JP2007287569A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007287569A
JP2007287569A JP2006116026A JP2006116026A JP2007287569A JP 2007287569 A JP2007287569 A JP 2007287569A JP 2006116026 A JP2006116026 A JP 2006116026A JP 2006116026 A JP2006116026 A JP 2006116026A JP 2007287569 A JP2007287569 A JP 2007287569A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
lithium
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006116026A
Other languages
Japanese (ja)
Other versions
JP5224081B2 (en
Inventor
Shinya Kitano
真也 北野
Keisuke Anami
啓介 穴見
Masatake Ishikawa
雅健 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2006116026A priority Critical patent/JP5224081B2/en
Publication of JP2007287569A publication Critical patent/JP2007287569A/en
Application granted granted Critical
Publication of JP5224081B2 publication Critical patent/JP5224081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having small increase in resistance and high maintenance rate of discharge capacity even in a high temperature environment. <P>SOLUTION: The nonaqueous electrolyte secondary battery 1 is provided with a positive electrode obtained by forming a positive electrode mixture layer containing a positive electrode active material on a current collector. In the battery 1, at least a part of particle surface of a lithium transition metal complex oxide containing at least nickel is provided with a material coated with a lithium manganese based complex oxide having a spinel structure expressed by a general formula (1): Li<SB>z</SB>(Li<SB>x</SB>Mn<SB>2-x-y</SB>M<SB>y</SB>)O<SB>4</SB>as a positive electrode active material. In the formula, x is 0.12<x<0.333, y is 0<y<0.2, and z is 0<z<1, and M is a transition metal other than Mn, an alkaline earth metal, B, or Al. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

従来、非水電解質二次電池(以下、電池ともいう)の正極活物質としては、リチウムコバルト酸化物、リチウムニッケル酸化物またはリチウムマンガン酸化物などのような、リチウムを含有する複合酸化物(以下、リチウム含有複合酸化物ともいう)が知られている。これらのなかでも、リチウムニッケル酸化物は高容量で比較的安価な正極活物質材料として期待されている。   Conventionally, as a positive electrode active material of a nonaqueous electrolyte secondary battery (hereinafter also referred to as a battery), a lithium-containing composite oxide (hereinafter referred to as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, or the like). Also known as lithium-containing composite oxide). Among these, lithium nickel oxide is expected as a positive electrode active material having a high capacity and a relatively low price.

しかし、リチウムニッケル酸化物を正極活物質として用いた電池には、高温環境下において、電解液との反応によってガスが発生したり、被膜が発生することで電池が膨張したり抵抗が増大することがある。それは、他のリチウム含有複合酸化物と比較して、リチウムニッケル酸化物と電解液との反応性が高いことが原因ではないかと考えられる。   However, in batteries using lithium nickel oxide as the positive electrode active material, gas is generated by reaction with the electrolytic solution in a high-temperature environment, and the battery expands and resistance increases due to the formation of a film. There is. It is thought that this is because the reactivity between the lithium nickel oxide and the electrolytic solution is higher than that of other lithium-containing composite oxides.

上記の問題点を解決するために、特許文献1においては、電池の正極用活物質として、LiNiOの表面をLiMnOで被覆したものが提案されている。
特許第3111791号公報
In order to solve the above problems, Patent Document 1 proposes a material for covering the surface of LiNiO 2 with LiMnO 2 as an active material for a positive electrode of a battery.
Japanese Patent No. 3111791

上記特許文献1において提案されている正極用活物質を用いた電池においては、LiNiOと電解液との接触面が減少することから、抵抗増大という問題は緩和されるが、60℃を超える高温環境下において、電解液にマンガン(Mn2+)が溶出することで放電容量が低下し劣化が進み易いという問題がある。 In the battery using the positive electrode active material proposed in Patent Document 1, since the contact surface between LiNiO 2 and the electrolytic solution is reduced, the problem of increased resistance is alleviated, but the high temperature exceeding 60 ° C. Under the environment, there is a problem that manganese (Mn 2+ ) elutes in the electrolytic solution, so that the discharge capacity is reduced and deterioration is likely to proceed.

本発明は上記のような事情に基づいて完成されたものであって、高温環境下においても抵抗増加が小さく、放電容量の維持率の高い非水電解質二次電池を提供することを目的とする。   The present invention has been completed based on the above circumstances, and an object thereof is to provide a non-aqueous electrolyte secondary battery having a small increase in resistance even under a high temperature environment and a high discharge capacity maintenance rate. .

本発明者らは、上記の目的を達成するために鋭意研究を行った結果、正極活物質としてニッケルを含有するリチウム含有複合酸化物を用いた場合でも、結晶中のマンガンの平均価数が4価に近いリチウムマンガン複合酸化物で被覆することでマンガンの溶出が起こり難くなるという知見を得た。   As a result of intensive studies to achieve the above object, the present inventors have found that the average valence of manganese in the crystal is 4 even when a lithium-containing composite oxide containing nickel is used as the positive electrode active material. It was found that manganese elution is less likely to occur by coating with lithium manganese composite oxide close to the valence.

これは、結晶中に3価のマンガンが多くなると以下の反応式で示すような不均化反応が起こりやすいが、4価のマンガンが多い場合には起こり難いのが一因であると考えられる。
2Mn3+→Mn4++Mn2+
This is considered to be caused by the disproportionation reaction as shown in the following reaction formula when trivalent manganese is increased in the crystal, but less likely when tetravalent manganese is large. .
2Mn 3+ → Mn 4+ + Mn 2+

そこで、請求項1の発明は、正極活物質を含有する正極合剤層を集電体上に形成させてなる正極を備えた非水電解質二次電池であって、前記正極活物質は、少なくともニッケルを含むリチウム遷移金属複合酸化物の粒子表面の少なくとも一部が、一般式(1)で示されるスピネル構造を有するリチウムマンガン系複合酸化物で被覆されたものであることを特徴とする非水電解質二次電池である。
Li(LiMn2−x−y)O(1)
(式中0.12<x≦0.333,0≦y<0.2,0<z≦1,MはMn以外の遷移金属、アルカリ土類金属、BまたはAlである。)
なお、上記一般式(1)において、zは、このリチウムマンガン系複合酸化物の充放電状態によって変化する値である。
Accordingly, the invention of claim 1 is a nonaqueous electrolyte secondary battery including a positive electrode in which a positive electrode mixture layer containing a positive electrode active material is formed on a current collector, wherein the positive electrode active material includes at least Non-water characterized in that at least a part of the particle surface of a lithium transition metal composite oxide containing nickel is coated with a lithium manganese composite oxide having a spinel structure represented by the general formula (1) It is an electrolyte secondary battery.
Li z (Li x Mn 2- x-y M y) O 4 (1)
(Wherein 0.12 <x ≦ 0.333, 0 ≦ y <0.2, 0 <z ≦ 1, M is a transition metal other than Mn, alkaline earth metal, B or Al.)
In the general formula (1), z is a value that varies depending on the charge / discharge state of the lithium manganese composite oxide.

請求項2の発明は、請求項1に記載のものにおいて、前記リチウム遷移金属複合酸化物は、一般式(2)で示される複合酸化物であるところに特徴を有する。
LiNiCoMn(2)
(式中0<a≦1.2,0<b≦0.85,0<c<1.0,0≦d≦0.5,b+c+d=1である。)
The invention of claim 2 is characterized in that, in the invention of claim 1, the lithium transition metal composite oxide is a composite oxide represented by the general formula (2).
Li a Ni b Co c Mn d O 2 (2)
(Where 0 <a ≦ 1.2, 0 <b ≦ 0.85, 0 <c <1.0, 0 ≦ d ≦ 0.5, b + c + d = 1)

請求項3の発明は、請求項1または請求項2に記載のものにおいて、前記一般式(1)において、MがAl、B、Mg、Ti、Zr、FeまたはZnであるところに特徴を有する。   The invention of claim 3 is characterized in that, in the general formula (1), M is Al, B, Mg, Ti, Zr, Fe or Zn in the general formula (1). .

<請求項1の発明>
本発明において正極活物質は、少なくともニッケルを含むリチウム遷移金属複合酸化物の粒子表面の少なくとも一部が、一般式(1)で示される、スピネル構造を有するリチウムマンガン系複合酸化物で被覆されたものである。
Li(LiMn2−x−y)O(1)
(式中0.12<x≦0.333,0≦y<0.2,0<z≦1,MはMn以外の遷移金属、アルカリ土類金属、BまたはAlである。)
<Invention of Claim 1>
In the present invention, at least a part of the particle surface of the lithium transition metal composite oxide containing at least nickel is coated with the lithium manganese composite oxide having a spinel structure represented by the general formula (1). Is.
Li z (Li x Mn 2- x-y M y) O 4 (1)
(Wherein 0.12 <x ≦ 0.333, 0 ≦ y <0.2, 0 <z ≦ 1, M is a transition metal other than Mn, alkaline earth metal, B or Al.)

請求項1に記載の発明によれば、正極活物質の材料としてニッケルを含有するリチウム含有複合酸化物を用い、その表面の少なくとも一部をマンガンの平均価数が3.7〜4.0となるようなリチウムマンガン系複合酸化物で被覆しているから、ニッケルと電解液とが接触して反応するのを防止し、マンガンの溶出が起こりにくく、高温環境下においても抵抗増加を抑えることができ、放電容量の維持率が高い非水電解質二次電池を提供することができる。   According to the first aspect of the present invention, a lithium-containing composite oxide containing nickel is used as a material for the positive electrode active material, and at least a part of the surface has an average manganese valence of 3.7 to 4.0. Because it is coated with a lithium manganese based composite oxide, it prevents nickel and electrolyte from contacting and reacting, makes it difficult for elution of manganese, and suppresses an increase in resistance even in high temperature environments. And a non-aqueous electrolyte secondary battery having a high discharge capacity retention rate can be provided.

<請求項2の発明>
本発明においては、充電時の結晶構造が安定し、電池の安全性が向上するという観点から、リチウム遷移金属複合酸化物として、一般式(2)で示される複合酸化物が好適に用いられる。
LiNiCoMn(2)
(式中0<a≦1.2,0<b≦0.85,0<c<1.0,0≦d≦0.5,b+c+d=1である。)
<Invention of Claim 2>
In the present invention, the composite oxide represented by the general formula (2) is preferably used as the lithium transition metal composite oxide from the viewpoint that the crystal structure during charging is stable and the safety of the battery is improved.
Li a Ni b Co c Mn d O 2 (2)
(Where 0 <a ≦ 1.2, 0 <b ≦ 0.85, 0 <c <1.0, 0 ≦ d ≦ 0.5, b + c + d = 1)

<請求項3の発明>
リチウムマンガン系複合酸化物として、LiおよびMn以外にAl、B、Mg、Ti、Zr、FeまたはZnを含むものは、これらの元素が結晶構造中で3価以下の価数で安定して存在可能であることから、少量置換するだけで3価のマンガンを減らしてMnの平均価数を4.0に近づけることができる。したがって、請求項3に記載の発明によれば、放電容量の維持率がより高い電池を提供することができる。
<Invention of Claim 3>
Lithium-manganese complex oxides that contain Al, B, Mg, Ti, Zr, Fe or Zn in addition to Li and Mn exist stably in the crystal structure with a valence of 3 or less Since it is possible, trivalent manganese can be reduced and the average valence of Mn can be brought close to 4.0 by substituting only a small amount. Therefore, according to the invention described in claim 3, it is possible to provide a battery having a higher discharge capacity maintenance rate.

<実施形態1>
以下、本発明の実施形態について説明する。
図2は、本発明の一実施形態である角形の非水電解質二次電池1の概略断面図である。この非水電解質二次電池1は、アルミニウム箔からなる正極集電体に正極合剤を塗布してなる正極板3と、銅箔からなる負極集電体に負極合剤を塗布してなる負極板4とがセパレータ5を介して渦巻状に巻回された発電要素2と、非水電解液とを電池ケース6に収納してなる。
<Embodiment 1>
Hereinafter, embodiments of the present invention will be described.
FIG. 2 is a schematic cross-sectional view of a prismatic nonaqueous electrolyte secondary battery 1 according to an embodiment of the present invention. The nonaqueous electrolyte secondary battery 1 includes a positive electrode plate 3 formed by applying a positive electrode mixture to a positive electrode current collector made of aluminum foil, and a negative electrode formed by applying a negative electrode mixture to a negative electrode current collector made of copper foil. A power generation element 2 in which a plate 4 is spirally wound via a separator 5 and a non-aqueous electrolyte are housed in a battery case 6.

電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極板4は負極リード11を介して電池ケース6の上部にある負極端子9と接続され、正極板3は正極リード10を介して電池蓋7と接続されている。   A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, the negative electrode plate 4 is connected to a negative electrode terminal 9 at the upper part of the battery case 6 via a negative electrode lead 11, and the positive electrode plate 3 is a positive electrode. The battery lid 7 is connected via the lead 10.

非水電解液は非水溶媒に電解質塩を溶解してなり、非水溶媒は、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート、ビニレンカーボネートなどの極性溶媒を単独でまたは二種以上混合して使用することができる。   The non-aqueous electrolyte solution is obtained by dissolving an electrolyte salt in a non-aqueous solvent. Use polar solvents such as formamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, vinylene carbonate alone or in admixture of two or more. be able to.

非水溶媒に溶解する電解質塩は、LiPF、LiClO、LiBF、LiAsF、LiCFCO、LiCF(CF、LiCF(C、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF、LiN(COCFCF、LiPF(CFCF等の塩を単独でまたは二種以上混合して使用することができる。 The electrolyte salts that dissolve in the non-aqueous solvent are LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 (CF 3 ) 3 , LiCF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 , LiPF 3 (CF 2 CF 3 ) 3 and the like alone Or a mixture of two or more.

電池ケース6内に収容された発電要素2は、正極板3と負極板4とをセパレータ5を挟んで巻回されて構成されている。   The power generation element 2 accommodated in the battery case 6 is configured by winding a positive electrode plate 3 and a negative electrode plate 4 with a separator 5 interposed therebetween.

セパレータ5としては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に合成樹脂微多孔膜を好適に用いることができる。なかでも、ポリエチレン及びポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適に用いることができる。   As the separator 5, a woven fabric, a nonwoven fabric, a synthetic resin microporous membrane, or the like can be used, and a synthetic resin microporous membrane can be particularly preferably used. Among these, polyolefin microporous membranes such as polyethylene and polypropylene microporous membranes, or microporous membranes composed of these can be suitably used in terms of thickness, membrane strength, membrane resistance, and the like.

次に、負極板4について説明する。負極板4は、銅などの金属により形成された厚さ5ないし30μmの銅箔からなる負極集電体の両面に、リチウムイオンを吸蔵放出可能な負極活物質を含有する負極合剤層を備えている。負極集電体のうち負極合剤層の形成されていない部分には、負極リード11が超音波溶着により溶着されている。   Next, the negative electrode plate 4 will be described. The negative electrode plate 4 is provided with a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions on both sides of a negative electrode current collector made of a copper foil having a thickness of 5 to 30 μm formed of a metal such as copper. ing. A negative electrode lead 11 is welded by ultrasonic welding to a portion of the negative electrode current collector where the negative electrode mixture layer is not formed.

負極合剤層に含有される負極活物質としては、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe、WO、MoO、SiO、CuO等の金属酸化物、グラファイト、カーボン等の炭素質材料、Li(LiN)等の窒化リチウム、もしくは金属リチウム、またはこれらの混合物を用いることができる。 Examples of the negative electrode active material contained in the negative electrode mixture layer include alloys of lithium with Al, Si, Pb, Sn, Zn, Cd, and the like, and metal oxides such as LiFe 2 O 3 , WO 2 , MoO 2 , SiO, and CuO. Materials, carbonaceous materials such as graphite and carbon, lithium nitride such as Li 5 (Li 3 N), metallic lithium, or a mixture thereof can be used.

正極板3は、アルミニウムなどの金属により形成された厚さ10〜50μmの正極集電体の両面に、リチウムイオンを吸蔵放出可能な正極活物質(後述する)を含有する正極合剤層を備えている。正極集電体のうち正極合剤層の形成されていない部分には正極リード10が超音波溶着により溶着されている。   The positive electrode plate 3 includes a positive electrode mixture layer containing a positive electrode active material (described later) capable of occluding and releasing lithium ions on both surfaces of a positive electrode current collector having a thickness of 10 to 50 μm formed of a metal such as aluminum. ing. A positive electrode lead 10 is welded by ultrasonic welding to a portion of the positive electrode current collector where the positive electrode mixture layer is not formed.

さて、正極合剤層に含有される正極活物質としては、少なくともニッケルを含む、空間群R3−m群に属する層構造のリチウム遷移金属複合酸化物からなる粒子(以下、芯材ともいう)の表面の少なくとも一部を一般式(1)に示すスピネル構造を有するリチウムマンガン複合酸化物(以下、被覆材ともいう)で被覆したものが用いられる。   Now, as the positive electrode active material contained in the positive electrode mixture layer, particles of lithium transition metal composite oxide having a layer structure belonging to the space group R3-m group (hereinafter also referred to as a core material) containing at least nickel. What coat | covered at least one part of the surface with the lithium manganese complex oxide (henceforth a coating | covering material) which has a spinel structure shown in General formula (1) is used.

正極活物質の芯材として用いられるリチウム遷移金属複合酸化物は、コバルトおよびニッケルに加えてマンガンを含むものが、結晶構造を安定化させて電池1の安全性を向上させる観点から好適に用いられる。この複合酸化物にはコバルト、ニッケルおよびマンガン以外の元素(以下、第4元素という)として、遷移金属、アルカリ土類金属、BまたはAlを含んでいても良い。これらの、リチウム遷移金属複合酸化物は、一般式(3)で示される。
LiNiCoMn(3)
(式中、0<a≦1.2,0<b≦0.85,0<c<1.0,0≦d≦0.5,0≦e<0.2,b+c+d+e=1,MはNi,Co,Mn以外の遷移金属、アルカリ土類金属、BまたはAlである。)
As the lithium transition metal composite oxide used as the core material of the positive electrode active material, one containing manganese in addition to cobalt and nickel is preferably used from the viewpoint of stabilizing the crystal structure and improving the safety of the battery 1. . This composite oxide may contain a transition metal, an alkaline earth metal, B or Al as an element other than cobalt, nickel and manganese (hereinafter referred to as a fourth element). These lithium transition metal composite oxides are represented by the general formula (3).
Li a Ni b Co c Mn d M e O 2 (3)
(Where 0 <a ≦ 1.2, 0 <b ≦ 0.85, 0 <c <1.0, 0 ≦ d ≦ 0.5, 0 ≦ e <0.2, b + c + d + e = 1, M is Transition metals other than Ni, Co and Mn, alkaline earth metals, B or Al.)

第4元素(一般式(3)中のM)の置換量eは、ニッケル、コバルト、マンガンおよび第4元素の総モル数に対して0.5〜5%であることが好ましい。0.5%未満の場合には第4元素で置換しても結晶構造が安定せず第4元素の置換による効果が現れ難く、5%よりも多いと放電容量が低下する。   The substitution amount e of the fourth element (M in the general formula (3)) is preferably 0.5 to 5% with respect to the total number of moles of nickel, cobalt, manganese, and the fourth element. If it is less than 0.5%, the crystal structure is not stable even if it is substituted with the fourth element, and the effect due to the substitution of the fourth element is difficult to appear.

本発明においては、上記一般式(3)で示されるリチウム遷移金属複合酸化物のうち、特に一般式(2)で示されるものが好適に用いられる。
LiNiCoMn(2)
(式中、0<a≦1.2,0<b≦0.85,0<c<1.0,0≦d≦0.5,b+c+d=1である。)
In the present invention, among the lithium transition metal composite oxides represented by the general formula (3), those represented by the general formula (2) are preferably used.
Li a Ni b Co c Mn d O 2 (2)
(Where 0 <a ≦ 1.2, 0 <b ≦ 0.85, 0 <c <1.0, 0 ≦ d ≦ 0.5, b + c + d = 1)

なお、上記一般式(2)および(3)において、aはこのリチウム遷移金属複合酸化物の充放電状態によって変化する値である。負極活物質に炭素系材料を用いる非水電解質二次電池では、通常、電池組立時は放電状態にある。したがって、aが0.9未満では放出するリチウムが不足するために放電容量が低下し、リチウム層に遷移金属が置換されるため充放電時の結晶構造が不安定になることからサイクル寿命特性が低下するおそれがあり、aが1.2を超えると単一相が得られず放電容量が低下するおそれがある。   In the general formulas (2) and (3), a is a value that varies depending on the charge / discharge state of the lithium transition metal composite oxide. In a non-aqueous electrolyte secondary battery using a carbon-based material as the negative electrode active material, it is usually in a discharged state when the battery is assembled. Therefore, if a is less than 0.9, the discharge capacity is reduced due to the lack of lithium to be released, and the transition metal is substituted into the lithium layer, so that the crystal structure at the time of charge / discharge becomes unstable. If a exceeds 1.2, a single phase cannot be obtained and the discharge capacity may be reduced.

また、bが0.85を超えると充電時の結晶構造が不安定になり、電池1の安全性が低下するおそれがある。
さらに、0<dの場合には、マンガンによって結晶構造が安定化され、充電時の正極活物質の熱安定性に優れるが、dが0.5を超えると単一相が得られなくなったり、放電容量及びサイクル寿命特性が低下することがある。
On the other hand, if b exceeds 0.85, the crystal structure during charging becomes unstable, and the safety of the battery 1 may be reduced.
Further, when 0 <d, the crystal structure is stabilized by manganese, and the thermal stability of the positive electrode active material during charging is excellent. However, when d exceeds 0.5, a single phase cannot be obtained, Discharge capacity and cycle life characteristics may be reduced.

なお、酸素量は一般式(2)および(3)に示すように、かならず2である必要はなくある程度の不定比性を有していてもよい。   The oxygen amount is not necessarily 2 as shown in the general formulas (2) and (3), and may have a certain degree of non-stoichiometry.

正極活物質の被覆材としては、一般式(1)で示されるスピネル構造を有するリチウムマンガン系複合酸化物が用いられる。
Li(LiMn2−x−y)O(1)
(式中、0.12<x≦0.333,0≦y<0.2,0<z≦1,MはMn以外の遷移金属、アルカリ土類金属、BまたはAlである。)
As the positive electrode active material coating material, a lithium manganese composite oxide having a spinel structure represented by the general formula (1) is used.
Li z (Li x Mn 2- x-y M y) O 4 (1)
(Wherein 0.12 <x ≦ 0.333, 0 ≦ y <0.2, 0 <z ≦ 1, M is a transition metal other than Mn, alkaline earth metal, B or Al.)

本発明においては、一般式(1)で示されるもののうち、一般式(4)で表されるもの(一般式(1)においてy=0の場合)と、Li及びMn以外の元素M(以下、第3元素ともいう)を含むもの(後述する)とが、好適に用いられる。
Li(LiMn2−x)O(4)
In the present invention, among those represented by the general formula (1), those represented by the general formula (4) (when y = 0 in the general formula (1)) and elements M other than Li and Mn (hereinafter referred to as “M”) And those containing a third element) (described later) are preferably used.
Li z (Li x Mn 2-x ) O 4 (4)

一般式(1)および(4)において、xの値は0.15以上0.333未満であることが、好ましい。xが0.15未満であるとマンガンの平均価数が小さくなるためマンガンの溶出を効果的に抑え難くなり0.333を越えると未反応のリチウム化合物が残るために電池1にしたときにガスを発生して電池特性が低下する可能性がある。   In the general formulas (1) and (4), the value of x is preferably 0.15 or more and less than 0.333. When x is less than 0.15, the average valence of manganese becomes small, so it is difficult to effectively suppress elution of manganese, and when it exceeds 0.333, an unreacted lithium compound remains, so that when the battery 1 is used, May cause battery characteristics to deteriorate.

リチウムマンガン系複合酸化物に含まれるLiおよびMn以外の第3元素(一般式(1)におけるM)としては、Al、B、Mg、Ti、Zr、FeまたはZnが好ましい。これらの元素で置換することにより結晶構造が安定化するのでマンガンの溶出を抑制することができる。また、これらの元素は、結晶構造中で3価以下の価数で安定して存在可能であることから、少量置換するだけで3価のマンガンを減らしてMnの平均価数を4.0に近づけることができるので好適である。   As the third element (M in the general formula (1)) other than Li and Mn contained in the lithium manganese composite oxide, Al, B, Mg, Ti, Zr, Fe or Zn is preferable. Substitution with these elements stabilizes the crystal structure, so that elution of manganese can be suppressed. In addition, since these elements can stably exist at a valence of 3 or less in the crystal structure, the trivalent manganese can be reduced and the average valence of Mn can be reduced to 4.0 simply by substituting a small amount. Since it can approach, it is suitable.

第3元素の置換量yは、0.01≦y<0.2であることが好ましい。yが0.01未満であると第3元素で置換することによるマンガン溶出抑制効果が小さくなり、yが0.2以上になると被膜層の結晶構造が不安定になりリチウムイオンの拡散が阻害され抵抗が大きくなる傾向にある。   The substitution amount y of the third element is preferably 0.01 ≦ y <0.2. When y is less than 0.01, the effect of suppressing manganese elution by substituting with the third element is reduced, and when y is 0.2 or more, the crystal structure of the coating layer becomes unstable and the diffusion of lithium ions is inhibited. Resistance tends to increase.

本発明における正極活物質は、例えば、以下に例示する方法によって製造することができる。
あらかじめ合成しておいた芯材と被覆材とを使用して正極活物質を製造する場合には、芯材の粒子と被覆材の粒子とを混合して得られる混合粉末を圧縮摩砕して、芯材粒子の表面に被覆材の粒子を付着させ、メカノケミカル反応をおこさせることで一体化する方法、高速気流中に芯材粒子と被覆材粒子の混合物を分散し衝撃操作を繰り返し行って芯材の表面に被覆材粒子を付着させる方法などが用いられる。
The positive electrode active material in this invention can be manufactured by the method illustrated below, for example.
When a positive electrode active material is produced using a core material and a coating material synthesized in advance, the mixed powder obtained by mixing the core material particles and the coating material particles is compressed and ground. , A method of integrating the particles of the coating material on the surface of the core material particles by causing a mechanochemical reaction to occur, a mixture of the core material particles and the coating material particles is dispersed in a high-speed air stream, and the impact operation is repeated. For example, a method of attaching coating material particles to the surface of the core material is used.

別の方法としては、芯材を合成した後、芯材表面に被覆材の前駆体となる材料を被覆した後これらを焼成することで芯材に被覆材を被覆する方法を用いることもできる。具体的には、マンガンを溶解した溶液に芯材を浸漬し、pHを一定に保ちながらアルカリ溶液を滴下することで芯材表面に水酸化マンガンを析出する方法などにより被覆材の前駆体を形成する。次に、この被覆材の前駆体に、炭酸リチウムなどのLi源を加えた後、例えば、空気雰囲気下、750℃で12時間焼成することで芯材に被覆材を被覆することもできる。   As another method, after synthesizing the core material, the core material surface may be coated with a material that becomes a precursor of the coating material, and then fired, and then the core material may be coated with the coating material. Specifically, the precursor of the coating material is formed by immersing the core material in a solution in which manganese is dissolved and dropping the alkali solution while keeping the pH constant to deposit manganese hydroxide on the surface of the core material. To do. Next, after adding a Li source such as lithium carbonate to the precursor of the coating material, the core material can be coated with the coating material, for example, by baking at 750 ° C. for 12 hours in an air atmosphere.

さらなる、別の方法としては、被覆材の分散溶液に芯材を投入して乾燥させ、乾燥品をメタノールなどに分散させて乾燥焼成することで被覆材を芯材に被覆する方法を用いることもできる。   Further, as another method, it is also possible to use a method in which the core material is applied to the dispersion solution of the coating material and dried, and the dried product is dispersed in methanol and dried and fired to coat the coating material on the core material. it can.

正極活物質の結晶構造は、例えば、粉末X線回折によって確認することができる。具体的には芯材の結晶構造として、空間群R3−mに属する層構造の回折線を確認することができ、被覆材としてスピネル構造の回折線を非常に弱いピークであるが確認することができる。   The crystal structure of the positive electrode active material can be confirmed by, for example, powder X-ray diffraction. Specifically, the diffraction line of the layer structure belonging to the space group R3-m can be confirmed as the crystal structure of the core material, and the diffraction line of the spinel structure as the coating material is confirmed to be a very weak peak. it can.

被覆の状況は、活物質粒子をエポキシ樹脂で含浸した後、ミクロトームで粒子の断面を切りだし、この断面についてEPMAにて元素分析を行うことで、粒子表面にMn元素の濃度の高い層が確認することができる。   After coating the active material particles with epoxy resin, the cross-section of the particles is cut out with a microtome, and elemental analysis is performed on this cross-section with EPMA to confirm a layer with a high Mn element concentration on the particle surface. can do.

正極活物質には、導電剤、結着剤等を添加することもできる。導電剤としては、無機化合物、有機化合物を用いることができる。無機化合物としては、カーボンブラック、グラファイトなどを用いることができ、有機化合物としては、例えばポリアニリン等の導電性ポリマーなどを用いることができる。結着剤としては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエンゴム、ポリアクリロニトリルなどを単独で、あるいは混合して用いることができる。
<実施例1〜24および比較例1〜15>
A conductive agent, a binder or the like can also be added to the positive electrode active material. As the conductive agent, an inorganic compound or an organic compound can be used. As the inorganic compound, carbon black, graphite and the like can be used, and as the organic compound, for example, a conductive polymer such as polyaniline can be used. As the binder, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyacrylonitrile and the like can be used alone or in combination.
<Examples 1-24 and Comparative Examples 1-15>

以下、本発明の実施例1〜24および比較例1〜15を示すが、本発明はこれに限定されるものではない。
1.電池1の作製
(1)正極板3の作製
結着剤のポリフッ化ビニリデン7重量部と、導電剤のアセチレンブラック4重量部と、LiNiCoMnの粒子(芯材)の表面をLi(LiMn2−x−y)O(被覆材)で被覆してなる正極活物質89重量部とを混合したものに、N−メチル−2−ピロリドンを加えて分散させ、スラリーを調製した。なお、実施例1〜24および比較例1〜15において使用された芯材および被覆材は表1に記載した。
Examples 1 to 24 and Comparative Examples 1 to 15 of the present invention are shown below, but the present invention is not limited thereto.
1. Production of battery 1
(1) Production of Positive Electrode Plate 7 The surface of 7 parts by weight of polyvinylidene fluoride as a binder, 4 parts by weight of acetylene black as a conductive agent, and particles (core material) of LiNi b Co c Mn d O 2 are made of Li (Li to a mixture of the x Mn 2-x-y M y) formed by coating with O 4 (coating material) cathode active material 89 parts by weight, and dispersed by the addition of N- methyl-2-pyrrolidone, a slurry did. In addition, the core material and coating | covering material which were used in Examples 1-24 and Comparative Examples 1-15 were described in Table 1.

このスラリーを、厚さが20μmのアルミニウム製の正極集電体の両面にドクターブレードで均一に塗布し、乾燥させた後、ロールプレスで厚みが130μm(集電体を含む)になるように圧縮成形して、長さ640mm、幅30mmの正極板3を作製した。合剤層非形成部には正極リード10を超音波溶着にて備え付けた。   This slurry is uniformly applied to both sides of an aluminum positive electrode current collector with a thickness of 20 μm with a doctor blade, dried, and then compressed with a roll press to a thickness of 130 μm (including the current collector). The positive electrode plate 3 having a length of 640 mm and a width of 30 mm was produced by molding. The positive electrode lead 10 was provided by ultrasonic welding in the mixture layer non-formed part.

(2)負極板4の作製
難黒鉛化性炭素90重量部と、結着剤のポリフッ化ビニリデン10重量部とを混合したものに、N−メチル−2−ピロリドンを加えて分散させスラリーを調製した。
(2) Production of negative electrode plate 4 N-methyl-2-pyrrolidone was added to a mixture of 90 parts by weight of non-graphitizable carbon and 10 parts by weight of polyvinylidene fluoride as a binder to prepare a slurry. did.

このスラリーを、厚さが10μmの銅箔製の負極集電体の両面にドクターブレードで均一に塗布し、乾燥させた後、ロールプレスで厚みが140μm(集電体を含む)になるように圧縮成形して、長さ600mm、幅31mmの負極板4を作製した。合剤層非形成部には負極リード11を超音波溶着にて備え付けた。   The slurry is uniformly applied on both sides of a negative electrode current collector made of copper foil having a thickness of 10 μm with a doctor blade and dried, and then the thickness is adjusted to 140 μm (including the current collector) with a roll press. The negative electrode plate 4 having a length of 600 mm and a width of 31 mm was produced by compression molding. A negative electrode lead 11 was provided by ultrasonic welding on the part where the mixture layer was not formed.

(3)電池1の作製
セパレータ5として長さ1300mm、幅34mm、厚み25μmのポリエチレン微多孔膜を用い、非水電解質としてエチレンカーボネート(EC):ジエチルカーボネート(DMC):エチルメチルカーボネート(EMC)=25:35:40(体積比)の混合溶媒にLiPFを1mol/L溶解した溶液を用いた。
そして、(1)で得られた正極板3と、セパレータ5と、(2)で得られた負極板4とを順に重ね合わせ、これをポリエチレン製の長方形状の巻芯の周囲に長円渦状に巻回して発電要素2とした。
(3) Production of Battery 1 A polyethylene microporous film having a length of 1300 mm, a width of 34 mm, and a thickness of 25 μm was used as the separator 5, and ethylene carbonate (EC): diethyl carbonate (DMC): ethyl methyl carbonate (EMC) = A solution obtained by dissolving 1 mol / L of LiPF 6 in a mixed solvent of 25:35:40 (volume ratio) was used.
Then, the positive electrode plate 3 obtained in (1), the separator 5, and the negative electrode plate 4 obtained in (2) are superposed in order, and this is formed into an oval spiral around a rectangular winding core made of polyethylene. The power generation element 2 was wound around.

次いで、この発電要素2を角形アルミニウム製の電池ケース6に収納し、正極リード10を正極集電体から導出して電池蓋7に、負極リード11を負極集電体から導出して負極端子9に溶接してから、電解液を注液した。次に電池蓋7と電池ケース6をレーザー溶接し電池1内の気密性を保持させ、公称容量が500mAhの非水電解質二次電池1を作製した。   Next, the power generating element 2 is housed in a battery case 6 made of rectangular aluminum, the positive electrode lead 10 is led out from the positive electrode current collector and the negative electrode lead 11 is led out from the negative electrode current collector to the negative electrode terminal 9. After welding, an electrolyte was injected. Next, the battery lid 7 and the battery case 6 were laser welded to maintain the hermeticity in the battery 1, and the nonaqueous electrolyte secondary battery 1 having a nominal capacity of 500 mAh was produced.

2.電池性能試験
作製した非水電解質二次電池1について以下の試験を行った。
(1)高温放置試験
実施例1〜24および比較例1〜15の電池1について、一時間率(1CA=500mA)の充電電流で4.2Vまで定電流充電した後、引き続き4.2Vで合計3時間となるように定電圧充電した。その後、1Cの放電電流で2.5Vまで放電し、放置試験前の放電容量と電池1の厚さを測定した。次に、1Cの充電電流で30分間充電することにより、50%の充電状態まで定電流充電し、温度70℃の恒温槽中で7日間放置した。
2. Battery performance test The following tests were performed on the produced nonaqueous electrolyte secondary battery 1.
(1) High-temperature storage test For the batteries 1 of Examples 1 to 24 and Comparative Examples 1 to 15, the battery 1 was charged at a constant current rate of 4.2 V with a charging current of one hour rate (1 CA = 500 mA), and then continuously at 4.2 V. The battery was charged at a constant voltage to be 3 hours. Thereafter, the battery was discharged to 2.5 V with a discharge current of 1 C, and the discharge capacity before the standing test and the thickness of the battery 1 were measured. Next, the battery was charged at a constant current of 1 C for 30 minutes, so that it was charged at a constant current up to a charge state of 50% and left in a constant temperature bath at a temperature of 70 ° C. for 7 days.

放置後の電池1を1Cの放電電流で2.5Vまで放電した後、放置前と同様に1Cの充電電流で4.2Vまで定電流充電し、引き続き4.2Vで合計3時間となるように定電圧充電した。その後、1Cの放電電流で2.5Vまで放電した電池1について、放置試験後の放電容量と電池1の厚さを測定した。   After leaving the battery 1 discharged to 2.5 V with a discharge current of 1 C, it was charged at a constant current to 4.2 V with a charge current of 1 C, as before, and then continued to 4.2 V for a total of 3 hours. Charged at a constant voltage. Thereafter, for the battery 1 discharged to 2.5 V with a discharge current of 1 C, the discharge capacity after the standing test and the thickness of the battery 1 were measured.

放置試験前の放電容量に対する放置試験後の放電容量の割合(%)を算出して容量維持率とした。
放置試験前後における電池1の厚さの差を求め、電池厚さ増加量(mm)とした。
The ratio (%) of the discharge capacity after the standing test to the discharge capacity before the standing test was calculated as the capacity maintenance rate.
The difference in the thickness of the battery 1 before and after the standing test was determined and used as the battery thickness increase (mm).

(2)直流抵抗測定試験
高温放置試験時の抵抗増加について評価するために、(1)の高温放置試験の前と後においてそれぞれ下記の直流抵抗測定試験を行った。
実施例1〜24および比較例1〜15の電池1について、一時間率(1C)の充電電流で4.2Vまで定電流充電した後、引き続き4.2Vで合計3時間となるように定電圧充電した。その後、0.2Cの放電電流で10秒間放電して10秒目の電池電圧を測定した。放電電流が0.5C、1Cの場合についても同様に10秒間放電して10秒目の電池電圧を測定した。
(2) DC resistance measurement test In order to evaluate the increase in resistance during the high temperature storage test, the following DC resistance measurement test was performed before and after the high temperature storage test of (1).
The batteries 1 of Examples 1 to 24 and Comparative Examples 1 to 15 were charged at a constant current rate of 4.2V with a charging current of 1 hour rate (1C), and then continuously at 4.2V so that the total voltage would be 3 hours. Charged. Thereafter, the battery was discharged at a discharge current of 0.2 C for 10 seconds, and the battery voltage at 10 seconds was measured. Similarly, when the discharge current was 0.5C or 1C, the battery voltage was measured for 10 seconds after discharging for 10 seconds.

横軸に放電電流、縦軸に10秒目の電池電圧をとって測定値をプロットし、得られた直線の傾きから直流抵抗を算出した。
次に高温放置試験後の直流抵抗値と高温放置試験前の直流抵抗値との差を算出し、高温放置試験前の直流抵抗値に対する比を求めて直流抵抗増加率(%)とした。
The measured value was plotted with the discharge current on the horizontal axis and the battery voltage at 10 seconds on the vertical axis, and the DC resistance was calculated from the slope of the obtained straight line.
Next, the difference between the DC resistance value after the high-temperature storage test and the DC resistance value before the high-temperature storage test was calculated, and the ratio to the DC resistance value before the high-temperature storage test was determined to obtain the DC resistance increase rate (%).

表1に、使用された正極活物質の芯材と被覆材の組み合わせとともに容量維持率(%)、電池厚さ増加量(mm)および直流抵抗増加率(%)を記載した。
表1中、b、c、dは、式LiNiCoMn中のb、c、dにそれぞれ対応しており、x、2−x−y、y、Mは、式Li(LiMn2−x−y)O中のx、2−x−y、y、Mにそれぞれ対応している。
Table 1 shows the capacity retention rate (%), the battery thickness increase amount (mm), and the DC resistance increase rate (%) as well as the combination of the core material and the covering material of the positive electrode active material used.
In Table 1, b, c, d has the formula LiNi b Co c Mn d O 2 in b, c, respectively correspond to d, x, 2-x- y, y, M has the formula Li ( Li x Mn 2-xy M y ) corresponding to x, 2-xy, y, M in O 4 .

Figure 2007287569
Figure 2007287569

また、実施例1〜6および比較例1〜6の電池における、被覆材に用いた一般式(5)(一般式(1)においてy=0、z=1のもの)のxと放電容量維持率との関係を図1に示す。
Li(LiMn2−x)O(5)
図1に示すように、放電容量の維持率は、xの値が0から0.12未満においては緩やかに上昇するが、0.12以上になると、急激に上昇し、良好な結果(放電容量の維持率が高い)が得られた。上記一般式(3)に示されるリチウムマンガン系複合酸化物におけるマンガンの価数を算出すると、xが0.12の場合、マンガンの平均価数は約3.7であり、xが0.333の場合、マンガンの平均価数は約4.0になる。すなわちマンガンの平均価数が3.7〜4.0の場合に、放電容量の維持率が急激に上昇することを意味する。
In addition, in the batteries of Examples 1 to 6 and Comparative Examples 1 to 6, x of the general formula (5) used for the coating material (with y = 0 and z = 1 in the general formula (1)) and the discharge capacity maintenance The relationship with the rate is shown in FIG.
Li (Li x Mn 2-x ) O 4 (5)
As shown in FIG. 1, the discharge capacity retention rate rises moderately when the value of x is from 0 to less than 0.12, but rises sharply when the value of x is equal to or greater than 0.12, indicating good results (discharge capacity). Is high). When the valence of manganese in the lithium manganese composite oxide represented by the general formula (3) is calculated, when x is 0.12, the average valence of manganese is about 3.7, and x is 0.333. In this case, the average valence of manganese is about 4.0. That is, when the average valence number of manganese is 3.7 to 4.0, it means that the discharge capacity maintenance rate is rapidly increased.

3.試験結果と考察
(1)本発明の電池1(実施例1〜24)の全てにおいて、容量維持率が80%以上で、電池厚さ増加量が1.5mm以下でかつ直流抵抗増加率が20%以下であるという良好な結果が得られた。
3. Test Results and Discussion (1) In all of the batteries 1 (Examples 1 to 24) of the present invention, the capacity maintenance rate is 80% or more, the battery thickness increase is 1.5 mm or less, and the DC resistance increase rate is 20 Good results of less than% were obtained.

(2)被覆材により被覆されていない正極活物質を使用したもの(比較例6ないし15)と比較すると、本発明の電池1は、特に抵抗増加率、電池厚さ増加量において、良好な結果が得られた。また、本発明の電池1の中でも、b値が0.85未満のもの(実施例1〜19、実施例21〜24)において特に抵抗増加率および電池厚さ増加量に関し良好な結果が得られた。   (2) Compared with those using a positive electrode active material not coated with a coating material (Comparative Examples 6 to 15), the battery 1 of the present invention has good results particularly in the resistance increase rate and the battery thickness increase amount. was gotten. Moreover, among the batteries 1 of the present invention, those having a b value of less than 0.85 (Examples 1 to 19 and Examples 21 to 24), particularly good results are obtained with respect to the resistance increase rate and the battery thickness increase amount. It was.

これは、ニッケルを含有するリチウム遷移金属複合酸化物を、被覆材により被覆したことで、ニッケルと電解液との反応を抑えることができたからではないかと考えられる。また、本発明の電池1の中でも、b値が0.85未満のものはニッケルの含有量が適量であるから、ニッケルを多く含むもの(b値が0.85の実施例20)と比較して、電解液との反応が起こり難く充電時の結晶構造が安定しているので良好な結果が得られたのではないかと考えられる。   This is thought to be because the reaction between nickel and the electrolytic solution could be suppressed by coating the lithium transition metal composite oxide containing nickel with a coating material. Further, among the batteries 1 of the present invention, those having a b value of less than 0.85 have an appropriate nickel content, so that they are compared with those containing a large amount of nickel (Example 20 having a b value of 0.85). Thus, the reaction with the electrolytic solution hardly occurs and the crystal structure at the time of charging is stable, so it is considered that good results have been obtained.

(3)被覆材により被覆されているが、被覆材のxの値が0.12以下のものを備えるもの(比較例1ないし比較例5)と比較すると、本発明の電池1は容量維持率が高かった。また、本発明の電池1の中でもx値が0.333に近いもの(実施例1)ほど容量保持率が良好であった。   (3) The battery 1 of the present invention has a capacity retention rate as compared with the case where the value of x of the covering material is 0.12 or less (Comparative Example 1 to Comparative Example 5). Was expensive. Further, among the batteries 1 of the present invention, the capacity retention was better as the x value was closer to 0.333 (Example 1).

これは、被覆材のマンガンの平均価数を4.0に近づけることで、被覆材に含有されるマンガンの溶出を防ぎ、高温放置による電池容量の低下を抑えることができたからではないかと考えられる。   This is considered to be because the average valence of manganese in the coating material was brought close to 4.0, thereby preventing the elution of manganese contained in the coating material and suppressing the decrease in battery capacity due to standing at high temperatures. .

(4)本発明の電池1の中でも被覆材においてリチウムとマンガン以外の第3元素を含んでいるもの(実施例7〜15)は、x値が0.333に近くなくても、良好な電池特性を示した。   (4) Among the batteries 1 of the present invention, those containing a third element other than lithium and manganese in the covering material (Examples 7 to 15) are good batteries even when the x value is not close to 0.333. The characteristics are shown.

これは、第3元素として含まれている元素は、結晶構造中で3価以下の価数で安定して存在可能であることから、少量置換するだけで3価のマンガンを減らしてMnの平均価数を4.0に近づけることができるからではないかと考えられる。   This is because the element contained as the third element can be stably present at a valence of 3 or less in the crystal structure, so the trivalent manganese can be reduced by substituting only a small amount and the average of Mn This is probably because the valence can be brought close to 4.0.

4.まとめ
以上より、本発明によれば、高温環境下においても抵抗増加が小さく、放電容量の維持率の高い非水電解質二次電池1を提供することができる。
4). Summary As described above, according to the present invention, it is possible to provide the nonaqueous electrolyte secondary battery 1 having a small increase in resistance even in a high temperature environment and a high discharge capacity maintenance rate.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)本発明においては、非水電解液のみならず固体電解質を用いてもよく、両者を併用することもできる。固体電解質としては、公知の固体電解質を用いることができ、例えば無機固体電解質、ポリマー固体電解質を用いることができる。また、ゲル状の高分子固体電解質を用いる場合には、ゲルを構成する電解液と、電極板の活物質の細孔中などに含有されている電解液とが異なっていてもよい。また、合成樹脂微多孔膜と高分子固体電解質等を組み合わせて使用することもできる。
<Other embodiments>
The present invention is not limited to the embodiment described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the present invention, not only a nonaqueous electrolytic solution but also a solid electrolyte may be used, or both may be used in combination. As the solid electrolyte, a known solid electrolyte can be used. For example, an inorganic solid electrolyte or a polymer solid electrolyte can be used. When a gel polymer solid electrolyte is used, the electrolyte constituting the gel may be different from the electrolyte contained in the pores of the active material of the electrode plate. A synthetic resin microporous membrane and a polymer solid electrolyte can also be used in combination.

(2)実施形態1においては角形の電池ケースを使用したが、電池ケースは長円形、円形または袋形のものであってもよいし素材も金属ラミネート樹脂フィルムなどであってもよい。   (2) Although a rectangular battery case is used in Embodiment 1, the battery case may be oval, circular, or bag-shaped, and the material may be a metal laminate resin film.

(3)上記実施例においては、芯材としてニッケル、コバルト、マンガンを含むリチウム遷移金属複合酸化物を使用したが、ニッケル、コバルト、マンガン以外の第四元素を含むもの、例えば、Al、B、Mg、Ti、Zrなどをふくむものであってもよい。   (3) In the above embodiment, a lithium transition metal composite oxide containing nickel, cobalt, and manganese is used as a core material. However, a material containing a fourth element other than nickel, cobalt, and manganese, such as Al, B, It may contain Mg, Ti, Zr or the like.

被覆材のx値と放電容量維持率との関係を示すグラフThe graph which shows the relationship between x value of a coating | covering material, and a discharge capacity maintenance factor 実施形態1の電池の断面図Sectional drawing of the battery of Embodiment 1.

符号の説明Explanation of symbols

1…非水電解質二次電池
3…正極板
4…負極板
5…セパレータ
6…電池ケース
9…負極端子
10…正極リード
11…負極リード
DESCRIPTION OF SYMBOLS 1 ... Nonaqueous electrolyte secondary battery 3 ... Positive electrode plate 4 ... Negative electrode plate 5 ... Separator 6 ... Battery case 9 ... Negative electrode terminal 10 ... Positive electrode lead 11 ... Negative electrode lead

Claims (3)

正極活物質を含有する正極合剤層を集電体上に形成させてなる正極を備えた非水電解質二次電池であって、
前記正極活物質は、少なくともニッケルを含むリチウム遷移金属複合酸化物の粒子表面の少なくとも一部が、一般式(1)で示されるスピネル構造を有するリチウムマンガン系複合酸化物で被覆されたものであることを特徴とする非水電解質二次電池。
Li(LiMn2−x−y)O(1)
(式中0.12<x≦0.333,0≦y<0.2,0<z≦1,MはMn以外の遷移金属、アルカリ土類金属、BまたはAlである。)
A non-aqueous electrolyte secondary battery including a positive electrode formed by forming a positive electrode mixture layer containing a positive electrode active material on a current collector,
In the positive electrode active material, at least a part of the particle surface of a lithium transition metal composite oxide containing at least nickel is coated with a lithium manganese composite oxide having a spinel structure represented by the general formula (1). A non-aqueous electrolyte secondary battery.
Li z (Li x Mn 2- x-y M y) O 4 (1)
(Wherein 0.12 <x ≦ 0.333, 0 ≦ y <0.2, 0 <z ≦ 1, M is a transition metal other than Mn, alkaline earth metal, B or Al.)
前記リチウム遷移金属複合酸化物は、一般式(2)で示される複合酸化物であることを特徴とする請求項1に記載の非水電解質二次電池。
LiNiCoMn(2)
(式中0<a≦1.2,0<b≦0.85,0<c<1.0,0≦d≦0.5,b+c+d=1である。)
The non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium transition metal composite oxide is a composite oxide represented by the general formula (2).
Li a Ni b Co c Mn d O 2 (2)
(Where 0 <a ≦ 1.2, 0 <b ≦ 0.85, 0 <c <1.0, 0 ≦ d ≦ 0.5, b + c + d = 1)
前記一般式(1)において、MがAl、B、Mg、Ti、Zr、FeまたはZnであることを特徴とする請求項1または請求項2に記載の非水電解質二次電池。 3. The nonaqueous electrolyte secondary battery according to claim 1, wherein in the general formula (1), M is Al, B, Mg, Ti, Zr, Fe, or Zn.
JP2006116026A 2006-04-19 2006-04-19 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5224081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116026A JP5224081B2 (en) 2006-04-19 2006-04-19 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116026A JP5224081B2 (en) 2006-04-19 2006-04-19 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007287569A true JP2007287569A (en) 2007-11-01
JP5224081B2 JP5224081B2 (en) 2013-07-03

Family

ID=38759140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116026A Expired - Fee Related JP5224081B2 (en) 2006-04-19 2006-04-19 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5224081B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029745A1 (en) * 2008-09-10 2010-03-18 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCTION THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
JP2011187348A (en) * 2010-03-10 2011-09-22 Murata Mfg Co Ltd Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery
US8153301B2 (en) 2008-07-21 2012-04-10 3M Innovative Properties Company Cathode compositions for lithium-ion electrochemical cells
JP2014515171A (en) * 2011-04-26 2014-06-26 ユニスト・アカデミー−インダストリー・リサーチ・コーポレーション Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR101553389B1 (en) 2013-04-04 2015-09-30 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same
CN110235281A (en) * 2017-01-27 2019-09-13 罗伯特·博世有限公司 Stabilized active material for Li-ion batteries piles
JP2020009562A (en) * 2018-07-04 2020-01-16 本田技研工業株式会社 Positive electrode active material particle
US11081693B2 (en) 2017-08-30 2021-08-03 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the same, and cathode and lithium battery including the composite cathode active material
US11258054B2 (en) 2017-10-26 2022-02-22 Lg Energy Solution, Ltd. Positive electrode active material comprising lithium-rich lithium manganese-based oxide in which coating layer including lithium-deficient transition metal oxide is formed, and positive electrode for lithium secondary battery comprising the same
US11799078B2 (en) 2017-06-30 2023-10-24 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery including the same, and method of preparing the composite cathode active material

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935715A (en) * 1995-07-24 1997-02-07 Sony Corp Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP2000164214A (en) * 1998-11-25 2000-06-16 Japan Storage Battery Co Ltd Now-aqueous electrolyte secondary battery
JP2001217011A (en) * 2000-02-04 2001-08-10 Hitachi Ltd Lithium secondary battery
JP2002063904A (en) * 2000-08-21 2002-02-28 Sony Corp Positive electrode active material and nonaqueous electrolyte battery as well as their manufacturing method
WO2002086993A1 (en) * 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003272623A (en) * 2002-03-15 2003-09-26 Mitsubishi Materials Corp Positive electrode active material for lithium secondary battery and its manufacturing method as well as lithium secondary battery using it
JP2003331824A (en) * 2002-05-10 2003-11-21 Nec Corp Positive pole for secondary battery and secondary battery using the positive pole
JP2004127695A (en) * 2002-10-02 2004-04-22 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2004105162A1 (en) * 2003-05-26 2004-12-02 Nec Corporation Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP2005276680A (en) * 2004-03-25 2005-10-06 National Institute Of Advanced Industrial & Technology Lithium manganate series positive electrode active material and all solid lithium secondary battery
JP2005289720A (en) * 2004-03-31 2005-10-20 Tosoh Corp Lithium manganese multiple oxide, its manufacture method, and its application
JP2006012426A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2006073482A (en) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and its manufacturing method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935715A (en) * 1995-07-24 1997-02-07 Sony Corp Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP2000164214A (en) * 1998-11-25 2000-06-16 Japan Storage Battery Co Ltd Now-aqueous electrolyte secondary battery
JP2001217011A (en) * 2000-02-04 2001-08-10 Hitachi Ltd Lithium secondary battery
JP2002063904A (en) * 2000-08-21 2002-02-28 Sony Corp Positive electrode active material and nonaqueous electrolyte battery as well as their manufacturing method
WO2002086993A1 (en) * 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003272623A (en) * 2002-03-15 2003-09-26 Mitsubishi Materials Corp Positive electrode active material for lithium secondary battery and its manufacturing method as well as lithium secondary battery using it
JP2003331824A (en) * 2002-05-10 2003-11-21 Nec Corp Positive pole for secondary battery and secondary battery using the positive pole
JP2004127695A (en) * 2002-10-02 2004-04-22 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2004105162A1 (en) * 2003-05-26 2004-12-02 Nec Corporation Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP2005276680A (en) * 2004-03-25 2005-10-06 National Institute Of Advanced Industrial & Technology Lithium manganate series positive electrode active material and all solid lithium secondary battery
JP2005289720A (en) * 2004-03-31 2005-10-20 Tosoh Corp Lithium manganese multiple oxide, its manufacture method, and its application
JP2006012426A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2006073482A (en) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
US8153301B2 (en) 2008-07-21 2012-04-10 3M Innovative Properties Company Cathode compositions for lithium-ion electrochemical cells
WO2010029745A1 (en) * 2008-09-10 2010-03-18 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCTION THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2010092848A (en) * 2008-09-10 2010-04-22 Toda Kogyo Corp Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2011187348A (en) * 2010-03-10 2011-09-22 Murata Mfg Co Ltd Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery
JP2014515171A (en) * 2011-04-26 2014-06-26 ユニスト・アカデミー−インダストリー・リサーチ・コーポレーション Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR101553389B1 (en) 2013-04-04 2015-09-30 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same
CN110235281A (en) * 2017-01-27 2019-09-13 罗伯特·博世有限公司 Stabilized active material for Li-ion batteries piles
US11799078B2 (en) 2017-06-30 2023-10-24 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery including the same, and method of preparing the composite cathode active material
US11081693B2 (en) 2017-08-30 2021-08-03 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the same, and cathode and lithium battery including the composite cathode active material
US11258054B2 (en) 2017-10-26 2022-02-22 Lg Energy Solution, Ltd. Positive electrode active material comprising lithium-rich lithium manganese-based oxide in which coating layer including lithium-deficient transition metal oxide is formed, and positive electrode for lithium secondary battery comprising the same
JP2020009562A (en) * 2018-07-04 2020-01-16 本田技研工業株式会社 Positive electrode active material particle
JP7198600B2 (en) 2018-07-04 2023-01-04 本田技研工業株式会社 Positive electrode active material particles

Also Published As

Publication number Publication date
JP5224081B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5224081B2 (en) Nonaqueous electrolyte secondary battery
US10833322B2 (en) Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
JP5095098B2 (en) Nonaqueous electrolyte secondary battery
JP5260821B2 (en) Lithium ion secondary battery
JP4245532B2 (en) Nonaqueous electrolyte secondary battery
EP2367230B1 (en) Electrolyte solution for rechargeable lithium battery, and rechargeable lithium battery including the same
JP5325888B2 (en) Electrode active material, electrode for non-aqueous secondary battery and non-aqueous secondary battery
EP1962364B1 (en) Rechargeable lithium battery
JP6860278B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode including this and lithium secondary battery
WO2017047020A1 (en) Battery
JP2009277597A (en) Nonaqueous electrolyte secondary battery
JP2008270175A (en) Cathode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7469434B2 (en) Nonaqueous electrolyte battery and method of manufacturing same
JP2007188878A (en) Lithium ion secondary battery
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP2012014851A (en) Electrode for electrochemical element, and nonaqueous secondary battery
JP2011023335A (en) Electrode for nonaqueous secondary battery and nonaqueous secondary battery
WO2018092359A1 (en) Positive electrode active material for batteries, and battery
JP2012009458A (en) Lithium secondary battery
JP2004014405A (en) Non-aqueous electrolyte secondary battery
WO2017047018A1 (en) Battery
JP2008117611A (en) Nonaqueous electrolyte secondary battery, and its manufacturing method
JP2001273899A (en) Positive electrode material for lithium secondary battery
JP6865398B2 (en) Non-aqueous electrolyte secondary battery
JP6632233B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Ref document number: 5224081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees