JP2007285892A - Thermopile array temperature detector - Google Patents

Thermopile array temperature detector Download PDF

Info

Publication number
JP2007285892A
JP2007285892A JP2006113721A JP2006113721A JP2007285892A JP 2007285892 A JP2007285892 A JP 2007285892A JP 2006113721 A JP2006113721 A JP 2006113721A JP 2006113721 A JP2006113721 A JP 2006113721A JP 2007285892 A JP2007285892 A JP 2007285892A
Authority
JP
Japan
Prior art keywords
infrared
thermopile array
detection
thermopile
absorption film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006113721A
Other languages
Japanese (ja)
Inventor
Toshinori Hirao
敏則 平尾
Motoki Tanaka
基樹 田中
Shingo Kimura
親吾 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2006113721A priority Critical patent/JP2007285892A/en
Publication of JP2007285892A publication Critical patent/JP2007285892A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a thermopile array sensor loaded with an inline type thermopile array chip for performing infrared doze detection in an object divided domain, wherein an absorption film having a fine area working as an infrared receiving part, a hot contact on the absorption film, and a cold contact on a membrane periphery heat sink are arranged in the prescribed number on the fixed direction side by a thermocouple constituted of two kinds of materials, has such defects that a thermal conversion electromotive voltage following an infrared detection quantity of the absorption film is fine, and that a measurement performance following an infrared change in a detection area and a trace infrared quantity detection accuracy are poor. <P>SOLUTION: A constitution is adopted, wherein a thermopile array chip having a plurality of infrared receiving parts arrayed in two rows in a zigzag way is formed, and the number of thermopiles is increased in four directions to increase an electromotive voltage at an infrared detection time, and the measurement performance is improved as a thermopile infrared detector. A thermopile array temperature detector is scanned and driven in the uniaxial direction relative to an object surface, to thereby organize a temperature measuring instrument having no dead zone area on the whole measuring object surface and excellent infrared detection accuracy. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、対象面を分割し複数の分割領域の放射赤外線量をレンズを介して検出し、二次元温度分布等を導出するサーモパイルアレイ温度検出器に関するものである。   The present invention relates to a thermopile array temperature detector that divides a target surface and detects the amount of radiant infrared rays in a plurality of divided regions through a lens to derive a two-dimensional temperature distribution or the like.

サーモパイルは、異なる二種の電極材で構成された熱電対でメンブレン上に温接点を形成し、ヒートシンク部上に冷接点を形成し熱電対、冷接点及び温接点上に絶縁保護膜を設け、且つ温接点上に吸収膜を設置し検出域とするチップ構成を採る。前記検出域である吸収膜に入射した赤外線は熱に変換され温接点の温度上昇を生じ、各熱電対材料のゼーベック定数に比例した電圧を生じる為、赤外線量に応じた出力の測定が可能となる。前記赤外線検出時起電圧は、熱電対本数並びに温接点と冷接点間距離、吸収膜面積の寄与も受け、これらが大になると起電圧も大となる。   Thermopile is a thermocouple composed of two different types of electrode materials, forming a hot junction on the membrane, forming a cold junction on the heat sink, and providing an insulating protective film on the thermocouple, cold junction and hot junction, In addition, a chip configuration is adopted in which an absorption film is provided on the hot junction to make a detection area. Infrared rays incident on the absorption film, which is the detection area, are converted into heat, resulting in a temperature rise at the hot junction, and a voltage proportional to the Seebeck constant of each thermocouple material is generated, so output can be measured according to the amount of infrared rays. Become. The electromotive voltage at the time of detecting infrared rays is also influenced by the number of thermocouples, the distance between the hot and cold junctions, and the area of the absorbing film, and the electromotive voltage increases as they increase.

サーモパイルアレイとは、前記サーモパイルを一ヶのチップ上に複数有する素子の総称である。この場合、赤外線受光検出域である吸収膜が赤外線透過レンズ、もしくはフィルターで投影された領域の赤外線量に比例した電圧が個々に出力される。   The thermopile array is a general term for elements having a plurality of the thermopile on one chip. In this case, the voltage proportional to the amount of infrared rays in the region projected by the infrared transmission lens or the filter on the absorption film as the infrared light receiving detection region is individually output.

ここで、例えば多行多列に配置されたサーモパイルアレイチップもしくはマトリックス型チップでは、前記吸収膜を有する独立した個々の赤外線受光部が、検出域間にヒートシンクを設けない場合、すなわちチップ外形部分のみをヒートシンクとした一ヶのメンブレン上に複数の検出域を設置した場合、メンブラン自体の熱伝導により、隣接する検出域からも出力が発生するクロストーク劣化が生じる。これは、温度検出域の拡がり並びに温度測定精度の低下の要因となる為、明確な測定領域の成立性並びに温度追従性を向上させる目的で、特開2006−058228号に記される様に前記各メンブラン周囲にヒートシンクが配置されたサーモパイルアレイチップもしくはマトリックス型チップの構造としても普及している。   Here, for example, in a thermopile array chip or matrix type chip arranged in multiple rows and multiple columns, each individual infrared light receiving part having the absorption film is not provided with a heat sink between detection areas, that is, only the outer part of the chip. When a plurality of detection areas are installed on a single membrane using a heat sink as a heat sink, crosstalk deterioration occurs in which an output is also generated from an adjacent detection area due to heat conduction of the membrane itself. This causes an increase in the temperature detection range and a decrease in temperature measurement accuracy. Therefore, as described in JP-A-2006-058228, for the purpose of improving the establishment of a clear measurement region and the temperature followability, It is also widely used as a thermopile array chip or matrix chip structure in which a heat sink is arranged around each membrane.

一般的に、例えば1行8列のインライン型サーモパイルアレイセンサを用いたサーモパイル型温度検出モジュールは、図15に示す様に赤外線受光部となる赤外線吸収膜が複数個配列されたサーモパイルアレイチップ18と、各吸収膜10へ赤外線を入射させる赤外線透過材として例えば片面が平面であり他方面が球面である平凸単レンズ5を備えた赤外線透過窓3を有する金属CANケース4と、前記サーモパイルアレイチップ18とセンサ自己温度感受用の温度基準素子であるサーミスタ2を配置接続したヘッダー6とを同一ケーシングしたセンサ構造が主に使用されており、温度検出モジュール機能としては、例えば前記インライン型サーモパイルアレイセンサを前記サーモパイルアレイチップ18の温接点と冷接点間で生じる温度差、すなわち対象物体温度とセンサ自己周囲温度の差によって取り出される信号出力を増幅して出力処理を行う回路部を構成する部品7a、7bを実装した外付け接続用配線基板8に搭載して、信号処理された出力をコネクタ端子9により取り出す構成となっており、単眼型サーモパイルセンサを搭載した温度検出器と同等機能を有するものである。尚図中では配線基板上の回路接続用結線が存在するが、煩雑となる為割愛している。   In general, for example, a thermopile type temperature detection module using an in-line type thermopile array sensor with 1 row and 8 columns has a thermopile array chip 18 in which a plurality of infrared absorbing films serving as infrared receiving units are arranged as shown in FIG. For example, a metal CAN case 4 having an infrared transmission window 3 having a plano-convex single lens 5 having a flat surface on one side and a spherical surface on the other side as an infrared transmission material for making infrared rays incident on each absorption film 10, and the thermopile array chip 18 and a header 6 in which a thermistor 2 serving as a temperature reference element for sensor self-temperature sensing is arranged and connected are mainly used. As the temperature detection module function, for example, the in-line type thermopile array sensor is used. The temperature difference between the hot and cold junctions of the thermopile array chip 18 In other words, the signal output extracted by the difference between the target object temperature and the sensor's own ambient temperature is amplified and mounted on the external connection wiring board 8 on which the components 7a and 7b constituting the circuit unit for performing the output process are mounted. The output is taken out by the connector terminal 9, and has the same function as a temperature detector equipped with a monocular thermopile sensor. In the figure, there are circuit connection connections on the wiring board, but they are omitted because they become complicated.

前記インライン型サーモパイルアレイチップ18上吸収膜10の位置は、所定の検出域を例えば前記平凸単レンズ5で近軸光線理論を用いて投影した位置に設定される。図14に平凸単レンズによる一定距離先における検出域A’から検出域H’の8ヶの検出域を有する一例として挙げた従来のインライン型サーモパイルアレイ温度検出器の投影検出域13の例を示す。この場合、所定検出域がY軸対象で、且つX軸方向を多分割化されており、これは前記平凸単レンズ5で投影される各吸収膜位置が、Y軸対象となる吸収膜a’から吸収膜h’までの8列を持つ事になる。   The position of the absorption film 10 on the inline-type thermopile array chip 18 is set at a position where a predetermined detection area is projected by the plano-convex single lens 5 using paraxial ray theory. FIG. 14 shows an example of the projection detection area 13 of the conventional in-line type thermopile array temperature detector given as an example having eight detection areas from a detection area A ′ to a detection area H ′ at a fixed distance ahead by a plano-convex single lens. Show. In this case, the predetermined detection area is the Y-axis target, and the X-axis direction is multi-divided, and each absorption film position projected by the plano-convex single lens 5 corresponds to the Y-axis target absorption film a. It will have 8 rows from 'to absorption film h'.

この様に構成されたサーモパイルアレイセンサは、非接触型温度検出器として例えば調理器、エアコン等種々の機器に温度計測用に設置搭載され、赤外線入射量等を集光制約させる前記平凸単レンズ5と赤外線受光用サーモパイルアレイチップ18及び赤外線吸収膜10との光学的最適条件により、用途に応じて所望範囲の温度検出領域を作り得る構造を成している。この集光条件は前記平凸単レンズ5とサーモパイルアレイチップ18との距離を予め設置可能な高さに設定された金属CANケース4を用いる事で達成している。以上により、平凸単レンズで投影される所望する赤外線検出領域が形成され、各検出域の赤外線量に比例した電圧を出力とするサーモパイルアレイ温度検出器が完成となる。   The thermopile array sensor configured in this way is installed and mounted as a non-contact temperature detector in various devices such as a cooker and an air conditioner for temperature measurement, and the plano-convex single lens that restricts condensing the amount of incident infrared rays 5 and the infrared optical receiving thermopile array chip 18 and the infrared absorption film 10 have a structure capable of creating a temperature detection region in a desired range according to the application. This condensing condition is achieved by using the metal CAN case 4 in which the distance between the plano-convex single lens 5 and the thermopile array chip 18 is set to a height that can be set in advance. Thus, a desired infrared detection region projected by the plano-convex single lens is formed, and a thermopile array temperature detector that outputs a voltage proportional to the amount of infrared rays in each detection region is completed.

図13に一例として挙げた従来の1行8列のインライン型サーモパイルアレイチップの赤外線受光部の上面配置概略図を示す。ここで本来、信号結線、信号取り出し用パッド、ワイヤリング配線等の回路接続用結線が存在するが、図が煩雑となる為に割愛とする。
特開2006−058228号 特願2004−345060号
FIG. 13 shows a schematic top view of the arrangement of an infrared light receiving portion of a conventional in-line type thermopile array chip having one row and eight columns as an example. Originally, there are circuit connection connections such as signal connection, signal extraction pad, and wiring wiring, but they are omitted because the figure becomes complicated.
JP 2006-058228 A Japanese Patent Application No. 2004-345060

解決しようとする問題点は、例えば図13に示すインライン型サーモパイルアレイチップ18は、所望する赤外線領域を投影するべく配置された吸収膜10を有する各メンブラン間に隣接配置されたX軸方向側ヒートシンク部12の幅がY軸方向幅に対して狭くあり、前記X軸方向側ヒートシンク部12幅上に冷接点を形成する事が設計上困難となり、その結果、各赤外線受光部の吸収膜に対してY軸方向の周囲2辺のヒートシンク上のみに冷接点が配置され、熱電対本数を多数設ける事が出来ないという点である。赤外線受光部である吸収膜に入射した赤外線は、検出赤外線量に応じて熱電対本数、温接点と冷接点間距離距離、吸収膜面積の寄与を受けて電圧が発生するので、上述の様に一定方向のみに熱電対数が配置規定される場合、熱電対本数が減少する事に繋がる。従って図13に示すインライン型サーモパイルアレイチップ18が搭載されるサーモパイルアレイセンサでは、熱電対配置本数が少ない為に各赤外線受光部の発生出力が低く、赤外線検出時の測定性能精度が乏しいという問題があった。   The problem to be solved is that, for example, an in-line type thermopile array chip 18 shown in FIG. 13 has an X-axis direction heat sink disposed adjacent to each membrane having an absorption film 10 arranged to project a desired infrared region. The width of the portion 12 is narrower than the width in the Y-axis direction, and it is difficult to design a cold junction on the width of the heat sink portion 12 on the X-axis direction side. Thus, the cold junction is disposed only on the heat sinks on the two sides in the Y-axis direction, and a large number of thermocouples cannot be provided. As described above, the infrared rays incident on the absorption film, which is the infrared light receiving part, are generated by the contribution of the number of thermocouples, the distance between the hot and cold junctions, and the absorption film area according to the amount of detected infrared rays. When the number of thermocouples is specified in only a certain direction, the number of thermocouples is reduced. Therefore, in the thermopile array sensor on which the in-line type thermopile array chip 18 shown in FIG. 13 is mounted, the number of thermocouples arranged is small, so that the generated output of each infrared light receiving unit is low and the measurement performance accuracy at the time of detecting infrared rays is poor. there were.

さらに、一般的に平凸単レンズ焦点と吸収膜間の距離関係及び光学系論により、赤外線受光部となる各吸収膜形状が同一の場合、各検出域の赤外線検出分布視野角度が同一でなく中央配置受光部の検出域視野角度は大、最外配置受光部の検出域角度は小となる。測定対象面の検出域面積並びに検出視野角度はチップ上吸収膜が投影された面積並びに視野角度に一致する為、各検出域分布視野角度を同一角度として規定するケースにおいては、各吸収膜を異形状に光学設計する必要があり、すなわち従来のインライン型サーモパイルアレイセンサ構造で検出域視野角度を同一とする為には、吸収膜形状が各部異なる設計配置が必要となる。この場合、小形状に設計必要な検出域が存在すれば、従来配置数の少ない熱電対本数を更に低減させる、つまり測定性能を更に劣化させて構成しなければならず高精度のサーモパイル赤外線検出器への適用性が困難であった。   Furthermore, in general, due to the distance relationship between the plano-convex single lens focus and the absorption film and the optical system theory, when the shape of each absorption film serving as the infrared light receiving unit is the same, the infrared detection distribution viewing angle of each detection area is not the same. The detection area viewing angle of the centrally arranged light receiving section is large, and the detection area angle of the outermost disposed light receiving section is small. Since the detection area and the detection field angle of the measurement target surface coincide with the projected area and the field angle of the absorption film on the chip, in the case where each detection area distribution field angle is defined as the same angle, each absorption film is different. It is necessary to optically design the shape, that is, in order to make the detection area viewing angle the same in the conventional inline-type thermopile array sensor structure, a design arrangement in which the shape of the absorbing film is different in each part is required. In this case, if there is a detection area that needs to be designed in a small shape, the number of thermocouples with a small number of conventional arrangements must be further reduced, that is, the measurement performance must be further deteriorated. Applicability to was difficult.

本発明は、上記課題を解決する為に、サーモパイル赤外線受光部となるメンブランを千鳥上に2行配列を行い一軸方向側、例えばX軸方向側に位置する隣り合うメンブラン間ヒートシンク部幅を拡大させてX,Y方向を含む四方面に熱電対を設け、熱電対配置数を増す事により各赤外線検出域から得られる熱変換された起電圧を増加させて、サーモパイルアレイセンサとして測定性能を向上させる構造としており、加えて前記千鳥型サーモパイルアレイセンサを搭載した温度検出器として、測定対象面に対して水平もしくは垂直一軸方向走査駆動を行い、測定領域全面をカバーし検出不感帯域を無くす温度計測機器を構築した事を特徴としている。   In order to solve the above-mentioned problems, the present invention increases the width of the heat sink portion between adjacent membranes located on one axis direction side, for example, the X axis direction side, by arranging two rows of membranes serving as thermopile infrared light receiving portions on a staggered pattern. By providing thermocouples in four directions including the X and Y directions and increasing the number of thermocouples arranged, the electromotive voltage converted from heat obtained from each infrared detection area is increased to improve the measurement performance as a thermopile array sensor. In addition, as a temperature detector equipped with the above-mentioned staggered thermopile array sensor, a temperature measuring device that scans the surface to be measured horizontally or vertically in one axial direction to cover the entire measurement area and eliminate the detection dead band It is characterized by having built.

また、前記サーモパイルアレイチップ上に赤外線受光部となる吸収膜が千鳥上配列される事によって、各吸収膜形状を光学系を含めて所望する設計自由度が増し、例えば各検出域分布視野角度を同一とする設計を所望する場合、吸収膜縮小化もしくは形状変形化に伴う起電圧の低減を増加配置される熱電対数で補う事が可能となり、検出性能が劣る事無く、所望の光学検出域を有するサーモパイルアレイ温度検出器として構成される事を特徴としている。   In addition, by arranging the absorption film as the infrared light receiving portion on the thermopile array chip in a staggered manner, the degree of freedom in designing each absorption film shape including the optical system is increased. When the same design is desired, it is possible to compensate for the reduction in electromotive force due to the reduction of the absorption film or the deformation of the shape with the increased number of thermocouples, and the desired optical detection range can be achieved without inferior detection performance. It is characterized by being configured as a thermopile array temperature detector.

本発明のサーモパイルアレイ温度検出器によれば、複数個の赤外線検出域を有するサーモパイルアレイチップの各サーモパイル赤外線受光部となるメンブランを、千鳥上に2行配列を行う事により、例えば従来より製造されているインライン型サーモパイルアレイチップの各検出域サイズと同一形状となるべく吸収膜を配置し、前記インライン型サーモパイルチップ上の一軸方向側の検出域視野特性並びに検出感度分布を変更する事なく、熱電対配列本数を増し赤外線検出時起電圧を増加させて、検出測定性能の向上したサーモパイルアレイ温度検出器を提供できる。   According to the thermopile array temperature detector of the present invention, for example, a membrane which is a thermopile infrared light receiving part of a thermopile array chip having a plurality of infrared detection areas is arranged in two rows on a staggered pattern. An absorption film is arranged to have the same shape as each detection area size of the inline-type thermopile array chip, and the thermocouple is obtained without changing the detection area visual field characteristics and detection sensitivity distribution on the uniaxial direction side on the inline-type thermopile chip. A thermopile array temperature detector with improved detection and measurement performance can be provided by increasing the number of arrays and increasing the electromotive voltage during infrared detection.

さらにまた、投影される複数個の赤外線検出域の視野角度分布が同一角度となる光学設計された吸収膜を個々に配置し、測定対象面の赤外線量を精度良く検出可能なサーモパイルアレイ温度検出器を提供できる。   Furthermore, a thermopile array temperature detector capable of accurately detecting the amount of infrared rays on the measurement target surface by individually arranging optically designed absorption films in which the viewing angle distributions of the plurality of infrared detection areas to be projected are the same angle Can provide.

対象面の一軸方向を分割し千鳥上に赤外線検出領域を投影するサーモパイルアレイ温度検出器として図1に斜視方向透視概要図、図2に前記千鳥型サーモパイルアレイセンサの内部構造断面概要図を示す。図3にチップ部の上面概略構成を示し、図4に前記千鳥型サーモパイルアレイセンサを搭載したサーモパイルアレイ温度検出器の投影検出域を示す。尚、図中には配線基板上の回路接続用結線並びに信号取り出しのワイヤリング結線、信号結線、信号取り出し用パッドが存在するのであるが、図が煩雑となる為割愛をした。   As a thermopile array temperature detector for dividing an uniaxial direction of a target surface and projecting an infrared detection region on a staggered pattern, FIG. 1 is a perspective schematic perspective view, and FIG. 2 is a schematic cross-sectional view of the internal structure of the zigzag type thermopile array sensor. FIG. 3 shows a schematic top surface configuration of the chip portion, and FIG. 4 shows a projection detection area of a thermopile array temperature detector equipped with the zigzag type thermopile array sensor. In the figure, there are wiring for circuit connection on the wiring board, wiring connection for signal extraction, signal connection, and signal extraction pad, but they are omitted because the figure becomes complicated.

まず図1を参照にして、本発明に係わるサーモパイルアレイセンサについて詳細に説明する。本実施例1では8ヶの赤外線検出領域を投影する千鳥型サーモパイルアレイセンサとして挙げている。図1では、赤外線を受光するサーモパイルアレイチップ1の赤外線入射量を規定し赤外線検出領域を分別する為の平凸単レンズ5を具備した赤外線透過窓3を有するTO−5型金属製CANケース4と、前記サーモパイルアレイチップ1とセンサ自己温度感受用基準素子となるサーミスタ2をワイヤリング接続して配置されており、前記サーモパイルアレイチップとサーミスタを電気的接続したリード端子を備えたヘッダー6と共に外来からの環境的変化や電磁障害を防止する為にハーメチックシールとした一般的なTO−5型構成となっている。   First, a thermopile array sensor according to the present invention will be described in detail with reference to FIG. In the first embodiment, a staggered thermopile array sensor that projects eight infrared detection areas is used. In FIG. 1, a TO-5 type metal CAN case 4 having an infrared transmission window 3 having a plano-convex single lens 5 for defining the infrared incident amount of the thermopile array chip 1 that receives infrared rays and for classifying the infrared detection region. The thermopile array chip 1 and the thermistor 2 serving as a sensor self-temperature sensing reference element are arranged in a wiring connection, and together with a header 6 having lead terminals that electrically connect the thermopile array chip and the thermistor from outside. In order to prevent environmental changes and electromagnetic interference, it is a general TO-5 type configuration with a hermetic seal.

対象面を分割し複数個の赤外線検出領域として投影するサーモパイルアレイセンサの光学系は、赤外線受光部となる各吸収膜域を検出域として明確に投影する手法として、図2並びに特願2004−345060号に記されている様に、前記平凸単レンズ5を例えば円形赤外線透過窓3に球面を内側として金属製CANケース4に接着されたものを用いる。ここで、レンズ頂点からチップまでの距離は予め高さ設定したCANを用いることにより達成している。   The optical system of the thermopile array sensor that divides the target surface and projects it as a plurality of infrared detection areas is shown in FIG. 2 and Japanese Patent Application No. 2004-345060 as a method of clearly projecting each absorption film area as an infrared light receiving section as a detection area. The plano-convex single lens 5 is bonded to a metal CAN case 4 with a spherical infrared ray transmission window 3 and a spherical surface inside, as described in the above. Here, the distance from the lens apex to the chip is achieved by using a preset CAN.

本実施例1による千鳥型サーモパイルアレイチップ1では、図3に示す各メンブラン部の熱電対11をX、Y方向の四辺に配列させており、8ヶの各吸収膜あたりの熱電対11の数は56本を形成している。赤外線受光部となる吸収膜10サイズは、レンズを介して投影される所望する検出域サイズから設計されたものである。また図4に一定距離先における検出域Aから検出域Hの8ヶの投影検出域13を示しており、前記平凸単レンズ5で投影される各検出域と吸収膜との関係は、光線理論よりX軸及びY軸対象となるので、それぞれ吸収膜aが検出域Aに相当し、吸収膜bが検出域B、・・、吸収膜hが検出域Hに対象投影されている。   In the staggered thermopile array chip 1 according to the first embodiment, the thermocouples 11 of each membrane portion shown in FIG. 3 are arranged on the four sides in the X and Y directions, and the number of thermocouples 11 for each of the eight absorption films. Form 56. The size of the absorption film 10 serving as an infrared light receiving unit is designed from a desired detection area size projected through a lens. FIG. 4 shows eight projection detection areas 13 from a detection area A to a detection area H at a certain distance, and the relationship between each detection area projected by the plano-convex single lens 5 and the absorption film is as follows. Theoretically, the X-axis and Y-axis targets, so that the absorption film a corresponds to the detection area A, the absorption film b is projected onto the detection area B,..., And the absorption film h is projected onto the detection area H.

温度計測用途としての本実施例のサーモパイルアレイ温度検出器の動作は、前記サーモパイルアレイセンサを信号出力増幅処理回路部を通じて信号処理された出力を検出されるものである。図5に本実施例1による千鳥型サーモパイルアレイ温度検出器を用いて、各8ヶの検出域の水平X軸方向における視野特性(赤外線検出分布)を、各検出域最大ピーク出力を100%と規格化した出力分布の確認結果を示し、図6は垂直Y軸方向における検出域出力分布結果を示す。またさらに、図7並びに図8に本実施例1で用いた千鳥型サーモパイルアレイチップ1と、チップサイズが同等で、図4に示すX軸方向から望んだ各検出域分布幅が同等となる様に吸収膜10が配置された1行8列の従来のインライン型サーモパイルアレイチップ18を搭載したサーモパイルアレイ温度検出器の視野特性及び出力分布の確認を行った結果を示す。図7はX軸方向の出力分布であり、図8はY軸方向出力分布の結果である。ここでは、インライン型サーモパイルアレイチップ18以外の使用構成部材は同一品種のものを使用した。また前記インライン型サーモパイルアレイチップ18は、図13に示す外形状構成をするものであり、8ヶの各吸収膜あたりの熱電対10の数は22本を形成している。図13では図3同様に信号取り出しのワイヤリング結線、並びに信号結線、信号取り出し用パッドが存在するが、煩雑となるので割愛する。検証条件としては、100平方ミリメートル(10ミリメートル角)の小型熱源と回路増幅率を2000倍に設定した信号出力増幅回路を準備し、前記小型熱源とサーモパイル温度検出器とを距離200ミリメートルに設置した場合の赤外線検出域に対してそれぞれ水平方向すなわちX軸方向並びに垂直軸方向すなわちY軸方向に、各検出域の最大ピーク出力地点より前記小型熱源を5ミリメートルピッチ毎に移動させ測定を行った。この結果から水平方向つまりX軸方向側面から望んだ視野特性としては、比較した千鳥型とインライン型のサーモパイルアレイセンサにおいて赤外線検出域出力分布(クロストーク分布)が同等である事を確認した。   The operation of the thermopile array temperature detector of this embodiment as a temperature measurement application is to detect an output obtained by signal processing of the thermopile array sensor through a signal output amplification processing circuit unit. FIG. 5 shows the visual field characteristics (infrared detection distribution) in the horizontal X-axis direction of each of the eight detection areas using the staggered thermopile array temperature detector according to the first embodiment, and the maximum peak output of each detection area is 100%. FIG. 6 shows the detection area output distribution result in the vertical Y-axis direction. Further, in FIG. 7 and FIG. 8, the chip size is the same as that of the staggered thermopile array chip 1 used in the first embodiment, and the detection area distribution widths desired from the X-axis direction shown in FIG. FIG. 6 shows the results of confirming the visual field characteristics and output distribution of a thermopile array temperature detector equipped with a conventional in-line type thermopile array chip 18 of 1 row and 8 columns in which an absorption film 10 is arranged. FIG. 7 shows the output distribution in the X-axis direction, and FIG. 8 shows the result of the Y-axis direction output distribution. Here, the components used other than the inline-type thermopile array chip 18 are of the same type. The inline-type thermopile array chip 18 has an outer configuration shown in FIG. 13, and the number of thermocouples 10 for each of the eight absorbing films is 22. In FIG. 13, there are wiring connections for signal extraction, as well as signal connection and signal extraction pads, as in FIG. 3. As a verification condition, a small heat source of 100 square millimeters (10 mm square) and a signal output amplifier circuit with a circuit amplification factor set to 2000 times were prepared, and the small heat source and the thermopile temperature detector were installed at a distance of 200 mm. The measurement was performed by moving the small heat source at a pitch of 5 millimeters from the maximum peak output point of each detection region in the horizontal direction, that is, the X-axis direction and the vertical axis direction, that is, the Y-axis direction, respectively. From this result, it was confirmed that the infrared ray detection area output distribution (crosstalk distribution) is the same in the zigzag type and inline type thermopile array sensors as the visual field characteristics desired from the horizontal direction, that is, the side surface in the X-axis direction.

また比較対象とする水平方向であるX軸方向に関して、図9として、図7に示すインライン型サーモパイルアレイセンサの8ヶの検出域の各ピーク出力を100%と規格化し図5に示す千鳥型サーモパイルアレイセンサの各検出域出力分布を同時プロットした結果を示す。各8ヶの検出域13のX軸方向側面から見た位置の図中プロットは実線が千鳥型、点線がインライン型の出力分布を示しており、それぞれA−A‘、B−B’、・・、H−H‘と相当比較するものである。千鳥型サーモパイルアレイセンサの各検出域ピーク出力はインライン型サーモパイルセンサのピーク出力の最小156%から最大161%に達しており、測定感度(起電圧)が高く、すなわち赤外線検出性能が向上している事を確認した。   Further, with respect to the X-axis direction, which is the horizontal direction to be compared, as shown in FIG. 9, the peak output of each of the eight detection areas of the inline-type thermopile array sensor shown in FIG. 7 is normalized to 100% and the zigzag type thermopile shown in FIG. The result of simultaneously plotting each detection area output distribution of the array sensor is shown. In the figure, the plots of the positions of the eight detection areas 13 viewed from the side in the X-axis direction indicate the staggered output in the solid line and the in-line output distribution in the dotted line, respectively AA ′, BB ′,. -It is a comparative comparison with HH '. The detection area peak output of the staggered thermopile array sensor has reached a minimum of 156% to a maximum of 161% of the peak output of the inline type thermopile sensor, and the measurement sensitivity (electromotive voltage) is high, that is, the infrared detection performance is improved. I confirmed that.

サーモパイル赤外線検出器が温度計測機器に組み込まれる場合、通常各用途に応じて測定対象面から所定高さ位置に、対象面を望む規定された角度で保持使用される。図10は、ある規定設置位置から8ヶの赤外線検出域を有し、本実施例2による千鳥型サーモパイルアレイチップ1上に各吸収膜を、投影される検出域分布角がθで同一角度となる位置に個々異形状に設計配列構成したサーモパイルアレイセンサを具備した千鳥型サーモパイルアレイ温度検出器14を、所望の赤外線検出域測定面15の温度分布を計測する為、垂直方向となるY軸方向に走査駆動する事によって投影される検出域分布を模試した概要図である。温度計測装置の走査駆動開始点16を基準とする位置に設定された千鳥型サーモパイルアレイ温度検出器14が、Y軸のY‘側からY側、図中の矢印方向へ駆動した場合における検出域を、簡単明確化の為走査駆動開始点の8ヶの検出域を黒塗枠で表示し、駆動後の第二ポイントを横線枠、第三ポイントを白塗枠、第四ポイントを点線枠、第五ポイントを縦横線枠で示し、所望する測定面の全域を太線囲みで表記している。図11は本実施例2のサーモパイルアレイ温度検出器14の投影されたX軸方向側面から望んだ断面透視分布角の概要図であり、また図12に本実施例2のサーモパイルアレイ温度検出器14に搭載される千鳥型サーモパイルアレイチップ1の上面概略図を示す。この場合、吸収膜10の形状に従い配置される熱電対11の本数は最小36本から最大42本となり、光学想定設計した分布角度θで分割される各検出域が得られ、且つ走査駆動機構を所定制御する事によって、対象面15全域について赤外線検出が可能である事を確認した。つまり、本実施例2として示す一例の測定機構によれば、Y軸方向測定領域に加えて、X軸方向測定領域の不感帯域を無くし高精度の温度計測が可能なものになると云える。尚ここで、図10では配線基板上の回路接続用結線並びに実装電子部品が存在し、及び図12ではチップ上信号結線、信号取り出し用パッドが存在するが図が煩雑となる為に割愛をした。   When a thermopile infrared detector is incorporated in a temperature measuring device, it is usually used by being held at a predetermined height from the surface to be measured at a predetermined angle depending on each application. FIG. 10 has eight infrared detection areas from a specified installation position, and each absorbing film is projected on the staggered thermopile array chip 1 according to the second embodiment, and the projected detection area distribution angle is θ and the same angle. A zigzag type thermopile array temperature detector 14 equipped with thermopile array sensors designed and arranged in different shapes at different positions is measured in the Y-axis direction which is the vertical direction in order to measure the temperature distribution of the desired infrared detection area measurement surface 15 FIG. 6 is a schematic diagram of a simulated detection area distribution projected by scanning and driving. Detection area when the staggered thermopile array temperature detector 14 set at a position with reference to the scanning drive start point 16 of the temperature measuring device is driven from the Y ′ side of the Y axis to the Y side in the direction of the arrow in the figure. For easy clarification, the eight detection areas at the scanning drive start point are displayed in black frame, the second point after driving is a horizontal line frame, the third point is white line frame, the fourth point is dotted line frame, The fifth point is indicated by a vertical and horizontal line frame, and the entire area of the desired measurement surface is indicated by a thick line frame. FIG. 11 is a schematic diagram of a cross-sectional perspective distribution angle desired from the projected side surface in the X-axis direction of the thermopile array temperature detector 14 of the second embodiment. FIG. 12 shows the thermopile array temperature detector 14 of the second embodiment. FIG. 2 shows a schematic top view of a zigzag type thermopile array chip 1 mounted in FIG. In this case, the number of the thermocouples 11 arranged according to the shape of the absorption film 10 is from a minimum of 36 to a maximum of 42, each detection area divided by the distribution angle θ designed optically is obtained, and the scanning drive mechanism is provided. It was confirmed that infrared detection was possible for the entire target surface 15 by performing predetermined control. That is, according to the example measurement mechanism shown as the second embodiment, it can be said that in addition to the Y-axis direction measurement region, the dead zone of the X-axis direction measurement region is eliminated and high-precision temperature measurement is possible. Here, in FIG. 10, there are circuit connection connections and mounting electronic components on the wiring board, and in FIG. 12, there are on-chip signal connection and signal extraction pads, but they are omitted because the figure becomes complicated. .

本実施例2は対象面を複数個に分割した検出域を望む視野角度が、均一となる光学構成 とされたものであるが、例えば図10の温度検出機器からの最遠方となる丸囲み検出域17のみを拡大させて平面域のみでなく、Z軸方向断面(壁面)をも測定対象面に含んだ分割検出域を有するサーモパイルアレイセンサとしてチップ構成をさせてもよい。この事は、測定性能を保持し、つまり高感度出力が得られる所望する多種多様な検出域形状にマッチングするサーモパイルアレイチップを比較的容易な構成で提供する事が可能であると云え、前記走査駆動測定機構と複合させた温度計測装置への組合せ選択性を拡大させる一助にもなる。   In the second embodiment, an optical configuration in which a viewing angle in which a detection area obtained by dividing a target surface into a plurality of parts is uniform is set to be uniform. For example, detection of a circle surrounded by the farthest from the temperature detection apparatus in FIG. Only the area 17 may be enlarged to form a chip as a thermopile array sensor having a divided detection area that includes not only the plane area but also the Z-axis direction cross section (wall surface) in the measurement target surface. This means that it is possible to provide a thermopile array chip that maintains the measurement performance, that is, matches a wide variety of detection area shapes desired to obtain a high-sensitivity output with a relatively easy configuration. It also helps to expand the combination selectivity to the temperature measurement device combined with the drive measurement mechanism.

またサーモパイルアレイセンサとしてインライン型のみならずマトリックス型のサーモパイルアレイ温度検出器についても、本発明の千鳥上配列と同様な構成で各検出域部を配置させ、走査駆動機構を持たせた温度計測機器として適用する事も、比較的簡単に構築可能である。例えば検出域となる吸収膜が多数配置される為、TO−8型パッケージに収容されるチップで構成が必要な多行多列マトリックス型サーモパイルアレイセンサを搭載したサーモパイルアレイ温度検出器を、固定設置して使用する温度計測装置に対して、個々の赤外線検出部の測定性能を比較する場合、千鳥配列構造として検出特性をアップさせ前記走査駆動機構を付随設定すれば、同等な測定機能を有する温度計測機器が実現出来る事に成り、これは、例えば広域且つ測定域を多分化して温度分布を得る温度計測装置を想定する調理器、エアコン等の家電製品に搭載するケースとして、千鳥配列化による検出域数の削減によって検出器パーケージ拡大化を抑制する一案、加えて出力信号制御処理等の回路機構部の構築費用を低減させる一案としても期待されるものである。   In addition to the in-line type thermopile array sensor as the thermopile array sensor, a temperature measuring instrument having a scanning drive mechanism in which each detection area is arranged in the same configuration as the staggered array of the present invention. Can also be constructed relatively easily. For example, since a large number of absorption films that serve as detection areas are arranged, a thermopile array temperature detector equipped with a multi-row, multi-column matrix type thermopile array sensor that must be configured with a chip housed in a TO-8 type package is fixedly installed. When comparing the measurement performance of the individual infrared detectors with respect to the temperature measurement device used, the temperature having an equivalent measurement function can be obtained by improving the detection characteristics as a staggered array structure and setting the scanning drive mechanism incidentally. Measurement equipment can be realized, and this is detected by staggered arrangement as a case mounted on household appliances such as cooking appliances and air conditioners that assume a temperature measurement device that obtains a temperature distribution by dividing the measurement area over a wide area A plan to suppress the detector package expansion by reducing the number of areas, and a plan to reduce the construction cost of the circuit mechanism part such as output signal control processing Even if it is what is expected.

本発明の一実施例の千鳥型サーモパイルアレイ温度検出器を示す透視外観図である。It is a see-through | perspective external view which shows the zigzag type thermopile array temperature detector of one Example of this invention. 本発明の一実施例の千鳥型サーモパイルアレイセンサの内部構造断面図である。It is internal structure sectional drawing of the zigzag type thermopile array sensor of one Example of this invention. 本発明の一実施例の千鳥型サーモパイルアレイチップの上面外観図である。It is an upper surface external view of the zigzag type thermopile array chip of one Example of this invention. 本発明の一実施例の千鳥型サーモパイルアレイ温度検出器の所定投影検出域を示した図である。It is the figure which showed the predetermined projection detection area of the zigzag type thermopile array temperature detector of one Example of this invention. 本発明の一実施例の千鳥型サーモパイルアレイ温度検出器のX軸方向における視野特性及び規格化出力分布を示した図である。It is the figure which showed the visual field characteristic and the normalized output distribution in the X-axis direction of the zigzag type thermopile array temperature detector of one Example of this invention. 本発明の一実施例の千鳥型サーモパイルアレイ温度検出器のY軸方向における視野特性及び規格化出力分布を示した図である。It is the figure which showed the visual field characteristic and normalized output distribution in the Y-axis direction of the zigzag type thermopile array temperature detector of one Example of this invention. 従来のインライン型サーモパイルアレイ温度検出器のX軸方向における視野特性及び規格化出力分布を示した図である。It is the figure which showed the visual field characteristic and the normalized output distribution in the X-axis direction of the conventional in-line type thermopile array temperature detector. 従来のインライン型サーモパイルアレイ温度検出器のY軸方向における視野特性及び規格化出力分布を示した図である。It is the figure which showed the visual field characteristic and the normalized output distribution in the Y-axis direction of the conventional in-line type thermopile array temperature detector. 本発明の一実施例の千鳥型サーモパイルアレイ温度検出器のX軸方向における視野特性及び規格化出力分布と、従来のインライン型サーモパイルアレイ温度検出器のX軸方向における視野特性及び規格化出力分布を示した図を、再規格化して重ね合わせた図である。The visual field characteristics and normalized output distribution in the X-axis direction of the zigzag type thermopile array temperature detector of one embodiment of the present invention, and the visual field characteristics and normalized output distribution in the X-axis direction of the conventional in-line type thermopile array temperature detector. It is the figure which superposed | superposed and re-standardized the figure shown. 本発明の他の実施例の千鳥型サーモパイルアレイ温度検出器を搭載した温度計測機器測定機構の簡易概念図である。It is a simple conceptual diagram of the temperature measurement apparatus measurement mechanism carrying the zigzag type thermopile array temperature detector of the other Example of this invention. 本発明の他の実施例の千鳥型サーモパイルアレイ温度検出器のX軸方向側面における赤外線検出分布角の配光図である。It is a light distribution diagram of the infrared detection distribution angle in the X-axis direction side surface of the zigzag type thermopile array temperature detector of the other Example of this invention. 本発明の他の実施例の千鳥型サーモパイルアレイチップの上面外観図である。It is an upper surface external view of the staggered thermopile array chip | tip of the other Example of this invention. 従来のインライン型サーモパイルアレイチップの上面外観図である。It is an upper surface external view of the conventional in-line type thermopile array chip. 従来のインライン型サーモパイルアレイ温度検出器の所定投影検出域を示した図である。It is the figure which showed the predetermined projection detection area of the conventional in-line type thermopile array temperature detector. 従来のインライン型サーモパイルアレイ温度検出器を示す透視外観図である。It is a see-through | perspective external view which shows the conventional in-line type thermopile array temperature detector.

符号の説明Explanation of symbols

1 千鳥型サーモパイルアレイチップ
2 サーミスタ
3 赤外線透過窓部
4 金属CANケース
5 平凸単レンズ
6 ヘッダー
7a、7b 回路構成用電子部品
8 外付け接続用基板
9 コネクタ端子
10 赤外線受光吸収膜総称
11 熱電対
12 ヒートシンク部
13 赤外線検出域総称
14 千鳥型サーモパイルアレイ温度検出器
15 所定測定面
16 赤外線検出域の一領域
17 インライン型サーモパイルアレイチップ
X、X' 一軸側方向指示
Y、Y’ 多軸側方向指示
Z 高さ方向側指示
DESCRIPTION OF SYMBOLS 1 Staggered thermopile array chip 2 Thermistor 3 Infrared transmission window part 4 Metal CAN case 5 Plano-convex single lens 6 Header 7a, 7b Circuit configuration electronic component 8 External connection board 9 Connector terminal 10 Infrared light receiving / absorbing film generic name 11 Thermocouple 12 Heat sink part 13 Infrared detection area generic name 14 Staggered thermopile array temperature detector 15 Predetermined measurement surface 16 One area of infrared detection area 17 Inline type thermopile array chip X, X ′ Uniaxial direction indication Y, Y ′ Multiaxial direction indication Z Height direction side instruction

Claims (3)

対象面の一軸方向領域を分割し各分割域の放射赤外線量をレンズを介して検出するサーモパイルアレイセンサにおいて、メンブレン上の吸収膜部に温接点を形成し、周囲ヒートシンク部上に冷接点を形成して、二種の物質で構成された熱電対で配列接合した複数個の赤外線検出域を、千鳥上に2行配列する事により熱電対数、温接点部、冷接点部の配置数を増加し、赤外線受光部となる各吸収膜からの赤外線検出時起電圧を増加させる事を特徴とするサーモパイルアレイ温度検出器。   In a thermopile array sensor that divides a uniaxial region of the target surface and detects the amount of radiant infrared radiation in each divided region via a lens, a hot junction is formed on the absorption film on the membrane, and a cold junction is formed on the surrounding heat sink By arranging two or more infrared detection areas arrayed and joined with thermocouples composed of two types of materials on a staggered pattern, the number of thermocouples, hot junctions, and cold junctions can be increased. A thermopile array temperature detector characterized by increasing an electromotive voltage at the time of infrared detection from each absorption film serving as an infrared light receiving unit. 前記赤外線受光部となる複数個の検出域を千鳥上に2行配列設置したサーモパイルアレイセンサにおいて、測定域の赤外線検出機構として水平もしくは垂直一軸方向走査駆動を行い、他軸方向に存在しうる不感帯域をカバーする事を特徴とする請求項1に記載されたサーモパイルアレイ温度検出器。   In a thermopile array sensor in which a plurality of detection areas serving as the infrared light receiving unit are arranged in two rows on a staggered pattern, the horizontal or vertical uniaxial scanning drive is performed as the infrared detection mechanism of the measurement area, and there is insensitivity that may exist in the other axis direction The thermopile array temperature detector according to claim 1, which covers a band. 前記千鳥上配列型サーモパイルアレイチップが、測定対象面を分割した複数個の検出域の赤外線検出分布視野角度が同一となる吸収膜形状に配置したサーモパイルアレイチップである事を特徴とする請求項1または請求項2に記載されたサーモパイル温度検出器。   2. The zigzag array type thermopile array chip is a thermopile array chip arranged in an absorption film shape in which a plurality of detection areas obtained by dividing a measurement target surface have the same infrared detection distribution viewing angle. Alternatively, the thermopile temperature detector according to claim 2.
JP2006113721A 2006-04-17 2006-04-17 Thermopile array temperature detector Pending JP2007285892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113721A JP2007285892A (en) 2006-04-17 2006-04-17 Thermopile array temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113721A JP2007285892A (en) 2006-04-17 2006-04-17 Thermopile array temperature detector

Publications (1)

Publication Number Publication Date
JP2007285892A true JP2007285892A (en) 2007-11-01

Family

ID=38757801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113721A Pending JP2007285892A (en) 2006-04-17 2006-04-17 Thermopile array temperature detector

Country Status (1)

Country Link
JP (1) JP2007285892A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524177A (en) * 2010-04-01 2013-06-17 エクセリタス テクノロジーズ ゲーエムベーハー ウント コンパニー、カーゲー Radiation sensor
JP2015049073A (en) * 2013-08-30 2015-03-16 オムロン株式会社 Infrared sensor module
JP2016180614A (en) * 2015-03-23 2016-10-13 シャープ株式会社 Sensor IC
CN107167851A (en) * 2017-05-18 2017-09-15 深圳通感微电子有限公司 Partition type infrared detector and partition type infrared acquisition method
JP2020034300A (en) * 2018-08-27 2020-03-05 旭化成テクノシステム株式会社 Overheat monitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122144A (en) * 1994-10-27 1996-05-17 Murata Mfg Co Ltd Infrared detector
JPH09113353A (en) * 1995-10-17 1997-05-02 Nissan Motor Co Ltd Infrared detection element
JP2000205945A (en) * 1999-01-07 2000-07-28 Nissan Motor Co Ltd Infrared line sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122144A (en) * 1994-10-27 1996-05-17 Murata Mfg Co Ltd Infrared detector
JPH09113353A (en) * 1995-10-17 1997-05-02 Nissan Motor Co Ltd Infrared detection element
JP2000205945A (en) * 1999-01-07 2000-07-28 Nissan Motor Co Ltd Infrared line sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524177A (en) * 2010-04-01 2013-06-17 エクセリタス テクノロジーズ ゲーエムベーハー ウント コンパニー、カーゲー Radiation sensor
JP2017083470A (en) * 2010-04-01 2017-05-18 エクセリタス テクノロジーズ シンガポール プライヴェート リミテッド Radiation sensor
JP2015049073A (en) * 2013-08-30 2015-03-16 オムロン株式会社 Infrared sensor module
JP2016180614A (en) * 2015-03-23 2016-10-13 シャープ株式会社 Sensor IC
CN107167851A (en) * 2017-05-18 2017-09-15 深圳通感微电子有限公司 Partition type infrared detector and partition type infrared acquisition method
CN107167851B (en) * 2017-05-18 2023-12-26 深圳通感微电子有限公司 Partition type infrared detector and partition type infrared detection method
JP2020034300A (en) * 2018-08-27 2020-03-05 旭化成テクノシステム株式会社 Overheat monitor

Similar Documents

Publication Publication Date Title
JP6302100B2 (en) Radiation sensor
JP5358446B2 (en) Die temperature sensor
CN101563591B (en) A sensor including a reference sensor element
JP5358445B2 (en) Thermal sensor with increased sensitivity
JP5614988B2 (en) Thermal sensor with thermal insulation layer
US8461530B2 (en) Sensor array microchip
WO2010134255A1 (en) An infrared sensor, an electronic device, and a method of manufacturing an infrared sensor
JP2007285892A (en) Thermopile array temperature detector
JP6735517B2 (en) Infrared detector and air conditioner
JP2010537177A (en) Sensor cap assembly, sensor, circuit
US6262418B1 (en) Thermal type infrared sensing device, fabrication method for thermal type infrared sensing device, and infrared imaging system and infrared imaging apparatus
JP6132223B2 (en) Infrared sensor
JP2006337345A (en) Noncontact-type temperature detector
JP2010537214A (en) Solar sensor for detecting the direction and intensity of solar radiation
JP2011179828A (en) Multi-wavelength infrared array sensor
JP5921282B2 (en) Infrared temperature measuring device
JP2008039695A (en) Thermopile array temperature detector
JP7441621B2 (en) infrared measurement system
JP2004226216A (en) Thermopile array
KR101022273B1 (en) Infra-red sensor array having micro-lens
JP2009150699A (en) System for measuring position of object to be measured
JP2008232863A (en) Infrared sensor device
JP3079353U (en) Radiation temperature detector
JPH11111958A (en) Two-dimensional array sensor
JP2023138327A (en) Electromagnetic sensor and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130115