JP2007280844A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2007280844A
JP2007280844A JP2006107705A JP2006107705A JP2007280844A JP 2007280844 A JP2007280844 A JP 2007280844A JP 2006107705 A JP2006107705 A JP 2006107705A JP 2006107705 A JP2006107705 A JP 2006107705A JP 2007280844 A JP2007280844 A JP 2007280844A
Authority
JP
Japan
Prior art keywords
fuel cell
anode
cell system
regulating valve
circulation blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006107705A
Other languages
English (en)
Inventor
Kazuyoshi Aramaki
和喜 荒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006107705A priority Critical patent/JP2007280844A/ja
Publication of JP2007280844A publication Critical patent/JP2007280844A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】アノード供給流路に大きな脈動を発生させ、アノード極に溜まった生成水を効率良く除去して循環ブロアの騒音を低減することのできる燃料電池システムを提供する。
【解決手段】本発明の燃料電池システム1は、燃料電池2のアノード極へアノード供給流路5を通じて燃料ガスを供給し、アノード極から排出されたガスをアノード循環流路8によってアノード供給流路5へ循環させており、アノード極へ供給されるガスの圧力を調節するアノード調圧弁6と、アノード循環流路8内のガスを循環させる循環ブロア10とを備え、循環ブロア10の回転数変動とアノード調圧弁6の開度変動とを同期させてアノード供給流路5に大きな脈動を発生させてアノード極に溜まった生成水を取り除くことを特徴とする。
【選択図】 図1

Description

本発明は、燃料電池のアノード極から排出されるガスを循環ブロアによってアノード供給流路へ循環させる燃料電池システムに係り、特に循環ブロアの回転数の上昇を抑えることで騒音を低減しながらアノード極に溜まった生成水を除去する燃料電池システムに関する。
一般に、燃料電池システムは、水素等の燃料ガスと空気等の酸化剤ガスとを電気化学的に反応させることにより、燃料ガスのもつ化学エネルギーを直接電気エネルギーに変換する装置である。
従来の燃料電池システムでは、セル電圧センサによって検出された燃料電池スタックのセル電圧を、コントロールユニットが読み込んでセル電圧を判定し、このセル電圧の判定結果により水素循環ポンプによる水素循環量の増加を行うか、あるいはパージ弁を開いて水素循環路内部のガスを系外へ放出するか制御していた。このような制御を行うことによって、燃料電池スタックのセル電圧が低下した場合でも燃費性能の低下を抑制しつつセル電圧を回復させることができるようにしていた。
このような制御を実施する燃料電池システムの従来例として、例えば特開2005−100827号公報(特許文献1)が開示されている。
特開2005−100827号公報
しかしながら、上述した従来の燃料電池システムでは、水素循環流量を増加させるために、水素循環ポンプの回転数を増加させているので、燃料電池システムが低負荷の状態のときにこのような制御を行うと、騒音が非常に大きくなってしまうという問題点があった。
上述した課題を解決するために、本発明の燃料電池システムは、燃料電池のアノード極へアノード供給流路を通じて燃料ガスを供給し、前記アノード極から排出されたガスをアノード循環流路によって前記アノード供給流路へ循環させる燃料電池システムにおいて、前記アノード極へ供給されるガスの圧力を調節するアノード調圧弁と、前記アノード循環流路内のガスを循環させる循環ブロアと、前記循環ブロアの回転数変動と前記アノード調圧弁の開度変動とを同期させて前記アノード極に溜まった生成水を取り除く生成水除去処理を実施する制御手段とを備えることを特徴とする。
本発明に係る燃料電池システムでは、循環ブロアの回転数変動とアノード調圧弁の開度変動とを同期させるので、アノード供給流路に大きな脈動を発生させることができ、これによって循環ブロアの回転数を上昇させなくてもアノード極に溜まった生成水を効率良く除去できるとともに、循環ブロアによる騒音を低減することも可能となる。また、循環ブロアの回転数を低減できることにより、消費電力を節約することも可能となる。
<第1の実施形態>
以下、本発明の第1の実施形態を図面に基づいて説明する。図1は本実施形態に係る燃料電池システムの構成を示すブロック図である。
図1に示すように、本実施形態の燃料電池システム1は、燃料ガスと酸化剤ガスとが供給されて電気化学反応により発電する燃料電池2と、燃料電池システム1の各部を制御するコントローラ(制御手段)3と、水素ガスを貯蔵する水素タンク4と、水素タンク4から燃料電池2のアノード極へ水素ガスを供給するアノード供給流路5と、アノード供給流路5を通じて供給される水素ガスの圧力を調節するアノード調圧弁6と、燃料電池2のアノード極に供給される水素ガスの圧力を検出するアノード圧力センサ(アノード圧力検出手段)7と、燃料電池2のアノード極で消費されなかった水素ガスを再循環させるアノード循環流路8と、アノード極から排出されたガスから水を分離する水セパレータ9と、燃料循環流路8内のガスを循環させる循環ブロア10と、燃料電池2における反応で使用されない不純物を燃料循環流路8から排出するパージ流路11と、パージ流路11に設置されて不純物の排出を制御するパージ弁12と、外部から吸入した空気を加圧して送出する空気圧縮機21と、空気圧縮機21へ吸入される空気の流量を計測するエアフロメータ22と、空気圧縮機21から燃料電池2のカソードへ空気を供給するカソード供給流路23と、カソードに供給される空気に湿度を与える加湿器24と、燃料電池2のカソードに供給される空気の圧力を検出するカソード圧力センサ25と、カソードから排出されたガスを外部へ排気するカソードオフガス流路26と、燃料電池2のカソードにおける空気の圧力を調節する空気調圧弁27と、燃料電池2で発電された発電電流を検出する発電電流センサ(発電電流検出手段)28とを備えている。
ここで、上述した燃料電池システム1において、燃料電池2ではアノード極に燃料ガスである水素ガスが供給され、カソード極に酸化剤ガスである空気が供給されて以下に示す電気化学反応によって発電が行われている。
アノード極(燃料極):H2→2H++2e- (1)
カソード極(酸化剤極):2H++2e-+(1/2)O2→H2O (2)
また、燃料電池2にはアノード供給流路5が接続されており、水素タンク4からアノード供給流路5、アノード調圧弁6を通じてアノード極に水素ガスが供給されている。燃料電池2で消費されなかった余剰の水素ガスは燃料電池2の生成水と共に水セパレータ9に送られ、水を分離した後にアノード循環流路8の途中に設けられた循環ブロア10で加圧され、アノード供給流路5へ戻される。アノード調圧弁6の開度は、燃料電池システム1の負荷に応じて必要な圧力となるようにアノード圧力センサ7の出力に基づいてコントローラ3によりフィードバック制御されている。また、循環ブロア10の回転数もコントローラ3により燃料電池システム1の負荷に応じて制御されている。
一方、燃料電池2にはカソード供給流路23が接続されており、空気は外気から吸い込まれ、カソード供給流路23の途中に設けられた空気圧縮機21で圧縮されて燃料電池2に供給された後、余剰の空気はカソードオフガス流路26を通り、空気調圧弁27を通過して排出される。空気圧縮機21の回転数は燃料電池システム1の負荷に応じて必要な空気流量を供給できるように、エアフロメータ22の出力に基づいてコントローラ3によりフィードバック制御されている。また、空気調圧弁27はカソードの空気圧力が必要とされる圧力となるようにカソード圧力センサ25の出力に基づいてコントローラ3によりフィードバック制御されている。
コントローラ3は、図1に示す各種センサ(及び図示しない各種センサ)からの出力に基づいて燃料電池システム1を制御しており、特にアノード圧力センサ7、カソード圧力センサ25、発電電流センサ28からの出力信号を受信し、アノード調圧弁6、循環ブロア10、パージ弁11、空気圧縮機21、空気調圧弁27を制御して燃料電池2のアノード極に溜まった生成水を取り除くための生成水除去処理を実施している。このコントローラ3は、例えば中央演算ユニット(CPU)、ランダムアクセスメモリ(RAM)リードオンリーメモリ(ROM)、及び入出力インターフェース(I/Oインターフェース)を有するマイクロコンピュータにより構成することができる。ただし、コントローラ3を複数のマイクロコンピュータにより構成することも可能であり、後述するような燃料電池システム1の制御の他にも複数の制御を実行する装置として構成してもよい。
上記のように構成された燃料電池システム1では、低負荷時にアノード極を流れるガスの流速が低いため、生成水等が大量に燃料電池2のアノード流路に溜まり、燃料電池2の出力が低下してしまう。また、燃料電池システム1が急激な負荷上昇した場合には、アノード極におけるガス流量の増加に伴い、燃料電池2のアノード流路から大量の生成水が溢れ、この生成水が循環ブロア10に流入し、循環ブロア10が出力低下を引き起こしてしまう恐れがある。
そこで、以下に示す生成水除去処理を実施してこのような問題が生じないようにしている。
次に、本実施形態の燃料電池システム1による生成水除去処理を図2のフローチャートに基づいて説明する。図2に示すように、まずコントローラ3がアイドル条件(例えば、車両がアクセルオフ状態で発電している状態)を検知すると、アノード調圧弁6をアイドル運転時の発電に必要となる水素ガスの圧力に対応した開度に保ち、循環ブロア10をアイドル運転の回転数R1に設定するとともに(S101)、アノード調圧弁6の開度デューティー比Dをアイドル時の開度D1に設定する(S102)。
次にコントローラ3は、変動回数Nを1にセットし(S103)、時間カウントtをt=0に初期化して(S104)カウントを開始する。そして、N=1であるか否かを判定し(S105)、N=1である場合にはt0=F/4としてt0を変動周期Fの1/4に設定し(S106)、N=1でない場合にはt0=0に設定する(S107)。ここで、変動周期Fは、アノード供給流路5及びアノード循環流路8からなる系において、燃料電池2のアノード極で水飛ばしが可能な脈動を得るために必要な周波数となるように設定されており、予め実験的に求めて設定されたものである。
次にコントローラ3は、目標回転数RtをRt=R1+R2に設定して循環ブロア10に回転指令を与え、回転数を上昇させる(S108)。ここでR1はアイドル時におけるアノードガス循環量を供給するために必要となる循環ブロア10の回転数、R2は回転数の振幅であり、回転数を中央値R1に対して振幅R2だけ上昇させる制御を実施する。
そしてコントローラ3は、循環ブロア10の回転数Rを読み込んで(S109)、回転数Rが中央値R1より大きいか否かを判定し(S110)、回転数Rが中央値R1より大きければアノード調圧弁6のデューティー比Dをアイドル時の設定値D1に対して開度振幅D2だけ開き側に設定する(S111)。ここで、循環ブロア10の回転数Rの振幅R2及びアノード調圧弁6のデューティー比Dの開度振幅D2は、アノード供給流路5及びアノード循環流路8からなる系において、水飛ばしが十分に行え、なお且つ燃料電池2内部の電解質膜がカソード側との差圧によって破損しないような圧力振幅が得られる値の組み合わせとなっている。
次にコントローラ3は、時間tを読み込んで(S112)t=t+t0に設定し(S113)、時間t+t0がF/2を経過しているか否かを判定する(S114)。ここで、F/2を経過していない場合にはステップS108に戻って上述した処理を実施し、F/2を経過している場合には循環ブロア10の目標回転数RtをRt=R1−R2に設定して回転指令を与え、循環ブロア10の回転数を下降させる(S115)。
そしてコントローラ3は、循環ブロア10の回転数Rを読み込んで(S116)回転数Rが中央値R1より大きいか否かを判定し(S117)、回転数Rが中央値R1以下になっている場合にはアノード調圧弁6のデューティー比Dをアイドル時の設定値D1に対して開度振幅D2だけ閉じ側に設定する(S118)。
次にコントローラ3は、時間tが変動周期Fを経過したか否かを判定し(S119)、変動周期Fを経過していない場合にはステップS115に戻って上述した処理を実施し、変動周期Fを経過している場合には変動回数NをN=N+1に設定する(S120)。
そしてコントローラ3は、アイドルスイッチがオフになっているか否かを判定し(S121)、オフになっていない場合にはステップS104に戻って上述した処理を繰り返し実施し、オフになっている場合には本実施形態の燃料電池システム1による生成水除去処理を終了する。ただし、上述した生成水除去処理の実施中においてアイドルスイッチがオフになった場合には、常時割り込みを許可してアノード調圧弁6及び循環ブロア10の通常時における制御が優先して実行される。
次に、上述した本実施形態の燃料電池システム1による生成水除去処理の作用を説明する。上述したように本実施形態の生成水除去処理では、循環ブロア10の回転数Rを変動させて燃料電池2の入口圧力が高くなるように制御するとともに、アノード調圧弁6の開度Dも変動させて燃料電池2の入口圧力が高くなるように制御している。従って、両者の圧力変化を同期させることによって、アノード供給流路5に大きな脈動を発生させることができ、循環ブロア10の回転数を低い回転数で変動させたとしても、燃料電池2のアノード極に溜まった生成水を効果的に排出することができる。
また、循環ブロア10の回転数を定格付近まで上昇させる必要が無いので、燃料電池システム1のアイドル運転時のような低負荷運転域(例えば、燃料電池内の流量が低い状態や、ある一定の閾値以下の負荷で運転している状態)においても騒音を低減することが可能となる。
即ち、循環ブロア10とアノード調圧弁6の両方で脈動を起こしているので、循環ブロア10のみで同じ脈動を起こそうとした場合に比べて回転数を低く抑えることができ、水素を必要以上に外部に放出する必要がなく、効率の良い運転を実現することができる。
このように、本実施形態の燃料電池システム1では、循環ブロア10の回転数変動とアノード調圧弁6の開度変動とを同期させているので、アノード供給流路5に大きな脈動を発生させることができ、これによって循環ブロア10の回転数を上昇させなくてもアノード極に溜まった生成水を効率良く除去できるとともに、循環ブロア10による騒音を低減することも可能となる。また、循環ブロア10の回転数を低減できることにより、消費電力を節約することも可能となる。
また、本実施形態の燃料電池システム1では、循環ブロア10の回転数を所定の周期で変動させ、循環ブロア10の回転数の変動に同期させてアノード調圧弁6の開度を変動させるので、上述したようにアノード極に溜まった生成水を効率良く除去できるとともに、循環ブロア10による騒音を低減することができる。
<第2の実施形態>
次に、本発明の第2の実施形態を図3に基づいて説明する。図3は、本実施形態の燃料電池システムによる生成水除去処理を示すフローチャートである。なお、本実施形態の燃料電池システムの構成は第1の実施形態と同一なので、詳しい説明は省略する。
第1の実施形態では、循環ブロア10の回転数変動にアノード調圧弁6の開度変動を同期させていたのに対して、本実施形態の生成水除去処理では、アノード調圧弁6の開度変動に循環ブロア10の回転数変動を同期させるようにしたことが異なっている。
図3に示すように、本実施形態の生成水除去処理におけるステップS201〜S207は、図1のステップS101〜S107と同一なので説明は省略する。
ステップS208において、コントローラ3はアノード調圧弁6のデューティー比Dをアイドル時の設定値D1に対して開度振幅D2だけ開き側に設定し(S208)、目標回転数RtをRt=R1+R2に設定して循環ブロア10に回転指令を与え、回転数を上昇させる(S209)。
そしてコントローラ3は、時間tを読み込んで(S210)t=t+t0に設定し(S211)、時間tがF/2を経過しているか否かを判定する(S212)。ここで、F/2を経過していない場合にはステップS208に戻って上述した処理を実施し、F/2を経過している場合にはアノード調圧弁6のデューティー比Dをアイドル時の設定値D1に対して開度振幅D2だけ閉じ側に設定し(S213)、循環ブロア10の目標回転数RtをRt=R1−R2に設定して回転指令を与え、循環ブロア10の回転数を下降させる(S214)。
次にコントローラ3は、時間tが変動周期Fを経過したか否かを判定し(S215)、変動周期Fを経過していない場合にはステップS213に戻って上述した処理を実施し、変動周期Fを経過している場合には変動回数NをN=N+1に設定する(S216)。そして、アイドルスイッチがオフになっているか否かを判定し(S217)、オフになっていない場合にはステップS204に戻って上述した処理を繰り返し実施し、オフになっている場合には本実施形態の燃料電池システムによる生成水除去処理を終了する。
ただし、上述した生成水除去処理の実施中においてアイドルスイッチがオフになった場合には、常時割り込みを許可してアノード調圧弁6及び循環ブロア10の通常時における制御が優先して実行される。
このように、本実施形態の燃料電池システムでは、アノード調圧弁6の開度を所定の周期で変動させ、アノード調圧弁6の開度の変動に同期させて循環ブロア10の回転数を変動させるので、循環ブロア10の応答速度よりもアノード調圧弁6の応答性のほうが良いことを利用して、より正確に変動周期Fを制御することが可能となる。
<第3の実施形態>
次に、本発明の第3の実施形態を図4に基づいて説明する。図4は、本実施形態の燃料電池システムによる生成水除去処理を示すフローチャートである。なお、本実施形態の燃料電池システムの構成は第1の実施形態と同一なので、詳しい説明は省略する。
本実施形態の燃料電池システムでは、アノード圧力センサ7で検出されたアノード圧力に基づいてアノード調圧弁6の開度変動を制御するようにしたことが第1の実施形態と異なっている。
図4に示すように、本実施形態の生成水除去処理におけるステップS301〜S307は、図1のステップS101〜S107と同一なので説明は省略する。
ステップS308において、コントローラ3は目標回転数RtをRt=R1+R2に設定して循環ブロア10に回転指令を与え、回転数を上昇させる(S308)。
そしてコントローラ3は、時間tを読み込んで(S309)t=t+t0に設定し(S310)、時間tにおける目標圧力Pt(t)を読み込む(S311)。
ここで、目標圧力Pt(t)は、図5(a)に示すように変動周期F、中央値P1、片側振幅P2で変動する圧力の時間関数であり、図5(b)に示す時間と振幅との関係を示したテーブルがコントローラ3に格納されている。また、片側振幅P2は水排出効果が得られるように5kPa以上であり、燃料電池2の電解質膜の破損を防止するために10kPa以下に設定されている。
こうして目標圧力Pt(t)を取得したら、次にコントローラ3は、アノード圧力センサ7で検出されるアノード圧力Pを読み込み(S312)、アノード圧力Pが目標圧力Pt(t)よりも大きいか否かを判定する(S313)。そして、アノード圧力Pが目標圧力Pt(t)よりも大きい場合にはアノード調圧弁6のデューティー比Dを減少させ(S314)、アノード圧力Pが目標圧力Pt(t)以下となる場合にはアノード調圧弁6のデューティー比Dを増加させて(S315)、時間tがF/2を経過しているか否かを判定する(S316)。ここで、F/2を経過していない場合にはステップS308に戻って上述した処理を実施し、F/2を経過している場合には目標回転数RtをRt=R1−R2に設定して循環ブロア10に回転指令を与え、回転数を下降させて(S317)、時間tにおける目標圧力Pt(t)を読み込む(S318)。
そしてコントローラ3は、アノード圧力センサ7で検出されるアノード圧力Pを読み込み(S319)、アノード圧力Pが目標圧力Pt(t)よりも大きいか否かを判定する(S320)。ここで、アノード圧力Pが目標圧力Pt(t)よりも大きい場合にはアノード調圧弁6のデューティー比Dを減少させ(S321)、アノード圧力Pが目標圧力Pt(t)以下となる場合にはアノード調圧弁6のデューティー比Dを増加させて(S322)、時間tがFを経過しているか否かを判定する(S323)。
そしてコントローラ3は、時間tが変動周期Fを経過していない場合にはステップS317に戻って上述した処理を実施し、変動周期Fを経過している場合には変動回数NをN=N+1に設定して(S324)、アイドルスイッチがオフになっているか否かを判定する(S325)。ここで、アイドルスイッチがオフになっていない場合にはステップS304に戻って上述した処理を繰り返し実施し、オフになっている場合には本実施形態の燃料電池システムによる生成水除去処理を終了する。ただし、上述した生成水除去処理の実施中においてアイドルスイッチがオフになった場合には、常時割り込みを許可してアノード調圧弁6及び循環ブロア10の通常時における制御が優先して実行される。
また、図4のフローチャートでは、アノード圧力に基づいてアノード調圧弁6の開度を変動させるように制御していたが、アノード圧力に基づいて循環ブロア10の回転数を変動させるように制御してもよい。
このように、本実施形態の燃料電池システムでは、アノード圧力センサ7で検出されたアノード圧力に基づいてアノード調圧弁6の開度変動あるいは循環ブロア10の回転数変動を制御するので、アノード供給流路5の圧力変動を予め設定した圧力変動となるようにフィードバック制御することができ、これによってより確実に生成水の排出効果が得られるとともに、燃料電池2の電解質膜が破損することを確実に防止できる。
<第4の実施形態>
次に、本発明の第4の実施形態を図6に基づいて説明する。図6は、本実施形態の燃料電池システムによる生成水除去処理を示すフローチャートである。なお、本実施形態の燃料電池システムの構成は第1の実施形態と同一なので、詳しい説明は省略する。
本実施形態の燃料電池システムでは、発電電流センサ28によって検出された燃料電池2の発電電流値が所定のしきい値以下のときに生成水除去処理を実施するようにしたことが、第1〜第3の実施形態と異なっている。
燃料電池2のアノード極に生成水が溜まる条件は、燃料電池2の発電電流が所定のしきい値以下となる低負荷運転のときである。従って、アイドル時だけでなく定格負荷以下となる低負荷運転のときにも生成水除去処理を実施することによって、より確実にアノード極から生成水を排水することが可能となる。
次に、本実施形態の燃料電池システムによる生成水除去処理を図6のフローチャートに基づいて説明する。図6に示すように、まずコントローラ3は、発電電流センサ28で検出された燃料電池2の発電電流Iを読み込み(S401)、発電電流Iが所定のしきい値Ithより小さいか否かを判定する(S402)。
ここで、発電電流Iが所定のしきい値Ith以上のときにはステップS401に戻って繰り返し発電電流Iの読み込みを行い、発電電流Iが所定のしきい値Ithより小さくなると、上述した第1〜第3の実施形態で説明した生成水除去処理を実行する(S403)。
そしてコントローラ3は、生成水除去処理を実行したら、発電電流Iが所定のしきい値Ithより大きいか否かを判定し(S404)、発電電流Iが所定のしきい値Ith以下のときにはステップS403に戻って生成水除去処理を繰り返し行う。一方、発電電流Iが所定のしきい値Ithより大きくなると、本実施形態の燃料電池システムによる生成水除去処理を終了する。ただし、上述した生成水除去処理の実施中において発電電流Iが所定のしきい値Ithより大きくなった場合には、常時割り込みを許可してアノード調圧弁6及び循環ブロア10の通常時における制御が優先して実行される。
このように、本実施形態の燃料電池システムでは、発電電流センサ28によって検出された発電電流Iが所定のしきい値Ith以下のときに生成水除去処理を実施するので、アイドル時だけでなく低負荷運転時にもアノード極に溜まった生成水を除去することができる。
<第5の実施形態>
次に、本発明の第5の実施形態を図7に基づいて説明する。図7は、本実施形態の燃料電池システムによる生成水除去処理を示すフローチャートである。なお、本実施形態の燃料電池システムの構成は第1の実施形態と同一なので、詳しい説明は省略する。
本実施形態の燃料電池システムでは、燃料電池2の発電電流Iに基づいて生成水の時間積分値を求め、この生成水の時間積分値が所定のしきい値より大きくなったときに生成水除去処理を実施するようにしたことが、第4の実施形態と異なっている。
次に、本実施形態の燃料電池システムによる生成水除去処理を図7のフローチャートに基づいて説明する。図7に示すように、まずコントローラ3は、発電電流センサ28で検出された燃料電池2の発電電流Iを読み込み(S501)、発電電流Iが所定のしきい値Ithより小さいか否かを判定する(S502)。
ここで、発電電流Iが所定のしきい値Ith以上のときにはステップS501に戻って繰り返し発電電流Iの読み込みを行い、発電電流Iが所定のしきい値Ithより小さくなると、予め設定されているテーブルに基づいて発電電流Iから水排出量Wを求める(S503)。
そしてコントローラ3は、この水排出量Wの時間積分値Swを算出し(S504)、この時間積分値Swが所定のしきい値Swthより大きいか否かを判定する(S505)。このしきい値Swthは燃料電池2のアノード流路に生成水が溜まったとしても問題のない量を予め実験などにより求めて設定しておく。
ここで、時間積分値Swが所定のしきい値Swth以下のときにはステップS503に戻って上述した処理を実施し、時間積分値Swが所定のしきい値Swthより大きいときには上述した第1〜第3の実施形態で説明した生成水除去処理を実行する(S506)。この生成水除去処理を実行したら、変動回数Nが所定回数Nthよりも多いか否かを判定し(S507)、変動回数Nが所定回数Nth以下のときにはステップS506に戻って生成水除去処理を繰り返し実行する。また、変動回数Nが所定回数Nthより多いときには本実施形態の燃料電池システムによる生成水除去処理を終了する。ただし、上述した生成水除去処理の実施中において発電電流Iが所定のしきい値Ithより大きくなった場合には、常時割り込みを許可してアノード調圧弁6及び循環ブロア10の通常時における制御が優先して実行される。
このように、本実施形態の燃料電池システムでは、燃料電池2の発電電流Iに基づいて生成水の時間積分値Swを求め、この生成水の時間積分値Swが所定のしきい値Swthより大きくなったときに生成水除去処理を実施するので、生成水をしきい値Swthまで溜めることにより生成水の排出回数を低減することができ、これによって循環ブロア10の騒音をさらに低減することが可能となる。
<第6の実施形態>
次に、本発明の第6の実施形態を図8に基づいて説明する。図8は、本実施形態の燃料電池システムによる生成水除去処理を示すフローチャートである。なお、本実施形態の燃料電池システムの構成は第1の実施形態と同一なので、詳しい説明は省略する。
本実施形態の燃料電池システムでは、燃料電池2の発電電流Iに基づいて、アノード調圧弁6の開度変動周期F、あるいは循環ブロア10の回転数変動周期Fを変化させるようにしたことが第3の実施形態と異なっている。
次に、本実施形態の燃料電池システムによる生成水除去処理を図8のフローチャートに基づいて説明する。図8に示すように、まずコントローラ3は、発電電流センサ28で検出された燃料電池2の発電電流Iを読み込み(S601)、発電電流Iが所定のしきい値Ithより小さいか否かを判定する(S602)。
ここで、発電電流Iが所定のしきい値Ith以上のときにはステップS601に戻って繰り返し発電電流Iの読み込みを行い、発電電流Iが所定のしきい値Ithより小さくなると、循環ブロア10をアイドル運転の回転数R1に設定するとともに(S603)、アノード調圧弁6の開度デューティー比Dをアイドル時の開度D1に設定する(S604)。
次にコントローラ3は、変動回数Nを1にセットし(S605)、発電電流センサ28で検出された燃料電池2の発電電流Iを読み込んで(S606)、予め設定されているテーブルから発電電流Iに対応する変動周期Fを読み込む(S607)。そして、時間カウントtをt=0に初期化して(S608)カウントを開始し、N=1であるか否かを判定する(S609)。ここで、N=1である場合にはt0=F/4としてt0を変動周期Fの1/4に設定し(S610)、N=1でない場合にはt0=0に設定する(S611)。
次にコントローラ3は、目標回転数RtをRt=R1+R2に設定して循環ブロア10に回転指令を与え、回転数を上昇させ(S612)、時間tを読み込んで(S613)t=t+t0に設定し(S614)、時間tにおけるアノード極の目標圧力Pt(F、t)をマップから読み込む(S615)。
ここで、目標圧力Pt(F、t)は、変動周期Fと時間tの関数として予めマップに記録され、コントローラ3に格納されている。
こうして目標圧力Pt(F、t)を取得したら、次にアノード圧力センサ7で検出されるアノード圧力Pを読み込み(S616)、アノード圧力Pが目標圧力Pt(F、t)よりも大きいか否かを判定する(S617)。そして、アノード圧力Pが目標圧力Pt(F、t)よりも大きい場合にはアノード調圧弁6のデューティー比Dを減少させ(S618)、アノード圧力Pが目標圧力Pt(F、t)以下となる場合にはアノード調圧弁6のデューティー比Dを増加させて(S619)時間tがF/2を経過しているか否かを判定する(S620)。ここで、F/2を経過していない場合にはステップS612に戻って上述した処理を実施し、F/2を経過している場合には目標回転数RtをRt=R1−R2に設定して循環ブロア10に回転指令を与え、回転数を下降させて(S621)時間tにおける目標圧力Pt(F、t)をマップから読み込む(S622)。
そしてコントローラ3は、アノード圧力センサ7で検出されるアノード圧力Pを読み込み(S623)、アノード圧力Pが目標圧力Pt(F、t)よりも大きいか否かを判定する(S624)。ここで、アノード圧力Pが目標圧力Pt(F、t)よりも大きい場合にはアノード調圧弁6のデューティー比Dを減少させ(S625)、アノード圧力Pが目標圧力Pt(F、t)以下となる場合にはアノード調圧弁6のデューティー比Dを増加させて(S626)時間tがFを経過しているか否かを判定する(S627)。
そしてコントローラ3は、時間tが変動周期Fを経過していない場合にはステップS621に戻って上述した処理を実施し、変動周期Fを経過している場合には変動回数NをN=N+1に設定して(S628)発電電流Iが所定のしきい値Ithより大きいか否かを判定し(S629)、発電電流Iが所定のしきい値Ith以下のときにはステップS606に戻って上述した処理を繰り返し実施する。一方、発電電流Iが所定のしきい値Ithより大きくなると、本実施形態の燃料電池システムによる生成水除去処理を終了する。ただし、上述した生成水除去処理の実施中において発電電流Iが所定のしきい値Ithより大きくなった場合には、常時割り込みを許可してアノード調圧弁6及び循環ブロア10の通常時における制御が優先して実行される。
また、図8のフローチャートでは、循環ブロア10の回転数変動周期Fを変化させる場合を一例として示したが、アノード調圧弁6の開度変動周期Fを変化させるように制御してもよい。
このように、本実施形態の燃料電池システムでは、燃料電池2の発電電流Iに基づいて、アノード調圧弁6の開度を変動させる周期F、あるいは循環ブロア10の回転数を変動させる周期Fを変化させるので、アノード極で生成水の発生が少なくなる運転領域において循環ブロア10の変動回数を減らすことができ、これによって消費電力を減らすことができるとともに、騒音を低減することもできる。
<第7の実施形態>
次に、本発明の第7の実施形態を図9に基づいて説明する。図9は、本実施形態の燃料電池システムによる生成水除去処理を示すフローチャートである。なお、本実施形態の燃料電池システムの構成は第1の実施形態と同一なので、詳しい説明は省略する。
本実施形態の燃料電池システムでは、燃料電池2の発電電流Iに基づいてアノード極における目標圧力を設定するようにしたことが第6の実施形態と異なっている。
次に、本実施形態の燃料電池システムによる生成水除去処理を図9のフローチャートに基づいて説明する。ただし、図9のフローチャートは図8に示した第6の実施形態のフローチャートとほぼ同様になるので、相違点のみを詳しく説明する。
図9に示すように、本実施形態の生成水除去処理におけるステップS701〜S706は、図8のステップS601〜S606と同一なので説明は省略する。また、本実施形態のステップS707〜S713は、図8のステップS608〜S614と同一なので説明は省略する。
ステップS714において、コントローラ3は燃料電池2の発電電流Iと時間tとに基づいて燃料電池2のアノード極の目標圧力Pt(I、t)をマップから読み込む。このマップは予め実験などによって求められたもので、コントローラ3に格納されている。燃料電池2で生じる生成水の量は発電電流Iに応じて決まるので、発電電流Iに基づいてアノード極の目標圧力Pt(I、t)を設定することにより、アノード極に溜まった生成水を確実に排出することができる。また、アノード極で生成水の発生が少なくなる運転領域では、循環ブロア10の負担を減らすことができるので、消費電力を減らすことができるとともに、騒音を低減することもできる。
この後、ステップS715〜S720は、図8のステップS616〜S621と同一の処理が実施され、ステップS721では、燃料電池2の発電電流Iと時間tとに基づいて燃料電池2のアノード極の目標圧力Pt(I、t)をマップから読み込む。
そして、ステップS722〜S728は、図8のステップS623〜S629と同一の処理が実施され、本実施形態の燃料電池システムによる生成水除去処理を終了する。ただし、上述した生成水除去処理の実施中において発電電流Iが所定のしきい値Ithより大きくなった場合には、常時割り込みを許可してアノード調圧弁6及び循環ブロア10の通常時における制御が優先して実行される。
このように、本実施形態の燃料電池システムでは、燃料電池2の発電電流Iに基づいて、アノード極における目標圧力Pt(I、t)を設定するので、アノード極に溜まった生成水を確実に排出することができる。また、アノード極で生成水の発生が少なくなる運転領域では、循環ブロア10の負担を減らすことができるので、消費電力を減らすことができるとともに、騒音を低減することもできる(請求項8の効果)。
<第8の実施形態>
次に、本発明の第8の実施形態を図10に基づいて説明する。図10は、本実施形態の燃料電池システムによる生成水除去処理を示すフローチャートである。なお、本実施形態の燃料電池システムの構成は第1の実施形態と同一なので、詳しい説明は省略する。
本実施形態の燃料電池システムでは、アノード調圧弁6の開度変動、あるいは循環ブロア10の回転数変動に同期させてパージ弁12を開閉するようにしたことが第7の実施形態と異なっている。
次に、本実施形態の燃料電池システムによる生成水除去処理を図10のフローチャートに基づいて説明する。ただし、図10のフローチャートは図9に示した第7の実施形態のフローチャートとほぼ同様なので、相違点のみを詳しく説明する。
図10に示すように、本実施形態の生成水除去処理では、ステップS805とS820でパージ弁12を閉じる制御を実施し、ステップS828でパージ弁12を開放する制御を実施するようにしたことが、図9に示した第7の実施形態のフローチャートとの相違点である。
すなわちコントローラ3は、アノード極の圧力を上昇させるステップS812〜S819の処理を実行する際にはパージ弁12を閉じてアノード極の圧力がさらに上昇するような制御を行い、アノード極の圧力を低下させるステップS822〜S827の処理を実行する際にはパージ弁12を開放してアノード極の圧力がさらに低下するように制御を行う。
また、図10のフローチャートでは、循環ブロア10の回転数変動に同期させてパージ弁12を開閉する場合を一例として示したが、アノード調圧弁6の開度変動に同期させてパージ弁12を開閉するように制御してもよい。
このように、本実施形態の燃料電池システムでは、アノード調圧弁6の開度変動、あるいは循環ブロア10の回転数変動に同期させてパージ弁12を開閉するので、循環ブロア10とアノード調圧弁6だけでアノード極に脈動を発生させた場合よりもより大きな脈動を発生させることができる。これによって燃料電池2のアノード極に溜まった生成水を確実に排出できるとともに、循環ブロア10の負担を軽くできることにより、騒音をさらに低減することが可能となる。
<第9の実施形態>
次に、本発明の第9の実施形態を図11に基づいて説明する。図11は、本実施形態の燃料電池システムによる生成水除去処理を示すフローチャートである。なお、本実施形態の燃料電池システムの構成は第1の実施形態と同一なので、詳しい説明は省略する。
本実施形態の燃料電池システムでは、アノード調圧弁6の開度変動、あるいは循環ブロア10の回転数変動に同期させて空気調圧弁27の開度を変動させるようにしたことが第7の実施形態と異なっている。
次に、本実施形態の燃料電池システムによる生成水除去処理を図11のフローチャートに基づいて説明する。図11に示すように、本実施形態の生成水除去処理におけるステップS901〜S918は、図9のステップS701〜S718と同一なので説明は省略する。
ステップS919において、コントローラ3は、カソード目標圧力PctをPct=Pt(I、t)に設定し、カソード圧力センサ25によって検出されたカソード圧力Pcを読み込んで(S920)カソード圧力Pcがカソード目標圧力Pctより大きくなっているか否かを判定する(S921)。
ここで、カソード圧力Pcがカソード目標圧力Pctより大きくなっているときには空気調圧弁27の開度を開くように制御し(S922)、カソード圧力Pcがカソード目標圧力Pct以下のときには空気調圧弁27の開度を閉じるように制御する(S923)。
この後、ステップS924〜S930の処理を実施するが、図9のステップS719〜S725と同一なので説明は省略する。
そしてコントローラ3は、ステップS931において、カソード目標圧力PctをPct=Pt(I、t)に設定し、カソード圧力センサ25によって検出されたカソード圧力Pcを読み込んで(S932)カソード圧力Pcがカソード目標圧力Pctより大きくなっているか否かを判定する(S933)。
ここで、カソード圧力Pcがカソード目標圧力Pctより大きくなっているときには空気調圧弁27の開度を閉じるように制御し(S934)、カソード圧力Pcがカソード目標圧力Pct以下のときには空気調圧弁27の開度を開放するように制御する(S935)。
そしてコントローラ3は、ステップS936〜S938は、図9のステップS726〜S728と同一の処理が実施され、本実施形態の燃料電池システムによる生成水除去処理を終了する。ただし、図11のフローチャートでは、循環ブロア10の回転数変動に同期させて空気調圧弁27の開度を制御する場合を一例として示したが、アノード調圧弁6の開度変動に同期させて空気調圧弁27の開度を制御するようにしてもよい。
このように、本実施形態の燃料電池システムでは、アノード調圧弁6の開度変動、あるいは循環ブロア10の回転数変動に同期させて空気調圧弁27の開度を変動させるので、アノード流路とカソード流路との間の差圧を小さくすることができ、これによって燃料電池2の電解質膜が破損することを防止できる。
以上、本発明の燃料電池システムについて、図示した実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は同様の機能を有する任意の構成のものに置き換えることができる。
本発明の第1の実施形態に係る燃料電池システムの構成を示すブロック図である。 本発明の第1の実施形態に係る燃料電池システムによる生成水除去処理を示すフローチャートである。 本発明の第2の実施形態に係る燃料電池システムによる生成水除去処理を示すフローチャートである。 本発明の第3の実施形態に係る燃料電池システムによる生成水除去処理を示すフローチャートである。 アノード極における目標圧力の時間変化を示す図である。 本発明の第4の実施形態に係る燃料電池システムによる生成水除去処理を示すフローチャートである。 本発明の第5の実施形態に係る燃料電池システムによる生成水除去処理を示すフローチャートである。 本発明の第6の実施形態に係る燃料電池システムによる生成水除去処理を示すフローチャートである。 本発明の第7の実施形態に係る燃料電池システムによる生成水除去処理を示すフローチャートである。 本発明の第8の実施形態に係る燃料電池システムによる生成水除去処理を示すフローチャートである。 本発明の第9の実施形態に係る燃料電池システムによる生成水除去処理を示すフローチャートである。
符号の説明
1 燃料電池システム
2 燃料電池
3 コントローラ(制御手段)
4 水素タンク
5 アノード供給流路
6 アノード調圧弁
7 アノード圧力センサ(アノード圧力検出手段)
8 アノード循環流路
9 水セパレータ
10 循環ブロア
11 パージ流路
12 パージ弁
21 空気圧縮機
22 エアフロメータ
23 カソード供給流路
24 加湿器
25 カソード圧力センサ
26 カソードオフガス流路
27 空気調圧弁
28 発電電流センサ(発電電流検出手段)

Claims (10)

  1. 燃料電池のアノード極へアノード供給流路を通じて燃料ガスを供給し、前記アノード極から排出されたガスをアノード循環流路によって前記アノード供給流路へ循環させる燃料電池システムにおいて、
    前記アノード極へ供給されるガスの圧力を調節するアノード調圧弁と、
    前記アノード循環流路内のガスを循環させる循環ブロアと、
    前記循環ブロアの回転数変動と前記アノード調圧弁の開度変動とを同期させて前記アノード極に溜まった生成水を取り除く生成水除去処理を実施する制御手段と
    を備えることを特徴とする燃料電池システム。
  2. 前記制御手段は、前記循環ブロアの回転数を所定の周期で変動させ、前記循環ブロアの回転数の変動に同期させて前記アノード調圧弁の開度を変動させることを特徴とする請求項1に記載の燃料電池システム。
  3. 前記制御手段は、前記アノード調圧弁の開度を所定の周期で変動させ、前記アノード調圧弁の開度の変動に同期させて前記循環ブロアの回転数を変動させることを特徴とする請求項1に記載の燃料電池システム。
  4. 前記燃料電池のアノード極の圧力を検出するアノード圧力検出手段をさらに備え、
    前記制御手段は、前記アノード圧力検出手段で検出されたアノード圧力に基づいて前記アノード調圧弁の開度変動あるいは前記循環ブロアの回転数変動を制御することを特徴とする請求項1から請求項3のいずれか1項に記載の燃料電池システム。
  5. 前記燃料電池の発電電流を検出する発電電流検出手段をさらに備え、
    前記制御手段は、前記発電電流検出手段によって検出された発電電流が所定のしきい値以下のときに前記生成水除去処理を実施することを特徴とする請求項1から請求項4のいずれか1項に記載の燃料電池システム。
  6. 前記制御手段は、前記燃料電池の発電電流に基づいて前記生成水の時間積分値を求め、この生成水の時間積分値が所定のしきい値より大きくなったときに前記生成水除去処理を実施することを特徴とする請求項5に記載の燃料電池システム。
  7. 前記制御手段は、前記燃料電池の発電電流に基づいて、前記アノード調圧弁の開度を変動させる周期、あるいは前記循環ブロアの回転数を変動させる周期を変化させることを特徴とする請求項5または請求項6のいずれか1項に記載の燃料電池システム。
  8. 前記制御手段は、前記燃料電池の発電電流に基づいて、前記生成水除去処理を実施する際の前記アノード極における目標圧力を設定することを特徴とする請求項5から請求項7のいずれか1項に記載の燃料電池システム。
  9. 前記アノード循環流路から外部へガスを排出するパージ弁をさらに備え、
    前記制御手段は、前記アノード調圧弁の開度変動、あるいは前記循環ブロアの回転数変動に同期させて前記パージ弁を開閉することを特徴とする請求項1から請求項8のいずれか1項に記載の燃料電池システム。
  10. 前記燃料電池のカソード極の圧力を調節する空気調圧弁をさらに備え、
    前記制御手段は、前記アノード調圧弁の開度変動、あるいは前記循環ブロアの回転数変動に同期させて前記空気調圧弁の開度を変動させることを特徴とする請求項1から請求項9のいずれか1項に記載の燃料電池システム。
JP2006107705A 2006-04-10 2006-04-10 燃料電池システム Pending JP2007280844A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107705A JP2007280844A (ja) 2006-04-10 2006-04-10 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107705A JP2007280844A (ja) 2006-04-10 2006-04-10 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2007280844A true JP2007280844A (ja) 2007-10-25

Family

ID=38682065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107705A Pending JP2007280844A (ja) 2006-04-10 2006-04-10 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2007280844A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109132A (ja) * 2010-11-18 2012-06-07 Nissan Motor Co Ltd 燃料電池システム
JP2012256613A (ja) * 2012-09-04 2012-12-27 Nissan Motor Co Ltd 燃料電池システム
CN105609807A (zh) * 2014-11-14 2016-05-25 丰田自动车株式会社 燃料电池搭载车辆、燃料电池***及其控制方法
US9391333B2 (en) 2012-12-14 2016-07-12 Hyundai Motor Company Pulsating operation method and system for fuel cell system
DE102019203248A1 (de) * 2019-03-11 2020-09-17 Audi Ag Verfahren zur Erkennung von Flüssigwasser in einer Brennstoffzelle, Brennstoffzellensystem und Kraftfahrzeug mit einem solchen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109132A (ja) * 2010-11-18 2012-06-07 Nissan Motor Co Ltd 燃料電池システム
JP2012256613A (ja) * 2012-09-04 2012-12-27 Nissan Motor Co Ltd 燃料電池システム
US9391333B2 (en) 2012-12-14 2016-07-12 Hyundai Motor Company Pulsating operation method and system for fuel cell system
CN105609807A (zh) * 2014-11-14 2016-05-25 丰田自动车株式会社 燃料电池搭载车辆、燃料电池***及其控制方法
JP2016096054A (ja) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 燃料電池システムおよび燃料電池搭載車両
DE102015117841B4 (de) 2014-11-14 2019-06-19 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem, Fahrzeug mit daran montierter Brennstoffzelle und Verfahren zum Steuern des Brennstoffzellensystems
DE102019203248A1 (de) * 2019-03-11 2020-09-17 Audi Ag Verfahren zur Erkennung von Flüssigwasser in einer Brennstoffzelle, Brennstoffzellensystem und Kraftfahrzeug mit einem solchen

Similar Documents

Publication Publication Date Title
CN107078319B (zh) 燃料电池***及其制造方法
JP5228835B2 (ja) 燃料電池システム
WO2010058747A1 (ja) 燃料電池システムおよびその制御方法
JP5428307B2 (ja) 燃料電池システム
JP2007280844A (ja) 燃料電池システム
JP2009054553A (ja) 燃料電池システム及びその制御方法
JP2008004432A (ja) 燃料電池システム
JP2006244952A (ja) 燃料電池システム
JP5168828B2 (ja) 燃料電池システム
CN110504466B (zh) 燃料电池***
JP2009117066A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2007157587A (ja) 燃料電池システム
JP6123774B2 (ja) 燃料電池システム
JP2017182944A (ja) 燃料電池システムの制御方法
JP5380914B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2009129760A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2004039322A (ja) 燃料電池システム
JP2007005064A (ja) 燃料電池システム
JP5444671B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5266626B2 (ja) 燃料電池システム
JP2007165019A (ja) 燃料電池システム
JP5412780B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5319171B2 (ja) 燃料電池システム
JP2013178911A (ja) 燃料電池システムの起動制御方法
JP2018092920A (ja) 燃料電池システムおよびその運転方法