JP2007278995A - Method and device for measuring three-dimensional shape - Google Patents

Method and device for measuring three-dimensional shape Download PDF

Info

Publication number
JP2007278995A
JP2007278995A JP2006109325A JP2006109325A JP2007278995A JP 2007278995 A JP2007278995 A JP 2007278995A JP 2006109325 A JP2006109325 A JP 2006109325A JP 2006109325 A JP2006109325 A JP 2006109325A JP 2007278995 A JP2007278995 A JP 2007278995A
Authority
JP
Japan
Prior art keywords
shape
internal
data
point cloud
cloud data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006109325A
Other languages
Japanese (ja)
Inventor
Akira Tanaka
明 田中
Yutaka Ishiwatari
裕 石渡
Hitoshi Katayama
仁 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006109325A priority Critical patent/JP2007278995A/en
Publication of JP2007278995A publication Critical patent/JP2007278995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Processing Or Creating Images (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for measuring a three-dimensional shape capable of measuring three-dimensional inner and outer shapes of a product, capable of preparing a CAD data necessary for design and production, based on a measured data, and capable of reproducing the product. <P>SOLUTION: The method includes an inner shape composing step (St-3) of imaging respectively a surface shape and an inner shape of an object (St-1, St-2), for converting the imaged inner shape into a point group data, and for composing the converted point group data while overlapped using a reference marker as a base point, a surface shape composing step (St-4) of converting the imaged surface shape into a point group data, and for composing the converted point group data while overlapped using the reference marker as the base point, an inner and surface data composition step (St-5) of composing the inner shape composition point group data prepared in the inner shape composing step (St-3), and the surface shape composition point group data prepared in the surface shape composing step (St-4) to be integrated, and a three-dimensional shape conversion step (St-6) for converting a data prepared in the inner and surface data composition step (St-5) into the CAD data. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、製品を3次元的に計測し、得られた情報に基づいてCADデータを作成する3次元形状測定方法および3次元形状測定装置に関する。   The present invention relates to a three-dimensional shape measuring method and a three-dimensional shape measuring apparatus for measuring a product three-dimensionally and creating CAD data based on the obtained information.

一般に、リバースエンジニアリングにおいては、通常行われている図面から製品を作製するのではなく、既に製作された製品から逆にCADデータ等の設計、製造に必要なデータを求めることが行われている。つまり、この分野では、通常の設計、製造のフローとは逆のフローになっている。例えば、製品はあるものの、図面等の資料がなく、製品を再現したい場合、製品の座標情報から図面化に必要なCAD情報を収集するものである。   In general, in reverse engineering, a product is not produced from a normal drawing, but data required for designing and manufacturing such as CAD data is obtained from a product already produced. In other words, in this field, the flow is the reverse of the normal design and manufacturing flow. For example, when there is a product but there is no document such as a drawing and it is desired to reproduce the product, CAD information necessary for drawing is collected from the coordinate information of the product.

このようなリバースエンジニアリングの分野においては、例えば、特許文献1に見られるように、製品の立体モデルから3次元測定器で形状を測定し、設計から得られたCADデータを補正するものや、例えば、特許文献2に見られるように、2次元の図面およびその実物の3次元データを用いて3次元モデルを作製するもの、あるいは、例えば、特許文献3に開示されているように、X線を用いた試料の断面画像から形状測定を行う技術が数多く提案されている。
特開2003−242186号公報 特開2001−184527号公報 特開2004−317457号公報
In the field of reverse engineering, for example, as can be seen in Patent Document 1, the shape is measured with a three-dimensional measuring instrument from a three-dimensional model of a product, and CAD data obtained from the design is corrected. As shown in Patent Document 2, a three-dimensional model is created using a two-dimensional drawing and its actual three-dimensional data, or, for example, as disclosed in Patent Document 3, X-rays Many techniques for measuring a shape from a cross-sectional image of a used sample have been proposed.
JP 2003-242186 A JP 2001-184527 A JP 2004-317457 A

上述特許文献1〜2に開示された技術は、製品の外側(外面)の表面形状を測定するものであり、製品の内部(構造物)の測定を行っていない。   The techniques disclosed in Patent Documents 1 and 2 described above measure the surface shape of the outside (outer surface) of the product, and do not measure the inside (structure) of the product.

また、上述特許文献3に開示された技術は、X線を用いて内部断面形状を測定するものであり、製品の外側(外面)の測定を行っていない。   Moreover, the technique disclosed in Patent Document 3 described above measures the internal cross-sectional shape using X-rays, and does not measure the outside (outer surface) of the product.

このため、製品全体の構造を把握するためには内外面の形状を測定しないと、その正確なCADデータ情報が得られない等の不具合、不都合がある。   For this reason, in order to grasp the structure of the entire product, there is a problem and inconvenience that accurate CAD data information cannot be obtained unless the shape of the inner and outer surfaces is measured.

また、内外面の形状を測定しないと、形状によっては、他の部品の位置の影響でその形状が隠されてしまい表面からでは測定ができない場合、あるいは非破壊試験の手法を用いて内部形状を含めた全体形状を把握したい場合などでは、不正確な情報しか得られない等の不安がある。   Also, if the shape of the inner and outer surfaces is not measured, depending on the shape, the shape is hidden due to the influence of the position of other parts, and measurement from the surface is not possible, or the internal shape is determined using a nondestructive test method. When it is desired to grasp the entire shape including it, there is a concern that only inaccurate information can be obtained.

したがって、3次元形状の製品を測定する場合、従来から測定対象物の内部形状測定が可能な手段を、少なくとも一つ以上を備え、かつ内部形状と表面形状を合成し、任意の表面、断面形状を作成できる新らたな技術の実現が求められていた。   Therefore, when measuring a three-dimensional shape product, it has conventionally been provided with at least one means capable of measuring the internal shape of the measurement object, and the internal shape and the surface shape are combined to form an arbitrary surface or cross-sectional shape. Realization of new technology that can create

本発明は、このような事情に基づいてなされたもので、製品の3次元的に内外面形状を測定し、測定したデータから設計、製造に必要な正確なCADデータを作成し、製品を再現化する3次元形状測定方法および3次元形状測定装置を提供することを目的とする。   The present invention has been made based on such circumstances, and measures the internal and external surface shape of the product three-dimensionally, creates accurate CAD data necessary for design and manufacture from the measured data, and reproduces the product. An object of the present invention is to provide a three-dimensional shape measuring method and a three-dimensional shape measuring apparatus.

本発明に係る3次元形状測定方法は、上述の目的を達成するために、請求項1に記載したように、予め基準マーカを設置した対象物の表面形状および内部形状のそれぞれ複数枚撮像する形状撮像工程と、撮像した内部形状を点群データに変換し、変換した点群データを前記基準マーカを基点に重ね合わせて合成する内部形状合成工程と、撮像した表面形状を点群データに変換し、変換した点群データを前記基準マーカを基点に重ね合わせて合成する表面形状合成工程と、前記内部形状合成工程で作成した内部形状合成点群データと前記表面形状合成工程で作成した表面形状合成点群データとを前記基準マーカを基点として合成して一体化する内部表面データ合成工程と、この内部表面データ合成工程で作成したデータをCADデータに変換する3次元形状変換工程とを備える方法である。   In order to achieve the above-described object, the three-dimensional shape measuring method according to the present invention, as described in claim 1, forms a plurality of images of the surface shape and the internal shape of the object on which the reference marker is previously set. An imaging step, an internal shape synthesis step for converting the captured internal shape into point cloud data, and superimposing the converted point cloud data on the reference marker as a base point, and converting the captured surface shape into point cloud data The surface shape synthesis step of synthesizing the converted point cloud data by superimposing the reference marker on the base point, the internal shape synthesis point cloud data created in the internal shape synthesis step and the surface shape synthesis created in the surface shape synthesis step An internal surface data synthesis step for synthesizing and integrating point cloud data with the reference marker as a base point, and converting the data created in this internal surface data synthesis step into CAD data A method and a three-dimensional shape conversion process.

また、本発明に係る3次元形状測定装置は、上述の目的を達成するために、請求項3に記載したように、予め基準マーカを設置した対象物の表面形状を撮像する表面形状測定装置と、前記対象物の内部形状を撮像する内部形状測定装置と、前記表面形状測定装置で撮像した画像を点群データに変換し、変換した点群データを前記基準マーカを基点に重ね合わせて合成する表面形状合成装置と、前記内部形状測定装置で撮像した画像を点群データに変換し、変換した点群データを前記基準マーカを基点に重ね合わせて合成する内部形状合成装置と、前記表面形状合成装置および前記内部形状合成装置のそれぞれからの合成点群データを前記基準マーカを基点として重ね合わせて一体化する内部表面データ合成装置と、この内部表面データ合成装置で一体化した合成点群データをCADデータに変換する3次元形状変換装置とを備えたものである。   Moreover, in order to achieve the above-mentioned object, the three-dimensional shape measuring apparatus according to the present invention includes a surface shape measuring apparatus that images the surface shape of an object on which a reference marker is previously installed, as described in claim 3. The internal shape measuring device for imaging the internal shape of the object and the image captured by the surface shape measuring device are converted into point cloud data, and the converted point cloud data is superimposed on the reference marker and synthesized. A surface shape synthesizer, an internal shape synthesizer that converts an image captured by the internal shape measuring device into point cloud data, and synthesizes the converted point cloud data with the reference marker as a base point; and the surface shape synthesizer An internal surface data synthesizer that superimposes and integrates synthetic point group data from each of the apparatus and the internal shape synthesizer with the reference marker as a base point, and the internal surface data synthesizer In in which the combining point cloud data obtained by integrating and a three-dimensional shape conversion unit that converts the CAD data.

本発明に係る3次元形状測定方法および3次元形状測定装置は、対象測定物の表面形状および内部形状のそれぞれから撮像した画像のそれぞれを重ね合わせて合成し、表面形状の重ね合わせ合成像と内部形状の重ね合わせ合成像とをさらに重ね合わせ像に一体化し、この一体化した重ね合わせ像からCADデータを再現するので、リバースエンジニアリングにおける製品形状からの検査、製造の再現を容易に行うことができる。   The three-dimensional shape measuring method and the three-dimensional shape measuring apparatus according to the present invention superimpose and synthesize each of the images captured from the surface shape and the internal shape of the object to be measured. Since the superimposed composite image of the shape is further integrated into the superimposed image, and the CAD data is reproduced from the integrated superimposed image, it is possible to easily perform inspection from the product shape in reverse engineering and reproduction of the production. .

以下、本発明に係る3次元形状測定方法および3次元形状測定装置の実施形態を図面および図面に付した符号を引用して説明する。   Embodiments of a three-dimensional shape measuring method and a three-dimensional shape measuring apparatus according to the present invention will be described below with reference to the drawings and reference numerals attached to the drawings.

図1は、本発明に係る3次元形状測定方法および3次元形状測定装置の第1実施形態を示す概念図である。   FIG. 1 is a conceptual diagram showing a first embodiment of a three-dimensional shape measuring method and a three-dimensional shape measuring apparatus according to the present invention.

本実施形態は、例えば、駆動伝達軸等の対象物(製品)の表面形状を、例えば、3次元レーザ測定器等で測定する表面形状測定工程St−1と、例えばX線撮像管等を用いて対象物の内部形状を測定手段で測定する内部形状測定工程St−2と、この内部形状測定工程St−2で得られた測定画像を点群データに変換し、変換した点群データを予め対象物に設定しておいた基準マーカMを基点に重ね合せて合成する内部形状合成工程St−3と、上述表面形状測定工程St−1で測定した測定画像を点群データに変換し、変換した点群データを基準マーカMを基点に重ね合せて合成する表面形状合成工程St−4とを備えている。   This embodiment uses, for example, a surface shape measurement step St-1 for measuring the surface shape of an object (product) such as a drive transmission shaft, for example, with a three-dimensional laser measuring instrument, and an X-ray imaging tube, for example. The internal shape measuring step St-2 for measuring the internal shape of the object by the measuring means, and the measurement image obtained in the internal shape measuring step St-2 is converted into point cloud data, and the converted point cloud data is stored in advance. The internal shape synthesis step St-3 for superimposing the reference marker M set on the object on the base point and synthesizing it, and the measurement image measured in the surface shape measurement step St-1 are converted into point cloud data and converted. And a surface shape synthesis step St-4 for synthesizing the obtained point group data by superimposing the reference marker M on the base point.

ここで、点群データとは、3次元測定装置で測定またはCCDカメラ等で撮像した外表面形状や、X線撮像管等で撮像した内部形状を、それらの形状を損なわない程度の間隔を有した多数の点であらわすとともに、それらの点はそれぞれ3次元の座標値を有するものである。   Here, the point cloud data has an interval such that the outer surface shape measured by a three-dimensional measuring device or imaged by a CCD camera or the like, or the internal shape imaged by an X-ray imaging tube or the like is not impaired. These points have three-dimensional coordinate values.

また、本実施形態は、内部形状合成工程St−3からの内部形状点群データと表面形状合成工程St−4からの表面形状点群データとを基準マーカMを基点に重ね合せて合成する内部・表面合成工程St−5を有する。この内部・表面合成工程St−5では、得られた合成点群データを、例えば、合成点群データのうち、近接するある3点で構成され、ある適当な面積を有する三角形の面を仮定し、このような面を多数用いて前記表面形状測定工程St−1または前記内部形状測定工程St−2で撮像した画像全てを表現するポリゴンデータに変換される。よって、この工程St−5では、内部形状合成工程St−3および表面形状合成工程St−4で変換された点群データのうち、ポリゴンデータで活用されなかった点群データは削除される。そして、このポリゴンデータからさらに設計、製造に必要なCADデータやNCデータを作成する3次元形状変換工程St−6とを備える構成になっている。   Further, in the present embodiment, the internal shape point cloud data from the internal shape synthesis step St-3 and the surface shape point cloud data from the surface shape synthesis step St-4 are synthesized by superimposing the reference marker M as a base point. -It has a surface synthesis step St-5. In this internal / surface synthesis step St-5, the obtained synthesized point group data is assumed to be a triangular surface composed of, for example, three adjacent points in the synthesized point group data and having an appropriate area. A large number of such surfaces are used for conversion into polygon data representing all images captured in the surface shape measurement step St-1 or the internal shape measurement step St-2. Therefore, in this step St-5, the point cloud data not used in the polygon data is deleted from the point cloud data converted in the internal shape synthesis step St-3 and the surface shape synthesis step St-4. Further, it is configured to further include a three-dimensional shape conversion step St-6 for creating CAD data and NC data necessary for design and manufacture from the polygon data.

なお、表面形状合成工程St−4で合成点群データを作成する際、表面形状が、例えば段差等があって急激な形状変化がある場合、補正が行われるが、この場合の補正は設計者またはコンピュータで行うようにしている。   It should be noted that when creating the composite point cloud data in the surface shape synthesis step St-4, correction is performed if the surface shape has a step change or the like and there is a sharp shape change. In this case, the correction is performed by the designer. Or do it on a computer.

一方、対象物の内部形状を測定する測定手段には、X線撮像管装置、MRI(核磁気共鳴装置)、超音波装置、小型マイクロスコープ装置、レーザ顕微鏡、電子顕微鏡のうち、いずれかが選択される。   On the other hand, one of X-ray imaging tube device, MRI (nuclear magnetic resonance device), ultrasonic device, small microscope device, laser microscope, and electron microscope is selected as the measuring means for measuring the internal shape of the object. Is done.

このうち、MRIを選択する場合は、測定対象物の表面形状と内部形状とを同時に撮影できる点で有効である。   Among these, when MRI is selected, it is effective in that the surface shape and the internal shape of the measurement object can be photographed simultaneously.

また、超音波装置を選択する場合、送信側と受信側のセンサを複数用意し、各センサ毎に送受信角度を変化させフューズドアレイ手法を用いると、3次元断面形状の算出に有効である。   When selecting an ultrasonic device, it is effective to calculate a three-dimensional cross-sectional shape by preparing a plurality of sensors on the transmission side and reception side and changing the transmission / reception angle for each sensor and using the fused array technique.

さらに、測定対象物の内部形状にわずかな隙間がある場合、小型マイクロスコープ装置を選択することにより、その隙間から撮影を良好に行うことができる。   Furthermore, when there is a slight gap in the internal shape of the measurement object, photographing can be performed well from the gap by selecting a small microscope device.

また、表面形状の測定対象が極少なミクロンオーダの場合、レーザ顕微鏡、電子顕微鏡を選択すると、鮮明な画像が得られる点で有効である。   In addition, when the surface shape is to be measured in a micron order, it is effective in that a clear image can be obtained by selecting a laser microscope or an electron microscope.

内部表面合成工程St−5で、内部形状点群データと表面形状点群データとを重ね合わせて合成するとき、本実施形態では、内部の断面形状を複数枚撮像し、一方の各断面画像と他方の各画像間との距離をわずかに置いて重ね合わせるとともに、重ね合わせた画像を表面および内部の共通の基準マーカMおよび表面形状、輪郭をベースに回転させながら表面形状や輪郭の点群データと合わせ込みを行って合成画像を作成する。   In the internal surface synthesis step St-5, when the internal shape point cloud data and the surface shape point cloud data are superimposed and synthesized, in this embodiment, a plurality of internal cross-sectional shapes are imaged, and each cross-sectional image and The image is superimposed with a slight distance from each other, and the surface shape and contour point cloud data are rotated while the superimposed image is rotated based on the surface and internal common reference marker M, surface shape and contour. To create a composite image.

このように、本実施形態は、測定対象の表面形状および内部形状のそれぞれを画像化し、各内外形状の画像を点群データに変換し、変換した点群データを基準マーカM等と基点に重ね合せて3次元形状のCADデータを作成するので、表面形状、内部形状を含めた全体形状を把握できるとともに、任意の表面、内部断面形状を作成することができ、リバースエンジニアリングにおける製品形状からの検査、製造の再現等を容易に行うことができる。   As described above, in the present embodiment, the surface shape and the internal shape of the measurement target are each imaged, the images of the internal and external shapes are converted into point cloud data, and the converted point cloud data is overlaid on the reference marker M and the base point. In addition, CAD data of 3D shape is created, so that the overall shape including the surface shape and internal shape can be grasped, and any surface and internal cross-sectional shape can be created. Inspection from product shape in reverse engineering The reproduction of the production can be easily performed.

図2は、本発明に係る3次元形状測定方法および3次元形状測定装置の第2実施形態を示す概念図である。   FIG. 2 is a conceptual diagram showing a second embodiment of the three-dimensional shape measuring method and the three-dimensional shape measuring apparatus according to the present invention.

本実施形態は、測定対象として発電機ロータ(発電機の回転軸)1を適用例とし、発電機ロータ1の内部形状の測定を行うX線カメラ2と、このX線カメラ2を昇降自在にして、回転自在に移動させるスタンド支持装置3とを備えた内部形状測定装置3aを設けるとともに、X線カメラ2から照射されるX線の照射角度、照射距離に基づいて画像間の距離を算出するX線照射距離算出装置4をX線カメラ2に設けたものである。   In this embodiment, a generator rotor (rotary shaft of the generator) 1 is applied as an object to be measured, and an X-ray camera 2 that measures the internal shape of the generator rotor 1 and the X-ray camera 2 can be moved up and down. In addition, an internal shape measuring device 3a including a stand support device 3 that can be freely rotated is provided, and a distance between images is calculated based on an irradiation angle and an irradiation distance of X-rays emitted from the X-ray camera 2. The X-ray irradiation distance calculation device 4 is provided in the X-ray camera 2.

なお、発電機ロータ1は、図3に示すように、周方向から中心位置に向ってコイル溝が設けられ、このコイル溝5に、図4に示すように、軸方向に向ってコイル6が収容されている。   As shown in FIG. 3, the generator rotor 1 is provided with a coil groove from the circumferential direction toward the center position, and the coil groove 5 is provided with a coil 6 in the axial direction as shown in FIG. Contained.

この発電機ロータ1を例示に採った本発明に係る3次元形状測定方法および3次元形状測定装置は、第1実施形態と同様に、発電機ロータ1の表面形状を、例えば、レーザを用いた3次元測定装置で構成される表面形状測定装置7と、発電機ロータ1の内部形状を測定する例えば、X線カメラ2と、X線カメラ2で撮像した測定画像を点群データに変換し、変換した点群データを基準マーカMを基点に重ね合せて合成する内部形状合成装置8と、上述表面形状測定装置7で測定画像を点群データに変換し、変換した点群データを基準マーカMを基点に重ね合せて合成する表面形状合成装置9と、各内外部形状合成装置8,9からの点群データを基にして内部と表面を一体化して合成する内部・表面データ合成装置10と、この内部・表面データ合成装置10で合成した点群データを基にして設計、製造に必要な3次元のCADデータを作成する3次元形状変換装置11とを備える構成になっている。   In the three-dimensional shape measuring method and the three-dimensional shape measuring apparatus according to the present invention taking the generator rotor 1 as an example, the surface shape of the generator rotor 1 is, for example, a laser as in the first embodiment. For example, an X-ray camera 2 that measures the internal shape of the generator rotor 1 and the surface shape measuring device 7 constituted by a three-dimensional measuring device, and a measurement image captured by the X-ray camera 2 are converted into point cloud data, The internal shape synthesizer 8 that synthesizes the converted point cloud data by superimposing the reference marker M on the base point, and the surface shape measurement device 7 converts the measurement image into point cloud data, and the converted point cloud data is converted to the reference marker M. A surface shape synthesizing device 9 that superimposes them on the base point, and an internal / surface data synthesizing device 10 that synthesizes the inside and the surface by integrating them based on the point cloud data from the internal and external shape synthesizing devices 8 and 9; , This internal / surface data The point group data synthesized in synthesizer 10 based on the design, has a structure and a three-dimensional shape converter 11 to create a three-dimensional CAD data necessary for the production.

このように、本実施形態は、発電機ロータ1の表面形状および内部形状のそれぞれを表面形状測定装置7、内部形状測定装置3aのそれぞれで複数枚撮像し、撮像した画像のうち、表面形状画像および内部形状画像のそれぞれを点群データに変換し、変換した点群データから、表面形状を表面形状合成装置9で重ね合せて合成し、また内部形状を内部形状合成装置8で重ね合せて合成し、重ね合わせたそれぞれの表面形状および内部形状を内部表面データ合成装置10で点群データを一体にして重ね合せて合成し、点群データを一体にして重ね合わせたデータから3次元形状変換装置11で立体形状の3次元CADデータを作成するので、発電機ロータ1の3次元全体形状を容易に把握でき、リバースエンジニアリングにおける製品形状から検査、製造の再現等を容易に行うことができる。   As described above, in the present embodiment, a plurality of images of the surface shape and the internal shape of the generator rotor 1 are respectively captured by the surface shape measuring device 7 and the internal shape measuring device 3a, and among the captured images, the surface shape image And the internal shape image are converted into point cloud data, and the surface shape is superimposed and synthesized by the surface shape synthesizer 9 from the converted point cloud data, and the internal shape is superimposed and synthesized by the internal shape synthesizer 8. Then, the superposed surface shape and internal shape are synthesized by superimposing the point cloud data by the internal surface data synthesizing device 10, and the three-dimensional shape conversion device is obtained from the superposed data of the point cloud data. Since the three-dimensional CAD data of the three-dimensional shape is created at 11, it is possible to easily grasp the entire three-dimensional shape of the generator rotor 1, and from the product shape in reverse engineering査, it is possible to easily reproduce the manufacture and the like.

本発明に係る3次元形状測定方法および3次元形状測定装置の第1実施形態を示す概念図。The conceptual diagram which shows 1st Embodiment of the three-dimensional shape measuring method and three-dimensional shape measuring apparatus which concern on this invention. 本発明に係る3次元形状測定方法および3次元形状測定装置の第2実施形態を示す概念図。The conceptual diagram which shows 2nd Embodiment of the three-dimensional shape measuring method and three-dimensional shape measuring apparatus which concern on this invention. 図2のA−A矢視方向から切断した切断概念図。The cutting | disconnection conceptual diagram cut | disconnected from the AA arrow direction of FIG. 本発明に係る3次元形状測定方法および3次元形状測定装置に適用する例示としての発電機ロータを示す概念図。The conceptual diagram which shows the generator rotor as an example applied to the three-dimensional shape measuring method and three-dimensional shape measuring apparatus which concern on this invention.

符号の説明Explanation of symbols

1 発電機ロータ
2 X線カメラ
3 スタンド支持装置
3a 内部形状測定装置
4 X線照射距離算出装置
5 コイル溝
6 コイル
7 表面形状測定装置
8 内部形状合成装置
9 表面形状合成装置
10 内部表面データ合成装置
11 3次元形状変換装置
DESCRIPTION OF SYMBOLS 1 Generator rotor 2 X-ray camera 3 Stand support apparatus 3a Internal shape measuring apparatus 4 X-ray irradiation distance calculation apparatus 5 Coil groove 6 Coil 7 Surface shape measuring apparatus 8 Internal shape synthesizing apparatus 9 Surface shape synthesizing apparatus 10 Internal surface data synthesizing apparatus 11 3D shape converter

Claims (6)

予め基準マーカを設置した対象物の表面形状および内部形状のそれぞれ複数枚撮像する形状撮像工程と、撮像した内部形状を点群データに変換し、変換した点群データを前記基準マーカを基点に重ね合わせて合成する内部形状合成工程と、撮像した表面形状を点群データに変換し、変換した点群データを前記基準マーカを基点に重ね合わせて合成する表面形状合成工程と、前記内部形状合成工程で作成した内部形状合成点群データと前記表面形状合成工程で作成した表面形状合成点群データとを前記基準マーカを基点として合成して一体化する内部表面データ合成工程と、この内部表面データ合成工程で作成したデータをCADデータに変換する3次元形状変換工程とを備えることを特徴とする3次元形状測定方法。 A shape imaging process for imaging a plurality of surface shapes and internal shapes of an object on which a reference marker is previously set, and converting the captured internal shape into point cloud data, and superimposing the converted point cloud data on the reference marker as a base point An internal shape synthesis step for combining and synthesizing, a surface shape synthesis step for converting the captured surface shape into point cloud data, and superimposing the converted point cloud data on the basis of the reference marker, and the internal shape synthesis step The internal surface data synthesis step of synthesizing and integrating the internal shape synthesis point cloud data created in step 1 and the surface shape synthesis point cloud data created in the surface shape synthesis step with the reference marker as a base point, and this internal surface data synthesis A three-dimensional shape measuring method comprising: a three-dimensional shape conversion step of converting data created in the step into CAD data. 対象物の内部形状を撮像する際、X線カメラ装置、核磁気共鳴装置、超音波装置、マイクロスコープ、レーザ顕微鏡、電子顕微鏡のうち、少なくとも1つを選択して使用することを特徴とする請求項1記載の3次元形状測定方法。 When imaging the internal shape of an object, at least one of an X-ray camera device, a nuclear magnetic resonance device, an ultrasonic device, a microscope, a laser microscope, and an electron microscope is selected and used. Item 3. The three-dimensional shape measuring method according to Item 1. 予め基準マーカを設置した対象物の表面形状を撮像する表面形状測定装置と、前記対象物の内部形状を撮像する内部形状測定装置と、前記表面形状測定装置で撮像した画像を点群データに変換し、変換した点群データを前記基準マーカを基点に重ね合わせて合成する表面形状合成装置と、前記内部形状測定装置で撮像した画像を点群データに変換し、変換した点群データを前記基準マーカを基点に重ね合わせて合成する内部形状合成装置と、前記表面形状合成装置および前記内部形状合成装置のそれぞれからの合成点群データを前記基準マーカを基点として重ね合わせて一体化する内部表面データ合成装置と、この内部表面データ合成装置で一体化した合成点群データをCADデータに変換する3次元形状変換装置とを備えたことを特徴とする3次元形状測定装置。 A surface shape measuring device that images the surface shape of an object on which a reference marker is set in advance, an internal shape measuring device that images the internal shape of the object, and an image captured by the surface shape measuring device is converted into point cloud data A surface shape synthesizer that synthesizes the converted point cloud data by superimposing the reference marker on a base point; and an image captured by the internal shape measuring device is converted into point cloud data, and the converted point cloud data is converted into the reference data. An internal shape synthesizer that superimposes a marker on a base point and synthesizes, and an internal surface data that combines and superimposes composite point cloud data from each of the surface shape synthesizer and the internal shape synthesizer with the reference marker as a base point A synthesis device and a three-dimensional shape conversion device for converting synthesized point cloud data integrated by the internal surface data synthesis device into CAD data are provided. Three-dimensional shape measurement device. 表面形状測定装置は、レーザ光装置であることを特徴とする請求項3記載の3次元形状測定装置。 4. The three-dimensional shape measuring apparatus according to claim 3, wherein the surface shape measuring apparatus is a laser beam apparatus. 内部形状測定装置は、対象物の内部形状を撮像するX線カメラと、このX線カメラを昇降自在にして回転自在に移動させるスタンド支持装置とを備えたことを特徴とする請求項3記載の3次元形状測定装置。 4. The internal shape measuring apparatus includes an X-ray camera that captures an internal shape of an object, and a stand support device that moves the X-ray camera so that the X-ray camera can freely move up and down. Three-dimensional shape measuring device. X線カメラは、X線照射距離算出装置を備えたことを特徴とする請求項5記載の3次元形状測定装置。 The three-dimensional shape measuring apparatus according to claim 5, wherein the X-ray camera includes an X-ray irradiation distance calculating device.
JP2006109325A 2006-04-12 2006-04-12 Method and device for measuring three-dimensional shape Pending JP2007278995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006109325A JP2007278995A (en) 2006-04-12 2006-04-12 Method and device for measuring three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006109325A JP2007278995A (en) 2006-04-12 2006-04-12 Method and device for measuring three-dimensional shape

Publications (1)

Publication Number Publication Date
JP2007278995A true JP2007278995A (en) 2007-10-25

Family

ID=38680574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006109325A Pending JP2007278995A (en) 2006-04-12 2006-04-12 Method and device for measuring three-dimensional shape

Country Status (1)

Country Link
JP (1) JP2007278995A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060319A (en) * 2008-09-01 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> Shape estimating system, center server, shape estimating method, and shape estimating program
US7827700B2 (en) 2008-12-09 2010-11-09 Kabushiki Kaisha Toshiba Method and jig for device for measuring three-dimensional shape of connection assembly of stator coil in turbine generator
EP2317075A3 (en) * 2009-10-30 2011-08-24 Alstom Technology Ltd Method for repairing a gas turbine component
EP2361720A1 (en) * 2010-02-22 2011-08-31 Alstom Technology Ltd Method for repairing and/or upgrading a component, especially of a gas turbine
JP2012146262A (en) * 2011-01-14 2012-08-02 Toshiba Corp Structure measurement system
EP2484481A1 (en) * 2011-02-03 2012-08-08 Alstom Technology Ltd Method for repairing or reconditioning a badly damaged component, in particular from the hot gas region of a gas turbine
CN105651235A (en) * 2014-12-30 2016-06-08 航天恒星科技有限公司 Measurement method of radome inner outline type surface and apparatus thereof
WO2016147441A1 (en) * 2015-03-18 2016-09-22 株式会社東芝 Program, information processing apparatus, and data processing method
EP3293869A1 (en) * 2016-09-12 2018-03-14 Siemens Aktiengesellschaft Method for manufacturing a stator winding
JP2019179373A (en) * 2018-03-30 2019-10-17 大豊精機株式会社 Simulation data creation method
JP2020008360A (en) * 2018-07-04 2020-01-16 国立大学法人 東京大学 Dimension measurement method using projection image obtained by X-ray CT apparatus
JP2021506009A (en) * 2017-12-05 2021-02-18 ラダリティカ エス.アール.オー. Non-destructive imaging method of the internal structure of an object and its execution device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060319A (en) * 2008-09-01 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> Shape estimating system, center server, shape estimating method, and shape estimating program
US7827700B2 (en) 2008-12-09 2010-11-09 Kabushiki Kaisha Toshiba Method and jig for device for measuring three-dimensional shape of connection assembly of stator coil in turbine generator
EP2317075A3 (en) * 2009-10-30 2011-08-24 Alstom Technology Ltd Method for repairing a gas turbine component
EP2361720A1 (en) * 2010-02-22 2011-08-31 Alstom Technology Ltd Method for repairing and/or upgrading a component, especially of a gas turbine
JP2012146262A (en) * 2011-01-14 2012-08-02 Toshiba Corp Structure measurement system
EP2484481A1 (en) * 2011-02-03 2012-08-08 Alstom Technology Ltd Method for repairing or reconditioning a badly damaged component, in particular from the hot gas region of a gas turbine
CH704448A1 (en) * 2011-02-03 2012-08-15 Alstom Technology Ltd A method of repairing or reconditioning of heavily damaged component, in particular from the hot gas area of ​​a gas turbine.
US8910361B2 (en) 2011-02-03 2014-12-16 Alstom Technology Ltd. Method for repairing or reconditioning a badly damaged component, in particular from the hot gas region of a gas turbine
CN105651235A (en) * 2014-12-30 2016-06-08 航天恒星科技有限公司 Measurement method of radome inner outline type surface and apparatus thereof
WO2016147441A1 (en) * 2015-03-18 2016-09-22 株式会社東芝 Program, information processing apparatus, and data processing method
JP2016175203A (en) * 2015-03-18 2016-10-06 株式会社東芝 Program, information processor and data processing method
US10417823B2 (en) 2015-03-18 2019-09-17 Kabushiki Kaisha Toshiba Computer program product, information processing apparatus, and data processing method for generating 3D surface shapes
EP3293869A1 (en) * 2016-09-12 2018-03-14 Siemens Aktiengesellschaft Method for manufacturing a stator winding
WO2018046242A1 (en) * 2016-09-12 2018-03-15 Siemens Aktiengesellschaft Method for producing a stator winding
JP2021506009A (en) * 2017-12-05 2021-02-18 ラダリティカ エス.アール.オー. Non-destructive imaging method of the internal structure of an object and its execution device
JP7315242B2 (en) 2017-12-05 2023-07-26 ラダリティカ エス.アール.オー. Nondestructive Imaging Method for Internal Structure of Object and Apparatus for Performing the Same
JP2019179373A (en) * 2018-03-30 2019-10-17 大豊精機株式会社 Simulation data creation method
JP2020008360A (en) * 2018-07-04 2020-01-16 国立大学法人 東京大学 Dimension measurement method using projection image obtained by X-ray CT apparatus
JP7154535B2 (en) 2018-07-04 2022-10-18 国立大学法人 東京大学 Dimensional measurement method using projection image obtained by X-ray CT device

Similar Documents

Publication Publication Date Title
JP2007278995A (en) Method and device for measuring three-dimensional shape
JP6192938B2 (en) 3D synthesis processing system and 3D synthesis processing method
Edl et al. 3D laser scanners: history and applications
JP4010753B2 (en) Shape measuring system, imaging device, shape measuring method, and recording medium
CN104266587B (en) Three-dimensional measurement system and method for obtaining actual 3D texture point cloud data
JP6184237B2 (en) Three-dimensional data processing apparatus, processing method thereof, and processing program thereof
JP2005215917A (en) Working drawing creation support method and replacement model creation method
CN104363438B (en) Full-view stereo making video method
JPWO2008078744A1 (en) Three-dimensional shape measuring apparatus, method and program by pattern projection method
JP2006258486A (en) Device and method for measuring coordinate
JP2011520190A (en) System for mapping objects across different images using image alignment
JP2009015730A (en) Image display system with streoscopic measure display function and program of image display with stereoscopic measure display function
JP2011133840A (en) Interlocked display measuring system using monitor camera image
JP2004037396A (en) Three-dimensional data acquiring apparatus
JP2004239747A (en) Three-dimensional image data generation method
JP6584735B1 (en) Image generation apparatus, image generation method, and image generation program
JP4801783B2 (en) Image processing system and image processing method
JP2006349579A (en) System, method and program for measuring displacement information
JP2012139456A (en) Endoscopic image reproducing apparatus
JP2007188117A (en) Cave-in area extraction method, device and program
JP2006275984A (en) Method of measuring displacement of high-voltage tower
JP2005241575A (en) X-ray computed tomography system and three-dimensional perspective image forming apparatus
JP2011047876A (en) Three-dimensional shape measurement method
JP5018282B2 (en) How to create 3D shape model data for products
JP7403273B2 (en) Image processing device and image processing method