JP2007280731A - Manufacturing method for carbon nanotube wire - Google Patents

Manufacturing method for carbon nanotube wire Download PDF

Info

Publication number
JP2007280731A
JP2007280731A JP2006104582A JP2006104582A JP2007280731A JP 2007280731 A JP2007280731 A JP 2007280731A JP 2006104582 A JP2006104582 A JP 2006104582A JP 2006104582 A JP2006104582 A JP 2006104582A JP 2007280731 A JP2007280731 A JP 2007280731A
Authority
JP
Japan
Prior art keywords
carbon
wire
manufacturing
carbon fiber
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006104582A
Other languages
Japanese (ja)
Inventor
Nagayasu Ikeda
長康 池田
Hisao Ashida
久男 芦田
Yoichi Hirano
洋一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006104582A priority Critical patent/JP2007280731A/en
Publication of JP2007280731A publication Critical patent/JP2007280731A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a wire using a carbon nanotube that has a current density 10<SP>3</SP>as large as that of copper as a conductive material, is light in weight, and has superior weatherproofness. <P>SOLUTION: Fine metallic powder is stuck to a carbon fiber element wire. As the fine metallic powder is used as a catalysis, carbon ions generated by decomposing a hydrocarbon by various methods are caused to grow on the surface of the element wire in an electric field into the carbon nanotube. Then, a plurality of such element wires are twisted together. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、電気産業のあらゆる分野の配線用電線の製造方法に関する。   The present invention relates to a method of manufacturing wiring wires in all fields of the electrical industry.

カーボンナノチューブ自身は、極めて高い導電率を有することが知られていたが、カーボンナノチューブ電線の製造法が存在しないため、カーボンナノチューブ電線も存在していない。従って、銅線やアルミ線を用いているため、大電力用送電線においては鋼線により補強し、重量に耐える構造を取ってきている。また、モーター、発電機等は、銅線を巻線として用いているため、非常に重いものになっている。特に、移動体に積み込まれたものにおいては、この銅巻線のため重く、エネルギー効率の悪いものとなっているか、利用をあきらめている場合が多い。   Carbon nanotubes themselves have been known to have very high electrical conductivity, but there is no carbon nanotube wire because there is no method for producing carbon nanotube wires. Accordingly, since copper wires and aluminum wires are used, large power transmission lines are reinforced with steel wires to withstand the weight. Also, motors, generators, etc. are very heavy because copper wires are used as windings. In particular, those loaded on a moving body are often heavy due to this copper winding and are inferior in energy efficiency, or often give up use.

また、カーボンナノチューブのみを用いて線状に加工し、電線を作ることは細く、しかも、短い素材なので縄状に編むにしても極めて難しい(下記特許文献1参照)。もし可能としても、生産性やコスト面から従来の電線に太刀打ちできない。
特開2005−48206号公報
In addition, it is very difficult to fabricate an electric wire by using only carbon nanotubes, and it is very difficult to knit it in a rope shape because it is a short material (see Patent Document 1 below). Even if possible, it is not possible to beat conventional electric wires because of productivity and cost.
JP 2005-48206 A

本願発明の課題は、導電性材料として注目されているカーボンナノチューブを利用して電線を製造することである。   The subject of this invention is manufacturing an electric wire using the carbon nanotube which attracts attention as an electroconductive material.

(本願発明の原理)
本願発明は、以下に述べるカーボンナノチューブの特徴的な性質を利用し、実用的な電線を製造するものである。
(1)電流密度:銅は、10 A/cmであるのに対し10A/cmと3桁大きい。
(2)引張り強度:1cm径で1200t、鋼鉄の数十倍である。しかも、しなやかである。
(3)軽量性:グラファイトは、比重が2.25で、銅(8.93)に比べれば、1/4である。
(4)耐薬品性:グラファイトと同じく、良好である。
(5)伝熱性:ダイヤモンドより良好である。
(6)形状:直径1nmに対して長さは1μ〜10μで、数千倍である。
(Principle of the present invention)
The present invention uses the characteristic properties of carbon nanotubes described below to produce a practical electric wire.
(1) Current density: Copper is 10 6 A / cm, while it is 10 9 A / cm, which is 3 digits larger.
(2) Tensile strength: 1,200 tons with a diameter of 1 cm, several tens of times that of steel. Moreover, it is supple.
(3) Lightweight: Graphite has a specific gravity of 2.25, which is 1/4 that of copper (8.93).
(4) Chemical resistance: as good as graphite.
(5) Heat conductivity: better than diamond.
(6) Shape: 1 μm to 10 μm in length with respect to a diameter of 1 nm, which is several thousand times.

この軽量性と大電流密度の特徴を生かし、カーボンナノチューブを用いたカーボンファイバー電線に仕上げる。   Taking advantage of this light weight and large current density, the carbon fiber wire using carbon nanotubes will be finished.

しかし、直径1nmに対して長さは1μ〜10μでのカーボンナノチューブを巨視的な繊維にするには至難の技術であり、従来のような、短繊維を電線に仕上げることは不可能である。幸い、カーボンナノチューブは同心円状のチューブ間では繊維間の接触によって分子間伝導やホッピンング伝導で電導性が期待できる(図1参照)。   However, it is extremely difficult to convert a carbon nanotube having a length of 1 μm to 10 μm into a macroscopic fiber with respect to a diameter of 1 nm, and it is impossible to finish a short fiber into an electric wire as in the prior art. Fortunately, carbon nanotubes can be expected to have electrical conductivity through intermolecular conduction and hopping conduction by contact between fibers between concentric tubes (see FIG. 1).

一方、カーボンファイバーにはアモルファスの炭素が夾雑物として入っており、電導性の良いグラファイトがつぶされ、寸断されていると考えられている(図2参照)。このため、カーボンファイバーの電導性は、あまり期待出来ない。
On the other hand, amorphous carbon is contained in the carbon fiber as impurities, and it is considered that graphite having good conductivity is crushed and broken (see FIG. 2). For this reason, the electrical conductivity of carbon fiber cannot be expected so much.

本発明は、これらカーボンナノチューブの良電導性、高電流密度性の特徴を維持し、取扱い難い微小繊維という欠点をカーボンファイバーの表面に植込むという方法で補い、従来にない、革新的な電線を製造する方法である。   The present invention maintains the good electrical conductivity and high current density characteristics of these carbon nanotubes, and compensates for the disadvantages of microfibers that are difficult to handle by the method of implanting them on the surface of the carbon fiber. It is a manufacturing method.

まず、カーボンファイバー素線に金属微粉を付着させ、該金属微粉を触媒として炭化水素を分解し、該素線の表面にカーボンナノチューブを成長させることを基本とする。   First, metal fine powder is attached to a carbon fiber strand, hydrocarbon is decomposed using the metal fine powder as a catalyst, and carbon nanotubes are grown on the surface of the strand.

上記カーボンナノチューブを成長させる際、上記カーボンファイバー素線を陰極にし、分解した上記炭化水素の炭素陽イオンを電界により引き付け、該カーボンナノチューブを該カーボンファイバー素線表面垂直方向に配向成長させる。   When the carbon nanotube is grown, the carbon fiber strand is used as a cathode, the decomposed carbon cation of the hydrocarbon is attracted by an electric field, and the carbon nanotube is oriented and grown in the direction perpendicular to the surface of the carbon fiber strand.

次に、上記カーボンナノチューブで覆われた上記カーボンファイバー素線を多数束ね、縄状に形成した構造を基本構造として、該基本構造を階層化した構造の電線を製造する。   Next, a large number of the carbon fiber strands covered with the carbon nanotubes are bundled, and an electric wire having a structure in which the basic structure is hierarchized using the structure formed in a rope shape as a basic structure is manufactured.

さらに、光繊維線、鋼又はアルミから成る線を上記電線と同時に撚り込む構造とする電線を製造するものである。
Furthermore, an electric wire having a structure in which a fiber made of optical fiber, steel or aluminum is twisted simultaneously with the electric wire is manufactured.

本願発明によるカーボンナノチューブを主な導電性素材とした電線は銅に比べで電流密度が3桁ほど大きく取れ、しかも、軽量であり、耐候性にもすぐれているため、電気産業のあらゆる分野の配線用電線として利用可能である。   Wires made of carbon nanotubes as the main conductive material according to the present invention have a current density about three orders of magnitude higher than copper, and are lightweight and have excellent weather resistance. It can be used as an electric wire.

特に、次の三大分野では極めて大きな効果が期待される:
(1)高効率大電力用送電線網
(2)電車用、電気自動車用及び走行ロボット用等の移動体のモーター
(3)あらゆる分野の導電用銅線の代替物
In particular, the following three major areas are expected to be extremely effective:
(1) High-efficiency, high-power transmission line network (2) Motors for moving objects such as trains, electric vehicles, and traveling robots (3) Alternatives to copper wires for conductive use in all fields

図面を用いて本願発明を以下に説明する。   The present invention will be described below with reference to the drawings.

低真空状態あるいはアルゴン、これと水素の混合ガスの雰囲気にカーボンファイバー素線を複数本置き、これを陰極性にする。その表面に触媒として金属微粉を蒸発、噴霧あるいは放電など種々の方法で、固着させる。   A plurality of carbon fiber strands are placed in a low vacuum state or an atmosphere of argon and a mixed gas of hydrogen and made into a cathode. Metal fine powder as a catalyst is fixed on the surface by various methods such as evaporation, spraying or discharge.

この際、均一に付着させるためと後工程で縄状にする必要から、各カーボンファイバーは同じ方向に回転させる。図3は、1例として触媒金属にレーザー光を照射して触媒金属を蒸発させ、カーボンファイバー表面に固着させる装置の模式図である。   At this time, each carbon fiber is rotated in the same direction because it is necessary to make it adhere uniformly and to form a rope shape in a subsequent process. FIG. 3 is a schematic view of an apparatus that, as an example, irradiates a catalyst metal with laser light to evaporate the catalyst metal and adheres it to the carbon fiber surface.

その後、この触媒金属の付着したカーボンファイバーをアルゴンあるいはこれに水素を混合した雰囲気で、ベンゼン等をガス化した炭化水素を送り、アーク放電法、レーザー蒸発法、加熱炉を用いた方法等により加熱、分解し、炭素の陽イオンを発生させる。   After that, the carbon fiber with the catalytic metal attached is heated by argon discharge method, laser evaporation method, method using heating furnace, etc. in the atmosphere where argon or hydrogen is mixed in this gas and hydrocarbon gasified from benzene etc. Decomposes and generates carbon cations.

この炭素イオンは、電界に引かれ、カーボンファイバー素線の上に表面垂直方向にカーボンナノチューブを合成、成長させる。これを導電性に必要な厚さにまで生成させる。これによりカーボンナノチューブの植え込んだ素線を製造する。   The carbon ions are attracted by an electric field, and synthesize and grow carbon nanotubes on the carbon fiber strands in the direction perpendicular to the surface. This is generated to the thickness required for conductivity. As a result, a strand in which carbon nanotubes are implanted is manufactured.

図4は、加熱炉を用いた方法でこの素線を製造する模式図を示す。この工程でアルゴン、水素及び未反応の炭化水素は回収し、不純物を除去、導入し、再利用している。図5には、この工程で作られる素線の模式図を示す。   FIG. 4 shows a schematic view of manufacturing this strand by a method using a heating furnace. In this step, argon, hydrogen and unreacted hydrocarbons are recovered, impurities are removed, introduced, and reused. In FIG. 5, the schematic diagram of the strand made by this process is shown.

上記カーボンナノチューブで覆われたカーボンファイバー素線を次段の工程において、多数束ね、縄状の構造に形成し、この構造を基本として、電流容量、引張り強度に必要なだけ、階層化して電線とする。この製造工程の模式図を図6に示す。図7には1例として、3本の素線からなる電線の基本構造を示す。同図Aには、この電線の断面を示す。
In the next step, a large number of carbon fiber strands covered with the carbon nanotubes are bundled and formed into a rope-like structure. Based on this structure, as many layers as necessary for current capacity and tensile strength are layered and the wires To do. A schematic diagram of this manufacturing process is shown in FIG. FIG. 7 shows a basic structure of an electric wire composed of three strands as an example. FIG. A shows a cross section of this electric wire.

本願発明によるカーボンナノチューブを主な導電性素材とした電線は銅に比べで電流密度が3桁ほど大きく取れ、しかも、軽量であり、耐候性にもすぐれているため、電気産業のあらゆる分野の配線用電線として利用可能である。
Wires made of carbon nanotubes as the main conductive material according to the present invention have a current density about three orders of magnitude higher than copper, and are lightweight and have excellent weather resistance. It can be used as an electric wire.

絡み合ったカーボンナノチューブの模式図Schematic diagram of intertwined carbon nanotubes カーボンファイバーの微細構造図Carbon fiber microstructure カーボンファイバー表面へ金属触媒を固着させる装置の概略図Schematic diagram of an apparatus for fixing a metal catalyst to the surface of a carbon fiber カーボンファイバー表面へのカーボンナノチューブを植生する反応槽装置の一例の模式図Schematic diagram of an example of a reaction tank device for vegetating carbon nanotubes on the surface of carbon fibers カーボンナノチューブを植込んだカーボンファイバー素線Carbon fiber strand implanted with carbon nanotube カーボンナノチューブを植込まれたカーボンファイバー素線を縄状構造に編む電線単体製造装置Single wire manufacturing equipment for knitting carbon fiber strands with carbon nanotubes in a rope-like structure カーボンファイバー素線を撚って縄状にした電線の基本構造Basic structure of a wire made by twisting carbon fiber strands into a rope shape 図7のA断面図A sectional view of FIG.

Claims (6)

カーボンファイバー素線に金属微粉を付着させ、該金属微粉を触媒として、炭化水素を分解し生成した炭素イオンを該素線の表面にカーボンナノチューブとして成長させたことを特徴とする素電線の製造方法。 A method of manufacturing a wire comprising attaching a metal fine powder to a carbon fiber wire, and using the metal fine powder as a catalyst to grow carbon ions generated by decomposing hydrocarbons as carbon nanotubes on the surface of the wire. . 上記カーボンナノチューブの成長は、導電性に必要な厚さにまで行うことを特徴とする請求項1に記載の素電線の製造方法。 The method for producing a bare wire according to claim 1, wherein the carbon nanotube is grown to a thickness necessary for conductivity. 上記炭化水素の分解は、アーク放電法、レーザー蒸発法、加熱炉を用いた方法により行うことを特徴とする請求項1又は2に記載の素電線の製造方法。 The method for producing a bare electric wire according to claim 1 or 2, wherein the hydrocarbon is decomposed by an arc discharge method, a laser evaporation method, or a method using a heating furnace. 上記カーボンナノチューブを成長させる際、上記カーボンファイバー素線を陰極にし、分解した上記炭化水素の炭素陽イオンを電界により引き付け、該カーボンナノチューブを該カーボンファイバー素線表面に対して垂直方向に配向成長させることを特徴とする請求項1から3のいずれかに記載の素電線の製造方法。 When growing the carbon nanotube, the carbon fiber strand is used as a cathode, the carbon cation of the decomposed hydrocarbon is attracted by an electric field, and the carbon nanotube is oriented and grown in a direction perpendicular to the surface of the carbon fiber strand. The manufacturing method of the bare wire in any one of Claim 1 to 3 characterized by the above-mentioned. 上記カーボンナノチューブで覆われた上記カーボンファイバー素線を多数束ね、縄状に形成した構造を基本構造として、該基本構造を階層化した構造を特徴とする請求項1から4のいずれかに記載の素電線を束ねた電線の製造方法。 5. The structure according to claim 1, wherein the carbon fiber strands covered with the carbon nanotubes are bundled together, and a structure formed in a rope shape is used as a basic structure, and the basic structure is hierarchized. A method of manufacturing an electric wire bundled with elementary wires. 光繊維線、鋼又はアルミから成る線を上記請求項5に記載の電線と同時に撚り込む構造とすること特徴とする電線の製造方法。

6. A method of manufacturing an electric wire, characterized in that an optical fiber wire, a wire made of steel or aluminum is made to be twisted simultaneously with the electric wire according to claim 5.

JP2006104582A 2006-04-05 2006-04-05 Manufacturing method for carbon nanotube wire Pending JP2007280731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104582A JP2007280731A (en) 2006-04-05 2006-04-05 Manufacturing method for carbon nanotube wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104582A JP2007280731A (en) 2006-04-05 2006-04-05 Manufacturing method for carbon nanotube wire

Publications (1)

Publication Number Publication Date
JP2007280731A true JP2007280731A (en) 2007-10-25

Family

ID=38681971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104582A Pending JP2007280731A (en) 2006-04-05 2006-04-05 Manufacturing method for carbon nanotube wire

Country Status (1)

Country Link
JP (1) JP2007280731A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183012A (en) * 2008-01-29 2009-08-13 Denso Corp Electrically powered pump
JP2009251609A (en) * 2008-04-09 2009-10-29 Xerox Corp Hsd wire using fibrous carbon nanomaterial yarn
WO2009139331A1 (en) * 2008-05-16 2009-11-19 住友電気工業株式会社 Carbon wire, nanostructure composed of carbon film, method for producing the carbon wire, and method for producing nanostructure
JP2009274936A (en) * 2008-05-16 2009-11-26 Sumitomo Electric Ind Ltd Carbon wire, assembled wire material and method for manufacturing those
WO2010095509A1 (en) * 2009-02-17 2010-08-26 学校法人 名城大学 Process and apparatus for producing composite material
JP2013212980A (en) * 2013-05-01 2013-10-17 Sumitomo Electric Ind Ltd Method for producing carbon wire and assembled wire material
JP2014508370A (en) * 2010-09-23 2014-04-03 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー CNT-infused fibers as self-shielding wires for reinforced transmission lines
FR3007189A1 (en) * 2013-06-17 2014-12-19 Nexans METHOD FOR MANUFACTURING AN ELECTRICALLY CONDUCTIVE ELEMENT
JP2017501959A (en) * 2013-12-30 2017-01-19 インディアン オイル コーポレーション リミテッド Method for simultaneous production of carbon nanotubes and product gas from crude oil and its products
US20220021257A1 (en) * 2019-03-29 2022-01-20 Furukawa Electric Co., Ltd. Coreless motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538026A (en) * 2002-09-12 2005-12-15 スネクマ・プロピュルシオン・ソリド Three-dimensional fiber structure of refractory fiber, method for preparing the same, and application to heat-resistant structural composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538026A (en) * 2002-09-12 2005-12-15 スネクマ・プロピュルシオン・ソリド Three-dimensional fiber structure of refractory fiber, method for preparing the same, and application to heat-resistant structural composite material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183012A (en) * 2008-01-29 2009-08-13 Denso Corp Electrically powered pump
JP2009251609A (en) * 2008-04-09 2009-10-29 Xerox Corp Hsd wire using fibrous carbon nanomaterial yarn
US8668952B2 (en) 2008-05-16 2014-03-11 Sumitomo Electric Industries, Ltd. Carbon wire and nanostructure formed of carbon film and method of producing the same
WO2009139331A1 (en) * 2008-05-16 2009-11-19 住友電気工業株式会社 Carbon wire, nanostructure composed of carbon film, method for producing the carbon wire, and method for producing nanostructure
JP2009274936A (en) * 2008-05-16 2009-11-26 Sumitomo Electric Ind Ltd Carbon wire, assembled wire material and method for manufacturing those
CN102026918B (en) * 2008-05-16 2014-08-27 住友电气工业株式会社 Carbon wire, nanostructure composed of carbon film, method for producing the carbon wire, and method for producing nanostructure
US8709539B2 (en) 2009-02-17 2014-04-29 Meijo University Process and apparatus for producing composite material that includes carbon nanotubes
WO2010095509A1 (en) * 2009-02-17 2010-08-26 学校法人 名城大学 Process and apparatus for producing composite material
JP5678881B2 (en) * 2009-02-17 2015-03-04 学校法人 名城大学 Manufacturing method and manufacturing apparatus of composite material
JP2014508370A (en) * 2010-09-23 2014-04-03 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー CNT-infused fibers as self-shielding wires for reinforced transmission lines
JP2013212980A (en) * 2013-05-01 2013-10-17 Sumitomo Electric Ind Ltd Method for producing carbon wire and assembled wire material
FR3007189A1 (en) * 2013-06-17 2014-12-19 Nexans METHOD FOR MANUFACTURING AN ELECTRICALLY CONDUCTIVE ELEMENT
EP2816567A1 (en) * 2013-06-17 2014-12-24 Nexans Method for manufacturing an elongate electrically conductive member
US9818497B2 (en) 2013-06-17 2017-11-14 Nexans Method of manufacturing an elongated electrically conducting element
JP2017501959A (en) * 2013-12-30 2017-01-19 インディアン オイル コーポレーション リミテッド Method for simultaneous production of carbon nanotubes and product gas from crude oil and its products
US20220021257A1 (en) * 2019-03-29 2022-01-20 Furukawa Electric Co., Ltd. Coreless motor

Similar Documents

Publication Publication Date Title
JP2007280731A (en) Manufacturing method for carbon nanotube wire
EP1275118B1 (en) Power cable
US20140084219A1 (en) Doped multiwalled carbon nanotube fibers and methods of making the same
US9362022B2 (en) Composite electric cable and process for producing same
US6887451B2 (en) Process for preparing carbon nanotubes
US20200399748A1 (en) Metal Matrix Composite Comprising Nanotubes And Method Of Producing Same
CN107851476B (en) Carbon nanotube assembly, carbon nanotube composite material, and carbon nanotube wire
JP2013542551A (en) Structural energy storage assembly and method of manufacturing the same
JP2013542551A5 (en)
JP2009179915A (en) Carbon fiber having high conductivity, method for producing the same and use thereof
KR102515194B1 (en) Carbon nanotube wire material, method for manufacturing carbon nanotube, and method for manufacturing carbon nanotube wire material
US7754283B2 (en) Continuous production of carbon nanotubes
JPWO2014021257A1 (en) Method for producing composite film comprising graphene and carbon nanotube
KR20110021721A (en) Carbon wire, nanostructure composed of carbon film, method for producing the carbon wire, and method for producing nanostructure
US20120031644A1 (en) Ultraconducting articles
CN105741975A (en) Graphene-coated energy-saving metal lead preparation method
JPWO2017164249A1 (en) Carbon nanotube composite and carbon nanotube wire
Holesinger et al. Carbon nanotube coated conductors
Zhang et al. Carbothermal shock enabled functional nanomaterials for energy-related applications
AU2017246244B2 (en) Graphene core conductors and fabrication method therefore
CN101837970B (en) Method for preparing three-dimensional macro carbon nanometer pipe network
JP2018115086A (en) Carbon nanotube aggregate and carbon nanotube wire
JP2009274936A (en) Carbon wire, assembled wire material and method for manufacturing those
US6217713B1 (en) Process for producing aquafuel by using carbon fiber bundle electrodes
JP5779788B2 (en) Method for producing carbon wire and aggregate wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619