JP2007291449A - Method for producing metal-ceramic composite material - Google Patents

Method for producing metal-ceramic composite material Download PDF

Info

Publication number
JP2007291449A
JP2007291449A JP2006120593A JP2006120593A JP2007291449A JP 2007291449 A JP2007291449 A JP 2007291449A JP 2006120593 A JP2006120593 A JP 2006120593A JP 2006120593 A JP2006120593 A JP 2006120593A JP 2007291449 A JP2007291449 A JP 2007291449A
Authority
JP
Japan
Prior art keywords
composite material
sic powder
metal
ceramic composite
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006120593A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsuto
宏之 津戸
Heishiro Takahashi
平四郎 高橋
Tomoyuki Hikita
友幸 引田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006120593A priority Critical patent/JP2007291449A/en
Publication of JP2007291449A publication Critical patent/JP2007291449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method where, when a metal-ceramic composite material is produced by a high pressure casting process, the generation of shrinkage cavities upon solidification is reduced, and a metal-ceramic composite material having reduced defects can be produced at a high yield. <P>SOLUTION: The method for producing a metal-ceramic composite material in which SiC powder is compounded into an aluminum alloy comprises: a stage where SiC powder and sodium silicate are mixed, so as to obtain SiC powder in which the sodium silicate is carried; a stage where the SiC powder in which the sodium silicate is carried is molded, so as to obtain a preform; a stage where the preform is heated; and a stage where a molten aluminum alloy is press-infiltrated into the preform. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属−セラミックス複合材料の製造方法に関するもので、さらに詳しくは、加圧浸透法(高圧鋳造法とも呼ぶ。)により得られるアルミニウム合金とSiC粉末とからなる金属−セラミックス複合材料の製造方法に関するものである。 The present invention relates to a method for producing a metal-ceramic composite material, and more specifically, production of a metal-ceramic composite material comprising an aluminum alloy and SiC powder obtained by a pressure infiltration method (also referred to as a high pressure casting method). It is about the method.

金属マトリックスとセラミックスの強化材とからなる金属−セラミックス複合材料は、強化材が有する剛性及び耐磨耗性と金属マトリックスが有する延性及び靭性を併せ持った優れた材料なので、近年、種々の用途に使用されるようになってきている。
特に、アルミニウム合金とSiC粉末とからなる複合材料は、軽量であり、ヤング率を密度で除した値である比ヤング率を大きくすることが可能なことから、大きな固有音速を有し、優れた振動減衰特性を備えているため、例えば、ロボットの高速移動アーム等に好適に応用することが可能である。
Metal-ceramic composite material composed of metal matrix and ceramic reinforcement is an excellent material that has both rigidity and wear resistance of reinforcement and ductility and toughness of metal matrix, and has been used in various applications in recent years. It has come to be.
In particular, a composite material composed of an aluminum alloy and SiC powder is lightweight and has a large specific sound velocity because it can increase the specific Young's modulus, which is a value obtained by dividing the Young's modulus by the density. Since it has vibration damping characteristics, it can be suitably applied to, for example, a high-speed moving arm of a robot.

このような、金属−セラミックス複合材料の製造方法としては、セラミックの粒子からなる成形体(以下、プリフォームと呼ぶ。)を溶湯加圧装置内に設置し、前記成形体に溶融アルミニウム合金を加圧浸透させる方法(いわゆる高圧鋳造法)が一般的に用いられている。(例えば、特許文献1参照。) As a method for producing such a metal-ceramic composite material, a molded body made of ceramic particles (hereinafter referred to as a preform) is placed in a molten metal pressurizing apparatus, and a molten aluminum alloy is added to the molded body. A pressure infiltration method (so-called high pressure casting method) is generally used. (For example, refer to Patent Document 1.)

この高圧鋳造法は、加圧しながらアルミ合金を凝固させるため、凝固収縮に伴うポア、いわゆる引け巣が生じにくいという特長がある。しかしながら、高圧鋳造法においても、肉厚が100mm以上のような厚い形状の鋳造物を得ようとすると、やはり鋳造物の中央に引け巣が生じるという問題点があった。 This high-pressure casting method has a feature that pores associated with solidification shrinkage, that is, so-called shrinkage cavities are hardly generated because the aluminum alloy is solidified while being pressurized. However, even in the high-pressure casting method, there is a problem that a shrinkage cavity is formed at the center of the casting if an attempt is made to obtain a casting having a thickness of 100 mm or more.

このような引け巣を減少させるための対策としては、ナトリウムの元素を添加することによる共晶ケイ素の改良処理が一般的に施されている。しかし、ナトリウムは燃え易く危険であり、また、軽いので溶湯表面に浮くため、浮かぬように底に沈める工夫が必要であるという課題があった。 As a measure for reducing such shrinkage nests, eutectic silicon is generally improved by adding a sodium element. However, sodium is flammable and dangerous, and since it is light, it floats on the surface of the molten metal, so there is a problem that it is necessary to devise a way to sink to the bottom so as not to float.

このような課題を解決するために、溶融アルミニウム合金よりも比重の高いナトリウム合金をアルミニウム−珪素系合金用共晶ケイ素改良剤として用いることが提案されている。(例えば、特許文献2参照。)
特開平01-142244号公報 特開平6-306524号公報
In order to solve such problems, it has been proposed to use a sodium alloy having a higher specific gravity than a molten aluminum alloy as a eutectic silicon improver for an aluminum-silicon alloy. (For example, see Patent Document 2.)
Japanese Patent Laid-Open No. 01-142244 JP-A-6-306524

しかしながら、上記した共晶ケイ素改良剤は、予めナトリウム合金を作成する手間が必要があり効率的でないという課題を有していた。 However, the eutectic silicon improving agent described above has a problem that it is not efficient because it requires time and effort to prepare a sodium alloy in advance.

本発明は、上述した高圧鋳造法における引け巣対策が有する課題に鑑みてなされたものであって、その目的は、高圧鋳造法により金属−セラミックス複合材料を製造するに際して、凝固時の引け巣の発生を低減し、欠陥の少ない金属−セラミックス複合材料を歩留まり良く製造する方法を提供することである。
本発明によれば、金属−セラミックス複合材料の作製において、引け巣分散効果のあるナトリウムを危険なく、また浮くこともなく容易に添加できる効果を有する。
The present invention was made in view of the problems of the above-described countermeasure against shrinkage cavities in the high-pressure casting method, and its purpose is to reduce the shrinkage cavities during solidification when producing a metal-ceramic composite material by the high-pressure casting method. It is an object of the present invention to provide a method for producing a metal-ceramic composite material with reduced yield and reduced defects.
According to the present invention, in the production of a metal-ceramic composite material, there is an effect that sodium having a shrinkage nest dispersing effect can be easily added without danger and without floating.

すなわち、本発明者らは、上記課題を解決すべく鋭意研究した結果、課題を解決するための手段として以下の製造方法を提供する。 That is, as a result of intensive studies to solve the above problems, the present inventors provide the following manufacturing methods as means for solving the problems.

アルミニウム合金中にSiC粉末が複合された金属−セラミックス複合材料の製造方法であって、SiC粉末とケイ酸ナトリウムとを混合してケイ酸ナトリウムを担持したSiC粉末を得る工程と、前記ケイ酸ナトリウムを担持したSiC粉末を成形してプリフォームを得る工程と、前記プリフォームを加熱する工程と、前記プリフォームに溶融アルミニウム合金を加圧浸透させる工程と、を含むことを特徴とする金属−セラミックス複合材料の製造方法。 A method for producing a metal-ceramic composite material in which SiC powder is composited in an aluminum alloy, the step of obtaining SiC powder supporting sodium silicate by mixing SiC powder and sodium silicate, and said sodium silicate A metal-ceramic comprising: a step of obtaining a preform by forming a SiC powder carrying bismuth; a step of heating the preform; and a step of pressure infiltrating a molten aluminum alloy into the preform. A method for producing a composite material.

本発明によれば、金属−セラミックス複合材料の作製において、引け巣分散効果のあるナトリウムを危険なく、また浮くこともなく容易に均一分散して添加できる効果を有する。
したがって、高圧鋳造法により金属−セラミックス複合材料を製造するに際して、凝固時の引け巣の発生を低減し、欠陥の少ない金属−セラミックス複合材料を歩留まり良く製造できる。
According to the present invention, in the production of a metal-ceramic composite material, there is an effect that sodium having a shrinkage dispersion effect can be easily uniformly dispersed without danger and without floating.
Therefore, when a metal-ceramic composite material is manufactured by a high-pressure casting method, generation of shrinkage cavities during solidification can be reduced, and a metal-ceramic composite material with few defects can be manufactured with a high yield.

以下、本発明について、更に詳しく説明する。
本発明では、アルミニウム合金中にSiC粉末が複合された金属−セラミックス複合材料の製造方法であって、SiC粉末とケイ酸ナトリウムとを混合してケイ酸ナトリウムを担持したSiC粉末を得る工程と、前記ケイ酸ナトリウムを担持したSiC粉末を成形してプリフォームを得る工程と、前記プリフォームを加熱する工程と、前記プリフォームに溶融アルミニウム合金を加圧浸透させる工程と、を含むことを特徴とする金属−セラミックス複合材料の製造方法を提案している。
Hereinafter, the present invention will be described in more detail.
In the present invention, a method for producing a metal-ceramic composite material in which SiC powder is composited in an aluminum alloy, the step of obtaining SiC powder supporting sodium silicate by mixing SiC powder and sodium silicate, The method includes the steps of obtaining a preform by shaping the SiC powder supporting sodium silicate, heating the preform, and pressurizing and infiltrating the molten aluminum alloy into the preform. A method for producing a metal-ceramic composite material is proposed.

ここで、SiC粉末が複合された金属−セラミックス複合材料を提案する理由は、SiC粉末からなる強化材が有する剛性及び耐磨耗性とアルミニウム合金からなる金属マトリックスが有する軽量性とを併せ持つ特長を発現させるためである。特に、SiCは剛性が高いので、アルミニウム合金と複合化させて得られる複合材料はセラミックスに近い高剛性なものが得られるという長所がある。 Here, the reason for proposing a metal-ceramic composite material in which SiC powder is composited is that it has both the rigidity and wear resistance of the reinforcing material made of SiC powder and the light weight of the metal matrix made of aluminum alloy. This is for expression. In particular, since SiC has high rigidity, the composite material obtained by compounding with an aluminum alloy has an advantage that a highly rigid material close to ceramics can be obtained.

ここで、アルミニウム合金としては、公知のAl−Si系合金、Al−Mg系合金等を用いることができる。
また、強化材としてのSiC粉末は、粒子状およびウイスカー状、および、繊維状のものが目的に応じて用いられる。
Here, as an aluminum alloy, a well-known Al-Si type alloy, an Al-Mg type alloy, etc. can be used.
In addition, as the SiC powder as the reinforcing material, particles, whiskers, and fibers are used depending on the purpose.

次に、複合材料中のSiC粉末の含有率は、40〜80体積%であることが好ましい。その理由は、SiC粉末の含有率が、40体積%より小さいと剛性が小さくなるため好ましくないからである。
また、SiC粉末の含有率が80体積%より大きいと、プリフォームの作製が困難となり複合材料の作成ができなくなるため好ましくない。
Next, it is preferable that the content rate of the SiC powder in a composite material is 40-80 volume%. The reason is that if the content of the SiC powder is smaller than 40% by volume, the rigidity is decreased, which is not preferable.
On the other hand, if the content of the SiC powder is larger than 80% by volume, it is not preferable because it is difficult to produce a preform and a composite material cannot be produced.

次に、SiC粉末とケイ酸ナトリウムとを混合してケイ酸ナトリウムを担持したSiC粉末を得る工程としては、SiC粉末にケイ酸ナトリウムを液体で添加、混合する方法が好適に用いられる。このようにすれば、ケイ酸ナトリウムを均一に担持したSiC粉末が得られるという作用がある。なおこの際に、バインダーとしてコロイダルシリカ等を添加しても良い。
ここで、引け巣分散のためのナトリウム添加量としては、ケイ素に対して100ppm以上の添加量が好ましい。本発明によれば、必要量のナトリウムは本発明のケイ酸ナトリウムから十分供給することができる。
Next, as a process of obtaining SiC powder carrying sodium silicate by mixing SiC powder and sodium silicate, a method of adding and mixing sodium silicate in a liquid to SiC powder is preferably used. If it does in this way, there exists an effect | action that the SiC powder which carry | supported sodium silicate uniformly is obtained. At this time, colloidal silica or the like may be added as a binder.
Here, the addition amount of sodium for dispersing shrinkage is preferably 100 ppm or more with respect to silicon. According to the present invention, the required amount of sodium can be sufficiently supplied from the sodium silicate of the present invention.

次に、前記ケイ酸ナトリウムを担持したSiC粉末を成形してプリフォームを得る工程としては、公知の成形方法を用いることができる。
ここで、プリフォームにおけるSiC粉末の充填率としては、上記した理由により、40〜80体積%となることが好ましい。
Next, a known molding method can be used as the step of molding the SiC powder carrying the sodium silicate to obtain a preform.
Here, the filling rate of the SiC powder in the preform is preferably 40 to 80% by volume for the reason described above.

次に、前記プリフォームを加熱する工程としては、プリフォームの加熱温度は、500〜1000℃、好ましくは700〜800℃とすることが望ましい。 Next, in the step of heating the preform, the heating temperature of the preform is 500 to 1000 ° C., preferably 700 to 800 ° C.

次に、前記プリフォームに溶融アルミニウム合金を加圧浸透させる工程としては、溶融アルミニウム合金の温度は、700〜1000℃、好ましくは750〜900℃とすることが望ましい。この場合の加圧力は、10MPa〜100MPa 、好ましくは20MPa〜80MPaとすることが望ましい。 Next, as the step of pressure infiltrating the molten aluminum alloy into the preform, the temperature of the molten aluminum alloy is 700 to 1000 ° C., preferably 750 to 900 ° C. In this case, the applied pressure is 10 MPa to 100 MPa, preferably 20 MPa to 80 MPa.

このようにして得られた金属−セラミックス複合材料は、ナトリウムが共晶ケイ素の改良処理に添加され、引け巣が分散された組織の金属−セラミックス複合材料となる。 The metal-ceramic composite material thus obtained is a metal-ceramic composite material having a structure in which sodium is added to the eutectic silicon modification treatment and the shrinkage cavities are dispersed.

以下、本発明の実施例と比較例を具体的に挙げ、本発明をより詳細に説明する。
(実施例)
(1)金属−セラミックス複合材料の作製
市販のSiC粉末(信濃電気精錬社製、平均粒径10μm)100重量部に、ケイ酸ナトリウム5重量部とコロイダルシリカ5重量部を添加して混合して、ケイ酸ナトリウムを担持したSiC粉末を得た。次に、ケイ酸ナトリウムを担持したSiC粉末をプレスして大きさ200×200×80mmでSiC粉末の充填率が50体積%であるプリフォームを形成した。
得られたプリフォームを700℃で加熱した後に、高圧鋳造法により750℃で溶融させた溶融アルミニウム合金(JIS AC3A)を30MPaの圧力で加圧しながら浸透、複合化させ、冷却して本発明に係わる金属−セラミックス複合材料を作製した。
Hereinafter, the present invention will be described in more detail with specific examples and comparative examples of the present invention.
(Example)
(1) Production of metal-ceramic composite material 5 parts by weight of sodium silicate and 5 parts by weight of colloidal silica were added to and mixed with 100 parts by weight of commercially available SiC powder (manufactured by Shinano Denki Co., Ltd., average particle size 10 μm). A SiC powder carrying sodium silicate was obtained. Next, a SiC powder carrying sodium silicate was pressed to form a preform having a size of 200 × 200 × 80 mm and a filling rate of SiC powder of 50% by volume.
After heating the obtained preform at 700 ° C., a molten aluminum alloy (JIS AC3A) melted at 750 ° C. by high-pressure casting is infiltrated and compounded while being pressurized at a pressure of 30 MPa, and cooled to obtain the present invention. A related metal-ceramic composite material was prepared.

(2)評価
得られた複合材料を中央で切断し断面を観察したところ、引け巣は5mm程度の大きさにとどまり、分散していた。
したがって、本発明によれば、欠陥の少ない金属−セラミックス複合材料を歩留まり良く製造することが分かった。
(2) Evaluation When the obtained composite material was cut at the center and the cross section was observed, the shrinkage nests remained at a size of about 5 mm and were dispersed.
Therefore, according to this invention, it turned out that a metal-ceramics composite material with few defects is manufactured with a sufficient yield.

(比較例)
比較のために比較例では、ケイ酸ナトリウムを添加しないこと以外は実施例と同様な方法及び手段で評価した。その結果、得られた金属−セラミックス複合材料の内部には、10mmを超える大きさの引け巣が見られた。
(Comparative example)
For comparison, in the comparative example, evaluation was performed by the same method and means as in the example except that sodium silicate was not added. As a result, a shrinkage cavity with a size exceeding 10 mm was observed inside the obtained metal-ceramic composite material.

Claims (1)

アルミニウム合金中にSiC粉末が複合された金属−セラミックス複合材料の製造方法であって、SiC粉末とケイ酸ナトリウムとを混合してケイ酸ナトリウムを担持したSiC粉末を得る工程と、前記ケイ酸ナトリウムを担持したSiC粉末を成形してプリフォームを得る工程と、前記プリフォームを加熱する工程と、前記プリフォームに溶融アルミニウム合金を加圧浸透させる工程と、を含むことを特徴とする金属−セラミックス複合材料の製造方法。 A method for producing a metal-ceramic composite material in which SiC powder is composited in an aluminum alloy, the step of obtaining SiC powder supporting sodium silicate by mixing SiC powder and sodium silicate, and said sodium silicate A metal-ceramic comprising: a step of obtaining a preform by forming a SiC powder carrying bismuth; a step of heating the preform; and a step of pressure infiltrating a molten aluminum alloy into the preform. A method for producing a composite material.
JP2006120593A 2006-04-25 2006-04-25 Method for producing metal-ceramic composite material Pending JP2007291449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120593A JP2007291449A (en) 2006-04-25 2006-04-25 Method for producing metal-ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120593A JP2007291449A (en) 2006-04-25 2006-04-25 Method for producing metal-ceramic composite material

Publications (1)

Publication Number Publication Date
JP2007291449A true JP2007291449A (en) 2007-11-08

Family

ID=38762348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120593A Pending JP2007291449A (en) 2006-04-25 2006-04-25 Method for producing metal-ceramic composite material

Country Status (1)

Country Link
JP (1) JP2007291449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272281A (en) * 2019-01-21 2019-09-24 西安明科微电子材料有限公司 A kind of two-phase composite material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272281A (en) * 2019-01-21 2019-09-24 西安明科微电子材料有限公司 A kind of two-phase composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100524642B1 (en) A method for manufacturing a disintegrative core for a high pressure casting, a core and a method for extracting the core
Sharma et al. Production of AMC by stir casting–an overview
CN108677051B (en) Method for preparing cluster type aluminum matrix composite material by utilizing recovered SiCp/Al composite material
JP2017039997A (en) Aluminum alloy-ceramic composite material and production method for aluminum alloy-ceramic composite material
WO2007079482A3 (en) Metal casting system
JP2007291449A (en) Method for producing metal-ceramic composite material
CN108220831B (en) A kind of aluminium borate whisker enhancing zinc base alloy composite material and preparation method thereof
Weise et al. New core technology for light metal casting
Rathod et al. A consequence of reinforcements in aluminum-based metal matrix composites: a literature review
JP2015071825A (en) Method for producing aluminum alloy-ceramic composite material
JP5117085B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP2007270340A (en) Metal-ceramic composite material and its manufacturing method
JP2006188735A (en) Rotor with excellent creep characteristic
JP2007302931A (en) Method for manufacturing metal-ceramics composite material
Gattelli et al. New generation of brake callipers to improve competitiveness and energy savings in very high performance cars
Ajukumar et al. Fabrication and characterization of short carbon fiber reinforced AZ91 Mg alloy composites
JP7382105B1 (en) High-strength metal matrix composite and method for producing high-strength metal matrix composite
JP2008001926A (en) Magnesium-ceramic composite material, and its manufacturing method
Ozer et al. Aluminum matrix composite fabrication by infiltration of SiC preforms using squeeze casting technique
JP2007204839A (en) Method for producing fiber-reinforced metal matrix composite, and fiber-reinforced metal matrix composite
JP2006061936A (en) Composite material
JP4276304B2 (en) Method for producing metal-ceramic composite material
JP2005036253A (en) Silicon-aluminum composite metal, and its plated body
Sobczak et al. The technological aspects of ALFA Composites Synthesis
JP2002294359A (en) Metal-matrix carbon-fiber-reinforced composite material and its manufacturing method