JP2007280627A - Magnesium secondary battery - Google Patents

Magnesium secondary battery Download PDF

Info

Publication number
JP2007280627A
JP2007280627A JP2006101742A JP2006101742A JP2007280627A JP 2007280627 A JP2007280627 A JP 2007280627A JP 2006101742 A JP2006101742 A JP 2006101742A JP 2006101742 A JP2006101742 A JP 2006101742A JP 2007280627 A JP2007280627 A JP 2007280627A
Authority
JP
Japan
Prior art keywords
magnesium
active material
positive electrode
secondary battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006101742A
Other languages
Japanese (ja)
Inventor
Atsushi Omote
篤志 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006101742A priority Critical patent/JP2007280627A/en
Publication of JP2007280627A publication Critical patent/JP2007280627A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnesium secondary battery having high energy density and high cycle characteristics, with which a cathode active material, capable of storing and releasing magnesium ion and nonaqueous electrolyte converting the magnesium ion into movable ion, can be obtained. <P>SOLUTION: Of the magnesium secondary battery, consisting of an anode, nonaqueous electrolyte solution, and a cathode, an anode active material is of magnesium or an alloy containing magnesium, the electrolyte solution contains magnesium salt as electrolyte, and the cathode active material is expressed as: (Mg<SB>x</SB>M<SP>2</SP><SB>a</SB>M<SP>3</SP><SB>b</SB>M<SP>4</SP><SB>c</SB>)<SB>2</SB>(M'O<SB>4</SB>)<SB>3</SB>, (wherein, M<SP>2</SP>is a bivalent metal element selected from among Ca, Sr, and Ba, M<SP>3</SP>is a trivalent metal element selected from among Sc, Y, Ga, and In, and M<SP>4</SP>is a tetravalent metal element selected from among Zr, and Hf, satisfying x+a+b+c=2, c=a+x, as well as 0<x≤1, 0≤a<1, 0≤b<2, 0<c≤1, and M' is a hexavalent metal element containing W or Mo.). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高いエネルギー密度を有するマグネシウム二次電池に関する。   The present invention relates to a magnesium secondary battery having a high energy density.

現在、高いエネルギー密度を有するリチウム二次電池は携帯端末用電源として広く利用されている。   Currently, lithium secondary batteries having a high energy density are widely used as power sources for portable terminals.

実用されているリチウム二次電池では負極が炭素(ケッチェンブラック、グラファイトなど)正極はスピネル構造を有する酸化物(コバルト酸リチウムなど)の構成であるが、携帯端末の進歩による機能向上により電池電源の容量が課題になっている。   In lithium secondary batteries in practical use, the negative electrode is made of carbon (Ketjen black, graphite, etc.) and the positive electrode is made of an oxide having a spinel structure (such as lithium cobaltate). Capacity is an issue.

他方、Mg,Alは2価、3価であることからLiに匹敵する理論容量を有しており、Liと比較して安全性も高いことから、種々の電池応用が期待されている。   On the other hand, since Mg and Al are bivalent and trivalent, they have a theoretical capacity comparable to that of Li, and are safer than Li. Therefore, various battery applications are expected.

しかしながらこれらの電池は実用化が期待されながら、水溶液を電解液とする一次電池で非常用の注水電池として一部実現されているのみである。   However, these batteries are expected to be put into practical use, but are only partially realized as emergency water injection batteries with primary batteries using an aqueous solution as an electrolyte.

このうちマグネシウム電池は、非特許文献1にあるように、酸化還元電位が高く負極上で電解液である水の電気分解が起こることにより、理論上の酸化還元電位が安定して得られないという課題がある。   Among these, as described in Non-Patent Document 1, a magnesium battery has a high oxidation-reduction potential, and electrolysis of water as an electrolytic solution occurs on the negative electrode, so that a theoretical oxidation-reduction potential cannot be stably obtained. There are challenges.

一方、水を使用しない非水電解液を用いマグネシウムイオンを可動イオンとする電池を実現しようとする例がいくつか開示されている。   On the other hand, some examples have been disclosed in which a battery using magnesium ions as movable ions using a non-aqueous electrolyte that does not use water is realized.

非水電解液としては、非プロトン系有機溶剤(例えばプロピレンカーボネート、エチレンカーボネート、アクリロニトリルなど)が代表的に上げられる(例えば特許文献1、特許文献2)。また近年では非水電解液として常温溶融塩の開示もあり、これらに使用するMg塩としてハロゲン化マグネシウムやイミド塩、スルホン酸塩が開示されている(例えば、特許文献4、特許文献5、特許文献6)。   As the non-aqueous electrolyte, aprotic organic solvents (for example, propylene carbonate, ethylene carbonate, acrylonitrile, etc.) are typically listed (for example, Patent Document 1 and Patent Document 2). In recent years, ambient temperature molten salts have also been disclosed as non-aqueous electrolytes, and magnesium halides, imide salts, and sulfonates have been disclosed as Mg salts used for these (for example, Patent Document 4, Patent Document 5, Patents). Reference 6).

上記の負極、非水電解液を利用し、正極活物質にマグネシウムイオンを吸蔵放出可能な材料を組み合わせるとマグネシウム二次電池を提供することが可能となる。   A magnesium secondary battery can be provided by using the above negative electrode and non-aqueous electrolyte and combining the positive electrode active material with a material capable of occluding and releasing magnesium ions.

このような正極活物質としては、特許文献1、特許文献2にスピネル構造を有するマグネシウム酸化物、特許文献4、特許文献5には硫黄を含む正極活物質、特許文献6にはフッ化炭素が開示されている。   Examples of such a positive electrode active material include magnesium oxide having a spinel structure in Patent Documents 1 and 2, Patent Document 4 and Patent Document 5 include a positive electrode active material containing sulfur, and Patent Document 6 includes fluorocarbon. It is disclosed.

一方、熱膨張係数の小さい材料として、MgHf(WO43が特許文献7に開示されている。
特開2001−76720号公報 特開2002−25555号公報 特開2004−313991号公報 特開2004−259650号公報 特開2004−265675号公報 特開2004−265676号公報 特開2003−89572号公報 「最新電池ハンドブック」朝倉書店、1996年、第5編、p.593−737
On the other hand, Patent Document 7 discloses MgHf (WO 4 ) 3 as a material having a small thermal expansion coefficient.
JP 2001-76720 A JP 2002-25555 A JP 2004-313991 A JP 2004-259650 A JP 2004-265675 A JP 2004-265676 A JP 2003-89572 A “Latest Battery Handbook” Asakura Shoten, 1996, Volume 5, p. 593-737

特許文献1、2では、正極活物質としてスピネル構造を有する酸化物が開示されているが、この正極活物質は比較的大きな容量が期待される一方、マグネシウムイオンの吸蔵放出の際、活物質の結晶構造が大きく変化することが知られておりサイクル特性に課題がある。   In Patent Documents 1 and 2, an oxide having a spinel structure is disclosed as a positive electrode active material, but this positive electrode active material is expected to have a relatively large capacity. It is known that the crystal structure changes greatly, and there is a problem in cycle characteristics.

特許文献3、5では、硫黄を含む正極活物質が開示されている。   Patent Documents 3 and 5 disclose positive electrode active materials containing sulfur.

特許文献6では、フッ化炭素を含む正極活物質が開示されている。   Patent Document 6 discloses a positive electrode active material containing fluorocarbon.

これらの正極活物質は比較的大きな容量が期待されるが、不可逆容量が大きくサイクル特性に課題がある。   These positive electrode active materials are expected to have a relatively large capacity, but have a large irreversible capacity and a problem in cycle characteristics.

特許文献7にはマグネシウムを含む2価、4価の金属イオンからなるタングステン複合酸化物が開示されているが、金属イオンの挙動、結晶構造の安定性についての開示はない。   Patent Document 7 discloses a tungsten composite oxide composed of divalent and tetravalent metal ions containing magnesium, but does not disclose behavior of metal ions and stability of crystal structure.

したがって、マグネシウムイオンを吸蔵放出しサイクル特性の良好な正極活物質を実現した例はなく、マグネシウム二次電池は実用に至っていない。   Therefore, there is no example of realizing a positive electrode active material having good cycle characteristics by occluding and releasing magnesium ions, and a magnesium secondary battery has not been put into practical use.

以上の課題を解決する本発明は、負極と非水電解液と正極とからなるマグネシウム二次電池であって、負極活物質がマグネシウムまたはマグネシウムを含む合金であって、非水電解液が電解質としてマグネシウム塩を含む非水電解液であって、正極活物質が、(Mgx2 a3 b4 c2(M’O43(M2はCa、Sr、Baから選択される2価の金属元素であり、M3はSc、Y、Ga、Inから選択される3価の金属元素であり、M4はZr、Hfから選択される4価の金属元素であり、(x+a+b+c=2、c=a+xが満たされる。0<x<=1、0<=a<1、0=<b<2、0<c<=1、M’:WまたはMoを含む6価の金属元素。)であることを特徴とする。 The present invention for solving the above problems is a magnesium secondary battery comprising a negative electrode, a non-aqueous electrolyte, and a positive electrode, wherein the negative electrode active material is magnesium or an alloy containing magnesium, and the non-aqueous electrolyte is an electrolyte. A non-aqueous electrolyte containing a magnesium salt, wherein the positive electrode active material is selected from (Mg x M 2 a M 3 b M 4 c ) 2 (M′O 4 ) 3 (M 2 is selected from Ca, Sr, and Ba) M 3 is a trivalent metal element selected from Sc, Y, Ga and In, M 4 is a tetravalent metal element selected from Zr and Hf, x + a + b + c = 2 and c = a + x are satisfied, 0 <x <= 1, 0 <= a <1, 0 = <b <2, 0 <c <= 1, M ′: hexavalent including W or Mo It is a metal element.).

請求項2記載の発明は、請求項1記載のマグネシウム二次電池において、M’がMoであることを特徴とする。   The invention according to claim 2 is the magnesium secondary battery according to claim 1, wherein M ′ is Mo.

請求項3記載の発明は、請求項1、2記載のマグネシウム二次電池において、非水電解液が、Mg(CF3SO32を含む電解質と下記(化1)または(化2)で示される常温溶融塩からなることを特徴とする。 According to a third aspect of the present invention, in the magnesium secondary battery according to the first or second aspect, the nonaqueous electrolytic solution is an electrolyte containing Mg (CF 3 SO 3 ) 2 and the following (Chemical Formula 1) or (Chemical Formula 2): It is characterized by comprising the room temperature molten salt shown.

Figure 2007280627
Figure 2007280627

Figure 2007280627
請求項4記載の発明は、請求項1、2記載のマグネシウム二次電池において、非水電解液が、Mg・(N(CF3SO222を含む電解質と下記(化3)または(化4)で示される常温溶融塩からなることを特徴とする。
Figure 2007280627
According to a fourth aspect of the present invention, in the magnesium secondary battery according to the first or second aspect, the non-aqueous electrolyte includes an electrolyte containing Mg. (N (CF 3 SO 2 ) 2 ) 2 and the following (Chemical Formula 3) or It consists of normal temperature molten salt shown by (Chemical Formula 4).

Figure 2007280627
Figure 2007280627

Figure 2007280627
Figure 2007280627

本発明によれば、マグネシウムイオンを吸蔵放出可能な正極活物質とマグネシウムイオンを可動イオンとする非水電解液が得られ、エネルギー密度が高くサイクル特性の良好なマグネシウム二次電池を提供することができる。   According to the present invention, a positive electrode active material capable of occluding and releasing magnesium ions and a non-aqueous electrolyte using magnesium ions as movable ions can be obtained, and a magnesium secondary battery having high energy density and good cycle characteristics can be provided. it can.

以下、本発明について正極活物質について詳細に説明する。   Hereinafter, the positive electrode active material of the present invention will be described in detail.

我々は、(Mgx2 a3 b4 c2(M’O43
(M2はCa、Sr、Baから選択される2価の金属元素であり、M3はSc、Y、Ga、Inから選択される3価の金属元素であり、M4はZr、Hfから選択される4価の金属元素であり、(x+a+b+c=2、c=a+xが満たされる。0<x<=1、0<=a<1、0=<b<2、0<c<=1、M’:WまたはMoを含む6価の金属元素。)
について検討を行い、マグネシウム二次電池の正極活物質として利用可能であることを見いだした。
We, (Mg x M 2 a M 3 b M 4 c) 2 (M'O 4) 3
(M 2 is a divalent metal element selected from Ca, Sr, Ba, M 3 is a trivalent metal element selected from Sc, Y, Ga, In, and M 4 is from Zr, Hf. It is a selected tetravalent metal element, and (x + a + b + c = 2, c = a + x is satisfied. 0 <x <= 1, 0 <= a <1, 0 = <b <2, 0 <c <= 1 M ′: a hexavalent metal element containing W or Mo.)
And found that it can be used as a positive electrode active material of a magnesium secondary battery.

この正極活物質は、WO4 2-またはMoO4 2-で示される正四面体が層構造をとり、M2+(またはM3+、M4+)がその層間に配置された構造を有している。 This positive electrode active material has a structure in which a regular tetrahedron represented by WO 4 2− or MoO 4 2− has a layer structure, and M 2+ (or M 3+ , M 4+ ) is arranged between the layers. is doing.

この構造により高温(400℃以上)でM2+(またはM3+、M4+)によるイオン伝導性が報告されている。 With this structure, ion conductivity due to M 2+ (or M 3+ , M 4+ ) has been reported at a high temperature (400 ° C. or higher).

複合酸化物のイオン伝導は、一般に酸素イオンに起因するが、この化合物はWO4 2-(MoO4 2-)正四面体の酸素イオンがタングステンイオン(モリブデンイオン)と強く結合しているため、層間に位置する金属イオンが移動すると考えられている。 The ionic conduction of complex oxides is generally attributed to oxygen ions, but this compound has strong binding of WO 4 2− (MoO 4 2− ) tetrahedral oxygen ions to tungsten ions (molybdenum ions). It is believed that metal ions located between the layers move.

我々は、これら酸化物の常温での挙動に着目し、層間金属イオンのうち相対的にファンデルワールス力が小さくなる2価の金属イオンが電気化学的に吸蔵放出可能であることを見いだした。   We focused on the behavior of these oxides at room temperature and found that divalent metal ions with relatively low van der Waals forces among the interlayer metal ions can be occluded and released electrochemically.

また、価数の大きい3価、4価の金属イオンが層内に残存し2価金属イオンを吸蔵放出しても安定な結晶構造を保持することができ、二次電池用の正極活物質として好ましく用いることができる。   Further, even when trivalent and tetravalent metal ions having a large valence remain in the layer and occlude and release the divalent metal ions, a stable crystal structure can be maintained, and as a positive electrode active material for a secondary battery. It can be preferably used.

2価金属イオンのうち、マグネシウムイオンは原子量、イオン半径とも小さく、マグネシウムを含む本発明の正極活物質はマグネシウム二次電池用に好ましく用いることができる。   Among divalent metal ions, magnesium ion has a small atomic weight and ion radius, and the positive electrode active material of the present invention containing magnesium can be preferably used for a magnesium secondary battery.

マグネシウムイオン以外の2価、3価、4価の金属イオンの置換量は、置換量が大きいと吸蔵放出可能なマグネシウムイオンが少なくなり活物質としてのエネルギー密度が小さくなる。マグネシウムイオンの置換量が小さいと、マグネシウムイオンの吸蔵放出が結晶構造に与える影響が大きくなり、電池のサイクル特性が劣化する。   Regarding the substitution amount of divalent, trivalent and tetravalent metal ions other than magnesium ions, when the substitution amount is large, magnesium ions which can be occluded and released are reduced, and the energy density as an active material is reduced. If the substitution amount of magnesium ions is small, the influence of the occlusion / release of magnesium ions on the crystal structure becomes large, and the cycle characteristics of the battery deteriorate.

((Mgx2 a3 b4 c2(M’O43でマグネシウムの置換量を表すxの範囲としては0.4<x<=0.8が好ましい。 ((Mg x M 2 a M 3 b M 4 c) 2 (M'O 4) 0.4 as the range of x representing the substitution amount of magnesium in 3 <x <= 0.8 is preferable.

本発明の非水電解液としては、電解質のマグネシウム塩を含み、これをよく溶解・解離する電解液であれば好ましく用いることができる。   The nonaqueous electrolytic solution of the present invention can be preferably used as long as it contains an electrolyte magnesium salt and dissolves and dissociates it well.

電解質のマグネシウム塩と電解液の組合せは、溶解度や安定性、さらに環境影響などを考慮して選択すると好ましい。   The combination of the magnesium salt of the electrolyte and the electrolytic solution is preferably selected in consideration of solubility, stability, and environmental influences.

電解液として一般にはエチレンカーボネート、プロピレンカーボネートなど電位窓の広い有機溶媒が選択される。   In general, an organic solvent having a wide potential window such as ethylene carbonate or propylene carbonate is selected as the electrolytic solution.

これら有機溶媒に溶解するマグネシウム塩はMg(ClO42、MgCl2があげられる。 Examples of magnesium salts dissolved in these organic solvents include Mg (ClO 4 ) 2 and MgCl 2 .

しかしながら、これらのマグネシウム塩は、過酸化物、塩化物であるため安全性に問題がある場合がある。   However, since these magnesium salts are peroxides and chlorides, there may be a problem in safety.

特許文献4、5には、特定のマグネシウム塩と常温溶融塩からなる非水電解液が開示されており、安全性も高くイオン伝導度も高いので、これらで構成された非水電解液あれば好ましく用いることができる。   Patent Documents 4 and 5 disclose a non-aqueous electrolyte composed of a specific magnesium salt and a room temperature molten salt, which is safe and has high ionic conductivity. It can be preferably used.

しかしながら、本発明の電解質となるMg塩、Mg(CF3SO32およびMg・(N(CF3SO222さらにはマグネシウムの硫酸塩、リン酸塩、硝酸塩などを用いて、具体的にMg塩、常温溶融塩の組合せを検討した結果、Mg塩のうちMg(CF3SO32が、上記(化1)または(化2)で示される常温溶融塩によく溶解することを見出した。 However, using Mg salt, Mg (CF 3 SO 3 ) 2 and Mg · (N (CF 3 SO 2 ) 2 ) 2, and magnesium sulfate, phosphate, nitrate, etc., which are the electrolyte of the present invention, As a result of concretely examining the combination of Mg salt and room temperature molten salt, Mg (CF 3 SO 3 ) 2 out of Mg salt dissolves well in the room temperature molten salt represented by the above (Chemical Formula 1) or (Chemical Formula 2). I found out.

また、Mg・(N(CF3SO222は、上記(化3)または(化4)で示される常温溶融塩によく溶解するので、好ましく用いることができる。 Mg · (N (CF 3 SO 2 ) 2 ) 2 can be preferably used because it is well dissolved in the room temperature molten salt represented by the above (Chemical Formula 3) or (Chemical Formula 4).

これらの結果から、電解液中でMg塩が溶解・解離してマグネシウムイオンとして安定に存在するために、トリフルオロメタンスルホン酸(CF3SO3 -)、ビストリフルオロメタンスルホニルイミド(N(CF3SO22 -)が欠かせないものと考えている。 From these results, since Mg salt dissolved and dissociated in the electrolyte and stably existed as magnesium ions, trifluoromethanesulfonic acid (CF 3 SO 3 ), bistrifluoromethanesulfonylimide (N (CF 3 SO 2) 2 -) are considered indispensable.

常温溶融塩としては、イミダゾリウム塩、ピリジウム塩、ピロリジニウム塩、4級アンモニウム塩、フォスホニウム塩などカチオンの種類により多種の常温溶融塩があるが、アニオンがトリフルオロメタンスルホン酸(CF3SO3 -)であればMg(CF3SO32をよく溶解した。またMg・(N(CF3SO222は、アニオンをビストリフルオロメタンスルホニルイミド(N(CF3SO22 -)とする常温溶融塩によく溶解した。 There are various room temperature molten salts depending on the type of cation such as imidazolium salt, pyridium salt, pyrrolidinium salt, quaternary ammonium salt, and phosphonium salt, but the anion is trifluoromethanesulfonic acid (CF 3 SO 3 ). If so, Mg (CF 3 SO 3 ) 2 was well dissolved. Mg · (N (CF 3 SO 2 ) 2 ) 2 was well dissolved in a room temperature molten salt whose anion is bistrifluoromethanesulfonylimide (N (CF 3 SO 2 ) 2 ).

(化1)においてR1−R4はそれぞれ炭化水素であって、Aが窒素であればアンモニウム塩、りんであればフォスホニウム塩となる。   In (Chemical Formula 1), R1 to R4 are each a hydrocarbon. When A is nitrogen, it is an ammonium salt, and when A is phosphorus, it is a phosphonium salt.

炭素数は1〜6程度が好ましい。   As for carbon number, about 1-6 are preferred.

炭素数が増加すると常温溶融塩の融点が上昇する傾向があって、常温で固体になる傾向がある。またR1,R2は環を形成してもよく、Aが窒素の場合、五員環を形成していればピロリジニウム塩、六員環であればピリジニウム塩を構成する。   When the number of carbons increases, the melting point of the room temperature molten salt tends to increase and tends to become solid at room temperature. R1 and R2 may form a ring. When A is nitrogen, a pyrrolidinium salt is formed if a five-membered ring is formed, and a pyridinium salt is formed if a six-membered ring is formed.

(化2)においてR5−R7もそれぞれ炭化水素である。   In (Chemical Formula 2), R5-R7 are also hydrocarbons.

(化2)の場合もR5−R7の炭素数は1〜6程度が好ましい。   In the case of (Chemical Formula 2), the carbon number of R5-R7 is preferably about 1-6.

炭素数が増加すると融点が上昇する傾向があって、常温で固体となり溶融しなくなる傾向がある。R5−R7は環を形成してもよく、Aが窒素であってR5とR7でイミダゾリウム環を形成すればイミダゾリウム塩を構成する。   When the number of carbons increases, the melting point tends to rise, and it tends to become solid at room temperature and not melt. R5-R7 may form a ring, and if A is nitrogen and R5 and R7 form an imidazolium ring, an imidazolium salt is formed.

本発明の常温溶融塩(化1)(化2)は、Mg塩の溶解により粘度が上昇し、溶液粘度の上昇とともにイオン伝導後が低下する傾向がある。   The ordinary temperature molten salt (Chemical Formula 1) and Chemical Formula 2 of the present invention tend to increase in viscosity due to dissolution of Mg salt and decrease after ionic conduction as the solution viscosity increases.

この場合、溶液粘度の上昇、イオン伝導度の低下の程度に応じて、非水有機溶剤と混合してもちいてもよい。   In this case, it may be mixed with a non-aqueous organic solvent in accordance with the degree of increase in solution viscosity and decrease in ionic conductivity.

常温溶融塩と混合して用いる非水有機溶剤としては、一般的な有機溶剤であって常温溶融塩に溶解するものであればよい。   The non-aqueous organic solvent used by mixing with the room temperature molten salt may be a general organic solvent that can be dissolved in the room temperature molten salt.

プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジメトキシエタンなど電位窓が比較的広く溶液粘度の低いものが好ましい。   Those having a relatively wide potential window and low solution viscosity, such as propylene carbonate, ethylene carbonate, dimethyl carbonate, and dimethoxyethane, are preferred.

ただしこれらの有機溶剤は電解質であるMg塩を溶解しないので、混合比はMg塩を溶解する範囲で用いるとよく、非水有機溶剤の混合比で50体積%以下が好ましい。20体積%以下であればMg塩が十分に溶解した電解液が提供できるのでより好ましい。   However, since these organic solvents do not dissolve the Mg salt that is an electrolyte, the mixing ratio is preferably used within a range in which the Mg salt is dissolved, and the mixing ratio of the nonaqueous organic solvent is preferably 50% by volume or less. If it is 20 volume% or less, since the electrolyte solution which Mg salt fully melt | dissolved can be provided, it is more preferable.

(化3)ならびに(化4)のR8−R11および12−R14の場合もそれぞれ炭化水素である。R8−R11およびR12−R14の炭化水素、A(窒素またはりん)、五員環、六員環については、(化1)(化2)と同様であり、常温で液体であれば好ましく用いることができる。   In the case of R8-R11 and 12-R14 of (Chemical Formula 3) and (Chemical Formula 4), each is a hydrocarbon. The hydrocarbons R8-R11 and R12-R14, A (nitrogen or phosphorus), five-membered ring, and six-membered ring are the same as (Chemical Formula 1) and Chemical Formula 2 and should preferably be used if they are liquid at room temperature. Can do.

また、常温溶融塩(化3)(化4)は、(化1)(化2)と同様にMg塩の溶解により粘度が上昇し、溶液粘度の上昇とともにイオン伝導後が低下する傾向がある。   Moreover, the normal temperature molten salt (Chemical Formula 3) (Chemical Formula 4), like (Chemical Formula 1) (Chemical Formula 2), increases in viscosity due to dissolution of the Mg salt, and tends to decrease after ion conduction as the solution viscosity increases. .

この場合も、非水有機溶剤と混合してもちいてよい。   In this case, it may be mixed with a non-aqueous organic solvent.

常温溶融塩と混合して用いる非水有機溶剤は、一般的な有機溶剤であって常温溶融塩に溶解するものであればよい。プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジメトキシエタンなど電位窓が比較的広く溶液粘度の低いものであれば好ましく用いることができる。   The non-aqueous organic solvent used by mixing with the room temperature molten salt may be a general organic solvent that can be dissolved in the room temperature molten salt. Propylene carbonate, ethylene carbonate, dimethyl carbonate, dimethoxyethane or the like having a relatively wide potential window and a low solution viscosity can be preferably used.

ただしこれらの有機溶剤は電解質であるMg塩を溶解しないので、混合比はMg塩を溶解する範囲で用いるとよい。   However, since these organic solvents do not dissolve the Mg salt that is an electrolyte, the mixing ratio is preferably within a range in which the Mg salt is dissolved.

本発明の負極活物質は、マグネシウムを吸蔵放出が可能な材料であればよく、マグネシウム金属、マグネシウム合金などが好ましい。   The negative electrode active material of the present invention may be any material that can occlude and release magnesium, and magnesium metal, magnesium alloy and the like are preferable.

以下に、本発明のより具体的な実施例を示す。   Below, the more concrete Example of this invention is shown.

なお、実施例は本発明の一例を示すにすぎず、本発明は実施例に限定されない。   In addition, an Example shows only an example of this invention and this invention is not limited to an Example.

本発明の正極活物質、電解液の効果を確認するために、図1に示すコインセルを用いマグネシウム電池を作成した。   In order to confirm the effects of the positive electrode active material and the electrolytic solution of the present invention, a magnesium battery was prepared using the coin cell shown in FIG.

1はステンレス製の負極ケース、4はポリプロピレン製の多孔質フィルムからなるセパレータ、5はポリプロピレン製の絶縁ガスケット、7はステンレス製の正極ケースを用いた。   1 is a stainless steel negative electrode case, 4 is a separator made of a polypropylene porous film, 5 is a polypropylene insulating gasket, and 7 is a stainless steel positive electrode case.

2の負極、3の電解液、6の正極は、それぞれ下記の実施例に示す極板、電解液を用いた。   For the negative electrode 2, the electrolytic solution 3, and the positive electrode 6, the electrode plate and the electrolytic solution shown in the following examples were used, respectively.

電池作製手順を以下に示す。   The battery manufacturing procedure is shown below.

まず、上記正極6を、正極ケース7に圧着し、次に周縁部にガスケット5を装着し、この上に電解液3を滴下し、さらにその上にセパレータ4を設置し、再度電解液3を滴下する。   First, the positive electrode 6 is pressure-bonded to the positive electrode case 7, then the gasket 5 is attached to the peripheral edge, the electrolytic solution 3 is dropped thereon, the separator 4 is further installed thereon, and the electrolytic solution 3 is again applied. Dripping.

あらかじめ負極ケース1に負極2を圧着しておいたものをかみ合わせ、プレス機にてかしめ封口し、所望のコインセルを作製した。   The negative electrode case 1 which had been previously pressure-bonded with the negative electrode 2 was meshed and caulked and sealed with a press to produce a desired coin cell.

このようにして作製したコインセルの評価は、正極極板の単位面積あたり電流値0.1mA、電圧範囲1.5〜2.5Vで定電流充放電を行い、特性評価を行った。   Evaluation of the coin cell thus produced was performed by performing constant current charge / discharge at a current value of 0.1 mA and a voltage range of 1.5 to 2.5 V per unit area of the positive electrode plate.

(実施例1)
実施例として、正極活物質にMgHf(MoO43を用いたコインセルを作製した。
Example 1
As an example, a coin cell using MgHf (MoO 4 ) 3 as a positive electrode active material was produced.

正極活物質となるMgHf(MoO43は、MgOとHfO2とMoO3をモル比1:1:3で十分混合粉砕し、900℃4hで焼成を行い、ライカイキにて十分粉砕した後、粉末X線回折測定により結晶系が単一であることを確認して正極活物質とした。 MgHf (MoO 4 ) 3 serving as the positive electrode active material was sufficiently mixed and pulverized with MgO, HfO 2 and MoO 3 at a molar ratio of 1: 1: 3, fired at 900 ° C. for 4 hours, and sufficiently pulverized with Reiki. It was confirmed by powder X-ray diffraction measurement that the crystal system was single, and a positive electrode active material was obtained.

作製した正極活物質と、炭素粉末、および結着剤としてポリ4-フッ化エチレン粉末を重量比100:25:5の割合で混合し練合した。十分に練合したのち、このスラリーをシート上に圧延し、これを直径13.0mmの円盤上に打ち抜いて正極6とした。   The produced positive electrode active material, carbon powder, and poly-4-fluoroethylene powder as a binder were mixed and kneaded at a weight ratio of 100: 25: 5. After sufficiently kneading, this slurry was rolled onto a sheet and punched out on a disk having a diameter of 13.0 mm to obtain a positive electrode 6.

その際、極板の重量は25mgとなるようにした。   At that time, the weight of the electrode plate was set to 25 mg.

つづいて電解液3は以下のように作製した。電解液として、常温溶融塩BMI・CF3SO3(ブチルメチルイミダゾリウム−トリフルオロメタンスルホン酸)に対して、50mM(Mはmol/L)のMg(CF3SO32を加え、24時間攪拌を行い、Mg塩が十分に溶解したことを確認して電解液3とした。 Subsequently, the electrolytic solution 3 was produced as follows. As an electrolytic solution, 50 mM (M is mol / L) Mg (CF 3 SO 3 ) 2 is added to room temperature molten salt BMI · CF 3 SO 3 (butylmethylimidazolium-trifluoromethanesulfonic acid) for 24 hours. Stirring was performed to confirm that the Mg salt was sufficiently dissolved, and the electrolyte solution 3 was obtained.

負極2にはマグネシウム板、厚さ100μmを直径13.5mmに打ち抜いて、用いた。   The negative electrode 2 was made of a magnesium plate having a thickness of 100 μm punched to a diameter of 13.5 mm.

これらからコインセルを組立て、充放電特性の評価を行い、正極活物質あたりの放電容量を導いた。結果を表1に示す。   Coin cells were assembled from these, and the charge / discharge characteristics were evaluated, and the discharge capacity per positive electrode active material was derived. The results are shown in Table 1.

(実施例2)
正極活物質をMg0.5Hf0.5Sc1.0(MoO43として、コインセルを作製した。
(Example 2)
A coin cell was fabricated using Mg 0.5 Hf 0.5 Sc 1.0 (MoO 4 ) 3 as the positive electrode active material.

正極活物質のMg0.5Hf0.5Sc1.0(MoO43は、MgOとHfO2とScCO3とMoO3を所望のモル比で十分混合粉砕し、900℃4hで焼成を行い、ライカイキにて十分粉砕した後、粉末X線回折測定により結晶系が単一な菱面体晶であることを確認して正極活物質とした。 The positive electrode active material Mg 0.5 Hf 0.5 Sc 1.0 (MoO 4 ) 3 is sufficiently mixed and pulverized with MgO, HfO 2 , ScCO 3 and MoO 3 at a desired molar ratio, and fired at 900 ° C. for 4 hours. After pulverization, it was confirmed by powder X-ray diffraction measurement that the crystal system was a single rhombohedral crystal, and a positive electrode active material was obtained.

正極活物質以外は、実施例1と同様にコインセルを組み立てた。   A coin cell was assembled in the same manner as in Example 1 except for the positive electrode active material.

作製したコインセルの充放電特性の評価を行い、正極活物質あたりの放電容量を導いた。   The charge / discharge characteristics of the produced coin cell were evaluated, and the discharge capacity per positive electrode active material was derived.

結果を表1に示す。   The results are shown in Table 1.

(比較例1)
正極活物質に炭素粉末を用いて、実施例1,2と同様にコインセルを作製した。用いた炭素粉末は実施例1と同様で、炭素粉末、および結着剤としてポリ4-フッ化エチレン粉末を重量比50:5の割合で混合し練合して正極2を作製した。
(Comparative Example 1)
Coin cells were produced in the same manner as in Examples 1 and 2 using carbon powder as the positive electrode active material. The carbon powder used was the same as in Example 1, and the positive electrode 2 was prepared by mixing and kneading carbon powder and poly-4-fluoroethylene powder as a binder at a weight ratio of 50: 5.

作製したコインセルの充放電特性の評価を行い、正極活物質あたりの放電容量を導いた。   The charge / discharge characteristics of the produced coin cell were evaluated, and the discharge capacity per positive electrode active material was derived.

結果を表1に示す。   The results are shown in Table 1.

Figure 2007280627
表1より、比較例1として作製したコインセルの放電容量が小さく、充放電を繰り返すことにより放電容量が小さくなることがわかる。本発明の正極活物質を用いた実施例1,2の場合、放電容量が大きく、サイクル特性の良好なマグネシウム二次電池がえられることがわかった。
Figure 2007280627
From Table 1, it can be seen that the discharge capacity of the coin cell produced as Comparative Example 1 is small, and the discharge capacity is reduced by repeating charging and discharging. In Examples 1 and 2 using the positive electrode active material of the present invention, it was found that a magnesium secondary battery having a large discharge capacity and good cycle characteristics was obtained.

(実施例3)
実施例3として、正極活物質に(MgxZrySc(2-x-y))(WO43を用いたコインセルを作製した。
(Example 3)
Example 3, the positive electrode active material (Mg x Zr y Sc (2 -xy)) to produce a coin cell with (WO 4) 3.

正極活物質となる(MgxZrySc(2-x-y))(WO43を、MgOとZrO2とScCO3、WO3を所望のモル比で十分混合粉砕し、1100℃4hで焼成を行い、ライカイキにて十分粉砕して得た。 (Mg x Zr y Sc (2-xy) ) (WO 4 ) 3 serving as a positive electrode active material is sufficiently mixed and ground at a desired molar ratio with MgO, ZrO 2 , ScCO 3 , and WO 3 and fired at 1100 ° C. for 4 h. And was sufficiently pulverized with Reikaiki.

なお、粉砕後の物質を粉末X線回折測定により結晶系が単一であることを確認して正極活物質とした。   The pulverized material was confirmed to have a single crystal system by powder X-ray diffraction measurement and used as a positive electrode active material.

x(=y)は0,0.2、0.4、0.6、0.8、1.0のものをそれぞれ作製した。   x (= y) was prepared with 0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively.

つづいて電解液3は以下のように作製した。   Subsequently, the electrolytic solution 3 was produced as follows.

電解液として、常温溶融塩EMI・(N(CF3SO222(エチルメチルイミダゾリウム−ビストリフルオロメタンスルホニルイミド)に対して、50mM(Mはmol/L)のMg・(N(CF3SO222を加え、24時間攪拌を行い、Mg塩が十分に溶解したことを確認して電解液3とした。 As an electrolytic solution, 50 mM (M is mol / L) Mg · (N (M (mol / L)) with respect to room temperature molten salt EMI · (N (CF 3 SO 2 ) 2 ) 2 (ethylmethylimidazolium-bistrifluoromethanesulfonylimide). CF 3 SO 2 ) 2 ) 2 was added, and the mixture was stirred for 24 hours, and it was confirmed that the Mg salt was sufficiently dissolved.

これら正極活物質、電解液とマグネシウム板からなる負極を用いてコインセルを組立て、それぞれコインセル3−1、3−2、3−3、3−4、3−5、3−6とした。   Coin cells were assembled using these positive electrode active materials, a negative electrode made of an electrolytic solution and a magnesium plate, and formed as coin cells 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, respectively.

作製したコインセルの充放電特性の評価を行い、正極活物質あたりの放電容量を導いた。結果を表2に示す。   The charge / discharge characteristics of the produced coin cell were evaluated, and the discharge capacity per positive electrode active material was derived. The results are shown in Table 2.

Figure 2007280627
表2に示すようにx=0の時放電容量はほとんどゼロに等しく、マグネシウムの吸蔵放出を観測することはできなかった。
Figure 2007280627
As shown in Table 2, when x = 0, the discharge capacity was almost equal to zero, and no occlusion / release of magnesium could be observed.

0<x<=1(実施例3−2、3−3、3−4、3−5、3−6)の範囲で、マグネシウムの吸蔵放出が可能であり、良好なマグネシウム二次電池が得られた。   In the range of 0 <x <= 1 (Examples 3-2, 3-3, 3-4, 3-5, 3-6), magnesium can be occluded and released, and a good magnesium secondary battery can be obtained. It was.

xに応じて放電容量に変化が見られたが、特に実施例3−5、実施例3−6ではサイクル特性と放電容量を両立したマグネシウム二次電池を得ることができた。   Although a change was observed in the discharge capacity according to x, in particular, in Examples 3-5 and 3-6, a magnesium secondary battery having both cycle characteristics and discharge capacity could be obtained.

本発明にかかるマグネシウム二次電池は、良好なサイクル特性を示し、情報携帯端末(ノートパソコン、携帯電話など)電気自動車など広い範囲で二次電池として利用可能である。   The magnesium secondary battery according to the present invention exhibits good cycle characteristics and can be used as a secondary battery in a wide range of information portable terminals (notebook computers, mobile phones, etc.) and electric vehicles.

実施例において作製したコインセルを示す図The figure which shows the coin cell produced in the Example

符号の説明Explanation of symbols

1:負極ケース
2:負極
3:電解液
4:セパレータ
5:ガスケット
6:正極
7:正極ケース

1: Negative electrode case 2: Negative electrode 3: Electrolyte solution 4: Separator 5: Gasket 6: Positive electrode 7: Positive electrode case

Claims (4)

負極と非水電解液と正極とからなるマグネシウム二次電池であって、
極活物質が、マグネシウムまたはマグネシウムを含む合金であって、
水電解液が、電解質としてマグネシウム塩を含む非水電解液であって
正極活物質が、
(Mgx2 a3 b4 c2(M’O43
(M2はCa、Sr、Baから選択される2価の金属元素であり、M3はSc、Y、Ga、Inから選択される3価の金属元素であり、M4はZr、Hfから選択される4価の金属元素であり、(x+a+b+c=2、c=a+xが満たされる。0<x<=1、0<=a<1、0=<b<2、0<c<=1、M’:WまたはMoを含む6価の金属元素。)
であることを特徴とするマグネシウム二次電池。
A magnesium secondary battery comprising a negative electrode, a non-aqueous electrolyte, and a positive electrode,
The active material is magnesium or an alloy containing magnesium,
The water electrolyte is a non-aqueous electrolyte containing a magnesium salt as an electrolyte, and the positive electrode active material is
(Mg x M 2 a M 3 b M 4 c ) 2 (M′O 4 ) 3
(M 2 is a divalent metal element selected from Ca, Sr, Ba, M 3 is a trivalent metal element selected from Sc, Y, Ga, In, and M 4 is from Zr, Hf. It is a selected tetravalent metal element, and (x + a + b + c = 2, c = a + x is satisfied. 0 <x <= 1, 0 <= a <1, 0 = <b <2, 0 <c <= 1 M ′: a hexavalent metal element containing W or Mo.)
A magnesium secondary battery characterized by the above.
M’がMoであることを特徴とする正極活物質を用いた請求項1記載のマグネシウム二次電池。 The magnesium secondary battery according to claim 1, wherein the positive electrode active material is characterized in that M ′ is Mo. 非水電解液が、Mg(CF3SO32を含む電解質と下記(化1)または(化2)で示される常温溶融塩からなることを特徴とする請求項1、2記載のマグネシウム二次電池。
Figure 2007280627
Figure 2007280627
The magnesium non-aqueous electrolyte according to claim 1 or 2, wherein the non-aqueous electrolyte comprises an electrolyte containing Mg (CF 3 SO 3 ) 2 and a room temperature molten salt represented by the following (Chemical Formula 1) or (Chemical Formula 2). Next battery.
Figure 2007280627
Figure 2007280627
非水電解液が、Mg・(N(CF3SO222を含む電解質と下記(化3)または(化4)で示される常温溶融塩からなることを特徴とする請求項1、2記載のマグネシウム二次電池。
Figure 2007280627
Figure 2007280627
The non-aqueous electrolyte is composed of an electrolyte containing Mg. (N (CF 3 SO 2 ) 2 ) 2 and a room temperature molten salt represented by the following (Chemical Formula 3) or (Chemical Formula 4): 2. The magnesium secondary battery according to 2.
Figure 2007280627
Figure 2007280627
JP2006101742A 2006-04-03 2006-04-03 Magnesium secondary battery Pending JP2007280627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101742A JP2007280627A (en) 2006-04-03 2006-04-03 Magnesium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101742A JP2007280627A (en) 2006-04-03 2006-04-03 Magnesium secondary battery

Publications (1)

Publication Number Publication Date
JP2007280627A true JP2007280627A (en) 2007-10-25

Family

ID=38681879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101742A Pending JP2007280627A (en) 2006-04-03 2006-04-03 Magnesium secondary battery

Country Status (1)

Country Link
JP (1) JP2007280627A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148112A1 (en) * 2008-06-05 2009-12-10 ソニー株式会社 Magnesium ion-containing nonaqueous electrolyte solution and electrochemical device using the same
JP2011142048A (en) * 2010-01-08 2011-07-21 Sumitomo Electric Ind Ltd Electrolyte, magnesium ion secondary battery, and power system
JP2012048874A (en) * 2010-08-25 2012-03-08 Yamaguchi Univ Electrolyte for magnesium secondary battery, and magnesium secondary battery using the same
WO2012020942A3 (en) * 2010-08-09 2012-05-03 주식회사 엘지화학 Cathode current collector coated with a primer and magnesium secondary battery including same
EP2469631A1 (en) 2010-12-24 2012-06-27 Hitachi Ltd. Positive electrode active material for secondary battery and magnesium secondary battery using the same
JP4973819B1 (en) * 2012-01-20 2012-07-11 大日本印刷株式会社 Material for negative electrode plate of magnesium ion secondary battery, negative electrode plate for magnesium ion secondary battery, and magnesium ion secondary battery
JP2012142196A (en) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd Polyvalent ion conductive material, polyvalent ion conductive electrolyte, polyvalent ion conductive electrolyte-electrode assembly, and polyvalent ion battery
JP2012181962A (en) * 2011-02-28 2012-09-20 Sekisui Chem Co Ltd Polyvalent ion conductive material, polyvalent ion conductive electrolyte, polyvalent ion conductive electrolyte-electrode assembly, and polyvalent ion battery
WO2012160587A1 (en) * 2011-05-20 2012-11-29 株式会社 日立製作所 Magnesium secondary battery, and battery system equipped therewith
JP2013168351A (en) * 2012-01-16 2013-08-29 Dainippon Printing Co Ltd Battery pack
KR101353257B1 (en) 2010-08-09 2014-01-21 주식회사 엘지화학 Positive Current Collector Comprising Carbon-based Material and Magnesium Secondary Battery Comprising the Same
JP2014511161A (en) * 2011-03-08 2014-05-12 ペリオン テクノロジーズ インク. Rechargeable magnesium ion cell components and assemblies
JP2014139917A (en) * 2012-12-17 2014-07-31 Toyota Central R&D Labs Inc Nonaqueous electrolyte secondary battery and nonaqueous electrolyte magnesium secondary battery
JP2014143170A (en) * 2012-12-26 2014-08-07 Denso Corp Surface treatment method of negative electrode for magnesium secondary battery, negative electrode for magnesium secondary battery, and magnesium secondary battery
JP2014179336A (en) * 2010-09-17 2014-09-25 Lg Chem Ltd Electrode for magnesium secondary battery, and magnesium secondary battery including the same
JP2015522916A (en) * 2012-05-29 2015-08-06 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド Indium-tin binary negative electrode for magnesium ion rechargeable battery
US9231278B2 (en) 2013-02-28 2016-01-05 National University Corporation Nagoya Institute Of Technology Electrolyte solution for magnesium battery and magnesium battery containing this electrolyte solution
US9722288B2 (en) 2011-08-30 2017-08-01 Nagoya Institute Of Technology Liquid electrolyte for batteries, method for producing the same, and battery comprising the same
JP2019216069A (en) * 2018-06-14 2019-12-19 日亜化学工業株式会社 Cathode active material for nonaqueous electrolyte secondary battery and manufacturing method of the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2479077C2 (en) * 2008-06-05 2013-04-10 Сони Корпорейшн Magnesium ion-containing non-aqueous electrolytic solution and electrochemical device using said solution
JP2010015979A (en) * 2008-06-05 2010-01-21 Sony Corp Nonaqueous electrolyte containing magnesium ion and electrochemical device using the same
US9793545B2 (en) 2008-06-05 2017-10-17 Sony Corporation Magnesium battery comprising positive-electrode mixture with graphite fluoride and copper
WO2009148112A1 (en) * 2008-06-05 2009-12-10 ソニー株式会社 Magnesium ion-containing nonaqueous electrolyte solution and electrochemical device using the same
US8637192B2 (en) 2008-06-05 2014-01-28 Sony Corporation Nonaqueous electrolytic solution containing magnesium ions, and electrochemical device using the same
JP2011142048A (en) * 2010-01-08 2011-07-21 Sumitomo Electric Ind Ltd Electrolyte, magnesium ion secondary battery, and power system
KR101353257B1 (en) 2010-08-09 2014-01-21 주식회사 엘지화학 Positive Current Collector Comprising Carbon-based Material and Magnesium Secondary Battery Comprising the Same
WO2012020942A3 (en) * 2010-08-09 2012-05-03 주식회사 엘지화학 Cathode current collector coated with a primer and magnesium secondary battery including same
KR101326623B1 (en) 2010-08-09 2013-11-07 주식회사 엘지화학 Positive Current Collector Coated with Primer and Magnesium Secondary Battery Comprising the Same
US9379387B2 (en) 2010-08-09 2016-06-28 Lg Chem, Ltd. Cathode current collector coated with primer and magnesium secondary battery comprising the same
JP2012048874A (en) * 2010-08-25 2012-03-08 Yamaguchi Univ Electrolyte for magnesium secondary battery, and magnesium secondary battery using the same
JP2014179336A (en) * 2010-09-17 2014-09-25 Lg Chem Ltd Electrode for magnesium secondary battery, and magnesium secondary battery including the same
EP2469631A1 (en) 2010-12-24 2012-06-27 Hitachi Ltd. Positive electrode active material for secondary battery and magnesium secondary battery using the same
JP2012142196A (en) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd Polyvalent ion conductive material, polyvalent ion conductive electrolyte, polyvalent ion conductive electrolyte-electrode assembly, and polyvalent ion battery
JP2012181962A (en) * 2011-02-28 2012-09-20 Sekisui Chem Co Ltd Polyvalent ion conductive material, polyvalent ion conductive electrolyte, polyvalent ion conductive electrolyte-electrode assembly, and polyvalent ion battery
JP2014511161A (en) * 2011-03-08 2014-05-12 ペリオン テクノロジーズ インク. Rechargeable magnesium ion cell components and assemblies
KR101425810B1 (en) 2011-03-08 2014-08-01 펠리온 테크놀로지스 인크. Rechargeable magnesium ion cell components and assembly
WO2012160587A1 (en) * 2011-05-20 2012-11-29 株式会社 日立製作所 Magnesium secondary battery, and battery system equipped therewith
US9722288B2 (en) 2011-08-30 2017-08-01 Nagoya Institute Of Technology Liquid electrolyte for batteries, method for producing the same, and battery comprising the same
JP2013168351A (en) * 2012-01-16 2013-08-29 Dainippon Printing Co Ltd Battery pack
JP4973819B1 (en) * 2012-01-20 2012-07-11 大日本印刷株式会社 Material for negative electrode plate of magnesium ion secondary battery, negative electrode plate for magnesium ion secondary battery, and magnesium ion secondary battery
JP2015522916A (en) * 2012-05-29 2015-08-06 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド Indium-tin binary negative electrode for magnesium ion rechargeable battery
JP2014139917A (en) * 2012-12-17 2014-07-31 Toyota Central R&D Labs Inc Nonaqueous electrolyte secondary battery and nonaqueous electrolyte magnesium secondary battery
US9515317B2 (en) 2012-12-26 2016-12-06 Denso Corporation Surface treating method of negative electrode for magnesium secondary battery, negative electrode for magnesium secondary battery, and magnesium secondary battery
JP2014143170A (en) * 2012-12-26 2014-08-07 Denso Corp Surface treatment method of negative electrode for magnesium secondary battery, negative electrode for magnesium secondary battery, and magnesium secondary battery
US9231278B2 (en) 2013-02-28 2016-01-05 National University Corporation Nagoya Institute Of Technology Electrolyte solution for magnesium battery and magnesium battery containing this electrolyte solution
JP2019216069A (en) * 2018-06-14 2019-12-19 日亜化学工業株式会社 Cathode active material for nonaqueous electrolyte secondary battery and manufacturing method of the same
JP7164803B2 (en) 2018-06-14 2022-11-02 日亜化学工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Similar Documents

Publication Publication Date Title
JP2007280627A (en) Magnesium secondary battery
JP4131422B2 (en) Non-aqueous electrolyte and secondary battery including the same
JP6339076B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP5013217B2 (en) Non-aqueous secondary battery active material and non-aqueous secondary battery
WO2012035648A1 (en) Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2013197091A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including the same
JP2011210694A (en) Nonaqueous electrolyte secondary battery
CN104603996A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP5699876B2 (en) Sodium ion battery active material and sodium ion battery
JP2011228052A (en) Lithium ion secondary battery
WO2011117992A1 (en) Active material for battery, and battery
JPWO2011016553A1 (en) Nonaqueous electrolyte secondary battery
JP2009064707A (en) Active material for nonaqueous electrolyte secondary battery, and battery using the same
CN105789609A (en) Cathode material, preparation method and application thereof
JP2015088266A (en) Lithium battery
JPH1186905A (en) Nonaqueous electrolyte secondary battery
JP2014049198A (en) Sintered body for battery, all solid state lithium battery, and method for producing sintered body for battery
JP3426869B2 (en) Non-aqueous electrolyte secondary battery
US9184465B2 (en) Ion conductor and solid state battery
JP2013073792A (en) Nonaqueous electrolyte secondary battery
JP6677405B2 (en) Positive active material for magnesium secondary battery, positive electrode for magnesium secondary battery, and magnesium secondary battery
JP2012104280A (en) Sintered body for battery, all-solid lithium battery, and method for manufacturing sintered body for battery
JP2011103260A (en) Positive electrode active material for nonaqueous secondary battery
JP2006127848A (en) Aqueous lithium secondary battery