JP2007292590A - 共焦点光学系およびそれを用いた高さ測定装置 - Google Patents

共焦点光学系およびそれを用いた高さ測定装置 Download PDF

Info

Publication number
JP2007292590A
JP2007292590A JP2006120510A JP2006120510A JP2007292590A JP 2007292590 A JP2007292590 A JP 2007292590A JP 2006120510 A JP2006120510 A JP 2006120510A JP 2006120510 A JP2006120510 A JP 2006120510A JP 2007292590 A JP2007292590 A JP 2007292590A
Authority
JP
Japan
Prior art keywords
light
sample
pinhole
saturable absorber
height measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006120510A
Other languages
English (en)
Inventor
Koichiro Komatsu
宏一郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006120510A priority Critical patent/JP2007292590A/ja
Publication of JP2007292590A publication Critical patent/JP2007292590A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】共焦点光学系および共焦点光学系を用いる高さ測定装置において、試料の高さ方向に対して十分な検出精度を得る。
【解決手段】光源2により試料11の表面と共役な位置に配したピンホール4を照明し、ピンホール4を透過した照明光は対物レンズ9を介して試料11の表面にピンホール4の像を投影する。試料11の表面で反射された信号光は逆の経路を辿り、対物レンズ9の焦点面近傍からの信号光だけが試料11の表面と共役な位置に配した第2のピンホール12を通過して可飽和吸収体13に入射する。可飽和吸収体13は入射光が強くなると、可飽和吸収により出射する光がより強く出射されるレーザ媒質であり、可飽和吸収体13を透過した信号光は光検出器14で結像して光電変換される。
【選択図】図1

Description

本発明は、共焦点光学系を用いた高さ測定装置に関する。
試料の高さ方向に対して高い検出精度を示す共焦点光学系を用いた高さ測定装置が知られている。共焦点光学系では、ピンホールを透過した照射光が結像光学系を介して焦点面でピンホール像を形成する。焦点面またはその近傍に置かれた試料面からの反射光は結像光学系を介して再びピンホールを透過し、透過した光を光電素子で電気信号として信号処理系に取り込む。ピンホールを介して受光するため、焦点面上のピンホール像と共役のずれた試料面からの反射光はピンホール面で広がるためにピンホールを通過することができず、ピンホールの像が試料の表面に結像している場合のみ強い信号光を得ることができる。したがって、共焦点光学系では、焦点面上のピンホール像と試料の表面との光軸方向のずれに対して高い選択性(セクショニング効果)を有する。下記特許文献1には、試料に応じてピンホールの径を変更することによって、試料の高さ情報を取得するものが開示されている。
また、光ヘッドや露光機などの光を結像させる装置に用いられる焦点の位置を検出する焦点誤差検出器において、解像度を向上させるために可飽和吸収体を用いたものが下記特許文献2に開示されている。
特開2005−055540号公報 特開平10−222852号公報
しかし、上記特許文献1のものでは、光学系の開口数で決まる焦点深度方向の点像強度分布のため、試料の高さ方向に対して十分な検出精度を得ることができないという問題がある。なお、上記特許文献2のものは、焦点誤差検出に可飽和吸収体を用いたものであるが、セクショニング効果を有する共焦点光学系に可飽和吸収体の非線形性を組み合わせるものではない。
上記課題を解決するため、本発明の高さ測定装置は、高いセクショニング効果を有する共焦点光学系に更に可飽和吸収体を配した構成とする。
請求項1の発明による高さ測定装置は、光源からの光を出射するピンホールと、ピンホールの像を所定の焦点面上で結像させ、試料の表面に投影する光学系と、ピンホール、またはピンホールと光学的に共役な位置に設けられたピンホールを透過した試料からの反射光の入射光強度に応じて正の非線形な出力を発生する可飽和吸収体と、可飽和吸収体から出射された光を受光して電気信号として出力する受光手段とを備えることを特徴とする。
請求項2に記載の発明は、請求項1に記載の高さ測定装置において、光学系を構成する対物レンズを光軸方向に移動して、ピンホールの像の結像位置を変更する結像位置変更手段と、受光手段から出力される信号強度が最大となる結像位置を算出し、算出された結像位置に基づいて試料表面の高さを算出する高さ算出手段とを備えることを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の高さ測定装置において、試料を光軸方向に移動する移動手段と、移動手段により変更した各試料位置において、試料の表面を光軸に垂直な面で走査する走査手段と、試料表面内の各走査位置について、受光手段から出力される信号強度が最大となる試料位置をそれぞれ算出し、それぞれ算出された試料位置に基づいて各走査位置における試料表面の三次元形状を算出する三次元形状算出手段とを備えることを特徴とする。
請求項4の発明による高さ計測装置は、複数のピンホールを有し、光源からの光が照射されて走査作動がなされる走査基板と、走査基板のピンホールを通過した光を試料の表面に結像させるとともに、その反射光をピンホールに結像させる光学系と、ピンホールを透過した試料からの反射光の入射光強度に応じて正の非線形な出力を発生する可飽和吸収体と、可飽和吸収体から出射された反射光を受光して電気信号として出力する受光手段とを備えることを特徴とする。
請求項5の発明による高さ測定装置は、光源からの光を光導波路の一方の出射端から出射し、所定の焦点面上で結像させ試料の表面に投影させるとともに、試料からの反射光を光導波路の他方の出射端に結像させる光学系と、光導波路内に設けられ、試料からの反射光の入射光強度に応じて正の非線形な出力を発生する可飽和吸収体と、可飽和吸収体を通って光導波路の他方の出射端から射出される試料からの反射光を受光して電気信号として出力する受光手段とを備えることを特徴とする。
請求項6に記載の発明は、請求項1乃至5のいずれか一項に記載の高さ測定装置において、可飽和吸収体の吸収バンドの電子状態を変化させ、その非線形性を変更する変更手段を備えることを特徴とする。
請求項7に記載の発明は、請求項6に記載の高さ測定装置において、変更手段は可飽和吸収体を加熱する加熱装置であることを特徴とする。
請求項8に記載の発明は、請求項6に記載の高さ測定装置において、変更手段は、可飽和吸収体に入射する光束に対して直交するように、可飽和吸収体に所定の波長の光を照射する照射装置であることを特徴とする。
請求項9の発明による共焦点光学系は、光源からの光を出射するピンホールと、ピンホールの像を所定の焦点面上で結像させ、試料の表面に投影する光学系と、ピンホール、またはピンホールと光学的に共役な位置に設けられたピンホールを透過した試料からの反射光の入射光強度に応じて正の非線形な出力を発生する可飽和吸収体と、可飽和吸収体から出射された光を受光して電気信号として出力する受光手段とを備えることを特徴とする。
本発明による共焦点光学系によれば、共焦点像のセクショニング効果を可飽和吸収体の正の非線形特性により一層強調できる。その結果、この共焦点光学系を用いて高さ測定装置を構成すれば、試料の高さ検出精度を向上させることができる。
―第一の実施の形態―
本発明の第一の実施の形態による高さ測定装置を図1を用いて説明する。この高さ計測装置は、共焦点顕微鏡の受光ピンホール12と光検出器14との間に可飽和吸収体13を設けたものである。以下では、ステージ10上に載置された試料11の表面の凹凸を測定するものとして説明する。
半導体レーザ光源2から照明光としてレーザ光が射出され、このレーザ光はコンデンサレンズ3を介してピンホール4を透過する。ピンホール4を透過した照明光は、偏光ビームスプリッタ5を透過して第2対物レンズ6によりほぼ平行な光束に変換される。紙面内の方向に偏光面のある直線偏光光であるレーザ光は1/4波長板7により円偏光となる。円偏光となったレーザ光は振動ミラー8で反射され、対物レンズ9を介して試料11を照射する。試料11は、光軸方向(Z軸方向)へ移動可能なステージ10に載置され、レーザ光は試料11の表面に集光されて、ピンホール4の像を投影する。すなわち、ピンホール4は対物レンズ9の焦点面と共役な面に配置される。また、振動ミラー8の駆動により、ピンホール4の像は試料11の表面上において、光軸と直交する平面(XY平面)上を走査する。
試料11から反射されたレーザ光は、信号光として照明光と逆の経路を辿り対物レンズ9で集光された後に振動ミラー8で反射され、1/4波長板7により紙面に垂直な方向に偏光面を持つ直線偏光として出射する。
信号光は偏光ビームスプリッタ5で反射され、対物レンズ9の焦点面と共役な位置に配置された第2のピンホール12の面上で再びピンホール像を形成する。そのため、対物レンズ9の焦点面近傍からの信号光だけが第2のピンホール12を通過し、第2のピンホール12の後に配置された可飽和吸収体13に入射する。可飽和吸収体13は、入射光の光強度に応じて透過率が増加する媒質である。可飽和吸収体13を透過した信号光は、フォトダイオードなどの光検出器14で光電変換される。ヒータ15は可飽和吸収体13の近傍に設けられ、可飽和吸収体13を加熱する。なお、可飽和吸収体13は、第2のピンホール12の直後付近であり、劣化の問題から光が一点に集中し過ぎない程度に第2のピンホール12から離れた位置に設けられるものとする。
可飽和吸収体13には、固体レーザに用いる金属イオンをドープしたYLF(ネオジウム・イットリウム・リチウム・フッ化物)や半導体レーザに用いるGaAs(ガリウムヒ素)蛍光を発する有機色素などのレーザ媒質が用いられる。可飽和吸収体13は、レーザ光源2と同じ波長の光を吸収する材料で、図2のグラフに示すように、光強度の増加にともない、光吸収係数が変化する可飽和吸収が起き、透過率が上昇する。したがって、可飽和吸収体13に入射する光が強くなると、可飽和吸収体13より出射する光が非線形の応答をするので相対的により強く出射され、対物レンズ9の焦点面が試料11の表面と合致した場合の信号光の光強度が、より強く検出されることになり、対物レンズ9の焦点面と試料11の表面との合致を検出しやすくなる。
可飽和吸収体13は、図3に示すようにエネルギーの高い順に、吸収準位E1、遷移の上準位E2、遷移の下準位E3および基底準位E4の4つのエネルギー準位を有する四準位の構成となっている。遷移の上準位E2と遷移の下準位E3との間のバンドギャップ(E2−E3)は半導体レーザ光源2から発する光のエネルギーにほぼ一致するように設定される。
試料11からの信号光が可飽和吸収体13に入射すると、遷移の下準位E3に存在する1つの電子が遷移の上準位E2に遷移する。このとき、バンドギャップ(E2−E3)に対応するエネルギーを有する光子が吸収される。
ヒータ15の加熱によりエネルギー準位の低い基底状態E4から遷移の下準位E3に励起することにより、遷移の下準位E3の電子密度を増やすことができる。この電子密度を制御することにより、光の吸収の頻度を変化させ、可飽和吸収体13の透過率の変化を制御することができる。つまり、ヒータ15による加熱温度で非線形効果の程度を制御することができる。
以下、上述した高さ測定装置を使用して試料11の表面に形成された三次元形状の測定手順を説明する。
三次元形状測定は次のように行われる。試料11を搭載したステージ10をZ軸方向に移動させてZ軸方向の高さz1を決め、その高さz1において振動ミラー8を駆動することで、試料11の表面に投影されたピンホール4の像を対物レンズ9による視野全面をXY平面で2次元走査する。光検出器14は、XY平面で2次元走査しながら、試料11の対物レンズ9の焦点面上からのずれ量に応じた光強度信号を記録する。その後、ステージ10をZ軸方向へ所定距離(光学系の焦点深度の数分の1)移動した高さz2において、前述のように試料11の表面を2次元走査し、得られた視野内測定領域における光強度を記録する。上記を繰り返し、Z軸方向のそれぞれの高さにおける光強度信号の強度が最大となるようなステージ10のZ軸方向の値をプロットすることにより、試料11の表面の三次元形状を測定できる。
以上で説明した第一の実施の形態によれば、以下の作用効果が得られる。
(1)この実施の形態の高さ測定装置では、共焦点顕微鏡の第2のピンホール12と光検出器14との間に、光強度に応じて正の非線形な光強度を出力する可飽和吸収体13を設けるようにした。図4は、共焦点顕微鏡のみの場合の軸上像強度分布(実線)と、共焦点顕微鏡に可飽和吸収体13を備えた場合の軸上像強度分布(太線)と、可飽和吸収体13のみによる軸上像強度分布(破線)と、共焦点顕微鏡を用いない場合の軸上像強度分布(一点鎖線)とを示す。図4に示すように、可飽和吸収体13を備えた共焦点顕微鏡の方が、合焦面からのずれに対する光強度の変化が大きい。このため、高さ方向の像の分離が明確にできるようになり、高精度の高さ計測が可能になる。なお、図4のグラフは、光検出器14の出力が最大になるとき(合焦時)の光像強度を1になるように正規化したものである。
なお、特許文献2に記載のものでは、光軸方向のセクショニング効果は、可飽和吸収体13の非線形性にのみ依存するものであり、試料の高さ方向の位置検出精度を高めるためには不十分である。しかしながら、第一の実施の形態によれば、光軸方向に十分なセクショニング効果を有し、検出精度の高い高さ検出装置を提供することができる。
(2)可飽和吸収体13へヒータ15による加熱で熱エネルギーを与え、遷移の下準位の電子数を制御することにより可飽和吸収体13の飽和吸収の発生の程度を変更可能とした。したがって、試料11の表面の明暗状態などに応じて観察に最適な透過光量およびセクショニング効果を調節することができる。
(3)ステージ10を複数の所定位置に設定し、各位置において振動ミラー8の駆動により、試料11の表面上でのピンホール4の光像の結像位置を光軸と直交する方向へ変更(走査)しながら光検出器14の出力を2次元的に記録する。各走査位置の最大出力信号に対応するステージ高さに基づいて各操作位置での高さを測定し、試料11の三次元形状を計測するようにした。したがって、試料11を対物レンズ9の視野全面で三次元形状測定をすることができる。
―第二の実施の形態―
本発明の第二の実施の形態による高さ測定装置を、図5を用いて説明する。この高さ測定装置は、タンデム型共焦点顕微鏡を用いたものである。半導体レーザ光源102から射出された照明光はコンデンサレンズ103を介してビームスプリッタ105により反射されて、ニッポウディスク116を照明する。走査基板であるニッポウディスク116には、図6に示すように、中心から距離の異なる位置に螺旋状に複数のピンホール117a〜117n(以下、総称する場合、単に符号117で示す。)が開口されている。このピンホール117a〜117nの像を第2対物レンズ118および対物レンズ109を介して照明光を試料111に照射し、ニッポウディスク116をモータ120により回転させることで試料111の表面を走査することができる。
試料111から反射されたレーザ光は、信号光として照明光と逆の経路を辿り第2対物レンズ118で集光され、第2対物レンズ118を介してピンホール117を再び通過する。ピンホール17を通過した信号光はビームスプリッタ105を透過した後、リレーレンズ119を介して可飽和吸収体113を透過して、CCDやCMOSなどで構成される2次元光検出素子114上で再び結像される。
前述のように、モータ120によりニッポウディスク116が回転、すなわち走査作動することで、試料111上を投影されたピンホール117の像が対物レンズ109による視野全面を走査する。したがって、2次元光検出素子114には、ニッポウディスク116が回転すると、試料111の表面の対物レンズ109の焦点面上からのずれ量に応じた光強度信号を含む光信号像が形成される。ステージ110を光軸方向へ順次移動させ、各ステージ位置において、同様に試料111の全域の信号強度を測定する。試料111の面上の各点ごとに光強度信号が最大となるステージ110の光軸方向の位置をプロットすることにより、試料111の全面の高さ測定を行なうことができる。
以上で説明した第二の実施の形態によれば、第一の実施の形態にで得られた作用効果に加えて、以下の作用効果が得られる。
ニッポウディスク116を円盤面上で一定方向に回転させるだけなので、第一の実施の形態における振動ミラー8を駆動させる場合よりも、高速に試料111を走査することができる。このため、ニッポウディスク116の回転数を高めて、2次元光検出器114の信号読出しをビデオレート(1フレームにつき1/30秒)で行なうことができる。
―第三の実施の形態―
本発明の第三の実施の形態による高さ測定装置を図7および図8に示す要部構成図を用いて説明する。第三の実施の形態は、第二の実施の形態におけるニッポウディスクに相当する円筒形ブロック200に、光導波路を使って光源と可飽和吸収体とを組み込んだものである。
図7の円筒形ブロック200は、図8(a)、(b)に示すように、中心からの距離が異なるように螺旋状に複数のユニット210a〜210n(以下、総称する場合、単に符号210を付す)を備える。それぞれのユニット210において、LED(発光ダイオード)やLD(レーザダイオード)などの光源201からの光は光導波路205に導かれて光結合部207に到達して、光導波路端202から射出される。光導波路端202の像は第2対物レンズ218および対物レンズ209を介して試料211の表面に投影され、所定の焦点面上に結像される。
試料211で反射された光は、信号光として対物レンズ209で集光され、第2対物レンズ218を介して、光導波路端202より円筒形ブロック200内の光導波路204に導かれる。その信号光は可飽和吸収体206を配した非線形応答部としての光導波路204に入射する。この可飽和吸収体206を配した光導波路204は、光が通る部分に周囲より屈折率の高い可飽和吸収体を、たとえばドーピングすればよい。入射した信号光のうち、前述のように対物レンズ209の焦点面近傍からの信号光、すなわち光強度の大きい光が可飽和吸収体206をより多く透過して、射出端203から射出される。射出された信号光は、リレーレンズ219を介して、2次元光検出器214に射出端203の像を形成する。
モータ220により円筒形ブロック200が回転することにより、試料211上に前述のようにして投影されたピンホール像が次々と視野全面を走査する。したがって、円筒形ブロック200が回転する間に光検出器214で検出した信号により試料211の像が形成される。そして、ステージ212をZ軸方向へ移動させ、光検出器214の各画素について光信号強度が最大となるステージ212の高さを記録することにより、視野全面の高さ測定を行なうことができる。
以上で説明した第三の実施の形態によれば、第一および第二の実施の形態で得られた作用効果に加えて、以下の作用効果が得られる。
第二の実施の形態で示したニッポウディスクによる共焦点顕微鏡方式に比べて、ニッポウディスクを透過しない光が迷光として受光光学系に入ることがなくなる。
以上で説明した実施の形態を以下のように変形することができる。
(1)可飽和吸収体13、113、206を四準位のエネルギー準位を持つレーザ媒質として説明したが、三準位のエネルギー準位を持つものであってもよい。ただし、この場合は基底準位E4が存在しないので、遷移の下準位の電子密度を制御することができないため、すなわち、図2に示すグラフの傾きを変えて透過率変化を変更することができなくなる。
(2)可飽和吸収体13、113、206に四準位レーザ媒質を用いる場合、基底状態から遷移の下準位E3への励起を熱的に行うことに代えて、赤外光を照射したり、プラズマ放電や電子注入などによって、可飽和吸収体13、113、206の吸収バンドの電子状態を変化させる手段であれば、いかなる手段でもよい。赤外光を照射する場合は、可飽和吸収体13、113、206に対し、図1のXY平面に平行な方向、すなわち、可飽和吸収体13、113、206に入射する光束に対して直交する方向へ、赤外光等の所定の波長の光を照射させる。なお、可飽和吸収体13、113、206の非線形光学特性を可変にする必要のない場合には、ヒータ15を省略してもよい。
(3)試料11の載ったステージ10を光軸方向へ移動させる代わりに、対物レンズ9を光軸方向へ移動させることで、試料11の光軸方向の走査を行なうようにしてもよい。
(4)第三の実施の形態において、非線形応答部としての光導波路204の前もしくは後にレーザ媒質による光増幅器を配置して、微弱な光であっても検出できるようにしてもよい。
(5)第三の実施の形態において、円筒形ブロック200内に複数のユニット210を配設したが、ブロックの形状は円筒形でなくてもよい。
(6)第三の実施の形態において、円筒形ブロック200に、光導波路を使って光源201と可飽和吸収体206とを組み込んだものとして説明したが、光源をブロックの外部に設けるものでもよいし、第一の実施の形態において光導波路を用いるものであってもよい。また、2次元光検出器214を円筒形ブロック200の外部に設けるものとして説明したが、ブロック内部に組み込むものであってもよい。
第一の実施の形態に光導波路を用いた場合の構成を図9に示す。光源301からの光は結合レンズ302を介して導波路303の入射端304から入射して、光導波路305に導かれてカップラー306に到達して、光導波路端307から射出される。光導波路端307の像は第2対物レンズ308、振動ミラー309および対物レンズ310を介して試料311の表面に投影され、所定の焦点面上に結像される。試料311で反射された光は、信号光として対物レンズ310で集光され、振動ミラー309および第2対物レンズ308を介して、光導波路端307より導波路303内の光導波路313に導かれる。その信号光は可飽和吸収体314を配した非線形応答部としての光導波路313に入射する。入射した信号光のうち、前述のように対物レンズ310の焦点面近傍からの信号光、すなわち光強度の大きい光が可飽和吸収体314をより多く透過して、射出端315から射出される。射出された信号光は、2次元光検出器316に射出端315の像を形成する。
なお、以上の説明では、光源からの光を出射するピンホールと、ピンホールの像を所定の焦点面上で結像させ、試料の表面に投影する光学系と、ピンホール、またはピンホールと光学的に共役な位置に設けられたピンホールを透過した試料からの反射光の入射光強度に応じて正の非線形な出力を発生する可飽和吸収体と、可飽和吸収体から出射された光を受光して電気信号として出力する受光手段とを備える共焦点光学系を用いる高さ測定装置を構成した場合について説明した。しかし、高さ測定装置以外の装置に適用した共焦点光学系も本発明の適用範囲である。
また、本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
本発明の第一の実施の形態による共焦点顕微鏡による高さ検出装置の構成を説明する図である。 可飽和吸収体の非線形光学効果を説明する図である。 可飽和吸収体における誘導放出を説明する図である。 共焦点顕微鏡のみの場合の軸上像強度分布(実線)と共焦点顕微鏡に可飽和吸収体を備えた場合の軸上像強度分布(太線)とを示すグラフである。 本発明の第二の実施の形態によるタンデム型共焦点顕微鏡による高さ検出装置を説明する図である。 ニッポウディスクを説明する平面図である。 本発明の第三の実施の形態による高さ測定装置の構成を説明する図である。 第三の実施の形態における円筒ブロックを説明する図であり、(a)は斜視図を示し、(b)は平面図を示す。 第一の実施の形態による高さ計測装置において、光導波路を用いた場合の構成を示す図である。
符号の説明
2 光源 4 ピンホール
8 振動ミラー 9 対物レンズ
11 試料 12 第2のピンホール
13、113、206 可飽和吸収体 116 ニッポウディスク
200 円筒形ブロック 201 光源
202、203 導波路端

Claims (9)

  1. 光源からの光を出射するピンホールと、
    前記ピンホールの像を所定の焦点面上で結像させ、試料の表面に投影する光学系と、
    前記ピンホール、または前記ピンホールと光学的に共役な位置に設けられたピンホールを透過した前記試料からの反射光の入射光強度に応じて正の非線形な出力を発生する可飽和吸収体と、
    前記可飽和吸収体から出射された光を受光して電気信号として出力する受光手段とを備えることを特徴とする高さ測定装置。
  2. 請求項1に記載の高さ測定装置において、
    前記光学系を構成する対物レンズを光軸方向に移動して、前記ピンホールの像の結像位置を変更する結像位置変更手段と、
    前記受光手段から出力される信号強度が最大となる前記結像位置を算出し、算出された結像位置に基づいて前記試料表面の高さを算出する高さ算出手段とを備えることを特徴とする高さ測定装置。
  3. 請求項1または2に記載の高さ測定装置において、
    前記試料を前記光軸方向に移動する移動手段と、
    前記移動手段により変更した各試料位置において、前記試料の表面を光軸に垂直な面で走査する走査手段と、
    前記試料表面内の各走査位置について、前記受光手段から出力される信号強度が最大となる前記試料位置をそれぞれ算出し、それぞれ算出された試料位置に基づいて前記各走査位置における前記試料表面の三次元形状を算出する三次元形状算出手段とを備えることを特徴とする高さ測定装置。
  4. 複数のピンホールを有し、光源からの光が照射されて走査作動がなされる走査基板と、
    前記走査基板のピンホールを通過した光を試料の表面に結像させるとともに、その反射光を前記ピンホールに結像させる光学系と、
    前記ピンホールを透過した前記試料からの反射光の入射光強度に応じて正の非線形な出力を発生する可飽和吸収体と、
    前記可飽和吸収体から出射された反射光を受光して電気信号として出力する受光手段とを備えることを特徴とする高さ測定装置。
  5. 光源からの光を前記光導波路の一方の出射端から出射し、所定の焦点面上で結像させ試料の表面に投影させるとともに、前記試料からの反射光を前記光導波路の他方の出射端に結像させる光学系と、
    前記光導波路内に設けられ、前記試料からの反射光の入射光強度に応じて正の非線形な出力を発生する可飽和吸収体と、
    前記可飽和吸収体を通って前記光導波路の他方の出射端から射出される前記試料からの反射光を受光して電気信号として出力する受光手段とを備えることを特徴とする高さ測定装置。
  6. 請求項1乃至5のいずれか一項に記載の高さ測定装置において、
    前記可飽和吸収体の吸収バンドの電子状態を変化させ、その非線形性を変更する変更手段を備えることを特徴とする高さ測定装置。
  7. 請求項6に記載の高さ測定装置において、
    前記変更手段は前記可飽和吸収体を加熱する加熱装置であることを特徴とする高さ測定装置。
  8. 請求項6に記載の高さ測定装置において、
    前記変更手段は、前記可飽和吸収体に入射する光束に対して直交するように、前記可飽和吸収体に所定の波長の光を照射する照射装置であることを特徴とする高さ測定装置。
  9. 光源からの光を出射するピンホールと、
    前記ピンホールの像を所定の焦点面上で結像させ、試料の表面に投影する光学系と、
    前記ピンホール、または前記ピンホールと光学的に共役な位置に設けられたピンホールを透過した前記試料からの反射光の入射光強度に応じて正の非線形な出力を発生する可飽和吸収体と、
    前記可飽和吸収体から出射された光を受光して電気信号として出力する受光手段とを備えることを特徴とする共焦点光学系。
JP2006120510A 2006-04-25 2006-04-25 共焦点光学系およびそれを用いた高さ測定装置 Pending JP2007292590A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120510A JP2007292590A (ja) 2006-04-25 2006-04-25 共焦点光学系およびそれを用いた高さ測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120510A JP2007292590A (ja) 2006-04-25 2006-04-25 共焦点光学系およびそれを用いた高さ測定装置

Publications (1)

Publication Number Publication Date
JP2007292590A true JP2007292590A (ja) 2007-11-08

Family

ID=38763341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120510A Pending JP2007292590A (ja) 2006-04-25 2006-04-25 共焦点光学系およびそれを用いた高さ測定装置

Country Status (1)

Country Link
JP (1) JP2007292590A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183991A (ja) * 2008-02-07 2009-08-20 V Technology Co Ltd レーザ加工装置
JP2009202223A (ja) * 2008-02-29 2009-09-10 V Technology Co Ltd レーザ加工装置
US9562319B2 (en) 2005-03-09 2017-02-07 Astenjohnson, Inc. Papermaking fabrics with contaminant resistant nanoparticle coating and method of in situ application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562319B2 (en) 2005-03-09 2017-02-07 Astenjohnson, Inc. Papermaking fabrics with contaminant resistant nanoparticle coating and method of in situ application
US10577744B2 (en) 2005-03-09 2020-03-03 Astenjohnson, Inc. Fabric with contaminant resistant nanoparticle coating and method of in situ application
JP2009183991A (ja) * 2008-02-07 2009-08-20 V Technology Co Ltd レーザ加工装置
JP2009202223A (ja) * 2008-02-29 2009-09-10 V Technology Co Ltd レーザ加工装置

Similar Documents

Publication Publication Date Title
JP3996783B2 (ja) 走査型顕微鏡及び走査型顕微鏡用モジュール
JP6346615B2 (ja) 光学顕微鏡および顕微鏡観察方法
KR102077064B1 (ko) 자동초점 제어장치, 반도체 검사장치 및 현미경
US20070076199A1 (en) Laser microscope
JP5469133B2 (ja) 顕微鏡システム
JP5268061B2 (ja) 基板検査装置
WO2011162187A1 (ja) 画像生成装置
CN102841083A (zh) 一种激光扫描位相显微成像方法及***
JP5038094B2 (ja) レーザー走査型顕微鏡
KR101393514B1 (ko) 고감도 실시간 공초점 형광 현미경
JP2013113650A (ja) トレンチ深さ測定装置及びトレンチ深さ測定方法並びに共焦点顕微鏡
CN113418932B (zh) 一种半导体晶片无损探伤装置及方法
JP2007292590A (ja) 共焦点光学系およびそれを用いた高さ測定装置
JP5489620B2 (ja) 観察装置
KR20140144673A (ko) 미세결함을 검출하는 방법 및 장치
CN110470639B (zh) 一种基于激光诱导光热效应的多模式扫描显微镜成像***
JP5311196B2 (ja) 顕微鏡装置
US8563928B2 (en) Laser thermal imaging
US8742384B2 (en) Optical illumination apparatus and method having a reflective arrangement with moveable components for adjusting incident light
KR20140067793A (ko) 미세결함을 검출하는 방법 및 장치
JP2008224476A (ja) フォトルミネッセンス測定装置
JP2010038880A (ja) レーザ超音波検査装置およびレーザ超音波検査方法
JP2021028582A (ja) 分光測定装置及び空間エネルギー分布測定装置
JP4345739B2 (ja) バイオチップ読取装置
JP3797489B2 (ja) バイオチップ読取装置