JP2007285201A - 気体抜き構造 - Google Patents

気体抜き構造 Download PDF

Info

Publication number
JP2007285201A
JP2007285201A JP2006113501A JP2006113501A JP2007285201A JP 2007285201 A JP2007285201 A JP 2007285201A JP 2006113501 A JP2006113501 A JP 2006113501A JP 2006113501 A JP2006113501 A JP 2006113501A JP 2007285201 A JP2007285201 A JP 2007285201A
Authority
JP
Japan
Prior art keywords
passage
gas
cooling water
outflow
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006113501A
Other languages
English (en)
Inventor
Tomohisa Shikama
友久 鹿摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006113501A priority Critical patent/JP2007285201A/ja
Publication of JP2007285201A publication Critical patent/JP2007285201A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】気液混合流体に含まれる気体を好適に排出することのできる気体抜き構造を提供する。
【解決手段】空気が混入した冷却水が流通する流出通路34の鉛直方向上部には空気抜き通路40の一端が接続されている。この空気抜き通路40の他端はラジエータ10の流出タンク13の鉛直方向上部に接続されている。流出通路34の内部には、空気抜き通路40と流出通路34との接続部位よりも上流側に位置して冷却水の流通方向に延伸する区画部材41が配設されている。流出通路34の内部はこの区画部材41により上部通路と下部通路とに区画されている。
【選択図】図1

Description

本発明は気液混合流体に含まれる気体を排出する気体抜き構造に関する。
内燃機関の冷却水循環系では、ウォーターポンプにより冷却水を循環させ、この冷却水により内燃機関を冷却してその温度が常に適温となるように維持している。具体的には、内燃機関のシリンダブロック及びシリンダヘッドには冷却通路が形成され、この冷却通路の流入ポートは冷水通路を介してウォーターポンプの吐出ポートに接続されている。一方、この冷却通路の流出ポートは熱水通路を介してラジエータの流入ポートに接続されている。更に、このラジエータの流出ポートは回収通路を通じてウォーターポンプの吸入ポートに接続されている。こうした冷却水循環系において、機関運転中には、ウォーターポンプから吐出された低温の冷却水が冷却通路に流入して同冷却水により内燃機関が冷却される。そして内燃機関を冷却して温度上昇した冷却水は、熱水通路を通じてラジエータに流入し、走行風等により冷却されてウォーターポンプの吸入ポートに戻される。
ここで、冷却水循環系には、冷却水の注入口などから空気が混入することがある。このように空気が混入すると冷却水の流動性が低下するため、これがラジエータにおける冷却水の吸・放熱効率を低下させて内燃機関の冷却効果が悪化するおそれがある。また、この冷却水に混入した空気がウォーターポンプに噛み込まれると、ウォーターポンプの吐出能力が低下することも懸念される。
そこで、例えば特許文献1に記載されるように、冷却水に混入した空気を空気抜き通路を介して大気に排出する空気抜き構造を採用することが望ましい。同構造にあっては、熱水通路の途中に、鉛直方向上部に位置して外部と連通可能な空気抜き通路が接続されている。冷却通路から排出された冷却水が熱水通路を流通する際に、冷却水に混入した空気は浮力により鉛直方向に上昇する傾向があるため、熱水通路の上方に位置する冷却水に混入した空気の密度が高くなる。従って、冷却水に混入した空気の一部は、この空気抜き通路に流入して冷却水循環系から排出されるようになる。
特開平11−166416号公報
ところで、上述した熱水通路と空気抜き通路とが接続する部位ではその流路形状が大きく変化するため、同接続部位の近傍に位置する冷却水にはその流れに乱れが生じ易くなる。そして、こうした乱れが発生した場合には、熱水通路の上・下部をそれぞれ流れる混合流体が攪拌され、その上方の冷却水に混入される空気の密度が低下してしまうこととなる。そのため、上記従来の冷却水循環系における空気抜き構造にあっては、熱水通路から空気抜き通路に流入して外部に排出される空気の量について自ずと限界があり、この点においてなお改善の余地を残すものとなっていた。
尚、内燃機関の冷却水循環系の空気抜き構造について説明したが、こうした不都合は同構成に限らず、他の液体流動系に設けられる気体抜き構造においても概ね共通して発生し得る。
本発明は、こうした従来の実情に鑑みてなされたものであり、その目的は、気液混合流体に含まれる気体を好適に排出することのできる気体抜き構造を提供することにある。
以下、上記目的を解決するための手段及びその作用効果について記載する。
請求項1に記載の発明は、気体と液体との混合流体が流通する主通路と、該主通路の鉛直方向上部に接続された気体流出通路とを備え、該気体流出通路を通じて前記主通路の混合流体に含まれる気体を同主通路からその外部に排出する気体抜き構造において、前記主通路は同主通路と前記気体流出通路との接続部位よりも上流側に位置して混合流体の流通方向に延伸する区画部材によりその内部が上部通路と下部通路とに区画されることを特徴とする。
気体はこれに作用する浮力によって鉛直方向上方に上昇する傾向があるため、通常、主通路においてその上部を流れる混合流体に含まれる気体の密度は下部を流れる混合流体に対して相対的に高いものとなる。但し、主通路において気体流出通路の接続部位ではその流路形状が大きく変化するため、同接続部位の近傍に位置する混合流体にはその流れに乱れが生じ易くなる。そして、こうした乱れが発生すると、主通路の上・下部をそれぞれ流れる混合流体が攪拌され、主通路の上部に位置する気体の密度が低下してしまうこととなる。その結果、主通路から気体流出通路に流入して外部に排出される気体の量が減少し、その気体の排出効率が低下するおそれがある。
この点、上記構成では、主通路と気体流出通路との接続部位よりも上流側に位置して混合流体の流通方向に延伸する区画部材を主通路の内部に設け、この区画部材により主通路の内部を上部通路と下部通路とに区画するようにしている。従って、主通路と気体流出通路との接続部位近傍において混合流体の流れに乱れが生じた場合であっても、この区画部材により主通路の上・下部を流れる混合流体が攪拌されて同主通路の上方に位置する混合流体に含まれる気体密度が低下することを抑制することができ、気体流出通路を通じて混合流体に含まれる気体を好適に排出することができるようになる。
請求項2に記載の発明は、請求項1に記載の気体抜き構造において、前記区画部材はその下流側部分が前記主通路と前記気体流出通路との接続部位側に指向する形状を有してなることを特徴とする。
同構成によれば、主通路において上部通路を流れる気体の密度の高い混合流体が主通路と気体流出通路との接続部位に導かれるようになるため、同気体流出通路から外部に排出される気体の量を増大させることができ、混合流体に含まれる気体を一層効率的に排出することができるようになる。
請求項3に記載の発明は、請求項1又は2に記載の気体抜き構造において、前記主通路は同主通路と前記気体流出通路との接続部位での流路断面積が同接続部位より上流側の部位での流路断面積よりも大きく設定されることを特徴とする。
同構成によれば、主通路と気体流出通路との接続部位での流路断面積がその上流側の部位での流路断面積よりも大きく設定されるため、混合流体が上流側から接続部位に流入する際には、その混合流体の流速が低下するようになる。その結果、気体はこれに作用する浮力により鉛直方向上方に上昇しやすくなり、混合流体に含まれる気体を排出する際の効率を更に向上させることができる。
請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の気体抜き構造において、前記主通路は、上流側から下流側までその延伸方向が鉛直方向下方に向けて変更する屈曲部を有しており、前記気体抜き通路は同屈曲部に接続されることを特徴とする。
気体はこれに作用する浮力によって鉛直方向上方に上昇する傾向があるため、混合流体に含まれる気体はその上流側から下流側まで延伸方向が鉛直方向下方に向けて変更する屈曲部に滞留し易くなる。特に混合流体の流速が低い場合には、大量の気体がその屈曲部に滞留することがある。そして、混合流体の流速が急激に高くなると、屈曲部に滞留した気体が一度に混合流体の動圧によって屈曲部の下流側の通路に流れ出てしまうおそれがある。
この点、上記構成によれば、区画部材によって屈曲部に滞留した気体を主通路の上部に保持することができる。そのため、混合流体が屈曲部を流動する際に、当該混合流体により屈曲部に滞留した気体を屈曲部の下流側の通路、換言すれば鉛直方向下方に向いて延伸する通路に一度に流れ出てしまうことを抑制することができる。そして、主通路の屈曲部に滞留した気体を同屈曲部に接続された気体抜き通路を通じて外部に排出することができる。
請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の気体抜き構造において、前記主通路及び気体抜き通路を形成する部材と前記区画部材とは一体に形成されることを特徴とする。
同構成によれば、主通路及び気体抜き通路を形成する各部材と区画部材とが一体に形成されているため、それを各別に設けるようにした場合とは異なり、各部材を連結する等の加工を省略することができ、気体抜き構造についてその低コスト化を図ることができるようになる。
請求項6に記載の発明は、請求項1〜5のいずれか一項に記載の気体抜き構造において、前記主通路は内燃機関の冷却水循環系の冷却水通路であり、前記気体は前記冷却水に混入した空気であることを特徴とする。
内燃機関の冷却水循環系においては、冷却水に空気が混入されることにより、冷却水の吸・放熱効率が低下するおそれがある。また、混入した空気が冷却水を循環させるウォーターポンプに噛み込まれると、ウォーターポンプの吐出能力が低下するおそれもある。この点、上記構成によれば、冷却水に混入した空気を冷却水循環系から好適に排出することができ、冷却水の吸・放熱効率の低下を抑制するとともに、ウォーターポンプの吐出能力の低下を抑制することができる。
以下、本発明にかかる実施形態について、図1〜図3を参照して説明する。
ここで、図1は複数の気筒3を有する内燃機関についてその冷却水循環系50を示すブロック図である。同図1に示されるように、内燃機関2の内部に冷却通路であるウォータージャケット4が形成されている。このウォータージャケット4の上流側には、内燃機関の出力軸(図示略)により駆動されるウォーターポンプ20が配設されている。このウォーターポンプ20の吐出ポートは流入通路7を介してウォータージャケット4の冷水入口4aに接続されている。一方、ウォータージャケット4の下流側には、冷却水循環系50における冷却水の熱を大気に放出するためのラジエータ10が配設されている。このラジエータ10の熱水入口10aは流出通路34を介してウォータージャケット4の熱水出口4bに接続されるとともに、同ラジエータ10の冷水出口10bは回収通路35を介してウォーターポンプ20の吸入ポートに接続されている。尚、ラジエータ10は搭載上の制約のために内燃機関2よりも鉛直方向下方に位置している。このため、同図1に示されるように、流出通路34の途中には、その流通方向を鉛直方向下方に向けて変更する屈曲部34aが形成されている。
また、流出通路34と回収通路35とはバイパス通路33によって接続されており、このバイパス通路33と回収通路35との接続部分にはサーモスタットバルブ21が設けられている。このサーモスタットバルブ21は、ラジエータ10の冷水出口10bとウォーターポンプ20の吸入ポートとの遮断・連通を切り替えることによって、冷却水循環系50における冷却水の温度を適正な温度に維持するためのものである。即ち、冷却水の温度が所定温度未満であるときには、サーモスタットバルブ21によってラジエータ10の冷水出口10bとウォーターポンプ20の吸入ポートとが遮断される。一方、冷却水の温度が所定温度以上であるときには、サーモスタットバルブ21によってラジエータ10の冷水出口10bとウォーターポンプ20の吸入ポートとが連通される。
次に、ラジエータ10の構造について説明する。ラジエータ10の内部には、流入タンク11、流出タンク13及び複数の冷却通路12が形成されている。上述した熱水入口10aは流入タンク11に形成される一方、冷水出口10bは流出タンク13に形成されている。流入タンク11と流出タンク13とは鉛直方向に沿って延伸する一方、冷却通路12は水平方向に沿って延伸してそれら流入タンク11及び流出タンク13を連通している。
また、ラジエータ10には、冷却水に混入した空気を貯留するセパレーションタンク15が設けられている。このセパレーションタンク15は連通管14を介して流出タンク13に連通されている。また、セパレーションタンク15の鉛直方向上方には、ラジエータキャップ16が設けられている。このラジエータキャップ16は、冷却水の圧力に基づいて作動するプレッシャーバルブ(図示略)を備えている。冷却水循環系50はこのプレッシャーバルブを介してその外部に設けられたリザーブタンク(図示略)に接続されている。そして、冷却水循環系50における冷却水の圧力が所定圧を超えた場合には、プレッシャーバルブが開弁してセパレーションタンク15とリザーブタンクとが連通される。その結果、セパレーションタンク15の空気は冷却水とともにリザーブタンクに排出される。
次に、このように構成された冷却水循環系50について、その冷却水の循環態様について説明する。
ウォーターポンプ20によって冷却水は、冷水入口4aを通じてウォータージャケット4に流入し、内燃機関2を冷却した後、熱水出口4bを通じてウォータージャケット4から流出する。ここで、冷却水の温度が所定温度未満である場合には、上述したようにサーモスタットバルブ21によりラジエータ10の冷水出口10bとウォーターポンプ20の吸入ポートとが遮断される。従って、ウォータージャケット4から排出された冷却水は全てバイパス通路33を通じてウォーターポンプ20に戻される。一方、冷却水の温度が所定温度以上である場合には、サーモスタットバルブ21によりラジエータ10の冷水出口10bとウォーターポンプ20の吸入ポートとが連通される。従って、ウォータージャケット4から排出された高温の冷却水の一部はバイパス通路33を通じてウォーターポンプ20に戻されるとともに、他の部分は熱水入口10aを通じてラジエータ10の流入タンク11に流入する。
この高温の冷却水は流入タンク11から更に冷却通路12に流入し、車両の走行風や冷却ファン(図示略)によって冷却されて、その温度が低下するようになる。そして、このように温度低下した冷却水は冷却通路12から流出タンク13に流入し、回収通路35を通じてウォーターポンプ20の吸入ポートに戻される。
ところで、冷却水循環系50に混入した空気はこれに作用する浮力によって鉛直方向上方に上昇する傾向があるため、冷却水に含まれる空気は屈曲部34aに滞留することがある。特に冷却水の流速が低い場合には、大量の空気がその屈曲部34aに滞留する可能性も高くなる。そして、このように大量の空気が屈曲部34aに滞留した状態で、内燃機関の出力軸の回転速度が急激に高くなると、ウォーターポンプ20の吐出量が増大し冷却水の流速が急激に高くなるため、その屈曲部34aに滞留した空気が冷却水の動圧によってラジエータ10内に押し込まれ、冷却水循環系50の冷却性能が低下するおそれがある。
そこで、この実施形態にかかる冷却水循環系50では、この屈曲部34aに滞留する空気を好適に外部に排出する構造を採用するようにしている。以下、図1〜図3を併せ参照してこの空気抜き構造について説明する。ここで、図2は空気抜き構造、具体的には流出通路34の屈曲部34aを拡大して示す拡大断面図であり、図3はこの図2の3−3線に沿った断面図である。図1に示されるように、上述した流出通路34とラジエータ10とは空気抜き通路40によって接続されている。具体的には、この空気抜き通路40の一端は屈曲部34aの頂部に接続されるとともに、他端はラジエータ10の流出タンク13の鉛直方向上部に接続されている。尚、空気抜き通路40の流路断面積は流出通路34の流路断面積よりも小さく設定されている。これにより、大量の冷却水がこの空気抜き通路40に流入することを抑制するようにしている。
また、図2に示されるように、流出通路34は、屈曲部34aよりも上流側に位置して水平方向に延びる上流部分34bと、屈曲部34aよりも下流側に位置して斜め下方向に延びる下流部分34cとによって構成されている。また、空気抜き通路40は、当該空気抜き通路40と屈曲部34aとの接続部位から斜め上方向に所定の傾斜角θを有して延伸している。尚この傾斜角θは、空気抜き通路40に大量の冷却水が流入するのを抑制しつつ、その冷却水に含まれる空気を同空気抜き通路40に導入するため、例えば30°〜60°の範囲に設定するのが望ましい。
ここで、空気抜き通路40と流出通路34との接続部位での流路断面積は、上流部分34bの流路断面積よりも大きく設定されている。
更に、流出通路34の上流部分34bにおいてその中心部には、冷却水の流通方向に延伸する板状の区画部材41が配設されており、上流部分34bの内部はこの区画部材41により上部通路61と下部通路62とに区画されている。また、この区画部材41はその下流側部分が屈曲部34aと空気抜き通路40との接続部位側に指向する形状を有している。また、図2及び図3に示されるように、空気抜き通路40と流出通路34との接続部においては、流出通路34及び空気抜き通路40を形成する各部材と区画部材41とは一体に形成されている。
以上説明した実施形態によれば、以下の効果が得られるようになる。
(1)空気はこれに作用する浮力によって鉛直方向上方に上昇する傾向があるため、通常、流出通路34においてその上部に位置する冷却水に含まれる空気の密度は相対的に高いものとなる。本実施形態では、その流出通路34の屈曲部34aの頂部に空気抜き通路40を接続し、同空気抜き通路40を通じてその空気を排出するようにしているため、空気を多く含んだ冷却水がラジエータ10に流入することを抑制することができる。
加えて、流出通路34には、空気抜き通路40との接続部位よりも上流側に位置して冷却水の流通方向に延伸する区画部材41をその内部に設け、この区画部材41により流出通路34の上流部分34bの内部を上部通路61と下部通路62とに区画するようにしている。従って、流出通路34と空気抜き通路40との接続部位近傍において冷却水の流れに乱れが生じた場合であっても、この区画部材41により流出通路34の上部通路61と下部通路62とを流れる冷却水が攪拌されることを抑制することができる。その結果、上方に位置する冷却水に含まれる空気密度が低下することを抑制することができ、空気抜き通路40を通じて冷却水に含まれる空気を好適に排出することができるようになる。
(2)区画部材41は冷却水の流通方向に延伸し、その下流側部分が屈曲部34aと空気抜き通路40との接続する部位側に指向する形状を有しているため、上部通路61を流れる空気の密度の高い冷却水が空気抜き通路40に導かれるようになる。そのため、同空気抜き通路40から排出される空気の量を増大させることができ、冷却水に含まれる空気を一層効率的に排出することができるようになる。
(3)空気抜き通路40と流出通路34との接続部位での流路断面積は、上流部分34bの流路断面積よりも大きく設定されているため、冷却水が上流部分34bから接続部位に流入する際には、その冷却水の流速が低下するようになる。その結果、空気はこれに作用する浮力により鉛直方向上方に上昇しやすくなり、冷却水に含まれる空気を排出する際の効率を更に向上させることができるようになる。
(4)区画部材41が配設されることにより、屈曲部34aに滞留した空気を上部通路61に保持することができ、冷却水の流量が急激に増大してその滞留した空気が冷却水とともにラジエータ10に押し込まれることを抑制することができる。また、屈曲部34aの頂部に空気抜き通路40が接続されているため、この屈曲部34aに滞留する空気を排出することができ、屈曲部34aに空気が滞留することによる冷却水循環系50の冷却性能の低下を抑制することができる。
(5)空気抜き通路40と流出通路34との接続部において、流出通路34及び空気抜き通路40を形成する各部材と区画部材41とは一体に形成されているため、これら各別に形成した場合とは異なり、各部材を連結する等の加工を省略することができ、空気抜き構造についてその低コスト化を図ることができるようになる。
(6)冷却水循環系50においては、冷却水に混入した空気がウォーターポンプ20に噛み込まれると、ウォーターポンプ20の吐出能力及び耐久性が低下するおそれがある。この点、本実施形態では、冷却水に混入した空気を冷却水循環系から好適に排出することができるため、冷却水の吸・放熱効率の低下を抑制するとともに、ウォーターポンプ20の吐出能力及び耐久性の低下を抑制することができる。
尚、上記実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・上記実施形態では、冷却水の流通方向に延伸し、その下流側部分が屈曲部34aと空気抜き通路40との接続部位側に指向する形状を有する区画部材41を採用した。これに対して、例えば、図4に示されるように、こうした指向部分を有していない区画部材等、他の形状を有する区画部材を用いることもできる。
・区画部材41を上流部分34bの中心部に配設したが、図5に示されるように、上流部分34bの中心部よりも鉛直方向上方に偏倚した位置に区画部材142を配設してもよい。また、図6に示されるように、屈曲部34aと空気抜き通路40との接続部位側に向けてその全体が傾斜した区画部材143を採用することもできる。
・上記実施形態では、空気抜き通路40と流出通路34との接続部位での流路断面積が上流部分34bの流路断面積よりも大きく設定されている。これに対して、空気抜き通路40と流出通路34との接続部位における流路断面積を上流部分34bの流路断面積と等しく、或いは上流部分34bの流路断面積よりも小さく設定してもよい。こうした構成であっても上記(3)を除く、(1)〜(6)に記載の作用効果を奏することはできる。
・上記実施形態では、空気抜き通路40は流出通路34の屈曲部34aに接続するようにしたが、その空気抜き通路40が例えば上流部分34b等、他の部分においてその鉛直方向上方に接続された構造を採用することもできる。
・上記実施形態では、流出通路34及び空気抜き通路40を形成する各部材と区画部材41とは一体に形成されているが、それらの部材を予め各別に加工してから連結するようにしてもよい。
・上記実施形態では、内燃機関の冷却水循環系50の空気抜き構造を例示したが、例えば内燃機関の潤滑油循環系等、他の液体に気体が混入される混合流体の流通系の気体抜き構造であっても同様の態様をもって本発明を適用することができる。
内燃機関の冷却水循環系を示すブロック図。 空気抜き構造を示す拡大断面図。 図2の3−3線に沿った断面図。 空気抜き構造について変更例を示す拡大図。 空気抜き構造について他の変更例を示す拡大図。 空気抜き構造について他の変更例を示す拡大図。
符号の説明
2…内燃機関、3…気筒、4…ウォータージャケット、4a…冷水入口、4b…熱水出口、7…流入通路、10…ラジエータ、10a…熱水入口、10b…冷水出口、11…流入タンク、12…冷却通路、13…流出タンク、14…連通管、15…セパレーションタンク、16…ラジエータキャップ、20…ウォーターポンプ、21サーモスタットバルブ、33…バイパス通路、34…流出通路、34a…屈曲部、34b…上流部分、34c…下流部分、35…回収通路、40…空気抜き通路、41…区画部材、50…冷却水循環系、61…上部通路、62…下部通路、142,143…区画部材。

Claims (6)

  1. 気体と液体との混合流体が流通する主通路と、該主通路の鉛直方向上部に接続された気体流出通路とを備え、該気体流出通路を通じて前記主通路の混合流体に含まれる気体を同主通路からその外部に排出する気体抜き構造において、
    前記主通路は同主通路と前記気体流出通路との接続部位よりも上流側に位置して混合流体の流通方向に延伸する区画部材によりその内部が上部通路と下部通路とに区画される
    ことを特徴とする気体抜き構造。
  2. 請求項1に記載の気体抜き構造において、
    前記区画部材はその下流側部分が前記主通路と前記気体流出通路との接続部位側に指向する形状を有してなる
    ことを特徴とする気体抜き構造。
  3. 請求項1又は2に記載の気体抜き構造において、
    前記主通路は同主通路と前記気体流出通路との接続部位での流路断面積が同接続部位より上流側の部位での流路断面積よりも大きく設定される
    ことを特徴とする気体抜き構造。
  4. 請求項1〜3のいずれか一項に記載の気体抜き構造において、
    前記主通路は、上流側から下流側までその延伸方向が鉛直方向下方に向けて変更する屈曲部を有しており、前記気体抜き通路は同屈曲部に接続される
    ことを特徴とする気体抜き構造。
  5. 請求項1〜4のいずれか一項に記載の気体抜き構造において、
    前記主通路及び気体抜き通路を形成する部材と前記区画部材とは一体に形成される
    ことを特徴とする気体抜き構造。
  6. 請求項1〜5のいずれか一項に記載の気体抜き構造において、
    前記主通路は内燃機関の冷却水循環系の冷却水通路であり、前記気体は前記冷却水に混入した空気である
    ことを特徴とする気体抜き構造。
JP2006113501A 2006-04-17 2006-04-17 気体抜き構造 Pending JP2007285201A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113501A JP2007285201A (ja) 2006-04-17 2006-04-17 気体抜き構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113501A JP2007285201A (ja) 2006-04-17 2006-04-17 気体抜き構造

Publications (1)

Publication Number Publication Date
JP2007285201A true JP2007285201A (ja) 2007-11-01

Family

ID=38757218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113501A Pending JP2007285201A (ja) 2006-04-17 2006-04-17 気体抜き構造

Country Status (1)

Country Link
JP (1) JP2007285201A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180439A (ja) * 2008-01-31 2009-08-13 Orion Mach Co Ltd 冷却液供給装置
JP2017160821A (ja) * 2016-03-08 2017-09-14 マツダ株式会社 エンジンの冷却装置
JP2017160816A (ja) * 2016-03-08 2017-09-14 マツダ株式会社 過給機付エンジンの冷却装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180439A (ja) * 2008-01-31 2009-08-13 Orion Mach Co Ltd 冷却液供給装置
JP2017160821A (ja) * 2016-03-08 2017-09-14 マツダ株式会社 エンジンの冷却装置
JP2017160816A (ja) * 2016-03-08 2017-09-14 マツダ株式会社 過給機付エンジンの冷却装置

Similar Documents

Publication Publication Date Title
JP4450066B2 (ja) 車両前部構造
US7631619B2 (en) Cooling agent compensation tank for a cooling circuit
US10828590B2 (en) Gas-liquid separator
JP5227205B2 (ja) 内燃機関の冷却装置
JP4600537B2 (ja) リザーブタンク
SE533908C2 (sv) Kylanordning för en fluid i en förbränningsmotor och användning därav
JP2007232287A (ja) 熱交換器および一体型熱交換器
JP6137032B2 (ja) タービンハウジング
JPH1113551A (ja) Egrクーラ
JP2007285201A (ja) 気体抜き構造
JP2010112355A (ja) Egrクーラ
JP6695433B2 (ja) エンジン冷却装置、及びエンジンシステム
JP6350627B2 (ja) 気液分離器及び該気液分離器を備えたエンジン冷却液の気体抜き構造
JP6222460B2 (ja) エンジンの冷却回路
JP2007192175A (ja) 車両の冷却系の構造
JP4789288B2 (ja) 内燃機関の流路形成部材
JP2009215903A (ja) 内燃機関における冷却水の循環装置
JP2007198148A (ja) V型内燃機関の熱交換器配置構造
JP6582777B2 (ja) エンジンの冷却システム
JP2015229144A (ja) 気液分離装置
US20220228523A1 (en) Coolant pump module
JP2008240672A (ja) Egrクーラ
JP6509594B2 (ja) エアセパレーター及び燃料供給システム並びに船舶
JP2007100659A (ja) エンジン冷却システム
JP6582778B2 (ja) エンジンの冷却システム