparatus and a membrane filtration method for grasping a detection of occurrence and a degree of membrane contamination for decreasing an effective membrane area causing a significant obstacle for a stable membrane filtration operation, adjusting strength and frequency of cleaning depending on the membrane contamination, enabling a long-term stable operation and being cost-effective. <P>SOLUTION: The membrane separation apparatus comprises a membrane module having a microfiltration membrane and/or an ultrafiltration membrane in a hollow-fiber form, and a cleaning means including a backwash means for backwashing the microfiltration membrane and/or the ultrafiltration membrane in the membrane module by passing through a cleaning solution in a direction opposite to a direction of passing through the solution during a filtration, wherein a cleaning degree provided by the cleaning means is controlled depending on a permeability coefficient ratio (Z) during the backwash and filtration of the microfiltration membrane and/or the ultrafiltration membrane in the operation of the membrane separation apparatus. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、中空糸形状の精密ろ過膜や限外ろ過膜を備えた膜モジュールを用いて水を分離ろ過処理する装置およびそれを用いた膜ろ過方法に関するものである。さらに詳しくは、膜間差圧の上昇を抑制することが可能となる膜分離装置及び膜ろ過方法に関するものである。   The present invention relates to an apparatus for separating and filtering water using a membrane module having a hollow fiber-shaped microfiltration membrane or an ultrafiltration membrane, and a membrane filtration method using the same. More specifically, the present invention relates to a membrane separation apparatus and a membrane filtration method that can suppress an increase in transmembrane pressure difference.

膜分離法は、省エネルギー、省スペース、省力化および製品の品質向上等の特徴を有するため、様々な分野での使用が拡大している。例えば、精密ろ過膜や限外ろ過膜を河川水や地下水や下水処理水から工業用水や水道水を製造する浄水プロセスへの適用があげられる。   The membrane separation method has features such as energy saving, space saving, labor saving, and product quality improvement, and therefore, its use in various fields is expanding. For example, a microfiltration membrane or an ultrafiltration membrane can be applied to a water purification process for producing industrial water or tap water from river water, groundwater or sewage treated water.

さらに中空糸膜モジュールは、単位体積あたりの膜面積が大きく確保可能であることから、多数の流体処理分野、たとえば、限外ろ過膜による酵素の濃縮・脱塩、注射用水の製造、電着塗料の回収、超純水のファイナルフィルトレーション、下廃水処理、河川水・湖沼水・伏流水の除濁、精密ろ過膜による薬品精製、除菌、除濁等に適用されている。   Furthermore, since the hollow fiber membrane module can secure a large membrane area per unit volume, it can be used in many fluid processing fields, for example, concentration / desalting of enzymes using ultrafiltration membranes, production of water for injection, and electrodeposition coating. It is applied to the recovery of wastewater, final filtration of ultrapure water, sewage treatment, turbidity of river water, lake water, and underground water, chemical purification by microfiltration membrane, sterilization, turbidity, etc.

しかし、精密ろ過膜(MF膜)または限外ろ過膜(UF膜)を用いて原水を膜ろ過すると、原水中に含まれる濁質や有機物等の除去対象物が膜面に蓄積し、膜の閉塞現象が起こるため、膜のろ過抵抗が上昇し、やがてろ過を行うことができなくなる。そこで膜ろ過性能を維持するため、定期的に膜ろ過を停止し、物理洗浄を行う必要がある。   However, when raw water is membrane filtered using a microfiltration membrane (MF membrane) or ultrafiltration membrane (UF membrane), removal objects such as turbidity and organic matter contained in the raw water accumulate on the membrane surface. Since the clogging phenomenon occurs, the filtration resistance of the membrane increases, and it becomes impossible to perform filtration in due course. Therefore, in order to maintain the membrane filtration performance, it is necessary to periodically stop the membrane filtration and perform physical cleaning.

物理洗浄には、膜モジュールの供給水側に空気を吹き込んで膜を水中で振動させることにより、膜面に付着した汚染物質を除去する空気洗浄(空洗)や、膜モジュールのろ過方向とは逆方向、つまりろ過水側から供給水側に、膜ろ過水などの水(逆洗水)を圧力で押し込み、膜などに付着した汚染物質を排除する逆圧水洗浄(逆洗)、空洗や逆洗によって剥がれた濁質を多く含む膜モジュール内の水の全量をモジュール系外に排出する排水、一定量の原水を膜モジュールに供給することによって膜モジュール内の濁質を系外に押し出すフラッシング等があり、通常、空洗や逆洗等を順次もしくは同時に組み合わせて実施し、膜ろ過によって上昇した膜ろ過抵抗を回復させ、長期間の安定した膜ろ過運転を可能にする。前記原水を膜ろ過する工程をろ過工程と呼び、空洗や逆洗、ならびに濁質の排出等全ての洗浄操作を一連の工程として1つにまとめたものを洗浄工程と呼ぶ。また、ろ過工程と洗浄工程を1回ずつ行うことを1サイクルと呼び、通常のMF膜及びUF膜モジュールの運転では、このサイクルを繰り返し自動的に行うことが一般的である。   In physical cleaning, air is blown into the supply water side of the membrane module to vibrate the membrane in water, thereby removing air pollutants (air washing) that adhere to the membrane surface, and the filtration direction of the membrane module. Reverse water pressure (backwashing) to remove contaminants adhering to the membrane in the reverse direction, that is, water (backwashing water) such as membrane filtration water from the filtered water side to the supply water side with pressure, and air washing Waste water that drains the entire amount of water in the membrane module that contains a large amount of turbidity that has been peeled off by backwashing, and discharges the turbidity in the membrane module to the outside by supplying a certain amount of raw water to the membrane module. There are flushing and the like, and usually, air washing and backwashing are carried out sequentially or simultaneously to recover the membrane filtration resistance increased by membrane filtration and to enable stable membrane filtration operation for a long period of time. The process of subjecting the raw water to membrane filtration is called a filtration process, and a process in which all washing operations such as air washing, back washing, and turbid discharge are combined into a series of processes is called a washing process. Further, performing the filtration step and the washing step once is called one cycle, and in the normal operation of the MF membrane and UF membrane module, this cycle is generally performed repeatedly and automatically.

通常、上述のような物理洗浄は、一定時間ろ過した後に一定の強度で行われる。しかしながら、原水の水質変動や膜の運転状況に応じて、物理洗浄の頻度や強度を変更することは、膜の安定運転性や経済性の観点から非常に好ましく、例えば特許文献1では、原水の濁度に基づき、洗浄頻度を制御する膜ろ過方法が開示されている。また特許文献2では、膜ろ過差圧の上昇速度に応じて物理洗浄の頻度を変更する膜ろ過方法が開示されている。   Usually, the physical cleaning as described above is performed with a certain strength after filtering for a certain time. However, it is very preferable to change the frequency and intensity of physical washing according to the water quality fluctuation of the raw water and the operating condition of the membrane from the viewpoint of stable operation of the membrane and economical efficiency. A membrane filtration method for controlling the frequency of washing based on turbidity is disclosed. Moreover, in patent document 2, the membrane filtration method which changes the frequency of physical washing | cleaning according to the raise speed | rate of a membrane filtration differential pressure is disclosed.

しかし、本発明者の鋭い研究によって、中空糸膜モジュールにおける膜汚染には以下の3パターンあることが明らかとなった。1つ目は、膜ろ過の継続に伴い原水中の無機物・有機物などの除去対象物質が膜細孔内に付着し、細孔径が実質的に小さくなることによって抵抗が上昇し、ろ過性能が低下する膜汚染である。2つ目は、同除去対象物質が膜面に付着/堆積し、付着物質の堆積層抵抗によって、ろ過性能が低下する膜汚染である。3つ目は、原水中に混入された異物または厚くなった膜面付着物質の堆積層がバインダーのような役割をし、隣接する中空糸膜同士が接着され流路閉塞によって、実際にろ過で使用できる膜面積(有効膜面積)が減少し、ろ過性能が低下する膜汚染である。   However, as a result of keen research by the present inventors, it has become clear that there are the following three patterns of membrane contamination in the hollow fiber membrane module. The first is that substances to be removed such as inorganic and organic substances in the raw water adhere to the pores of the membrane as the membrane filtration continues, and the pore diameter is substantially reduced, resulting in increased resistance and reduced filtration performance. Film contamination. The second is membrane contamination in which the removal target substance adheres / deposits on the film surface, and the filtration performance decreases due to the deposited layer resistance of the attached substance. Third, the deposited layer of foreign matter mixed in the raw water or the thickened film surface adhering substance acts as a binder, and the adjacent hollow fiber membranes are bonded to each other so that they can be actually filtered. This is membrane contamination that reduces the usable membrane area (effective membrane area) and lowers the filtration performance.

これらの膜汚染の内、3つ目の膜汚染は有効膜面積が減少するので、残存する膜に汚れ物質負荷が集中する。そのため一旦発生し放置すると、膜汚染の進行が加速し、膜ろ過の安定運転に障害を与える傾向が著しく、放置後に物理洗浄を強化しても膜汚染物質を完全に取り除くことは極めて困難である。そのため、3つ目の膜汚染が発生したら、直ちに物理洗浄の強度や頻度を増やし対応することが好ましい。
しかし、上記のような従来技術では、原水濁度及び膜ろ過差圧の上昇速度を因子として物理洗浄の強度・頻度の調整を行っているため、3つ目の膜汚染の発生感知及び3つ目の膜汚染度合いの把握を行うことは難しい。そのため、有効膜面積を減少させる膜汚染パターンで適切な対応がなされない可能性があり、膜ろ過の安定運転に著しい障害を与える恐れがある。
特開平5−317660号公報 特開平11−169851号公報
Among these membrane contaminations, the third membrane contamination reduces the effective membrane area, so that the load of contaminants concentrates on the remaining membrane. Therefore, once generated and left, the progress of membrane contamination accelerates, and there is a tendency to disturb the stable operation of membrane filtration, and it is extremely difficult to completely remove the membrane contaminant even if physical cleaning is strengthened after being left. . Therefore, when the third film contamination occurs, it is preferable to immediately increase the strength and frequency of physical cleaning.
However, in the conventional technology as described above, the intensity and frequency of physical cleaning are adjusted based on factors such as the raw water turbidity and the rate of increase in the membrane filtration differential pressure. It is difficult to grasp the degree of eye membrane contamination. For this reason, there is a possibility that an appropriate countermeasure may not be taken with a membrane contamination pattern that reduces the effective membrane area, which may cause a significant obstacle to the stable operation of membrane filtration.
JP-A-5-317660 Japanese Patent Laid-Open No. 11-169851

本発明は、安定膜ろ過運転に対し著しい障害となる、有効膜面積を減少させる膜汚染の発生感知及び膜汚染度合い把握が可能な評価因子に基づいて、洗浄の強度や頻度を調整し、長期間安定運転可能で経済的な膜分離装置および膜ろ過方法を提供することを目的とする。 The present invention adjusts the strength and frequency of cleaning based on the evaluation factors that can detect the occurrence of membrane contamination and grasp the degree of membrane contamination that reduce the effective membrane area, which is a significant obstacle to stable membrane filtration operation. An object of the present invention is to provide a membrane separation apparatus and a membrane filtration method which can be stably operated for a period of time.

上記目的を達成するための本発明は、以下の構成からなる。
(1)中空糸形状の精密ろ過膜及び/又は限外ろ過膜を備えた膜モジュールと、ろ過時の通液方向とは逆方向に洗浄液を通液して膜モジュール内の前記精密ろ過膜及び/又は限外ろ過膜を逆洗する逆洗手段を含む洗浄手段と、前記精密ろ過膜及び/又は限外ろ過膜のろ過時および逆洗時の透過係数比(Z)に応じて、前記洗浄手段による洗浄度合いを制御する制御手段とを有することを特徴とする膜分離装置。
(2)中空糸形状の精密ろ過膜及び/又は限外ろ過膜を備えた膜モジュールと、ろ過時の通液方向とは逆方向に洗浄液を通液して膜モジュール内の前記精密ろ過膜及び/又は限外ろ過膜を逆洗する逆洗手段を含む洗浄手段と、前記精密ろ過膜及び/又は限外ろ過膜のろ過時の膜透過係数(X)と逆洗時の膜透過係数(Y)とを算出する手段と、該算出手段によって算出した逆洗時の膜透過係数(Y)とろ過時の膜透過係数(X)との比である透過係数比(Z)に応じて、前記洗浄手段による洗浄度合いを制御する制御手段とを有することを特徴とする膜分離装置。
(3)前記制御手段は、逆洗終了直前の膜透過係数を逆洗時の膜透過係数(Y)とするとともに該逆洗直後に実施されるろ過の開始時の膜透過係数をろ過時の膜透過係数(X)として透過係数比(Z)を算出し、該透過係数比(Z)に応じて洗浄度合いを制御するものである、上記(2)に記載の膜分離装置。
(4)前記制御手段が、透過係数比(Z)に応じて逆洗流量または逆洗時間を制御するものである、上記(1)〜(3)のいずれかに記載の膜分離装置。
(5)前記洗浄手段が洗浄液に薬品を供給するための薬品供給手段を有し、前記制御手段が透過係数比(Z)に応じて洗浄液の薬品濃度を制御する、上記(1)〜(4)のいずれかに記載の膜分離装置。
(6)前記洗浄手段が前記膜モジュールの供給液側に気体を供給するための気体供給手段を有し、前記制御手段が透過係数比(Z)に応じて気体流量または気体供給時間を制御する、上記(1)〜(5)のいずれかに記載の膜分離装置。
(7)中空糸形状の精密ろ過膜及び/又は限外ろ過膜を備えた膜モジュールで供給液をろ過するろ過工程と、該膜モジュールのろ過時の通液方向とは逆方向に洗浄液を通液して膜モジュール内の前記精密ろ過膜及び/又は限外ろ過膜を逆洗する逆洗工程を含む洗浄工程とを繰り返す膜ろ過方法であって、前記精密ろ過膜及び/又は限外ろ過膜の逆洗時およびろ過時の透過係数比(Z)に応じて洗浄工程による洗浄の度合いを制御することを特徴とする膜ろ過方法。
(8)中空糸形状の精密ろ過膜及び/又は限外ろ過膜を備えた膜モジュールで供給液をろ過するろ過工程と、該膜モジュールのろ過時の通液方向とは逆方向に洗浄液を通液して膜モジュール内の前記精密ろ過膜及び/又は限外ろ過膜を逆洗する逆洗工程を含む洗浄工程とを繰り返す膜ろ過方法であって、前記精密ろ過膜及び/又は限外ろ過膜の逆洗時の膜透過係数(Y)とろ過時の膜透過係数(X)との比である透過係数比(Z)に応じて洗浄工程による洗浄の度合いを制御することを特徴とする膜ろ過方法。
(9)1回の逆洗工程の終了直前の膜透過係数を逆洗時の膜透過係数(Y)とするとともに該逆洗工程直後に実施されるろ過工程における開始時の膜透過係数をろ過時の膜透過係数(X)として透過係数比(Z)を算出し、該透過係数比(Z)に応じて洗浄工程による洗浄度合いを制御する、上記(8)に記載の膜ろ過方法。
(10)透過係数比(Z)に応じて逆洗流量または逆洗時間を制御する、上記(7)〜(9)のいずれかに記載の膜ろ過方法。
(11)透過係数比(Z)に応じて洗浄液の薬品濃度を制御する、上記(7)〜(10)のいずれかに記載の膜ろ過方法。
(12)膜モジュールの供給液側に気体を供給して前記精密ろ過膜及び/又は限外ろ過膜の洗浄を行う工程を有するとともに、前記透過係数比(Z)に応じて該工程の気体流量及び/又は気体供給時間を制御する、上記(7)〜(11)のいずれかに記載の膜ろ過方法。
In order to achieve the above object, the present invention has the following configuration.
(1) A membrane module provided with a hollow fiber-shaped microfiltration membrane and / or an ultrafiltration membrane, and the microfiltration membrane in the membrane module by passing a washing liquid in a direction opposite to the direction of liquid passage during filtration. According to the cleaning means including backwashing means for backwashing the ultrafiltration membrane and the permeation coefficient ratio (Z) at the time of filtration and backwashing of the microfiltration membrane and / or ultrafiltration membrane And a control means for controlling the degree of cleaning by the means.
(2) A membrane module provided with a hollow fiber-shaped microfiltration membrane and / or an ultrafiltration membrane, and the microfiltration membrane in the membrane module by passing a cleaning solution in a direction opposite to the direction of liquid passage during filtration. Washing means including backwashing means for backwashing the ultrafiltration membrane, membrane permeation coefficient (X) during filtration of the microfiltration membrane and / or ultrafiltration membrane, and membrane permeation coefficient during backwashing (Y ) And a permeation coefficient ratio (Z) which is a ratio of the membrane permeation coefficient (Y) during backwashing and the permeation coefficient (X) during filtration calculated by the calculation means, And a control means for controlling the degree of cleaning by the cleaning means.
(3) The control means sets the membrane permeability coefficient immediately before the end of backwashing to the membrane permeability coefficient (Y) at the time of backwashing and the membrane permeability coefficient at the start of filtration performed immediately after the backwashing at the time of filtration. The membrane separation apparatus according to (2) above, wherein the permeability coefficient ratio (Z) is calculated as the membrane permeability coefficient (X), and the degree of cleaning is controlled according to the permeability coefficient ratio (Z).
(4) The membrane separation apparatus according to any one of (1) to (3), wherein the control means controls the backwash flow rate or the backwash time according to the permeability coefficient ratio (Z).
(5) The above-mentioned (1) to (4), wherein the cleaning means has chemical supply means for supplying chemicals to the cleaning liquid, and the control means controls the chemical concentration of the cleaning liquid according to the transmission coefficient ratio (Z). ).
(6) The cleaning means has gas supply means for supplying gas to the supply liquid side of the membrane module, and the control means controls the gas flow rate or gas supply time according to the permeability coefficient ratio (Z). The membrane separator according to any one of (1) to (5) above.
(7) A filtration step of filtering the feed liquid with a membrane module equipped with a hollow fiber-shaped microfiltration membrane and / or an ultrafiltration membrane, and a washing solution in a direction opposite to the direction of fluid passage during filtration of the membrane module. A membrane filtration method for repeating a washing step including a back washing step for backwashing the microfiltration membrane and / or the ultrafiltration membrane in the membrane module, the microfiltration membrane and / or the ultrafiltration membrane A membrane filtration method characterized by controlling the degree of washing in the washing step according to the permeation coefficient ratio (Z) during backwashing and filtration.
(8) A filtration step of filtering the supply liquid with a membrane module equipped with a hollow fiber-shaped microfiltration membrane and / or an ultrafiltration membrane, and a washing solution in a direction opposite to the direction of fluid passage during filtration of the membrane module. A membrane filtration method for repeating a washing step including a back washing step for backwashing the microfiltration membrane and / or the ultrafiltration membrane in the membrane module, the microfiltration membrane and / or the ultrafiltration membrane The degree of washing in the washing step is controlled according to the permeability coefficient ratio (Z), which is the ratio of the membrane permeability coefficient (Y) during backwashing to the membrane permeability coefficient (X) during filtration Filtration method.
(9) The membrane permeation coefficient immediately before the end of one backwashing process is set as the membrane permeation coefficient (Y) at the time of backwashing, and the membrane permeation coefficient at the start of the filtration process performed immediately after the backwashing process is filtered. The membrane filtration method according to (8), wherein a permeability coefficient ratio (Z) is calculated as a membrane permeability coefficient (X) at the time, and a degree of cleaning by a cleaning process is controlled according to the permeability coefficient ratio (Z).
(10) The membrane filtration method according to any one of (7) to (9), wherein the backwash flow rate or backwash time is controlled according to the permeability coefficient ratio (Z).
(11) The membrane filtration method according to any one of (7) to (10), wherein the chemical concentration of the cleaning liquid is controlled according to the permeability coefficient ratio (Z).
(12) Supplying gas to the supply liquid side of the membrane module to wash the microfiltration membrane and / or ultrafiltration membrane, and the gas flow rate of the step according to the permeation coefficient ratio (Z) And the membrane filtration method in any one of said (7)-(11) which controls gas supply time.

本発明によれば、実質的に逆洗時の膜透過係数(Y)とろ過時の膜透過係数(X)との比である透過係数比(Z)に応じて洗浄度合いを制御することになるので、有効膜面積を減少させる膜汚染に対して適切な対応が可能であり、長期間安定運転可能で経済的な膜分離装置および膜ろ過方法を提供することができる。   According to the present invention, the degree of cleaning is controlled according to the permeability coefficient ratio (Z) which is substantially the ratio of the membrane permeability coefficient (Y) during backwashing and the membrane permeability coefficient (X) during filtration. Therefore, it is possible to provide an appropriate membrane separation device and membrane filtration method that can appropriately cope with membrane contamination that reduces the effective membrane area, can be stably operated for a long period of time, and can be provided.

本発明の膜分離装置は、中空糸形状の精密ろ過膜及び/又は限外ろ過膜を備えた膜モジュールと、ろ過時の通液方向とは逆方向に洗浄液を通液して膜モジュール内の前記精密ろ過膜及び/又は限外ろ過膜を逆洗する逆洗手段を含む洗浄手段と、前記精密ろ過膜及び/又は限外ろ過膜のろ過時および逆洗時の透過係数比(Z)に応じて、前記洗浄手段による洗浄度合いを制御する制御手段とを有する。以下、本発明について、最良の実施形態の膜分離装置を模式的に示す図面を参照しながら説明する。ただし、本発明の範囲がこれらに限られるものではない。   The membrane separation apparatus of the present invention comprises a membrane module equipped with a hollow fiber-shaped microfiltration membrane and / or an ultrafiltration membrane, and a washing solution in a direction opposite to the direction of fluidization during filtration, A cleaning means including a backwashing means for backwashing the microfiltration membrane and / or ultrafiltration membrane, and a permeation coefficient ratio (Z) during filtration and backwashing of the microfiltration membrane and / or ultrafiltration membrane. And a control means for controlling the degree of cleaning by the cleaning means. Hereinafter, the present invention will be described with reference to the drawings schematically showing the membrane separation apparatus of the best embodiment. However, the scope of the present invention is not limited to these.

図1は本発明にかかる膜分離装置の一実施様態を示す概略構成図である。図1に示す膜分離装置においては、原水を貯留する原水槽1と、分離膜を備えた膜モジュール4と、膜モジュール4の透過水を貯留する処理水槽2とがこの順序で設けられているとともに、原水槽1と膜モジュール4の原水側とが原水流入配管22で、また、膜モジュール4の透過水側と処理水槽2とが透過水流出配管24とで接続されている。   FIG. 1 is a schematic configuration diagram showing an embodiment of a membrane separation apparatus according to the present invention. In the membrane separation apparatus shown in FIG. 1, a raw water tank 1 for storing raw water, a membrane module 4 having a separation membrane, and a treated water tank 2 for storing permeated water of the membrane module 4 are provided in this order. In addition, the raw water tank 1 and the raw water side of the membrane module 4 are connected by a raw water inflow pipe 22, and the permeate water side of the membrane module 4 and the treated water tank 2 are connected by a permeate water outflow pipe 24.

原水流入配管22には、原水を膜モジュール4に供給する際の駆動源となる原水供給ポンプ5と、膜モジュール4の逆洗を行う際に当該配管を閉鎖するための原水バルブ18と、原水側の圧力を検知する原水側圧力計11とがこの順序で設けられている。一方、透過水流出配管24には、透過側の圧力を検知する透過水側圧力計12と、透過水の流量を検知する透過水流量計9と、膜モジュール4の逆洗を行う際に当該配管を閉鎖するための透過水バルブ14とが設けられるとともに、その透過水バルブ14よりも上流側に、処理水と連通する逆洗水流入配管25が接続されている。また透過側の圧力を検知する透過水側圧力計12も透過水バルブ14よりも上流側に設置されている。   The raw water inflow pipe 22 includes a raw water supply pump 5 serving as a driving source for supplying raw water to the membrane module 4, a raw water valve 18 for closing the pipe when the membrane module 4 is backwashed, and raw water A raw water pressure gauge 11 for detecting the pressure on the side is provided in this order. On the other hand, in the permeate outflow pipe 24, the permeate-side pressure gauge 12 that detects the pressure on the permeate side, the permeate flowmeter 9 that detects the flow rate of the permeate, and the membrane module 4 when backwashing A permeated water valve 14 for closing the pipe is provided, and a backwash water inflow pipe 25 communicating with the treated water is connected upstream of the permeated water valve 14. A permeated water pressure gauge 12 that detects the pressure on the permeated side is also installed upstream of the permeated water valve 14.

逆洗水流入配管25には、逆洗水を送液するための駆動源となる逆洗ポンプ6と、膜モジュール4の逆洗を行う際に当該配管を開放するための逆洗水バルブ15と、逆洗水の流量を検知する逆洗水流量計10とが設けられている。また、逆洗水流入配管25には、他端が薬剤貯蔵槽3に接続されている薬剤流入配管26が接続されており、薬剤流入配管26には、逆洗水に薬剤を注入する際の駆動源となる薬剤注入ポンプ7が設けられている。   The backwash water inflow pipe 25 includes a backwash pump 6 serving as a driving source for feeding backwash water, and a backwash water valve 15 for opening the pipe when the membrane module 4 is backwashed. And the backwash water flowmeter 10 which detects the flow volume of backwash water is provided. The backwash water inflow pipe 25 is connected to a medicine inflow pipe 26 whose other end is connected to the medicine storage tank 3, and the medicine inflow pipe 26 is used for injecting medicine into the backwash water. A drug injection pump 7 serving as a driving source is provided.

さらに、膜モジュール4の原水側には、逆洗時に逆洗排水を排出するための逆洗排水配管23が接続されており、逆洗排水配管23には、逆洗時に当該配管を開放するための逆洗排水バルブ17が設けられている。また、膜モジュール4の原水側に気体を供給して分離膜の洗浄(以後、空気洗浄と称する)を行うため、空気供給ポンプ8を備えた空気流入配管27が膜モジュール4の原水側下方に接続されている。この空気流入配管27には、空気洗浄時に当該配管を開放するための空気バルブ19も設けられている。さらに、膜モジュール4の下方には、膜モジュール4内の水を排水するための排水配管13が接続されており、排水配管13には、排水時に当該配管を開放するための排水バルブ16が設けられている。   Furthermore, a backwash drainage pipe 23 for discharging backwash drainage at the time of backwashing is connected to the raw water side of the membrane module 4, and the backwash drainage pipe 23 is opened to open the pipe at the time of backwashing. The backwash drain valve 17 is provided. Further, since the gas is supplied to the raw water side of the membrane module 4 to perform cleaning of the separation membrane (hereinafter referred to as air cleaning), an air inflow pipe 27 provided with an air supply pump 8 is provided below the raw water side of the membrane module 4. It is connected. The air inflow pipe 27 is also provided with an air valve 19 for opening the pipe during air cleaning. Further, a drainage pipe 13 for draining water in the membrane module 4 is connected to the lower side of the membrane module 4, and the drainage pipe 13 is provided with a drainage valve 16 for opening the pipe during drainage. It has been.

また、図1に示す膜分離装置には、原水側圧力計11、透過水流量計9、透過水側圧力計12、逆洗水流量計10によって検出された値に基づいて、ろ過時の膜透過係数(X)と逆洗時の膜透過係数(Y)とを算出する演算部20と、演算部20で算出された逆洗時の膜透過係数(Y)とろ過時の膜透過係数(X)との比である透過係数比(Z)に基づいて洗浄手段による膜モジュール4の洗浄度合いを制御する制御部21とが設けられている。
上記のような構成の膜分離装置において、膜モジュール4に収容される分離膜としては、中空糸形状を有する精密ろ過膜や限外ろ過膜(以後、単に中空糸膜と称する)を使用することができる。中空糸膜の素材としては、特に限定されるものではなく、ポリアクリロニトリル、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビニルアルコール、酢酸セルロースやセラミック等の無機素材を例示できる。中でも膜強度の点からはポリフッ化ビニリデンがり好ましい。中空糸膜の細孔径についても特に限定されず、0.001μm〜1μm の範囲内で便宜選択することができる。また、中空糸膜の外径についても特に限定されないが、中空糸膜の揺動性が高く、洗浄性に優れるため、250μm〜2000μmの範囲内であることが好ましい。
膜モジュール4としては、多数本の上記中空糸膜からなる中空糸膜束を耐圧性の筒状ケース内に装填し、膜束の両端を筒状ケースに接着固定するとともに、片端または両端の接着固定部を切断して中空糸膜の内部を開口した構造を有し、加圧した原水をモジュール内に導入し、中空糸膜面によってろ過を行うタイプの加圧型膜モジュールなどを例示できる。
Further, the membrane separation device shown in FIG. 1 includes a membrane at the time of filtration based on the values detected by the raw water pressure gauge 11, the permeate flowmeter 9, the permeate pressure gauge 12, and the backwash water flowmeter 10. The calculation unit 20 that calculates the permeation coefficient (X) and the membrane permeation coefficient (Y) at the time of backwashing, the membrane permeation coefficient (Y) at the time of backwashing calculated by the arithmetic unit 20 and the membrane permeation coefficient at the time of filtration ( A control unit 21 is provided for controlling the degree of cleaning of the membrane module 4 by the cleaning means based on the transmission coefficient ratio (Z) that is a ratio to X).
In the membrane separation apparatus configured as described above, a microfiltration membrane having a hollow fiber shape or an ultrafiltration membrane (hereinafter simply referred to as a hollow fiber membrane) is used as the separation membrane accommodated in the membrane module 4. Can do. The material of the hollow fiber membrane is not particularly limited, and examples thereof include inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, and ceramic. . Of these, polyvinylidene fluoride is preferred from the viewpoint of film strength. The pore diameter of the hollow fiber membrane is not particularly limited, and can be conveniently selected within the range of 0.001 μm to 1 μm. The outer diameter of the hollow fiber membrane is not particularly limited, but is preferably in the range of 250 μm to 2000 μm because the hollow fiber membrane has high oscillating properties and excellent cleaning properties.
As the membrane module 4, a hollow fiber membrane bundle composed of a plurality of the above hollow fiber membranes is loaded in a pressure-resistant cylindrical case, and both ends of the membrane bundle are bonded and fixed to the cylindrical case, and one end or both ends are bonded. Examples thereof include a pressure type membrane module having a structure in which the fixing portion is cut and the inside of the hollow fiber membrane is opened, pressurized raw water is introduced into the module, and filtration is performed through the hollow fiber membrane surface.

膜モジュール4は、縦置き、つまり図1に示すように両端の接着固定部を略鉛直方向に配置しても、横置き、つまり両端の接着固定部を略水平方向に配置しても構わない。しかしながら、後述するエアスクラビングの際の必要エア量が少なくなるという点で縦置きが好ましい。
中空糸膜束の両側端部を接着固定する際の接着剤については、特に限定されず、エポキシ樹脂、ウレタン樹脂などの熱硬化性樹脂などを用いることができる。
The membrane module 4 may be placed vertically, that is, the adhesive fixing portions at both ends may be arranged in a substantially vertical direction as shown in FIG. 1, or may be placed horizontally, that is, the adhesive fixing portions at both ends may be arranged in a substantially horizontal direction. . However, the vertical installation is preferable in that the amount of air required for air scrubbing described later is reduced.
There are no particular limitations on the adhesive used to bond and fix the both ends of the hollow fiber membrane bundle, and thermosetting resins such as epoxy resins and urethane resins can be used.

次に、上述した装置に基づいて本発明の膜ろ過方法について説明する。
本発明の膜ろ過方法においては、中空糸形状の精密ろ過膜及び/又は限外ろ過膜を備えた膜モジュールで供給液をろ過するろ過工程と、該膜モジュールのろ過時の通液方向とは逆方向に洗浄液を通液して膜モジュール内の前記精密ろ過膜及び/又は限外ろ過膜を逆洗する逆洗工程を含む洗浄工程とを繰り返すが、図1に示す膜分離装置において、ろ過工程時には、原水供給ポンプ5によって原水が膜モジュール4に供給され、分離膜によって濁質が除去された透過水が処理水槽2へ送られる。なお、ここでは、膜モジュール4に流入した原水の全てを膜ろ過する全量ろ過方式で運転する場合について説明するが、膜モジュールに流入させた原水の一部を再び原水槽に戻すクロスフローろ過方式で運転しても構わない。
一方、洗浄工程では、逆洗が行われ、必要に応じて空気洗浄、排水、フラッシング等などの工程が設けられる。その選択・組み合わせは特に限定されない。なお、排水は、排水バルブ16を開き、物理洗浄後などに膜モジュール4内に滞留している水を系外に排出することをいい、フラッシングとは、透過水バルブ14を閉、逆洗排水バルブ17を開にした状態で、原水ポンプを作動させ、モジュール内に原水を過剰に供給して膜モジュール内の汚れを系外に吐き出すことをいう。また、逆洗を含まない洗浄工程が間欠的に実施されてもよい。
逆洗工程においては、膜モジュール4に対してろ過方向とは逆方向に逆洗水を供給して該膜モジュール4内の分離膜を逆洗する。具体的には、透過水バルブ14を閉鎖するとともに逆洗水バルブ15を開き、処理水槽2に貯留されていた膜モジュール4の透過水の一部を、逆洗ポンプ6によって逆洗水流入配管25、透過水流出配管24を介して膜モジュール4に供給し、分離膜を透過水側から原水側へと通過させることで、分離膜の洗浄を行う。分離膜を通過した逆洗排水は、逆洗排水配管23、逆洗排水バルブ17を介して系外に排出される。なお、本発明において逆洗に用いる逆洗水は、使用する膜モジュールから得られる膜ろ過水と同等かそれ以上に清澄な水であれば特に限定されない。
また、逆洗・空気洗浄時の逆洗水・空気に、次亜塩素酸ナトリウムのような酸化剤、水酸化ナトリウムのようなアルカリ、硫酸などの酸及び重亜硫酸ソーダのような還元剤などから選ばれる薬品を添加・注入しても良い。
Next, the membrane filtration method of the present invention will be described based on the above-described apparatus.
In the membrane filtration method of the present invention, the filtration step of filtering the feed liquid with a membrane module equipped with a hollow fiber-shaped microfiltration membrane and / or an ultrafiltration membrane, and the liquid flow direction during filtration of the membrane module are: In the membrane separation apparatus shown in FIG. 1, filtration is performed in a reverse direction by repeating a washing step including a back washing step in which a washing solution is passed in the reverse direction to back wash the microfiltration membrane and / or the ultrafiltration membrane in the membrane module. During the process, the raw water is supplied to the membrane module 4 by the raw water supply pump 5, and the permeated water from which turbidity has been removed by the separation membrane is sent to the treated water tank 2. In addition, although the case where it operates by the total amount filtration system which carries out the membrane filtration of all the raw | natural water which flowed into the membrane module 4 is demonstrated here, the crossflow filtration system which returns a part of raw | natural water which flowed into the membrane module to a raw | natural water tank again You can drive at.
On the other hand, in the washing process, back washing is performed, and steps such as air washing, drainage, and flushing are provided as necessary. The selection / combination is not particularly limited. The drainage means that the drainage valve 16 is opened and the water staying in the membrane module 4 is discharged out of the system after physical washing or the like. The flushing means that the permeate valve 14 is closed and the backwash drainage is performed. This means that the raw water pump is operated with the valve 17 opened, and the raw water is supplied excessively into the module to discharge the dirt in the membrane module out of the system. Moreover, the washing | cleaning process which does not include backwashing may be implemented intermittently.
In the backwashing process, backwash water is supplied to the membrane module 4 in the direction opposite to the filtration direction to backwash the separation membrane in the membrane module 4. Specifically, the permeate water valve 14 is closed and the backwash water valve 15 is opened, and a part of the permeate of the membrane module 4 stored in the treated water tank 2 is backwashed by the backwash pump 6. 25. Supplying to the membrane module 4 via the permeate outflow pipe 24, and passing the separation membrane from the permeate side to the raw water side, the separation membrane is washed. The backwash drainage that has passed through the separation membrane is discharged out of the system via the backwash drainage pipe 23 and the backwash drainage valve 17. In addition, the backwash water used for backwashing in the present invention is not particularly limited as long as it is equal to or more clear than the membrane filtrate obtained from the membrane module to be used.
Also, backwashing water and air during backwashing and air washing can be obtained from oxidizing agents such as sodium hypochlorite, alkalis such as sodium hydroxide, acids such as sulfuric acid, and reducing agents such as sodium bisulfite. Selected chemicals may be added and injected.

以上のようにして行われる膜ろ過において、本発明では、逆洗時の膜透過係数(Y)とろ過時の膜透過係数(X)との比である透過係数比(Z)に応じて膜モジュールの洗浄度合いを制御する。具体的に図1に示す装置においては、ろ過工程時に、原水流入配管22に設けられている原水側圧力計11及び透過水流出配管24に設けられている透過水側圧力計12で、それぞれの圧力を検出するとともに、透過水流出配管24に設けられている透過水流量計9で透過水の流量を検出し、逆洗工程時には、原水側圧力計11及び透過水側圧力計12でそれぞれの圧力を検出するとともに、逆洗水流入配管25に設けられている逆洗水流量計10で逆洗水の流量を検出する。それら検出値は演算部20に入力され、ろ過時の膜透過係数(X)、逆洗時の膜透過係数(Y)が算出、貯蔵される。   In the membrane filtration performed as described above, in the present invention, the membrane according to the permeability coefficient ratio (Z) which is the ratio of the membrane permeability coefficient (Y) at the time of backwashing and the membrane permeability coefficient (X) at the time of filtration. Control the degree of cleaning of the module. Specifically, in the apparatus shown in FIG. 1, the raw water side pressure gauge 11 provided in the raw water inflow pipe 22 and the permeate water side pressure gauge 12 provided in the permeate outflow pipe 24 at the filtration step, While detecting the pressure, the flow rate of the permeated water is detected by the permeated water flow meter 9 provided in the permeated water outflow pipe 24, and at the backwashing step, the raw water side pressure gauge 11 and the permeated water side pressure gauge 12 respectively While detecting a pressure, the backwash water flowmeter 10 provided in the backwash water inflow piping 25 detects the flow volume of backwash water. These detected values are input to the calculation unit 20, and the membrane permeability coefficient (X) during filtration and the membrane permeability coefficient (Y) during backwashing are calculated and stored.

ろ過時の膜透過係数(X)は、ろ過差圧(A)、ろ過流量(B)、および公称膜面積(C)を用いて以下の式1によって求められる。   The membrane permeability coefficient (X) at the time of filtration is calculated | required by the following formula | equation 1 using the filtration differential pressure (A), the filtration flow rate (B), and a nominal membrane area (C).

Figure 2007296500
Figure 2007296500

ここで、ろ過差圧(A)は、ろ過工程時の膜モジュール供給水側圧力と透過水側圧力との差である。すなわち原水側圧力計11での検出値(P1)から、透過水側圧力計12での検出値(P2)を引いた値、つまり(P1)−(P2)で求められる。またろ過流量(B)の値はろ過水流量計9での検出値がそのまま使用される。 Here, the filtration differential pressure (A) is the difference between the membrane module supply water side pressure and the permeate side pressure during the filtration step. That is, it is obtained by subtracting the detection value (P2) from the permeated water side pressure gauge 12 from the detection value (P1) at the raw water side pressure gauge 11, that is, (P1)-(P2). The value detected by the filtrate water flow meter 9 is used as it is as the value of the filtration flow rate (B).

一方、逆洗時の膜透過係数(Y)は、逆洗差圧(D)、逆洗流量(E)と公称膜面積(C)を用いて以下の式2によって求められる。   On the other hand, the membrane permeation coefficient (Y) at the time of backwashing is obtained by the following formula 2 using backwashing differential pressure (D), backwashing flow rate (E) and nominal membrane area (C).

Figure 2007296500
Figure 2007296500

ここで、逆洗差圧(D)は、逆洗時の膜モジュールの透過水側圧力と供給水側圧力との差である。すなわち透過水側圧力計12での検出値P2から、原水側圧力計11での検出値P1を引いた値、(P2)−(P1)で求められる。また逆洗流量(E)は、逆洗水流量計10での検出値がそのまま使用される。公称膜面積(C)は、ろ過時の膜透過係数(X)を求めた際の公称膜面積(C)と同値となる。 Here, the backwash differential pressure (D) is the difference between the permeate water side pressure and the feed water side pressure of the membrane module during backwash. That is, the value obtained by subtracting the detection value P1 of the raw water side pressure gauge 11 from the detection value P2 of the permeated water side pressure gauge 12 is obtained by (P2)-(P1). As the backwash flow rate (E), the value detected by the backwash water flow meter 10 is used as it is. The nominal membrane area (C) is the same value as the nominal membrane area (C) when the membrane permeation coefficient (X) during filtration is determined.

続いて、算出された逆洗時の膜透過係数(Y)とろ過時の膜透過係数(X)とを用い、透過係数比(Z)が以下の式に基づいて算出される。   Subsequently, the permeation coefficient ratio (Z) is calculated based on the following equation using the calculated membrane permeation coefficient (Y) during backwashing and the permeation coefficient (X) during filtration.

Figure 2007296500
Figure 2007296500

そして、制御部21は、この透過係数比(Z)に応じて洗浄手段による洗浄の度合いを制御する。   Then, the control unit 21 controls the degree of cleaning by the cleaning unit according to the transmission coefficient ratio (Z).

さて、前記式1及び式2で示したように、膜透過係数は単位膜面積・圧力当たりの透過流量を表す。従って、膜が汚れるほどある透過流量を出すために要する圧力が高くなるため、膜透過係数は低くなる。   As shown in Equations 1 and 2, the membrane permeation coefficient represents the permeation flow rate per unit membrane area / pressure. Therefore, the pressure required to produce a certain permeation flow rate becomes so high that the membrane becomes dirty, so that the membrane permeability coefficient becomes low.

また、同一の膜に対して原水側からろ過水側へと水を流した場合(ろ過工程)と、ろ過水側から原水側へと水を流した場合(逆洗工程)とでは、本来は膜汚れが同一であるため、水質差を無視できれば、ろ過時の膜透過係数(X)と逆洗時の膜透過係数(Y)は同値になる。すなわち透過係数比(Z)は1となる。   In addition, when water flows from the raw water side to the filtered water side (filtering process) and when water flows from the filtered water side to the raw water side (back washing process), the same membrane is originally Since the membrane contamination is the same, if the water quality difference can be ignored, the membrane permeability coefficient (X) during filtration and the membrane permeability coefficient (Y) during backwashing are the same value. That is, the transmission coefficient ratio (Z) is 1.

しかしながら、上述したように、膜ろ過を続けることによって膜には付着物質が堆積し、その堆積層がバインダーのような役割をして隣接する中空糸膜同士が接着され流路閉塞を生じることがある。その場合、実際にろ過で使用できる膜面積(有効膜面積)が減少する。したがって、上述するように同一の膜に対して原水側からろ過水側へと水を流した場合(ろ過工程)と、ろ過水側から原水側へと水を流した場合(逆洗工程)とを比較した場合、ろ過時の膜透過係数(X)と逆洗時の膜透過係数(Y)とが異なってくる。すなわち、逆洗時には公称膜面積(C)のすべてが有効に使用されているとしても、ろ過時には公称膜面積(C)の半分しか実際の有効膜面積として使用されていないということもあり、その場合、透過係数比(Z)は1ではなく、2の値を示す。   However, as described above, when the membrane filtration is continued, an adhering substance is deposited on the membrane, and the deposited layer acts as a binder, and the adjacent hollow fiber membranes are adhered to each other, thereby causing the channel blockage. is there. In that case, the membrane area (effective membrane area) that can actually be used for filtration decreases. Therefore, as described above, when water is flowed from the raw water side to the filtered water side with respect to the same membrane (filtration step), and when water is flowed from the filtered water side to the raw water side (back washing step) Are compared, the membrane permeability coefficient (X) during filtration and the membrane permeability coefficient (Y) during backwashing are different. That is, even when all of the nominal membrane area (C) is effectively used during backwashing, only half of the nominal membrane area (C) is used as the actual effective membrane area during filtration. In this case, the transmission coefficient ratio (Z) shows a value of 2 instead of 1.

してみれば、透過係数比(Z)は、中空糸膜モジュールにおける3パターンの膜汚染のうち、隣接する中空糸膜同士が接着されることに起因する流路閉塞、有効膜面積減少、その後のろ過性能の加速度的低下など「有効膜面積の減少を伴う膜汚染」の発生感知及び汚染度合いの把握が可能な評価因子ということがいえる。   As a result, the permeability coefficient ratio (Z) is determined as follows. Among the three patterns of membrane contamination in the hollow fiber membrane module, the channel blockage due to the adhering of the adjacent hollow fiber membranes, the effective membrane area reduction, and then It can be said that this is an evaluation factor that can detect the occurrence of “membrane contamination with a decrease in effective membrane area” and grasp the degree of contamination.

したがって、本発明においては、ろ過時と逆洗時の透過係数比(Z)に基づいて膜モジュールの洗浄度合いを制御する。ろ過時と逆洗時の透過係数比(Z)に基づくので、有効膜面積を減少させる膜汚染に対して適切な対応を迅速にとることが可能であり、それに基づいて洗浄度合いを制御することで長期間安定して運転することが可能となる。その結果、経済性を高めることができる。   Therefore, in the present invention, the degree of cleaning of the membrane module is controlled based on the permeation coefficient ratio (Z) during filtration and backwashing. Since it is based on the permeation coefficient ratio (Z) during filtration and backwashing, it is possible to quickly take appropriate measures against membrane contamination that reduces the effective membrane area, and to control the degree of washing based on it. It is possible to operate stably for a long time. As a result, economic efficiency can be improved.

なお、ろ過工程における処理水(原水)と逆洗工程における処理水(逆洗水)とでは、通常処理水質が異なり、膜透過係数も処理水の水質の影響を受けるが、その水質差による影響は、中空糸膜同士の接着による流路閉塞に比べれば微々たるものである。したがって、本発明においては、実質的に無視できる。   The treated water in the filtration process (raw water) and the treated water in the backwash process (backwash water) are usually different in treated water quality, and the membrane permeability coefficient is also affected by the treated water quality. Compared with the blockage of the flow path by bonding of the hollow fiber membranes, it is insignificant. Therefore, it can be substantially ignored in the present invention.

また、一般的に膜ろ過原水には濁質(膜面除去物質)が含まれるため、ろ過工程と逆洗工程を繰り返す膜ろ過運転における膜透過係数は図2のように経時変化する。すなわち、ろ過工程でろ過を継続すると、原水中に含まれる汚れ物質が徐々に膜面へ蓄積され、ろ過工程中の透過係数は徐々に低下する。そして一定時間のろ過を継続した後、逆洗工程に進み、今度はろ過方向とは逆方向から洗浄水(たとえばろ過水の一部)を通水させることにより、膜に蓄積された汚れ物質が膜から剥がれ、その透過係数は徐々に回復・上昇する。したがって、より正確な透過係数比(Z)を算出するには、膜汚れが実質的に同一な状態でろ過時の膜透過係数(X)と逆洗時の膜透過係数(Y)を算出することが好ましい。そのため、本発明においては、逆洗時の膜透過係数(Y)として、逆洗終了直前の最も膜透過係数が高い値を用い、ろ過時の膜透過係数(X)として、逆洗時の膜透過係数(Y)を測定した直後に実施されるろ過工程における、ろ過開始時の最も膜透過係数が高い値を用いるのが好ましい。   Moreover, since the membrane filtration raw water generally contains turbidity (membrane surface removal substance), the membrane permeation coefficient in the membrane filtration operation in which the filtration step and the backwashing step are repeated changes with time as shown in FIG. That is, when the filtration is continued in the filtration step, the dirt substances contained in the raw water are gradually accumulated on the membrane surface, and the permeability coefficient during the filtration step is gradually lowered. Then, after continuing the filtration for a certain period of time, the process proceeds to the backwashing process, and this time, the washing water (for example, a part of the filtered water) is passed from the direction opposite to the filtration direction, so that the dirt substance accumulated in the membrane is removed. The permeability coefficient gradually recovers and rises. Therefore, in order to calculate a more accurate permeation coefficient ratio (Z), the membrane permeation coefficient (X) during filtration and the membrane permeation coefficient (Y) during backwashing are calculated in a state where membrane dirt is substantially the same. It is preferable. Therefore, in the present invention, the membrane permeation coefficient (Y) at the time of backwashing is the value with the highest membrane permeation coefficient immediately before the end of backwashing, and the membrane permeation coefficient (X) at the time of filtration is used as the membrane at the time of backwashing. It is preferable to use a value having the highest membrane permeability coefficient at the start of filtration in the filtration step performed immediately after measuring the permeability coefficient (Y).

さらに、逆洗水には上述したように膜ろ過水と同等もしくはそれ以上に清澄な水であればどんな水を用いても構わないが、膜透過係数は水温や水質によって変化するため、より正確な透過係数比(Z)を算出するには、膜ろ過水の一部を逆洗水として利用するのが好ましい。また膜ろ過原水の水質変動、温度変化を考慮すると、逆洗工程直前のろ過工程で得られたろ過水の一部を逆洗水として用いるのがより好ましい。   Furthermore, as described above, any water may be used as the backwash water as long as it is as clear as the membrane filtration water or more. However, since the membrane permeability coefficient varies depending on the water temperature and water quality, it is more accurate. In order to calculate a proper permeability coefficient ratio (Z), it is preferable to use a part of the membrane filtrate as backwash water. Moreover, when the water quality fluctuation | variation of the membrane filtration raw | natural water and a temperature change are considered, it is more preferable to use a part of filtrate water obtained by the filtration process just before a backwash process as backwash water.

以上のようにして、制御部21は、ろ過時の膜透過係数(X)と逆洗時の膜透過係数(Y)とから算出される透過係数比(Z)に基づいて、逆洗、空気洗浄、排水、フラッシング等の頻度、強度、薬品濃度、時間等を制御する。   As described above, the control unit 21 performs backwash, air based on the permeability coefficient ratio (Z) calculated from the membrane permeability coefficient (X) during filtration and the membrane permeability coefficient (Y) during backwash. Control the frequency, strength, chemical concentration, time, etc. of cleaning, draining, flushing, etc.

上述したとおり、透過係数比(Z)が1より大きくなるということは、ろ過工程時の有効膜面積が減少していることを表す。そのため、そのままの条件でろ過を継続すると残存する膜に汚れ物質負荷が集中し、膜汚染の進行を加速させ、膜ろ過運転性に障害を与える傾向が著しい。よって透過係数比(Z)は運転期間中、1を継続することが好ましく、1を継続することが困難な場合には、より1に近づけるよう制御することが好ましい。   As described above, the fact that the permeation coefficient ratio (Z) is greater than 1 indicates that the effective membrane area during the filtration step is reduced. For this reason, if filtration is continued under the same conditions, the load of contaminants is concentrated on the remaining membrane, the progress of membrane contamination is accelerated, and the membrane filtration operability tends to be impaired. Therefore, the transmission coefficient ratio (Z) is preferably 1 during the operation period, and it is preferable to control the transmission coefficient ratio (Z) closer to 1 when it is difficult to continue 1.

透過係数比(Z)に応じて、空洗や逆洗等の洗浄の頻度、強度など洗浄度合いを制御し、有効膜面積を減少させる膜汚染に対して適切な対応をすることにより、長期間の安定運転が可能となる。   Depending on the permeability coefficient ratio (Z), the frequency and strength of cleaning such as washing and backwashing are controlled, and appropriate measures are taken for membrane contamination that reduces the effective membrane area. Stable operation becomes possible.

なお、図1に示す膜分離装置のうち、演算部21や制御部22が無い場合、ろ過時の膜透過係数(X)や逆洗時の膜透過係数(Y)を自動的に算出し、制御する手段が無い装置の場合には、手計算等により透過係数比(Z)を算出し、その値に応じて、逆洗、空気洗浄、排水、フラッシング等の頻度、強度、薬品濃度、時間等を制御することにより、有効膜面積を減少させる膜汚染に対して適切な対応が可能となり、長期間の安定運転を行うことができる。   In the membrane separation apparatus shown in FIG. 1, when there is no calculation unit 21 or control unit 22, the membrane permeability coefficient (X) during filtration and the membrane permeability coefficient (Y) during backwashing are automatically calculated, In the case of a device without control means, calculate the permeability coefficient ratio (Z) by manual calculation, etc., and according to the value, the frequency, strength, chemical concentration, time of backwashing, air washing, drainage, flushing, etc. By controlling the above, it becomes possible to appropriately cope with film contamination that reduces the effective film area, and stable operation can be performed for a long time.

また、上記説明では、透過係数比(Z)は、一旦ろ過工程における膜透過係数(X)及び逆洗工程における膜透過係数(Y)を算出し、それらを用いて算出しているが、透過係数比(Z)は下記式でも算出可能である。つまり公称膜面積(C)を入力しなくても、逆洗流量(E)、逆洗差圧(D)、ろ過差圧(A)、ろ過流量(B)から直接、透過係数比(Z)を算出しても構わない。   In the above description, the permeability coefficient ratio (Z) is calculated by using the membrane permeability coefficient (X) in the filtration step and the membrane permeability coefficient (Y) in the backwashing step. The coefficient ratio (Z) can also be calculated by the following equation. In other words, without entering the nominal membrane area (C), the permeation coefficient ratio (Z) directly from the backwash flow rate (E), backwash differential pressure (D), filtration differential pressure (A), and filtration flow rate (B). May be calculated.

Figure 2007296500
Figure 2007296500

さらに、逆洗水と原水にてその水温が異なる際には、水温による水の粘度変化を補正することによって、更に正確な透過係数比(Z)の算出が可能となる。   Furthermore, when the water temperature is different between backwash water and raw water, the permeability coefficient ratio (Z) can be calculated more accurately by correcting the viscosity change of the water due to the water temperature.

そして、図1に示す装置は、加圧型膜モジュールを用いた態様であるが、中空糸膜束の両側端部を接着剤で接着固定した後、片端または両端接着固定部を切断して中空糸膜の内部を開口させたモジュールを、大気開放された原水槽中に浸漬させ、透過水側を吸引してろ過する吸引ろ過方式を採用するタイプの浸漬型膜モジュールであっても構わない。   The apparatus shown in FIG. 1 is an embodiment using a pressure-type membrane module. After fixing both ends of the hollow fiber membrane bundle with an adhesive, the hollow fiber is cut by cutting one end or both ends adhesive fixing portions. The module may be a submerged membrane module that employs a suction filtration method in which a module having an opening inside the membrane is immersed in a raw water tank that is open to the atmosphere, and the permeate side is suctioned and filtered.

(実施例1)
外径1.5mm、内径0.9mm、長さ約2000mmのポリフッ化ビニリデン製中空糸膜1500本からなる中空糸MF膜束を、上端を中空糸膜端面が開口した状態で、下端を中空糸膜端面が閉塞された状態でウレタン系接着剤にて筒状ケースに接着固定し、膜面積12mの中空糸膜モジュールを作製した。
Example 1
A hollow fiber MF membrane bundle consisting of 1500 hollow fiber membranes made of polyvinylidene fluoride having an outer diameter of 1.5 mm, an inner diameter of 0.9 mm, and a length of about 2000 mm, with the hollow fiber membrane end face opened at the upper end and the hollow fiber at the lower end In a state where the membrane end face was closed, the hollow fiber membrane module having a membrane area of 12 m 2 was prepared by adhering and fixing to the cylindrical case with a urethane-based adhesive.

上記中空糸膜モジュール1本を図1に示す膜分離装置に装着し、濁度2〜50の範囲内の湖沼水を原水とし、膜ろ過流束3.0m/dでのろ過30分、流束6.0m/dでの逆洗30秒、エア流量50NL/Minでの空洗60秒の繰り返し試験を2ヶ月間行った。   One hollow fiber membrane module is attached to the membrane separation apparatus shown in FIG. 1, and lake water within a turbidity range of 2 to 50 is used as raw water, and filtration is performed at a membrane filtration flux of 3.0 m / d for 30 minutes. A repeated test of 30 seconds of backwashing with a bundle of 6.0 m / d and 60 seconds of airwashing with an air flow rate of 50 NL / Min was conducted for 2 months.

また本試験では、透過係数比(Z)の値に応じて、逆洗水に添加する薬品(NaOCl)濃度を3〜20mg/Lの間で変化させ、透過係数比(Z)の値をより1に近い状態で運転継続できるよう制御した。   In this test, the concentration of the chemical (NaOCl) added to the backwash water is varied between 3 and 20 mg / L according to the value of the permeability coefficient ratio (Z), and the value of the permeability coefficient ratio (Z) is further increased. Control was performed so that the operation could be continued in a state close to 1.

その結果を図3に実線で示す。図から明らかなように、本実施例では透過係数に応じて薬品濃度を変化させ、有効膜面積を減少させる膜汚染に対して適切な対応を行えたことにより、試験期間中ほとんど膜間差圧の上昇は観察されなかった。   The result is shown by a solid line in FIG. As is apparent from the figure, in this example, the chemical concentration was changed in accordance with the permeability coefficient, and an appropriate response was made to membrane contamination that reduced the effective membrane area, so that almost no transmembrane pressure difference was observed during the test period. No increase was observed.

(比較例1)
透過係数比(Z)の値による制御を行わず、逆洗水に添加する薬品(NaOCl)濃度を10mg/Lに固定した以外は実施例1と同様にした。
(Comparative Example 1)
The control was carried out in the same manner as in Example 1 except that the concentration of the chemical (NaOCl) added to the backwash water was fixed at 10 mg / L without controlling the value of the permeability coefficient ratio (Z).

その結果を図3に破線で示す。図から明らかなように、試験開始直後は膜間差圧が安定的に推移していたが、時間が経過するにつれて透過係数比が1より大きくなり、膜間差圧は上昇し、60日後には運転開始時と比べ2倍近くになった。   The result is shown by a broken line in FIG. As is apparent from the figure, the transmembrane pressure difference was stable immediately after the start of the test, but as time passed, the permeability coefficient ratio became greater than 1, and the transmembrane pressure pressure increased, and after 60 days. Was nearly twice as much as at the start of operation.

本発明の、中空糸膜モジュールを用いた膜分離装置及び膜ろ過方法は、上水処理に限らず、下水処理や産業排水処理などにも応用することができ、その応用範囲はこれらに限られるものではない。   The membrane separation apparatus and membrane filtration method using the hollow fiber membrane module of the present invention can be applied not only to water treatment, but also to sewage treatment, industrial wastewater treatment, etc., and the application range is limited to these. It is not a thing.

本発明の一実施形態を示す膜分離装置の概略構成図である。It is a schematic block diagram of the membrane separator which shows one Embodiment of this invention. 一般的な膜ろ過運転における膜透過係数の経時変化を模式的に示したものである。The change with time of the membrane permeability coefficient in a general membrane filtration operation is schematically shown. 実施例、比較例における透過係数比(Z)および膜間差圧の経日変化である。It is a time-dependent change of the permeability coefficient ratio (Z) and transmembrane pressure difference in an Example and a comparative example.

符号の説明Explanation of symbols

1 原水槽
2 処理水槽
3 薬剤貯蔵槽
4 膜モジュール
5 原水供給ポンプ
6 逆洗ポンプ
7 薬剤注入ポンプ
8 空気供給ポンプ
9 透過水流量計
10 逆洗水流量計
11 原水側圧力計
12 透過水側圧力計
13 排水配管
14 透過水バルブ
15 逆洗水バルブ
16 排水バルブ
17 逆洗排水バルブ
18 原水バルブ
19 空気バルブ
20 演算部
21 制御部
22 原水配管
23 逆洗排水配管
24 透過水配管
25 逆洗水配管
26 薬品注入配管
27 空気流入配管
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Treated water tank 3 Chemical storage tank 4 Membrane module 5 Raw water supply pump 6 Backwash pump 7 Chemical injection pump 8 Air supply pump 9 Permeated water flow meter 10 Backwash water flow meter 11 Raw water side pressure gauge 12 Permeated water side pressure Total 13 Drainage pipe 14 Permeated water valve 15 Backwash water valve 16 Drainage valve 17 Backwash water drainage valve 18 Raw water valve 19 Air valve 20 Calculation unit 21 Control unit 22 Raw water pipe 23 Backwash drainage pipe 24 Permeate water pipe 25 Backwash water pipe 26 Chemical injection piping 27 Air inflow piping

Claims (12)

中空糸形状の精密ろ過膜及び/又は限外ろ過膜を備えた膜モジュールと、ろ過時の通液方向とは逆方向に洗浄液を通液して膜モジュール内の前記精密ろ過膜及び/又は限外ろ過膜を逆洗する逆洗手段を含む洗浄手段と、前記精密ろ過膜及び/又は限外ろ過膜のろ過時および逆洗時の透過係数比(Z)に応じて、前記洗浄手段による洗浄度合いを制御する制御手段とを有することを特徴とする膜分離装置。   A membrane module having a hollow fiber-shaped microfiltration membrane and / or an ultrafiltration membrane and a microfluidic membrane and / or a limiter in the membrane module by passing a cleaning solution in a direction opposite to the direction of fluidization during filtration. Washing by the washing means according to the washing means including the backwashing means for backwashing the outer filtration membrane, and the permeation coefficient ratio (Z) at the time of filtration and backwashing of the microfiltration membrane and / or ultrafiltration membrane And a control means for controlling the degree. 中空糸形状の精密ろ過膜及び/又は限外ろ過膜を備えた膜モジュールと、ろ過時の通液方向とは逆方向に洗浄液を通液して膜モジュール内の前記精密ろ過膜及び/又は限外ろ過膜を逆洗する逆洗手段を含む洗浄手段と、前記精密ろ過膜及び/又は限外ろ過膜のろ過時の膜透過係数(X)と逆洗時の膜透過係数(Y)とを算出する手段と、該算出手段によって算出した逆洗時の膜透過係数(Y)とろ過時の膜透過係数(X)との比である透過係数比(Z)に応じて、前記洗浄手段による洗浄度合いを制御する制御手段とを有することを特徴とする膜分離装置。   A membrane module having a hollow fiber-shaped microfiltration membrane and / or an ultrafiltration membrane and a microfluidic membrane and / or a limiter in the membrane module by passing a cleaning solution in a direction opposite to the direction of fluidization during filtration. Washing means including backwashing means for backwashing the outer filtration membrane, membrane permeability coefficient (X) during filtration of the microfiltration membrane and / or ultrafiltration membrane, and membrane permeability coefficient (Y) during backwashing Depending on the means for calculating and the permeation coefficient ratio (Z), which is the ratio of the membrane permeation coefficient (Y) at the time of backwashing calculated by the calculation means and the membrane permeation coefficient (X) at the time of filtration, And a control means for controlling the degree of cleaning. 前記制御手段は、逆洗終了直前の膜透過係数を逆洗時の膜透過係数(Y)とするとともに該逆洗直後に実施されるろ過の開始時の膜透過係数をろ過時の膜透過係数(X)として透過係数比(Z)を算出し、該透過係数比(Z)に応じて洗浄度合いを制御するものである、請求項2に記載の膜分離装置。   The control means uses the membrane permeation coefficient immediately before the end of backwashing as the membrane permeation coefficient (Y) at the time of backwashing, and the membrane permeation coefficient at the start of filtration performed immediately after the backwashing as the membrane permeation coefficient at the time of filtration. The membrane separation apparatus according to claim 2, wherein a permeability coefficient ratio (Z) is calculated as (X), and the degree of cleaning is controlled according to the permeability coefficient ratio (Z). 前記制御手段が、透過係数比(Z)に応じて逆洗流量または逆洗時間を制御するものである、請求項1〜3のいずれかに記載の膜分離装置。   The membrane separator according to any one of claims 1 to 3, wherein the control means controls a backwash flow rate or a backwash time in accordance with a permeability coefficient ratio (Z). 前記洗浄手段が洗浄液に薬品を供給するための薬品供給手段を有し、前記制御手段が透過係数比(Z)に応じて洗浄液の薬品濃度を制御する、請求項1〜4のいずれかに記載の膜分離装置。   The said washing | cleaning means has a chemical | medical agent supply means for supplying a chemical | medical agent to a washing | cleaning liquid, The said control means controls the chemical | medical agent density | concentration of a washing | cleaning liquid according to a permeability coefficient ratio (Z). Membrane separator. 前記洗浄手段が前記膜モジュールの供給液側に気体を供給するための気体供給手段を有し、前記制御手段が透過係数比(Z)に応じて気体流量または気体供給時間を制御する、請求項1〜5のいずれかに記載の膜分離装置。   The said washing | cleaning means has a gas supply means for supplying gas to the supply liquid side of the said membrane module, The said control means controls gas flow rate or gas supply time according to a permeability coefficient ratio (Z). The membrane separation apparatus in any one of 1-5. 中空糸形状の精密ろ過膜及び/又は限外ろ過膜を備えた膜モジュールで供給液をろ過するろ過工程と、該膜モジュールのろ過時の通液方向とは逆方向に洗浄液を通液して膜モジュール内の前記精密ろ過膜及び/又は限外ろ過膜を逆洗する逆洗工程を含む洗浄工程とを繰り返す膜ろ過方法であって、前記精密ろ過膜及び/又は限外ろ過膜の逆洗時およびろ過時の透過係数比(Z)に応じて洗浄工程による洗浄の度合いを制御することを特徴とする膜ろ過方法。   A filtration step of filtering the supply liquid with a membrane module equipped with a hollow fiber-shaped microfiltration membrane and / or an ultrafiltration membrane, and a washing solution in a direction opposite to the direction of fluid passage during filtration of the membrane module A membrane filtration method including a washing step including a backwashing step of backwashing the microfiltration membrane and / or ultrafiltration membrane in a membrane module, wherein the microfiltration membrane and / or the ultrafiltration membrane is backwashed A membrane filtration method characterized by controlling the degree of washing in the washing step according to the permeation coefficient ratio (Z) during filtration and filtration. 中空糸形状の精密ろ過膜及び/又は限外ろ過膜を備えた膜モジュールで供給液をろ過するろ過工程と、該膜モジュールのろ過時の通液方向とは逆方向に洗浄液を通液して膜モジュール内の前記精密ろ過膜及び/又は限外ろ過膜を逆洗する逆洗工程を含む洗浄工程とを繰り返す膜ろ過方法であって、前記精密ろ過膜及び/又は限外ろ過膜の逆洗時の膜透過係数(Y)とろ過時の膜透過係数(X)との比である透過係数比(Z)に応じて洗浄工程による洗浄の度合いを制御することを特徴とする膜ろ過方法。   A filtration step of filtering the supply liquid with a membrane module equipped with a hollow fiber-shaped microfiltration membrane and / or an ultrafiltration membrane, and a washing solution in a direction opposite to the direction of fluid passage during filtration of the membrane module A membrane filtration method including a washing step including a backwashing step of backwashing the microfiltration membrane and / or ultrafiltration membrane in a membrane module, wherein the microfiltration membrane and / or the ultrafiltration membrane is backwashed A membrane filtration method characterized by controlling a degree of washing in a washing step according to a permeability coefficient ratio (Z) that is a ratio of a membrane permeability coefficient (Y) during filtration and a membrane permeability coefficient (X) during filtration. 1回の逆洗工程の終了直前の膜透過係数を逆洗時の膜透過係数(Y)とするとともに該逆洗工程直後に実施されるろ過工程における開始時の膜透過係数をろ過時の膜透過係数(X)として透過係数比(Z)を算出し、該透過係数比(Z)に応じて洗浄工程による洗浄度合いを制御する、請求項8に記載の膜ろ過方法。   The membrane permeation coefficient immediately before the end of one backwashing process is taken as the membrane permeation coefficient (Y) at the time of backwashing, and the membrane permeation coefficient at the start of the filtration process performed immediately after the backwashing process is the membrane at the time of filtration. The membrane filtration method according to claim 8, wherein the permeability coefficient ratio (Z) is calculated as the permeability coefficient (X), and the degree of cleaning in the cleaning process is controlled according to the permeability coefficient ratio (Z). 透過係数比(Z)に応じて逆洗流量または逆洗時間を制御する、請求項7〜9のいずれかに記載の膜ろ過方法。   The membrane filtration method according to any one of claims 7 to 9, wherein the backwash flow rate or the backwash time is controlled according to the permeability coefficient ratio (Z). 透過係数比(Z)に応じて洗浄液の薬品濃度を制御する、請求項7〜10のいずれかに記載の膜ろ過方法。   The membrane filtration method according to any one of claims 7 to 10, wherein the chemical concentration of the cleaning liquid is controlled in accordance with the permeability coefficient ratio (Z). 膜モジュールの供給液側に気体を供給して前記精密ろ過膜及び/又は限外ろ過膜の洗浄を行う工程を有するとともに、前記透過係数比(Z)に応じて該工程の気体流量及び/又は気体供給時間を制御する、請求項7〜11のいずれかに記載の膜ろ過方法。   And supplying a gas to the supply liquid side of the membrane module to clean the microfiltration membrane and / or ultrafiltration membrane, and depending on the permeability coefficient ratio (Z), the gas flow rate and / or The membrane filtration method according to any one of claims 7 to 11, wherein the gas supply time is controlled.
JP2006128903A 2006-05-08 2006-05-08 Membrane separation apparatus and membrane filtration method Pending JP2007296500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006128903A JP2007296500A (en) 2006-05-08 2006-05-08 Membrane separation apparatus and membrane filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006128903A JP2007296500A (en) 2006-05-08 2006-05-08 Membrane separation apparatus and membrane filtration method

Publications (1)

Publication Number Publication Date
JP2007296500A true JP2007296500A (en) 2007-11-15

Family

ID=38766444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006128903A Pending JP2007296500A (en) 2006-05-08 2006-05-08 Membrane separation apparatus and membrane filtration method

Country Status (1)

Country Link
JP (1) JP2007296500A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773027A (en) * 2012-08-10 2012-11-14 温州市登达化工有限公司 Method for preparing high-performance polyurethane ultrafiltration/microfiltration separation membrane
JP2013052338A (en) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd Water treating device and water treating method
KR101299165B1 (en) 2013-01-24 2013-08-22 주식회사 태영건설 Pressured membrane filtration apparatus and method with chemical feed automatic control
WO2014088190A1 (en) * 2012-12-03 2014-06-12 제일모직 주식회사 System for washing membrane, and method for washing membrane using same
JP2017104832A (en) * 2015-12-11 2017-06-15 三菱重工環境・化学エンジニアリング株式会社 Membrane separator
KR101889839B1 (en) * 2018-02-28 2018-08-21 강성만 Water purification apparatus
JP2019055362A (en) * 2017-09-21 2019-04-11 オルガノ株式会社 Membrane filtration device and membrane filtration method
CN112357988A (en) * 2020-10-22 2021-02-12 珠海格力电器股份有限公司 Filter element cleaning assembly, water purification system and water purifier
JP6877656B1 (en) * 2020-03-24 2021-05-26 三菱電機株式会社 Water treatment system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052338A (en) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd Water treating device and water treating method
CN102773027A (en) * 2012-08-10 2012-11-14 温州市登达化工有限公司 Method for preparing high-performance polyurethane ultrafiltration/microfiltration separation membrane
WO2014088190A1 (en) * 2012-12-03 2014-06-12 제일모직 주식회사 System for washing membrane, and method for washing membrane using same
CN104968421A (en) * 2012-12-03 2015-10-07 乐天化学株式会社 System for washing membrane, and method for washing membrane using same
US10005039B2 (en) 2012-12-03 2018-06-26 Lotte Chemical Corporation System for cleaning membrane, and method for cleaning membrane using same
KR101299165B1 (en) 2013-01-24 2013-08-22 주식회사 태영건설 Pressured membrane filtration apparatus and method with chemical feed automatic control
WO2017098990A1 (en) * 2015-12-11 2017-06-15 三菱重工環境・化学エンジニアリング株式会社 Membrane separation device
JP2017104832A (en) * 2015-12-11 2017-06-15 三菱重工環境・化学エンジニアリング株式会社 Membrane separator
CN108290118A (en) * 2015-12-11 2018-07-17 三菱重工环境·化学工程株式会社 Membrane separation device
JP2019055362A (en) * 2017-09-21 2019-04-11 オルガノ株式会社 Membrane filtration device and membrane filtration method
KR101889839B1 (en) * 2018-02-28 2018-08-21 강성만 Water purification apparatus
JP6877656B1 (en) * 2020-03-24 2021-05-26 三菱電機株式会社 Water treatment system
CN112357988A (en) * 2020-10-22 2021-02-12 珠海格力电器股份有限公司 Filter element cleaning assembly, water purification system and water purifier

Similar Documents

Publication Publication Date Title
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
US20120125846A1 (en) Filtering method, and membrane-filtering apparatus
KR102118384B1 (en) Method for cleaning hollow fiber membrane module
WO2011158559A1 (en) Method for cleaning membrane modules
KR20190033550A (en) Clogging of a membrane module A computer readable recording medium on which a specific program is recorded, a tide system and a tide method
JPWO2016199725A1 (en) Fresh water production apparatus and method for operating fresh water production apparatus
JP5151009B2 (en) Membrane separation device and membrane separation method
JP2016068046A (en) Vertically-arranged external pressure type hollow fiber membrane module and method of operating the same
JP2013212497A (en) Water treating method
JP2010089079A (en) Method for operating immersed membrane separator and immersed membrane separator
KR20120122927A (en) System and Method for Filtering
JPH11169851A (en) Water filter and its operation
JP7103526B2 (en) Cleaning trouble judgment method and cleaning trouble judgment program of water production equipment
JP2009241043A (en) Backwashing method of membrane filter apparatus
JP2009039677A (en) Cleaning method of immersion type membrane module and immersion type membrane filtering apparatus
WO2021065422A1 (en) Membrane filtration apparatus
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JP2017176951A (en) Method for cleaning separation membrane module
JP2010188250A (en) Water treatment method
JP5251472B2 (en) Membrane module cleaning method
JP6264095B2 (en) Membrane module cleaning method
JP7213711B2 (en) Water treatment device and water treatment method
JP2015123436A (en) Water treatment method
JP4872391B2 (en) Membrane separation device and membrane separation method
WO2022025265A1 (en) Method for operating separation membrane module, computer-readable recording medium having program recorded thereon, and water production system