JP2007278640A - Microwave firing furnace - Google Patents

Microwave firing furnace Download PDF

Info

Publication number
JP2007278640A
JP2007278640A JP2006107652A JP2006107652A JP2007278640A JP 2007278640 A JP2007278640 A JP 2007278640A JP 2006107652 A JP2006107652 A JP 2006107652A JP 2006107652 A JP2006107652 A JP 2006107652A JP 2007278640 A JP2007278640 A JP 2007278640A
Authority
JP
Japan
Prior art keywords
thermocouple
microwave
firing
furnace
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006107652A
Other languages
Japanese (ja)
Inventor
Masuo Suzuki
益男 鈴木
Ayako Sugiyama
綾子 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006107652A priority Critical patent/JP2007278640A/en
Publication of JP2007278640A publication Critical patent/JP2007278640A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave firing furnace with excellent heat response capable of accurately measuring temperature while minimizing influence of microwave even in such a case that a thermocouple having a thin diameter is used. <P>SOLUTION: The microwave firing furnace is provided with an antenna length limiting part 10 for setting an earth ground for an auxiliary thermocouple 7 and an auxiliary thermocouple fixing part 13 for adjusting length from an antenna length base point part 101A of a tip end part 7A of the auxiliary thermocouple so that the auxiliary thermocouple 7 is free from the influence of the microwave. Thus, it is possible to minimize the influence of the microwave even in the case that a thermocouple using metal such as platinum is used and to conduct correct temperature measurement. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロ波を利用して陶磁器材料やファインセラミックス材料などで形成された被処理体を焼成するマイクロ波焼成炉に関する。   The present invention relates to a microwave baking furnace for baking an object to be processed formed of a ceramic material or a fine ceramic material using a microwave.

従来、マイクロ波を利用して陶磁器材料やファインセラミックス材料などで形成された被処理体を焼成することが提案され、既に実用化が始まっている(例えば、特許文献1参照)。マイクロ波焼成炉には、焼成する温度が1300℃程度の陶磁器用途と、その温度を超えたファインセラミックス用途とがあり、陶磁器用途の焼成炉とファインセラミックス用途の焼成炉とは、特に炉室を構成する部品の物性上の耐久性が異なるため別々に開発が進められている。そこで陶磁器用途の焼成炉でファインセラミックス用途並みの高温の焼成を実現したいという要望がある。   Conventionally, it has been proposed to fire an object to be processed formed of a ceramic material, a fine ceramic material, or the like using a microwave, and has already been put to practical use (for example, see Patent Document 1). There are two types of microwave firing furnaces: ceramics with a firing temperature of about 1300 ° C and fine ceramics that exceed that temperature. The firing furnace for ceramics and the firing furnace for fine ceramics have a furnace chamber in particular. Since the durability of physical properties of the components is different, development is progressing separately. Therefore, there is a demand for realizing firing at a high temperature comparable to that of fine ceramics in a firing furnace for ceramics.

炉内雰囲気温度の測定には、一般的に金属素線を金属やセラミックスで造られた保護管やガラス繊維(シース材)で覆った熱電対が用いられるが、マイクロ波空間では該熱電対で発生する起電力には、基本原理であるゼーベック効果によるものだけでなく、熱電対先端がマイクロ波のアンテナとして作用し、電圧印加されることによるものも含まれてしまう。よって、炉内雰囲気温度を正確に測定することが困難になる。   In order to measure the atmospheric temperature in the furnace, a thermocouple in which a metal strand is covered with a protective tube made of metal or ceramics or glass fiber (sheath material) is generally used. The generated electromotive force includes not only the Seebeck effect, which is the basic principle, but also the voltage generated by the thermocouple tip acting as a microwave antenna. Therefore, it becomes difficult to accurately measure the furnace atmosphere temperature.

そのため、特にファインセラミックス用途においては、放射温度計が多用されている。しかし、放射温度計は測定範囲が狭く、常温から高温まで(1500℃程度まで)測定するためには、それぞれの温度領域において最適な素子を用いることを要し、一般的には低温用と高温用の2種類の放射温度計を備えることを要する。よって、放射温度計の測定用の穴も2個必要となる。   For this reason, radiation thermometers are frequently used particularly in fine ceramics applications. However, the radiation thermometer has a narrow measurement range, and in order to measure from room temperature to high temperature (up to about 1500 ° C), it is necessary to use an optimum element in each temperature region. It is necessary to provide two types of radiation thermometers. Therefore, two holes for measurement of the radiation thermometer are also required.

ところが、前記測定用の穴からの放射熱の漏れは温度の4乗根に比例して発生するため、ファインセラミックス用途の炉内のように、高温になるほど放射熱量は無視できなくなる。そのため昇温が妨げられたり、あるいは炉室の温度ムラが生じてしまう。特に炉容積が小さい場合にこの現象は顕著となる。   However, since the leakage of radiant heat from the measurement hole is generated in proportion to the fourth root of the temperature, the amount of radiant heat cannot be ignored as the temperature increases, as in a furnace for fine ceramics. Therefore, the temperature rise is hindered or the temperature in the furnace chamber is uneven. This phenomenon becomes remarkable especially when the furnace volume is small.

そこで、マイクロ波の影響を避けて熱電対を使用する方法が検討されている。例えば、マイクロ波空間の中においては導電体である金属の保護管を、マイクロ波空間を形成する筐体と電気的に同電位にすることで、マイクロ波の影響を避けて熱電対を使用する方法がある。
特開平6−345541号公報
Therefore, a method of using a thermocouple while avoiding the influence of microwaves has been studied. For example, in a microwave space, a metal protective tube, which is a conductor, is electrically set to the same potential as the casing that forms the microwave space, thereby avoiding the influence of microwaves and using a thermocouple. There is a way.
JP-A-6-345541

しかしながら、マイクロ波焼成炉に用いられる熱電対は、正確な温度測定を行うために、マイクロ波のアンテナとして作用する電圧印加を避けることに加え、マイクロ波のエッジ効果による電界集中を避けることに力点をおいて設計しなければならない。   However, thermocouples used in microwave firing furnaces are focused on avoiding electric field concentration due to the microwave edge effect in addition to avoiding the application of voltage acting as a microwave antenna in order to perform accurate temperature measurement. It must be designed after

そこで、熱電対の先端に電界が集中することを避けるために、図7に示すように、金属素線8を覆う熱電対保護管9の先端の形状を丸くしたり、保護管9自体を太くしたりあるいは球体にした熱電対を用いることがある。しかし、このような熱電対では、金属素線8まで熱が伝わるのに時間を要するので熱応答性が悪く、温度変化に追従し且つ正確な温度計測・温度制御ができない。温度計測が迅速かつ正確に行えないと、炉内の温度制御にも遅延等が生じ、被処理物の緻密な処理に支障をきたす原因となってしまう。   In order to avoid the concentration of the electric field at the tip of the thermocouple, as shown in FIG. 7, the shape of the tip of the thermocouple protection tube 9 covering the metal wire 8 is rounded, or the protection tube 9 itself is thickened. Or a thermocouple made into a sphere may be used. However, in such a thermocouple, since it takes time for heat to be transmitted to the metal wire 8, the thermal response is poor, and temperature measurement and temperature control cannot be performed accurately following temperature changes. If the temperature measurement cannot be performed quickly and accurately, a delay or the like occurs in the temperature control in the furnace, causing a problem in the precise processing of the workpiece.

一方、熱応答性を向上させるには、熱電対の形状を細くすれば良い。しかし細い金属である熱電対を露出させるとマイクロ波のエッジ効果による電界集中が避けられず、正確な温度測定ができない。   On the other hand, in order to improve the thermal response, the shape of the thermocouple may be made thin. However, if a thermocouple, which is a thin metal, is exposed, electric field concentration due to the microwave edge effect cannot be avoided, and accurate temperature measurement cannot be performed.

本発明は係る事情に鑑みてなされたものであり、マイクロ波エッジ効果が起きやすい細い径を持つ熱電対を使用しても、マイクロ波の影響を最小限に抑えて熱応答性が良く、正確な温度測定を行うことができるマイクロ波焼成炉を提供することを目的とする。   The present invention has been made in view of such circumstances, and even when a thermocouple having a thin diameter that is prone to the microwave edge effect is used, the influence of the microwave is minimized and the thermal response is good and accurate. An object of the present invention is to provide a microwave baking furnace capable of performing accurate temperature measurement.

本発明のマイクロ波焼成炉は、マイクロ波加熱によって被処理体の焼成を行うマイクロ波焼成炉において、焼成エリアを形成する断熱材を収容する筐体と、マイクロ波を前記焼成エリア内に放射するマイクロ波放射手段と、前記筐体の壁面のうち熱電対が前記焼成エリアに露出する部分に前記熱電対に当接して前記熱電対のマイクロ波に対する接地を行う接地手段と、前記接地手段による接地位置から先の前記熱電対の長さを調整する調整手段と、を備える。   The microwave baking furnace of the present invention is a microwave baking furnace for baking an object to be processed by microwave heating, and a case that houses a heat insulating material that forms a baking area, and radiates microwaves into the baking area. Microwave radiation means, grounding means for abutting the thermocouple on a portion of the wall surface of the housing where the thermocouple is exposed to the firing area, and grounding the microwave of the thermocouple, and grounding by the grounding means Adjusting means for adjusting the length of the thermocouple ahead of the position.

この構成により、焼成エリア内にはマイクロ波が放射され、熱電対のマイクロ波に対する接地点を固定するようにしたので、接地点から焼成エリアに至る熱電対の長さを調整することによって、1/4波長ごとの熱電対先端のマイクロ波のアンテナとして作用する電圧波の腹点の電圧印加を回避するだけで、マイクロ波のエッジ効果による電界集中が避けられ、マイクロ波の影響を最小限に抑えることができる。これにより、熱応答性の良い、細い径を持つ白金等の熱電対を使用しても該熱電対で発生する起電力が略基本原理であるゼーベック効果によるものだけになり、炉内雰囲気温度を正確に測定することが可能となる。また、白金等の熱電対を用いることができると、高温(1500程度)まで測定することができる。   With this configuration, microwaves are radiated into the firing area and the grounding point of the thermocouple for microwaves is fixed. Therefore, by adjusting the length of the thermocouple from the grounding point to the firing area, 1 / 4 By avoiding the voltage application at the antinode of the voltage wave acting as the microwave antenna at the tip of the thermocouple for every 4 wavelengths, the electric field concentration due to the microwave edge effect can be avoided and the influence of the microwave is minimized Can be suppressed. As a result, even if a thermocouple such as platinum with good thermal response and a thin diameter is used, the electromotive force generated by the thermocouple is only due to the Seebeck effect, which is the basic principle, and the furnace atmosphere temperature is reduced. It becomes possible to measure accurately. Further, when a thermocouple such as platinum can be used, measurement can be performed up to a high temperature (about 1500).

また、本発明のマイクロ波焼成炉の熱電対は、径の細い熱電対である。   Moreover, the thermocouple of the microwave baking furnace of the present invention is a thermocouple with a small diameter.

この構成により、熱電対の応答性が良いので、焼成エリア内の温度変化に迅速に追従して正確に温度を計測することができ、温度制御も精度良く実行することができる。   With this configuration, the responsiveness of the thermocouple is good, so that the temperature can be accurately measured by quickly following the temperature change in the firing area, and the temperature control can also be performed with high accuracy.

また、本発明のマイクロ波焼成炉は、前記接地手段が、前記熱電対を挿入する側の開口端から前記熱電対を前記焼成エリアに露出させる側の開口端に向けて徐々に径が狭くなり、最小径が前記熱電対の径よりも極僅かに大きくなったテーパ状の孔を有する部材である。   In the microwave baking furnace of the present invention, the diameter of the grounding means gradually decreases from the opening end on the side where the thermocouple is inserted toward the opening end on the side where the thermocouple is exposed to the baking area. A member having a tapered hole whose minimum diameter is slightly larger than the diameter of the thermocouple.

この構成により、熱電対のマイクロ波に対する接地点を容易に固定することができる。   With this configuration, the grounding point for the microwave of the thermocouple can be easily fixed.

また、本発明のマイクロ波焼成炉は、前記接地手段は、前記熱電対を挿入する側の開口端から前記熱電対を前記焼成エリアに露出させる側の開口端に向けて一定した幅の孔を有すると共に軸心に対して垂直方向に貫通させた少なくとも1つのネジ孔を有する部材と、前記部材のネジ孔に螺合するネジとを備え、前記ネジを前記熱電対に当接させることで前記熱電対のマイクロ波に対する接地を行う。   In the microwave baking furnace of the present invention, the grounding means has a hole having a constant width from the opening end on the side where the thermocouple is inserted toward the opening end on the side where the thermocouple is exposed to the baking area. And a member having at least one screw hole vertically penetrated with respect to the shaft center, and a screw screwed into the screw hole of the member, the screw being brought into contact with the thermocouple, Ground the thermocouple against microwaves.

この構成により、熱電対のマイクロ波に対する接地点を容易に固定することができる。   With this configuration, the grounding point for the microwave of the thermocouple can be easily fixed.

また、本発明のマイクロ波焼成炉は、前記接地手段は、前記熱電対を挿入する側の開口端から前記熱電対を前記焼成エリアに露出させる側の開口端に向けて一定した幅の孔を有する部材と、前記熱電対の径よりも極僅かに大きくした孔が軸心に沿って形成され外径の寸法が前記部材の内径の寸法よりも極僅かに小さくしたリング状の固定部材とを備え、前記固定部材に前記熱電対を通すことで前記熱電対のマイクロ波に対する接地を行う。   In the microwave baking furnace of the present invention, the grounding means has a hole having a constant width from the opening end on the side where the thermocouple is inserted toward the opening end on the side where the thermocouple is exposed to the baking area. And a ring-shaped fixing member in which a hole that is slightly larger than the diameter of the thermocouple is formed along the axis, and the outer diameter is slightly smaller than the inner diameter of the member. The thermocouple is grounded by passing the thermocouple through the fixing member.

この構成により、熱電対のマイクロ波に対する接地点を容易に固定することができる。   With this configuration, the grounding point for the microwave of the thermocouple can be easily fixed.

本発明によれば、細い径を持つ熱電対を使用しても該熱電対で発生する起電力が略基本原理であるゼーベック効果によるものだけになり、炉内雰囲気温度を熱応答性が良く、温度変化に追従し、かつ正確に測定することが可能となる。   According to the present invention, even if a thermocouple having a small diameter is used, the electromotive force generated in the thermocouple is only due to the Seebeck effect, which is a substantially basic principle, and the furnace atmosphere temperature is excellent in thermal response, It is possible to follow the temperature change and measure accurately.

以下、本発明を実施するための好適な実施の形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係るマイクロ波焼成炉の内部構造を示す斜視図である。また、図2は図1の炉部分の構成を示す断面図である。なお、図1及び図2において前述した図7と共通する部分には同一の符号を付ける。図1及び図2において、本実施の形態のマイクロ波焼成炉1は、マイクロ波を利用して被処理体(図示略)の焼成を行うものであり、1250℃程度までの焼成が可能な通常焼成エリア2を形成する通常焼成炉3と、1500℃程度までの焼成が可能な高温焼成エリア4を形成する高温焼成炉5と、通常焼成炉3内の雰囲気温度(通常炉内温度)を測定するための主熱電対6と、高温焼成炉5内の雰囲気温度(高温炉内温度)を測定するための補助熱電対7とを備えて構成される。補助熱電対7は、アンテナ長規制部(接地手段)10、補助熱電対ガイドパイプ110及び補助熱電対固定部(調整手段)13によって筐体120内に導入される。   FIG. 1 is a perspective view showing an internal structure of a microwave baking furnace according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing the configuration of the furnace portion of FIG. 1 and 2 that are the same as those in FIG. 7 described above are denoted by the same reference numerals. 1 and 2, a microwave baking furnace 1 according to the present embodiment is for baking an object to be processed (not shown) using microwaves, and can normally be fired up to about 1250 ° C. Measurement of the normal firing furnace 3 for forming the firing area 2, the high-temperature firing furnace 5 for forming the high-temperature firing area 4 capable of firing up to about 1500 ° C., and the atmospheric temperature (normal furnace temperature) in the normal firing furnace 3 The main thermocouple 6 for carrying out, and the auxiliary | assistant thermocouple 7 for measuring the atmospheric temperature (high-temperature furnace temperature) in the high temperature baking furnace 5 are comprised. The auxiliary thermocouple 7 is introduced into the housing 120 by the antenna length regulating portion (grounding means) 10, the auxiliary thermocouple guide pipe 110, and the auxiliary thermocouple fixing portion (adjusting means) 13.

また、マイクロ波焼成炉1は、焼成エリア内にマイクロ波を導く導波菅(図示せず)を有している。この導波菅は、一般的にコストを抑制するために電子レンジなどで使われている方式で、磁界が焼成エリア内への入射面に平行なマイクロ波(H波)または電界Eが焼成エリア内への入射面に平行なマイクロ波(E波)のいずれか一方のマイクロ波を焼成エリア内に放射するものである。例えば、出口面が方形であり1つの面内にフレアしたH面扇型ホーンアンテナまたはE面扇型ホーンアンテナを導波菅として用いればよい。   Moreover, the microwave baking furnace 1 has a waveguide (not shown) that guides microwaves into the baking area. This waveguide is generally used in a microwave oven or the like in order to reduce costs, and a microwave (H wave) parallel to the incident surface into the firing area or an electric field E is used in the firing area. Any one of microwaves (E waves) parallel to the incident surface is radiated into the firing area. For example, an H-plane fan-shaped horn antenna or an E-plane fan-shaped horn antenna that has a square exit surface and flares in one plane may be used as the waveguide.

通常焼成炉3と高温焼成炉5は、共にマイクロ波の影響を受けないアルミナ・シリカ系の断熱材10を用いて方形状に組立てられている。高温焼成炉5は通常焼成炉3内に設置される関係上、通常焼成炉3より小型に造られている。因みに、高温焼成炉5を設けた理由は、陶磁器を焼成できる程度の温度仕様で設計してもファインセラミックスを焼成できるようにするためである。この場合、ファインセラミックスを焼成するときに高温焼成炉5を設け、陶磁器を焼成するときには取り出すようにしている。   Both the normal firing furnace 3 and the high temperature firing furnace 5 are assembled in a rectangular shape using an alumina / silica heat insulating material 10 which is not affected by microwaves. The high temperature firing furnace 5 is made smaller than the normal firing furnace 3 because it is installed in the ordinary firing furnace 3. Incidentally, the reason why the high-temperature firing furnace 5 is provided is to allow fine ceramics to be fired even when designed with a temperature specification that can fire ceramics. In this case, a high-temperature firing furnace 5 is provided when firing fine ceramics, and is taken out when firing ceramics.

図2において、通常焼成炉3には、その内部に主熱電対6を貫通させるための孔31と補助熱電対7を貫通させる孔32がそれぞれ形成されている。高温焼成炉5には通常焼成炉3の孔32と同位置に孔51が形成されている。高温焼成炉5の孔51と通常焼成炉3の孔32を通して補助熱電対7の先端部分が高温焼成炉5内に露出する。補助熱電対7は、金属保護管に覆われた熱電対であり、先端部分7Aが高温焼成炉5内に露出する位置で固定されている。特に、補助熱電対7はマイクロ空間内でマイクロ波の影響を受けることになる。そのため、本発明では、補助熱電対7のキャビティを形成する筐体120内における長さをマイクロ波の影響が最小となる長さに規定している。この詳細については後述する。   In FIG. 2, the normal firing furnace 3 is formed with a hole 31 through which the main thermocouple 6 passes and a hole 32 through which the auxiliary thermocouple 7 passes. A hole 51 is formed in the high temperature baking furnace 5 at the same position as the hole 32 of the normal baking furnace 3. The tip portion of the auxiliary thermocouple 7 is exposed in the high temperature baking furnace 5 through the hole 51 of the high temperature baking furnace 5 and the hole 32 of the normal baking furnace 3. The auxiliary thermocouple 7 is a thermocouple covered with a metal protective tube, and is fixed at a position where the tip portion 7 </ b> A is exposed in the high-temperature firing furnace 5. In particular, the auxiliary thermocouple 7 is affected by microwaves in the micro space. Therefore, in the present invention, the length in the housing 120 that forms the cavity of the auxiliary thermocouple 7 is defined as a length that minimizes the influence of the microwave. Details of this will be described later.

図3は、アンテナ長規制部10の構成及びその周辺部分を示す断面図である。同図において、アンテナ長規制部10は、マイクロ波焼成炉1の筐体120の壁面で補助熱電対7に対してアースをとるものであり、アンテナ長固定ブロック101と、ユニット取付フランジ102と、補助シールド材103と、ユニット固定ナット104と、パイプ固定ナット105とから構成される。アンテナ長固定ブロック101は、補助熱電対7を挿入する側の開口端から補助熱電対7をマイクロ波空間内に露出させる側の開口端に向けて徐々に径が狭くなり、最小径が補助熱電対7の径よりも極僅かに大きくなったテーパ状の孔1011を有している。なお、孔1011の最も狭い部分をアンテナ長基点(接地点)101Aと呼ぶ。アンテナ長固定ブロック101によって、補助熱電対7がアンテナ長基点101Aに接する状態で支持される。   FIG. 3 is a cross-sectional view showing the configuration of the antenna length regulating portion 10 and its peripheral portion. In the figure, an antenna length restricting portion 10 is for grounding the auxiliary thermocouple 7 on the wall surface of the casing 120 of the microwave baking furnace 1, and includes an antenna length fixing block 101, a unit mounting flange 102, The auxiliary shield material 103, the unit fixing nut 104, and the pipe fixing nut 105 are configured. The antenna length fixing block 101 gradually decreases in diameter from the opening end on the side where the auxiliary thermocouple 7 is inserted toward the opening end on the side where the auxiliary thermocouple 7 is exposed in the microwave space, and the minimum diameter is the auxiliary thermocouple. It has a tapered hole 1011 that is slightly larger than the diameter of the pair 7. The narrowest part of the hole 1011 is called an antenna long base point (grounding point) 101A. The auxiliary thermocouple 7 is supported by the antenna length fixing block 101 while being in contact with the antenna length base point 101A.

アンテナ長固定ブロック101の熱電対挿入側部分には、ユニット固定ナット104及びパイプ固定ナット105と螺合するネジが形成されている。アンテナ長固定ブロック101はユニット固定ナット104にて筐体120の壁面に固定されている。筐体120のアンテナ長固定ブロック取付部分にはユニット取り付けフランジ102が設けられており、取付強度の強化が図られている。また、ユニット取付フランジ102と筐体120の壁面との間には銅製の補助シールド材103が設けらており、マイクロ波の漏洩防止が図られている。補助熱電対ガイドパイプ110は、パイプ固定ナット105にてアンテナ長固定ブロック101に接続されている。補助熱電対ガイドパイプ110もマイクロ波の漏洩防止する機能を有するものである。   A screw that is screwed into the unit fixing nut 104 and the pipe fixing nut 105 is formed on the thermocouple insertion side portion of the antenna length fixing block 101. The antenna length fixing block 101 is fixed to the wall surface of the housing 120 by a unit fixing nut 104. A unit mounting flange 102 is provided at the antenna length fixing block mounting portion of the housing 120 to enhance the mounting strength. Further, a copper auxiliary shield material 103 is provided between the unit mounting flange 102 and the wall surface of the housing 120 to prevent microwave leakage. The auxiliary thermocouple guide pipe 110 is connected to the antenna length fixing block 101 by a pipe fixing nut 105. The auxiliary thermocouple guide pipe 110 also has a function of preventing microwave leakage.

補助熱電対ガイドパイプ110の補助熱電対挿入側には補助熱電対固定部13が接続されている。図4は補助熱電対固定部13の構成を示す断面図である。同図において、補助熱電対固定部13は、圧着ブロック押しボルト131と、圧着ブロック132と、圧着ブロック受けナット133と、パイプ固定ナット134とから構成される。圧着ブロック押しボルト131には、その軸心に沿って補助熱電対7を通過させるための孔が開けられている。圧着ブロック132は、その先端部分が先端に行くに従って径が小さくなるテーパ状に形成されるとともに、その軸心に沿って補助熱電対7を通過させるための孔が開けられている。   An auxiliary thermocouple fixing part 13 is connected to the auxiliary thermocouple insertion side of the auxiliary thermocouple guide pipe 110. FIG. 4 is a cross-sectional view showing the configuration of the auxiliary thermocouple fixing portion 13. In the figure, the auxiliary thermocouple fixing portion 13 is composed of a pressure-bonding block push bolt 131, a pressure-bonding block 132, a pressure-bonding block receiving nut 133, and a pipe fixing nut 134. A hole for allowing the auxiliary thermocouple 7 to pass through is formed in the crimping block push bolt 131 along its axis. The crimping block 132 is formed in a tapered shape whose diameter decreases as the distal end portion goes to the distal end, and a hole for allowing the auxiliary thermocouple 7 to pass therethrough along the axis.

圧着ブロック受けナット133は、その内側の壁面に圧着ブロック押しボルト131と螺合するネジが形成されるとともに、圧着ブロック132を収容するテーパ状部が形成されている。圧着ブロック受けナット133内に圧着ブロック132を収容させた状態で圧着ブロック押しボルト131を締め込みことによって、圧着ブロック132の先端部分の周囲に圧力が加わり、これによって補助熱電対7が締め付けられて固定される。圧着ブロック押しボルト131を弛めて補助熱電対7を前後させることで、アンテナ長基点101Aからの補助熱電対7の長さを調整することができる。   The crimping block receiving nut 133 is formed with a screw threadedly engaged with the crimping block pressing bolt 131 on the inner wall surface thereof, and a tapered portion for accommodating the crimping block 132 is formed. When the crimping block push bolt 131 is tightened with the crimping block receiving nut 133 accommodated in the crimping block receiving nut 133, pressure is applied around the tip of the crimping block 132, thereby tightening the auxiliary thermocouple 7. Fixed. The length of the auxiliary thermocouple 7 from the antenna long base point 101A can be adjusted by loosening the crimp block push bolt 131 and moving the auxiliary thermocouple 7 back and forth.

アンテナ長基点101Aで補助熱電対7に対してアースをとるとともに、補助熱電対固定部13でアンテナ長基点101Aからの補助熱電対7の長さをマイクロ波の1/4波長の整数倍にならないように調整する。例えば、補助熱電対7の全長を495mmとすると、アンテナ長基点101Aから補助熱電対7の先端までの長さが239mmとなる。但し、λはマイクロ波の波長(2.45GHzで122.445mm)、nは整数値である。このようにアンテナ長をマイクロ波の1/4波長の整数倍にならないように調整することで、補助熱電対7にはマイクロ波加熱による起電力の発生が無くなり、基本原理であるゼーベック効果によるものだけとなるので、正確な温度測定が可能となる。   At the antenna long base point 101A, the auxiliary thermocouple 7 is grounded, and at the auxiliary thermocouple fixing portion 13, the length of the auxiliary thermocouple 7 from the antenna long base point 101A is not an integral multiple of a quarter wavelength of the microwave. Adjust as follows. For example, if the total length of the auxiliary thermocouple 7 is 495 mm, the length from the antenna long base point 101A to the tip of the auxiliary thermocouple 7 is 239 mm. Where λ is the microwave wavelength (122.445 mm at 2.45 GHz), and n is an integer value. Thus, by adjusting the antenna length so that it does not become an integral multiple of a quarter wavelength of the microwave, the auxiliary thermocouple 7 does not generate electromotive force due to microwave heating, and is based on the Seebeck effect, which is a basic principle. Therefore, accurate temperature measurement becomes possible.

このように本実施の形態に係るマイクロ波焼成炉1によれば、焼成エリア内にマイクロ波を放射し、補助熱電対7に対してアースを設定するためのアンテナ長規制部10と、補助熱電対7がマイクロ波の影響を受けないように、その先端部分7Aのアンテナ長基点部101Aからの長さを調整するための補助熱電対固定部13とを備えるので、熱応答性の良い、細い径を持つ熱電対を使用してもマイクロ波の影響を最小限に抑えることができ、正確な温度測定が可能となる。   As described above, according to the microwave firing furnace 1 according to the present embodiment, the antenna length restriction unit 10 for radiating microwaves into the firing area and setting the ground for the auxiliary thermocouple 7, the auxiliary thermoelectric Since the pair 7 is provided with the auxiliary thermocouple fixing portion 13 for adjusting the length of the distal end portion 7A from the antenna length base portion 101A so as not to be affected by the microwave, it is thin with good thermal response. Even if a thermocouple having a diameter is used, the influence of microwaves can be minimized and accurate temperature measurement can be performed.

なお、上記実施の形態では、マイクロ波に対するアースとなるアンテナ長基点101Aを設けるために、アンテナ長固定ブロック101の断面形状を、補助熱電対挿入側の開口端から補助熱電対取り出し側の開口端に向けて徐々に径が狭くなるテーパ状としたが、図5の(a)に示すように、補助熱電対挿入側の開口端から補助熱電対取り出し側の開口端まで一定した幅の帯状にして、アンテナ長基点101Aとなる位置に例えば120度間隔で3本のネジ15を設け(図5の(b)参照)、これらネジ15で補助熱電対7を固定するようにしても良い。この方式によれば、アンテナ長基点101Aからの補助熱電対7の長さ調整をアンテナ長固定ブロック101側にて行うことができる。   In the above-described embodiment, in order to provide the antenna length base point 101A that serves as a ground for microwaves, the cross-sectional shape of the antenna length fixing block 101 is changed from the opening end on the auxiliary thermocouple insertion side to the opening end on the auxiliary thermocouple extraction side. As shown in FIG. 5 (a), the taper shape has a constant width from the opening end on the auxiliary thermocouple insertion side to the opening end on the auxiliary thermocouple take-out side, as shown in FIG. Then, for example, three screws 15 may be provided at positions that become the antenna long base point 101A at intervals of 120 degrees (see FIG. 5B), and the auxiliary thermocouple 7 may be fixed by these screws 15. According to this method, the length adjustment of the auxiliary thermocouple 7 from the antenna length base point 101A can be performed on the antenna length fixed block 101 side.

また、図6の(a)及び(b)に示すように、補助熱電対7の径よりも極僅かに大きくした孔16Aを軸心に沿って形成し、外径の寸法をアンテナ長固定ブロック101の内径の寸法よりも極僅かに小さくしたリング状の固定部材16を設けて、補助熱電対7をアンテナ長固定ブロック101のアンテナ長基点101Aに固定するようにしても良い。図5及び図6に示すアンテナ長固定ブロック101の応用例は従来のものと同じ形状であるので、従来のものをそのまま用いることができる。これにより、コストダウンが図れる。   Also, as shown in FIGS. 6A and 6B, a hole 16A that is slightly larger than the diameter of the auxiliary thermocouple 7 is formed along the axis, and the outer diameter is set to the antenna length fixing block. The auxiliary thermocouple 7 may be fixed to the antenna length reference point 101 </ b> A of the antenna length fixing block 101 by providing a ring-shaped fixing member 16 that is slightly smaller than the inner diameter of the antenna 101. Since the application example of the antenna length fixing block 101 shown in FIGS. 5 and 6 has the same shape as the conventional one, the conventional one can be used as it is. Thereby, cost reduction can be achieved.

また上記実施例では、焼成エリア内にマイクロ波を導く導波菅は、磁界が焼成エリア内への入射面に平行なマイクロ波(H波)または電界が焼成エリア内への入射面に平行なマイクロ波(E波)のいずれか一方のマイクロ波を焼成エリア内に放射するものであった。しかし焼成エリア内に電磁波の腹点を炉内全般に均等に存在させて均一電界の場を作るために、H波(磁界Hが入射面に平行な電磁波)とE波(電界Eが入射面に平行な電磁波)を放射混在する方法においても、熱電対先端のマイクロ波のアンテナとして作用する電圧波の腹点の電圧印加を回避する空間を見い出すことで同じ効果を得られる。   In the above-described embodiment, the waveguide for guiding the microwave into the firing area is a microwave (H wave) whose magnetic field is parallel to the incident surface into the firing area or an electric field is parallel to the incident surface into the firing area. One of the microwaves (E waves) was radiated into the firing area. However, in order to create a uniform electric field by making the antinodes of electromagnetic waves uniformly exist in the entire firing area in the firing area, H wave (electromagnetic field H is parallel to the incident surface) and E wave (electric field E is incident surface) The same effect can be obtained by finding a space that avoids voltage application at the antinode of the voltage wave that acts as a microwave antenna at the tip of the thermocouple.

本発明は、熱応答性の良い、細い径を持つ熱電対を使用してもマイクロ波の影響を最小限に抑えて正確な温度測定を行うことができると言った効果を有し、マイクロ波焼成炉への適用が可能である。   The present invention has an effect that an accurate temperature measurement can be performed with a minimum influence of microwaves even when a thermocouple having a good thermal response and a small diameter is used. Application to a firing furnace is possible.

本発明の一実施の形態に係るマイクロ波焼成炉の内部構造を示す斜視図The perspective view which shows the internal structure of the microwave baking furnace which concerns on one embodiment of this invention 図1の炉部分の構成を示す断面図Sectional drawing which shows the structure of the furnace part of FIG. 図1のアンテナ長規制部の構成及びその周辺部分を示す断面図Sectional drawing which shows the structure of the antenna length control part of FIG. 1, and its peripheral part 図1の補助熱電対固定部の構成を示す断面図Sectional drawing which shows the structure of the auxiliary | assistant thermocouple fixing | fixed part of FIG. 図1のアンテナ長規制部の応用例の構成及びその周辺部分を示す断面図Sectional drawing which shows the structure of the application example of the antenna length control part of FIG. 1, and its peripheral part 図1のアンテナ長規制部の応用例の構成及びその周辺部分を示す断面図Sectional drawing which shows the structure of the application example of the antenna length control part of FIG. 1, and its peripheral part 従来の熱電対を示す図Diagram showing a conventional thermocouple

符号の説明Explanation of symbols

1 マイクロ波焼成炉
2 通常焼成エリア
3 通常焼成炉
4 高温焼成エリア
5 高温焼成炉
6 主熱電対
7 補助熱電対
7A 補助熱電対の先端部分
10 アンテナ長規制部
13 補助熱電対固定部
15 ネジ
16 固定部材
101 アンテナ長固定ブロック
101A アンテナ長基点
102 ユニット取付フランジ
103 補助シールド材
104 ユニット固定ナット
105 パイプ固定ナット
110 補助熱電対ガイドパイプ
120 筐体
131 圧着ブロック押しボルト
132 圧着ブロック
133 圧着ブロック受けナット
134 パイプ固定ナット
DESCRIPTION OF SYMBOLS 1 Microwave baking furnace 2 Normal baking area 3 Normal baking furnace 4 High temperature baking area 5 High temperature baking furnace 6 Main thermocouple 7 Auxiliary thermocouple 7A Tip part of auxiliary thermocouple 10 Antenna length regulation part 13 Auxiliary thermocouple fixing part 15 Screw 16 Fixing member 101 Antenna length fixing block 101A Antenna length base point 102 Unit mounting flange 103 Auxiliary shield material 104 Unit fixing nut 105 Pipe fixing nut 110 Auxiliary thermocouple guide pipe 120 Housing 131 Crimp block pressing bolt 132 Crimp block 133 Crimp block receiving nut 134 Pipe fixing nut

Claims (5)

マイクロ波加熱によって被処理体の焼成を行うマイクロ波焼成炉において、
焼成エリアを形成する断熱材を収容する筐体と、
マイクロ波を前記焼成エリア内に放射するマイクロ波放射手段と、
前記筐体の壁面のうち熱電対が前記焼成エリアに露出する部分に前記熱電対に当接して前記熱電対のマイクロ波に対する接地を行う接地手段と、
前記接地手段による接地位置から先の前記熱電対の長さを調整する調整手段と、
を備えるマイクロ波焼成炉。
In a microwave baking furnace for baking the object to be processed by microwave heating,
A housing for containing a heat insulating material forming a firing area;
Microwave radiation means for radiating microwaves into the firing area;
A grounding means for grounding the microwave of the thermocouple in contact with the thermocouple at a portion of the wall surface of the housing that is exposed to the firing area of the thermocouple;
Adjusting means for adjusting the length of the thermocouple ahead of the grounding position by the grounding means;
A microwave baking furnace.
前記熱電対は、径の細い熱電対である請求項1に記載のマイクロ波焼成炉。   The microwave firing furnace according to claim 1, wherein the thermocouple is a thermocouple having a small diameter. 前記接地手段は、前記熱電対を挿入する側の開口端から前記熱電対を前記焼成エリアに露出させる側の開口端に向けて徐々に径が狭くなり、最小径が前記熱電対の径よりも極僅かに大きくなったテーパ状の孔を有する部材である請求項1又は請求項2に記載のマイクロ波焼成炉。   The grounding means gradually decreases in diameter from the opening end on the side where the thermocouple is inserted toward the opening end on the side where the thermocouple is exposed to the firing area, and the minimum diameter is smaller than the diameter of the thermocouple. The microwave firing furnace according to claim 1 or 2, wherein the microwave firing furnace is a member having a tapered hole that is extremely slightly increased. 前記接地手段は、前記熱電対を挿入する側の開口端から前記熱電対を前記焼成エリアに露出させる側の開口端に向けて一定した幅の孔を有すると共に軸心に対して垂直方向に貫通させた少なくとも1つのネジ孔を有する部材と、前記部材のネジ孔に螺合するネジとを備え、前記ネジを前記熱電対に当接させることで前記熱電対のマイクロ波に対する接地を行う請求項1又は請求項2に記載のマイクロ波焼成炉。   The grounding means has a hole having a constant width from the opening end on the side where the thermocouple is inserted to the opening end on the side where the thermocouple is exposed to the firing area, and penetrates in a direction perpendicular to the axis. A member having at least one screw hole and a screw screwed into the screw hole of the member, and grounding the thermocouple with respect to the microwave by bringing the screw into contact with the thermocouple. The microwave baking furnace of Claim 1 or Claim 2. 前記接地手段は、前記熱電対を挿入する側の開口端から前記熱電対を前記焼成エリアに露出させる側の開口端に向けて一定した幅の孔を有する部材と、前記熱電対の径よりも極僅かに大きくした孔が軸心に沿って形成され外径の寸法が前記部材の内径の寸法よりも極僅かに小さくしたリング状の固定部材とを備え、前記固定部材に前記熱電対を通すことで前記熱電対のマイクロ波に対する接地を行う請求項1又は請求項2に記載のマイクロ波焼成炉。   The grounding means includes a member having a hole having a constant width from the opening end on the side where the thermocouple is inserted toward the opening end on the side where the thermocouple is exposed to the firing area, and the diameter of the thermocouple A ring-shaped fixing member having an extremely small hole formed along the axis and having an outer diameter dimension slightly smaller than the inner diameter dimension of the member, and the thermocouple is passed through the fixing member. The microwave baking furnace according to claim 1 or 2, wherein the thermocouple is grounded with respect to the microwave.
JP2006107652A 2006-04-10 2006-04-10 Microwave firing furnace Withdrawn JP2007278640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107652A JP2007278640A (en) 2006-04-10 2006-04-10 Microwave firing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107652A JP2007278640A (en) 2006-04-10 2006-04-10 Microwave firing furnace

Publications (1)

Publication Number Publication Date
JP2007278640A true JP2007278640A (en) 2007-10-25

Family

ID=38680250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107652A Withdrawn JP2007278640A (en) 2006-04-10 2006-04-10 Microwave firing furnace

Country Status (1)

Country Link
JP (1) JP2007278640A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179309A (en) * 2009-02-03 2010-08-19 Jfe Steel Corp Quality assurance system for thick steel plate
JP2010179308A (en) * 2009-02-03 2010-08-19 Jfe Steel Corp Quality assurance system for thick steel plate
CN104236302A (en) * 2014-09-16 2014-12-24 湖南华冶微波科技有限公司 Microwave generating device and microwave high-temperature air pressure device with microwave generating device
JP2015189128A (en) * 2014-03-28 2015-11-02 三洋熱工業株式会社 Method for fitting casting heater to injection nozzle of injection molding device and fitting structure of casting heater to the injection nozzle of injection molding device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179309A (en) * 2009-02-03 2010-08-19 Jfe Steel Corp Quality assurance system for thick steel plate
JP2010179308A (en) * 2009-02-03 2010-08-19 Jfe Steel Corp Quality assurance system for thick steel plate
JP2015189128A (en) * 2014-03-28 2015-11-02 三洋熱工業株式会社 Method for fitting casting heater to injection nozzle of injection molding device and fitting structure of casting heater to the injection nozzle of injection molding device
CN104236302A (en) * 2014-09-16 2014-12-24 湖南华冶微波科技有限公司 Microwave generating device and microwave high-temperature air pressure device with microwave generating device

Similar Documents

Publication Publication Date Title
US7651269B2 (en) Temperature probes having a thermally isolated tip
US20060275933A1 (en) Thermally conductive ceramic tipped contact thermocouple
JP7162835B2 (en) blackbody furnace
JP6286215B2 (en) Plasma processing equipment
JP2007278640A (en) Microwave firing furnace
JP4053130B2 (en) Apparatus for measuring pedestal temperature in semiconductor wafer processing equipment
US11443927B2 (en) Plasma treatment device
Ren et al. Apparatus for measuring spectral emissivity of solid materials at elevated temperatures
EP0152946A2 (en) Apparatus for heating a length of tubing
JP2008276986A (en) Microwave irradiating device
US10591365B2 (en) Temperature probe
WO2009081748A1 (en) Radiometric temperature measuring method and radiometric temperature measuring system
EP3671811A1 (en) Methods and apparatus for active heat transfer management in ion sources
EP3339825B1 (en) High-temperature exhaust sensor
US4241292A (en) Resistive heater
EP1026489B1 (en) Contact temperature probe with thermal isolation between probe head and heat shield of sensor wires
GB2045921A (en) Improvements relating to the measurement of temperature
JPH0625698B2 (en) A radiation sensor for contactlessly measuring the temperature of an object surface regardless of emissivity.
JP2007017212A (en) Temperature sensor
US20060023766A1 (en) Measuring device for a heat flux
Bruschi et al. Calorimetric loads for high power transmission lines at millimeter wavelengths
JP2010002268A (en) Microwave-type densitometer and liquid temperature correcting method thereof
JPH0458569B2 (en)
CN109211796A (en) A method of solid material high temperature continuous spectral emissivity is measured using thermal perturbation method
JP2006284155A (en) Microwave firing furnace

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091109