JP2007278064A - Steam turbine welded rotor and method of manufacturing it, and steam turbine and power generating plant using it - Google Patents

Steam turbine welded rotor and method of manufacturing it, and steam turbine and power generating plant using it Download PDF

Info

Publication number
JP2007278064A
JP2007278064A JP2006101316A JP2006101316A JP2007278064A JP 2007278064 A JP2007278064 A JP 2007278064A JP 2006101316 A JP2006101316 A JP 2006101316A JP 2006101316 A JP2006101316 A JP 2006101316A JP 2007278064 A JP2007278064 A JP 2007278064A
Authority
JP
Japan
Prior art keywords
rotor
steam turbine
welding
turbine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006101316A
Other languages
Japanese (ja)
Inventor
Masahiko Arai
将彦 新井
Keiji Kawanaka
啓嗣 川中
Takeshi Kudo
健 工藤
Hideaki Ishii
秀亮 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006101316A priority Critical patent/JP2007278064A/en
Publication of JP2007278064A publication Critical patent/JP2007278064A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam turbine welded rotor having high fatigue strength since stress concentration is not applied to its heat-affected part formed by a final welding in a laminated welding and a method of manufacturing it, and a steam turbine and a power generating plant using it. <P>SOLUTION: In this steam turbine welded rotor, a turbine rotor divided into at least two pieces is connected to each other by butt welding. The abutted part of these pieces of the turbine rotor comprises a hollow part formed at its center part and an outer peripheral raised part radially raised more than the base part surface of the turbine rotor formed on the outer peripheral side. Groove parts formed at the abutted part are butt-welded by the laminated welding. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、良好な溶接部継手構造及び溶接部強度を有する新規な蒸気溶接タービンロータとその製造方法及び蒸気タービンとその発電プラントに関する。   The present invention relates to a novel steam-welded turbine rotor having a good weld joint structure and weld strength, a manufacturing method thereof, a steam turbine, and a power plant thereof.

環境問題の高まりから、蒸気タービン発電プラントには高効率化及び出力の大容量化が求められ、蒸気温度は高温高圧化が進められている。従来、蒸気タービンロータの如く大型の回転体は、鍛造熱処理技術の発展とも相俟って、一体型ロータが適用されてきた。蒸気温度538℃〜600℃の高圧、中圧蒸気タービンには、1%CrMoV系鋼(特許文献1)、12%Cr系鋼(特許文献2)が使用され、蒸気温度400℃以下の低圧蒸気タービンには3〜4%Ni−Cr−Mo−V系鋼(特許文献3)が使用されている。   Due to increasing environmental problems, steam turbine power plants are required to have higher efficiency and higher output capacity, and steam temperatures are being increased at higher temperatures and pressures. Conventionally, an integrated rotor has been applied to a large rotating body such as a steam turbine rotor, coupled with the development of forging heat treatment technology. 1% CrMoV steel (Patent Document 1) and 12% Cr steel (Patent Document 2) are used for high pressure and medium pressure steam turbines with steam temperatures of 538 to 600 ° C., and low pressure steam with a steam temperature of 400 ° C. or less. The turbine uses 3-4% Ni—Cr—Mo—V steel (Patent Document 3).

また、タービンの軽量化、構造簡素化のために、538〜566℃の蒸気温度で高圧から低圧までを同一材質で一体成形した高低圧一体型ロータには2%Ni−2%Cr−Mo−V系鋼(特許文献4)等が使用されているが、さらなる高温化、大容量化には適さない。   Further, in order to reduce the weight of the turbine and simplify the structure, a high-low pressure integrated rotor integrally formed from the same material from high pressure to low pressure at a steam temperature of 538 to 566 ° C. is 2% Ni-2% Cr—Mo—. V-based steel (Patent Document 4) and the like are used, but are not suitable for further increase in temperature and capacity.

ロータ材に要求される特性は、高圧(高温)では高温クリープ破断強度であり、低圧では引張強さ、靭性である。このように蒸気タービンロータは、一つの材質で高圧、低圧の双方の特性を満足することは困難であるのは勿論のこと、要求される特性は段落毎に異なっている。段落毎または複数段落毎に最適な材料を選択して、ボルト締結、溶接接合等により一本のロータを構成する方法が知られており、溶接構造ロータが特許文献5等に示されている。また、製造工程の再溶解時に異なる材質を接合する方法として、特許文献6等がある。大型ロータの製造と比べて、段落毎または複数段落毎のような小鋼塊は、高品質な鋼塊が得られやすく、大規模な製造設備を必要としない。   The characteristics required for the rotor material are high temperature creep rupture strength at high pressure (high temperature), and tensile strength and toughness at low pressure. Thus, it is difficult for the steam turbine rotor to satisfy both high pressure and low pressure characteristics with a single material, and the required characteristics differ from one paragraph to another. A method is known in which a single rotor is configured by bolt fastening, welding joining, or the like by selecting an optimal material for each paragraph or for each of a plurality of paragraphs, and a welded structure rotor is disclosed in Patent Document 5 and the like. Moreover, there exists patent document 6 etc. as a method of joining a different material at the time of remelting of a manufacturing process. Compared with the manufacture of large rotors, small steel ingots such as for each paragraph or every plurality of paragraphs are easy to obtain high-quality steel ingots, and do not require large-scale production equipment.

ASTM A470 Class8ASTM A470 Class8 特許第1833108号公報Japanese Patent No. 1833108 ASTM A470 Class7ASTM A470 Class7 特許第3106121号公報Japanese Patent No. 3106121 三菱重工技報、Vol.37、No.3(2000−5)Mitsubishi Heavy Industries Technical Report, Vol. 37, no. 3 (2000-5) 特公昭56−14842号公報Japanese Patent Publication No. 56-14842

前述のロータ材料(1%CrMoV系鋼、12%Cr系鋼、3〜4%NiCrMoV系鋼、Ni基合金)は、高温化、大容量化に対応した大型鋼塊の製造が困難であり、分割構造にして高品質な小鋼塊を溶接接合することが好ましい。また、一体型である中実ロータは重量が増大すると共に、起動停止時の熱応力が大きく疲労損傷を受けやすい。分割構造にして中空構造にすると、ロータの軽量化と共に熱応力を低減可能で、起動停止に要する手間を短縮して運用性を改善できる利点がある。   The aforementioned rotor materials (1% CrMoV steel, 12% Cr steel, 3-4% NiCrMoV steel, Ni-base alloy) are difficult to produce large steel ingots corresponding to high temperatures and large capacities, It is preferable to weld and join a high-quality small steel ingot with a divided structure. In addition, the solid rotor that is an integral type increases in weight, and the thermal stress at the time of starting and stopping is large, and is easily damaged by fatigue. The split structure and the hollow structure are advantageous in that the rotor can be reduced in weight and the thermal stress can be reduced, and the work required for starting and stopping can be shortened to improve operability.

しかし、一体型ロータは全領域に渡って鍛造された材料であり、強度と靭性を確保しやすいのに対して、溶接部は凝固組織であり、母材側には熱影響部が存在するため、継手部の機械的性質は母材に比べると低下している。溶接技術の進歩も著しく、入熱量を小さくして熱影響部の幅を小さくする狭開先溶接等が開発されているが、凝固組織と熱影響部が存在することに変わりはない。   However, the integrated rotor is a material that is forged over the entire area, and it is easy to ensure strength and toughness, whereas the welded part is a solidified structure, and there is a heat affected zone on the base metal side. The mechanical properties of the joint are degraded as compared to the base material. Progress in welding technology has been remarkable, and narrow groove welding and the like have been developed in which the amount of heat input is reduced to reduce the width of the heat affected zone, but the solidified structure and the heat affected zone are still present.

更に、溶接初層部では溶接中央部と比べると欠陥が発生しやすく、また、母材との希釈率の違いから特性が低下しやすい問題がある。また、最終層部では、熱履歴の違いからFe系材料ではAC3変態(オーステナイト変態、ベイナイト変態(マルテンサイト変態))の繰返し、Ni基合金では再結晶の繰返しが少なく粗粒を形成しやすいために、機械的性質が低下する問題がある。ロータの軸表面に欠陥及び弱化部が存在すると、応力集中により破壊の起点となるため、回転体では特に注意が必要である。初層部に***構造を構成して応力集中を回避した構造が上述の文献に示されているが、最終層部の粗粒域の特性低下に対しては考慮されていない。   Furthermore, there is a problem that defects are more likely to occur in the weld first layer portion than in the weld center portion, and the characteristics are likely to deteriorate due to the difference in dilution rate from the base material. In the final layer, due to the difference in thermal history, AC3 transformation (austenite transformation, bainite transformation (martensite transformation)) is repeated in Fe-based materials, and recrystallization is less likely to occur in Ni-based alloys, which makes it easy to form coarse grains. In addition, there is a problem that the mechanical properties deteriorate. If there are defects and weakened portions on the shaft surface of the rotor, it becomes a starting point of fracture due to stress concentration, so special attention is required for the rotating body. A structure in which a raised structure is formed in the first layer portion to avoid stress concentration is shown in the above-mentioned literature, but no consideration is given to the deterioration of the characteristics of the coarse grain region in the last layer portion.

本発明の目的は、積層溶接における最終溶接によって形成される熱影響部に応力集中がかからず、高い疲労強度を有する蒸気タービン溶接ロータとその製造方法及び蒸気タービン発電プラントを提供することにある。   An object of the present invention is to provide a steam turbine welding rotor, a manufacturing method thereof, and a steam turbine power plant that have high fatigue strength without stress concentration in a heat-affected zone formed by final welding in lamination welding. .

本発明の他の目的は、積層溶接における最終溶接によって形成される熱影響部への応力集中及び初層溶接部に形成される熱影響部への応力集中がかからず、高い疲労強度を有する蒸気タービン溶接ロータとその製造方法及び蒸気タービン発電プラントを提供することにある。   Another object of the present invention is that stress concentration on the heat-affected zone formed by the final welding in the lamination welding and stress concentration on the heat-affected zone formed in the first-layer weld zone are not applied, and high fatigue strength is achieved. It is an object to provide a steam turbine welding rotor, a manufacturing method thereof, and a steam turbine power plant.

本発明は、少なくとも2個に分割されたタービンロータを突合せ溶接により接続された蒸気タービン溶接ロータにおいて、前記タービンロータの両者の突合せ部は、その中心部に形成された中空部と、その外周側に形成された前記タービンロータの基部面より径方向に対して***した外周側***部とを有し、前記突合せ部に形成された開先部が積層溶接によって前記突合せ溶接されていることを特徴とする。   The present invention relates to a steam turbine welded rotor in which at least two turbine rotors are connected by butt welding, the butt portions of both of the turbine rotors are a hollow portion formed at the center thereof, and an outer peripheral side thereof And an outer peripheral bulging portion that is bulged from the base surface of the turbine rotor in the radial direction, and the groove portion formed in the butt portion is butt welded by lamination welding. And

又、本発明は、前記中空部の内周側に前記タービンロータの基部面より径方向に対して***した内周側***部を有すること、又、前記積層溶接における最終溶接によって形成される熱影響部がかからないような前記外周側***部の前記タービンロータの軸方向幅を有するものであること、更に、前記積層溶接における初層溶接によって形成される熱影響部がかからないような前記内周側***部の前記タービンロータの軸方向幅を有するものであることが好ましい。   Further, the present invention has an inner peripheral side raised portion that is raised in the radial direction from the base surface of the turbine rotor on the inner peripheral side of the hollow portion, and heat formed by final welding in the lamination welding. The inner peripheral side that does not have a heat-affected zone formed by the first layer welding in the lamination welding that has an axial width of the turbine rotor of the outer peripheral side raised portion that does not take the affected zone. It is preferable to have the axial width of the raised portion of the turbine rotor.

本発明は、異なる材質のタービンロータを溶接する際には、タービンロータの開先部の一方に前記積層溶接の組成を緩和するバタリング層を有すること、又、最終溶接層である粗粒域を研削等により削除することが好ましい。   When welding turbine rotors of different materials, the present invention has a buttering layer that relaxes the composition of the lamination welding on one of the groove portions of the turbine rotor, and a coarse grain region that is a final weld layer. It is preferable to delete by grinding or the like.

外周側***部の高さaと内周側***部の高さbのタービンロータ軸方向の幅は、開先間隔Wの2〜30倍、その両者の各高さは開先間隔Wの0.5〜5倍、前記外周側***部及び内周側***部のいずれも前記基部との間が曲率半径Rを有して形成されていることが好ましく、中空部はタービンロータ軸方向の幅が開先深さの0.5〜5倍、径方向長さが開先深さの2〜8倍が好ましい。   The width in the turbine rotor axial direction of the height a of the outer peripheral bulge portion and the height b of the inner peripheral bulge portion is 2 to 30 times the groove interval W, and each height of both is 0 of the groove interval W. 5-5 times, it is preferable that each of the outer peripheral bulge and the inner peripheral bulge is formed with a radius of curvature R between the base and the hollow portion. Is preferably 0.5 to 5 times the groove depth, and the radial length is preferably 2 to 8 times the groove depth.

本発明の高圧用、中圧用、高中圧用蒸気タービン溶接ロータとしては、質量で、C0.25〜0.35%、Mn1%以下、Ni1%以下、Cr0.8〜1.5%、Mo1.0〜1.5%、V0.2〜0.3%を含むベーナイト組織を有する1%Cr−Mo−V系鋼、又は、質量で、C0.1〜0.2%、Mn0.3〜1.0%、Ni1%以下、Cr9〜13%、Mo0.1〜1.5%、W0.2〜3%、Nb0.02〜0.1%、Co3%以下、B0.01%以下を含む全焼戻しマルテンサイト組織を有する12%Cr系鋼を用いることが好ましい。   The steam turbine welding rotor for high pressure, medium pressure, and high medium pressure of the present invention is C0.25-0.35%, Mn1% or less, Ni1% or less, Cr0.8-1.5%, Mo1.0 by mass. -1.5%, 1% Cr-Mo-V steel having a bainite structure including V 0.2-0.3%, or by mass, C 0.1-0.2%, Mn 0.3-1. Total tempering including 0%, Ni 1% or less, Cr 9-13%, Mo 0.1-1.5%, W 0.2-3%, Nb 0.02-0.1%, Co 3% or less, B 0.01% or less It is preferable to use 12% Cr steel having a martensite structure.

本発明の低圧ロータ又は低圧蒸気タービンロータとしては、質量で、C0.17〜0.32%、Mn0.20〜0.40%、Ni3〜4%、Cr1.25〜2.0%、Mo0.25〜0.60%、V0.05〜0.15%を含むベーナイト組織を有する3〜4%Ni−Cr−Mo−V系鋼を用いることが好ましい。   As a low-pressure rotor or low-pressure steam turbine rotor of the present invention, by mass, C0.17 to 0.32%, Mn0.20 to 0.40%, Ni3 to 4%, Cr1.25 to 2.0%, Mo0. It is preferable to use a 3-4% Ni—Cr—Mo—V steel having a bainite structure containing 25 to 0.60% and V 0.05 to 0.15%.

更に、本発明の高圧用、中圧用、高中圧用蒸気タービン溶接ロータは、質量で、Cr12〜20%、Nb1.5〜3.5%、Ti1.5〜2.0%、Al0.2〜1.5%を含むNi基合金、又は、質量で、Cr15〜20%、Mo5〜15%、Ti1.0〜2.0%、Al0.2〜2.0%を含むNi基合金を用いることが好ましい。   Further, the steam turbine welded rotor for high pressure, medium pressure, and high medium pressure of the present invention is, by mass, Cr 12-20%, Nb 1.5-3.5%, Ti 1.5-2.0%, Al 0.2-1 Ni-based alloy containing 0.5%, or Ni-based alloy containing Cr 15-20%, Mo 5-15%, Ti 1.0-2.0%, Al 0.2-2.0% by mass. preferable.

これらの積層溶接の組成及び溶接ワイヤには、質量で、C0.04〜0.1%、Si0.3〜0.7%、Mn0.5〜1.5%、Cr0.8〜1.5%、Mo0.3〜0.8%を含む1%Cr−Mo系鋼溶接金属、C0.06%以下、Si0.3〜0.7%、Mn0.5〜1.5%、Cr1.5〜2.5%、Mo0.8〜1.5%を含む2%Cr−Mo系鋼溶接金属、C0.05〜0.15%、Si0.05〜0.5%、Mn1.0〜2.5%、Ni2.0〜4.0%、Cr0.25〜1.5%、Mo0.5〜0.8%を含む3〜4%Ni−Cr−Mo−V系鋼溶接金属を用いることが好ましい。   These laminated welding compositions and welding wires include, by mass, C 0.04 to 0.1%, Si 0.3 to 0.7%, Mn 0.5 to 1.5%, Cr 0.8 to 1.5%. 1% Cr-Mo steel weld metal containing Mo 0.3 to 0.8%, C 0.06% or less, Si 0.3 to 0.7%, Mn 0.5 to 1.5%, Cr 1.5 to 2 0.5%, 2% Cr-Mo steel weld metal containing Mo 0.8-1.5%, C 0.05-0.15%, Si 0.05-0.5%, Mn 1.0-2.5% It is preferable to use a 3 to 4% Ni—Cr—Mo—V steel weld metal containing Ni 2.0 to 4.0%, Cr 0.25 to 1.5%, and Mo 0.5 to 0.8%.

バタリングの溶接金属部の組成及びその溶接ワイヤには、質量で、C0.05〜0.15%、Si0.05〜0.5%、Mn1.0〜2.5%、Ni2.0〜4.0%、Cr0.25〜1.5%、Mo0.5〜0.8%を含む3〜4%Ni−Cr−Mo−V系鋼溶接金属、又は、C0.04〜0.1%、Si0.05〜0.3%、Mn0.5〜2.5%、Ni0.5〜1.0%、Cr7.5〜10.0%、Mo0.6〜1.5%、V0.1〜0.25%、Nb0.1%以下を含む9%Cr−Ni−Mo−V系鋼溶接金属を用いることが好ましい。   The composition of the weld metal part of the buttering and the welding wire include, by mass, C 0.05 to 0.15%, Si 0.05 to 0.5%, Mn 1.0 to 2.5%, Ni 2.0 to 4. 0%, Cr0.25-1.5%, 3-4% Ni-Cr-Mo-V steel weld metal containing Mo0.5-0.8%, or C0.04-0.1%, Si0 0.05-0.3%, Mn 0.5-2.5%, Ni 0.5-1.0%, Cr 7.5-10.0%, Mo 0.6-1.5%, V0.1-0. It is preferable to use a 9% Cr—Ni—Mo—V steel weld metal containing 25% and Nb 0.1% or less.

又、本発明の高圧、中圧及び高中圧蒸気タービン溶接ロータは、蒸気温度の高い高温側に12%Cr系鋼を用い、温度の低下した低温側及びシャフト部の少なくとも一方に1%CrMoV系鋼を用いること、又、蒸気温度の高い高温側にNi基合金を用い、温度の低下した低温側及び軸受部の少なくても一方に12%Cr系鋼、1%CrMoV系鋼のいずれか又は双方を用いることが好ましい。   The high pressure, medium pressure, and high medium pressure steam turbine welded rotor of the present invention uses 12% Cr steel on the high temperature side where the steam temperature is high, and 1% CrMoV system on at least one of the low temperature side where the temperature decreases and the shaft portion. Use steel, use a Ni-based alloy on the high temperature side where the steam temperature is high, and at least one of the low temperature side where the temperature has decreased and at least one of the bearing part is 12% Cr steel, 1% CrMoV steel or It is preferable to use both.

本発明の高低圧一体型及び中低圧一体型蒸気タービン溶接ロータは、高圧ロータ及び中圧ロータは1%CrMoV系鋼及び12%Cr系鋼のいずれかを用い、低圧ロータは3〜4%Ni−Cr−Mo−V系鋼を用いることが好ましい。   The high / low pressure integrated type and medium / low pressure integrated type steam turbine welded rotor of the present invention use either 1% CrMoV steel or 12% Cr steel for the high pressure rotor and medium pressure rotor, and 3-4% Ni for the low pressure rotor. It is preferable to use —Cr—Mo—V steel.

1%CrMoV系鋼と12%Cr系鋼との溶接には12%Cr系鋼側に9%Cr−Ni−Mo−V系鋼溶接金属をバタリングし1〜2%Cr−Mo系鋼溶接金属にて積層溶接すること、1%CrMoV系鋼と3〜4%Ni−Cr−Mo−V系鋼との溶接には1%CrMoV系鋼側に1〜2%Cr−Mo系鋼溶接金属をバタリングし3〜4%Ni−Cr−Mo−V系鋼溶接金属又は1〜2%Cr−Mo系鋼溶接金属にて積層溶接することが好ましい。   For welding between 1% CrMoV steel and 12% Cr steel, 9% Cr—Ni—Mo—V steel weld metal is battered on the 12% Cr steel side, and 1-2% Cr—Mo steel weld metal For welding between 1% CrMoV steel and 3-4% Ni-Cr-Mo-V steel, 1-2% Cr-Mo steel weld metal is used on the 1% CrMoV steel side. It is preferable to perform lamination welding with 3 to 4% Ni—Cr—Mo—V steel weld metal or 1 to 2% Cr—Mo steel weld metal.

本発明は、少なくとも2個に分割されたタービンロータを突合せ溶接により接続する蒸気タービン溶接ロータの製造方法において、前記タービンロータの突合せ部の中心部に中空部を形成すると共に、前記突合せ部の外周側に前記タービンロータの基部面より***した外周側***部を形成し、前記突合せ部に形成された開先部を積層溶接することを特徴とする。   The present invention relates to a method for manufacturing a steam turbine welded rotor in which at least two turbine rotors are connected by butt welding, wherein a hollow portion is formed at the center of the butt portion of the turbine rotor and the outer periphery of the butt portion An outer peripheral bulging portion that bulges from the base surface of the turbine rotor is formed on the side, and a groove portion formed in the butt portion is laminated and welded.

本発明の開先部は狭開先で、前記タービンロータの軸方向で僅かに外周側に向かって広がっており、ルート開先部がU字状に形成されていることが好ましい。   It is preferable that the groove portion of the present invention is a narrow groove and slightly extends toward the outer peripheral side in the axial direction of the turbine rotor, and the root groove portion is formed in a U shape.

前記タービンロータは互いに材質が異なり、前記積層溶接する前に、残留応力除去焼鈍温度の高い材質の前記ロータ側の前記突合せ部の全面に前記積層溶接の組成を緩和するバタリング層を形成した後、前記開先部を形成することが好ましい。   The turbine rotors are made of different materials, and before the lamination welding, after forming a buttering layer that relaxes the composition of the lamination welding on the entire surface of the butt portion on the rotor side of a material having a high residual stress removal annealing temperature, It is preferable to form the groove portion.

前記タービンロータの軸を縦向きにて前記バタリング層を形成し、又は、前記ロータ軸を横向きにして回転させながら他の部材との間に溶接金属部を形成する突合せ溶接した後、前記タービンロータ軸を径方向で横切る面で前記溶接金属部を残して切断して前記バタリング層を形成し、前記バタリング層の残留応力除去焼鈍を施した後、前記開先部を形成すること、更に、前記タービンロータ軸を横向きにして回転させながら他の部材との間に溶接金属部を形成する突合せ溶接した後、前記溶接金属部の残留応力除去焼鈍を施してから前記タービンロータ軸を横切る面で前記溶接金属部を残して切断し、次いで前記開先部を形成することが好ましい。他の部材は、接合される部材と同じ組成を有することが好ましいが、炭素鋼又は低合金鋼を用いることができる。   After forming the buttering layer with the shaft of the turbine rotor vertically oriented, or butt welding to form a weld metal part with another member while rotating the rotor shaft horizontally, the turbine rotor Forming the buttering layer by cutting the left surface of the weld metal portion across the axis in the radial direction, and forming the groove portion after performing the residual stress removal annealing of the buttering layer; After butt welding to form a weld metal portion with another member while rotating the turbine rotor shaft sideways, the weld metal portion is subjected to residual stress removal annealing and then the surface crossing the turbine rotor shaft It is preferable that the weld metal part is cut and the groove part is formed. The other member preferably has the same composition as the member to be joined, but carbon steel or low alloy steel can be used.

タービンロータの回転体は、軸の偏芯が大きな振動を引起すので、溶接中の寸法安定性が重要である。本発明の蒸気タービン溶接ロータの製造方法は、狭開先部の積層溶接及びバタリング層の形成にTIG溶接法、サブマージアーク溶接法、ミグ溶接法、被覆アーク溶接法のいずれかを用い、ロータ軸を横向きにして回転させながら溶接すること、バタリング層の形成はロータ軸を縦向き又はロータ軸を横向きにして回転させながら溶接することが好ましい。   In the rotor of a turbine rotor, the eccentricity of the shaft causes a large vibration, so that dimensional stability during welding is important. The method for manufacturing a steam turbine welded rotor according to the present invention uses any of TIG welding, submerged arc welding, MIG welding, and coated arc welding for lamination welding of narrow gap portions and formation of a buttering layer, and a rotor shaft It is preferable that welding is performed while rotating the rotor shaft horizontally, and the buttering layer is formed by rotating the rotor shaft vertically or rotating the rotor shaft horizontally.

突合せ溶接する前の準備として、仮付けを行うことが好ましい。ディスク形状、又はそれに近いものは、縦方向に積み上げて仮付けを行うことが好ましい。複数段落のような比較的大きなブロックでは、横向きにして仮付けすることが好ましい。ロータの一端を保持して縦向きに回転させながら溶接することもできる。   As preparation before butt welding, it is preferable to perform temporary attachment. It is preferable that the disk shape or a thing close to it is stacked in the vertical direction to be tacked. In a relatively large block such as a plurality of paragraphs, it is preferable to perform temporary attachment in a horizontal direction. It is also possible to perform welding while holding one end of the rotor and rotating it vertically.

本発明は、タービン動翼と、該動翼を複数の段落に植設するタービンロータとを有する蒸気タービンにおいて、前記タービンロータが、前述に記載の蒸気タービン溶接ロータ又はその製造法よって製造された蒸気タービン溶接ロータで構成されていることを特徴とする。   The present invention provides a steam turbine having a turbine rotor blade and a turbine rotor in which the rotor blade is implanted in a plurality of stages, wherein the turbine rotor is manufactured by the steam turbine welded rotor described above or a manufacturing method thereof. It is characterized by comprising a steam turbine welding rotor.

本発明は、高圧蒸気タービン-中圧蒸気タービン-低圧蒸気タービン、高中圧一体型蒸気タービン-低圧蒸気タービン及び高低圧一体型蒸気タービンのいずれかと発電機とを有し、前記高圧蒸気タービン、高中圧一体型蒸気タービン、中圧蒸気タービン、高低圧一体型蒸気タービン及び低圧蒸気タービンのいずれかが前述に記載の蒸気タービンよりなることを特徴とする蒸気タービン発電プラントにある。   The present invention includes a high pressure steam turbine-medium pressure steam turbine-low pressure steam turbine, a high / medium pressure integrated steam turbine-low pressure steam turbine, and a high / low pressure integrated steam turbine, and a generator. One of the pressure-integrated steam turbine, the intermediate-pressure steam turbine, the high-low pressure integrated steam turbine, and the low-pressure steam turbine is the steam turbine power plant characterized by comprising the steam turbine described above.

本発明によれば、積層溶接における最終溶接によって形成される熱影響部に応力集中がかからず、高い疲労強度を有する分割構造型の蒸気タービン溶接ロータを作製することができ、それを用いることによって蒸気条件の高温高圧化、発電プラントの大出力化に対応することができる。   According to the present invention, it is possible to produce and use a split structure type steam turbine welding rotor having high fatigue strength without stress concentration in the heat-affected zone formed by the final welding in the lamination welding. Therefore, it is possible to cope with high-temperature and high-pressure steam conditions and high power plant output.

以下、本発明を実施するための最良の形態を具体的な実施例によって詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described in detail by way of specific examples, but the present invention is not limited to these examples.

図1は本発明に係る蒸気タービン用溶接ロータの継手の全体構造を示す部分断面図(a)、継手構造を示す部分断面図(b)及びその寸法を示す断面図である。2つのタービンロータ1とタービンロータ2とは突合せ部側の直径がその奥より小さい円形カップ状の凹部を有し、内周面先端が狭開先部7の空間を形成するタービンロータ軸方向に所定の長さに形成された矩形断面を有するリング状の突起からなる突合せ部6で突き合わされて円筒形状の中空部8が形成される。狭開先部7は、積層溶接部表面がタービンロータ1、2の基部外表面と同一面にならないよう曲率半径R5を有する外周側***部4を形成すると共に、基部内表面と同一面にならないよう曲率半径R5を有する内周側***部3を形成し、狭開先部7をTIG溶接等にて溶接ワイヤを溶加材として積層溶接する。   FIG. 1 is a partial cross-sectional view (a) showing the overall structure of the joint of the steam turbine welding rotor according to the present invention, a partial cross-sectional view (b) showing the joint structure, and a cross-sectional view showing the dimensions thereof. The two turbine rotors 1 and 2 have a circular cup-shaped recess whose diameter on the abutting portion side is smaller than the inner diameter thereof, and the tip of the inner peripheral surface extends in the axial direction of the turbine rotor forming the space of the narrow groove portion 7. A cylindrical hollow portion 8 is formed by abutting at a butting portion 6 formed of a ring-shaped protrusion having a rectangular cross section formed to a predetermined length. The narrow groove portion 7 forms the outer peripheral bulge portion 4 having a radius of curvature R5 so that the surface of the laminated weld portion is not flush with the base outer surface of the turbine rotors 1 and 2, and is not flush with the base inner surface. The inner peripheral bulging portion 3 having the curvature radius R5 is formed, and the narrow groove portion 7 is laminated and welded using a welding wire as a filler material by TIG welding or the like.

狭開先部7はルート部がU字状で、タービンロータ軸方向幅が内周側から外周側に向けてやや広がった形状を有し、積層溶接によってその幅が熱収縮によって狭められるので、開先の広がりは積層溶接中の溶接の作業に支障がないように、十分な広がりを施す。   The narrow groove portion 7 has a U-shaped root portion, and has a shape in which the width in the axial direction of the turbine rotor is slightly widened from the inner peripheral side to the outer peripheral side. The groove is sufficiently wide so that there is no hindrance to the welding work during the lamination welding.

タービンロータ1、2の直径500mmに対して、外周側***部5の高さa、内周側***部3の高さbをそれぞれ10mm、開先深さd=100mm、間隔W=12mm、ルートフェースe=2mm、ルート間隔は0mmとし、平滑部の突合せ、及びインロー構造としても良い。継手部の特性調査のため、模擬ロータをTIG溶接で積層溶接し、断面の組織観察及び破壊調査を行った(バタリング層は無し)。外周側***部4の高さaの最大直径における軸方向の幅と内周側***部3の高さbの最小直径における軸方向の幅は開先間隔Wの2〜4倍の30mm、中空部8は軸方向幅が開先深さdの1〜2倍の100mm、最大直径340mmである。   For the turbine rotors 1 and 2 having a diameter of 500 mm, the height a of the outer peripheral bulge 5 and the height b of the inner bulge 3 are 10 mm, groove depth d = 100 mm, spacing W = 12 mm, route The face e = 2 mm, the route interval may be 0 mm, and a smooth portion butt and an inlay structure may be used. In order to investigate the characteristics of the joint, the simulated rotor was laminated and welded by TIG welding, and the structure of the cross section was observed and the fracture was examined (there was no buttering layer). The width in the axial direction at the maximum diameter of the height a of the outer peripheral side raised portion 4 and the width in the axial direction at the minimum diameter of the height b of the inner peripheral side raised portion 3 are 30 mm, which is 2 to 4 times the groove interval W. The portion 8 has an axial width of 100 mm, which is 1 to 2 times the groove depth d, and a maximum diameter of 340 mm.

本実施例の蒸気タービン用溶接ロータは、中空部8のもで、中実であるが、径方向中心部に軸方向全体に亘って中空部8の径より小さい中心孔を形成することができ、それによってタービンロータ内面の欠陥の検査を行うことができる。   The steam turbine welding rotor of the present embodiment is solid with the hollow portion 8, but a central hole smaller than the diameter of the hollow portion 8 can be formed in the central portion in the radial direction over the entire axial direction. Thereby, it is possible to inspect for defects on the inner surface of the turbine rotor.

表1は母材及び溶接ワイヤの化学組成(重量%)を示し、残部がFeである。積層溶接は、250℃〜300℃に予熱後、パス間温度を400℃以下にして行った。溶接後、400℃に保持して脱水素処理を行い、残留応力除去のため、570℃に昇温して保持した。溶接ワイヤの組成は、母材に比較してC量を0.07〜0.15%、Ni量を2.0〜3.0%及びCr量を0.8〜1.3%と少なくし、Si量を0.25〜0.4%、Mn量を1.5〜2.5%、Mo量を0.5〜0.8%と多くし、Vを含まないものである。   Table 1 shows the chemical composition (% by weight) of the base material and the welding wire, with the balance being Fe. Laminate welding was performed after preheating to 250 ° C. to 300 ° C., and the interpass temperature was 400 ° C. or lower. After welding, dehydrogenation treatment was performed while maintaining the temperature at 400 ° C., and the temperature was increased to 570 ° C. and retained in order to remove residual stress. The composition of the welding wire is such that the C content is 0.07 to 0.15%, the Ni content is 2.0 to 3.0%, and the Cr content is 0.8 to 1.3% compared to the base metal. The Si content is increased to 0.25 to 0.4%, the Mn content is increased to 1.5 to 2.5%, the Mo content is increased to 0.5 to 0.8%, and V is not included.

Figure 2007278064
溶接部の浸透探傷試験の結果、初層部では裏波にやや不完全な溶接部分が有り、欠陥の存在する確率が高かった。一方、初層部以降の溶接中央部にはほぼ欠陥が認められなかった。初層部の溶接では、極めて大型の構造物の溶接となるため、初層部では裏波にやや不完全な溶け込みとなり易いが、本実施例の***部3を設けることによって裏波の溶け込みが容易となり欠陥の発生が少ないものとなる。溶接部は、溶接後の熱収縮によって径方向に収縮し、外周部ではやや凹み、内周部ではやや内周側に凸状になるが、それらの変形は小さいものであった。内外周部での変形が小さいのは、本実施例における内外周***部3、4の形成によるものである。
Figure 2007278064
As a result of the penetration inspection test of the welded part, there was a somewhat incomplete welded part in the back wave in the first layer part, and there was a high probability that there was a defect. On the other hand, almost no defects were found in the weld center after the first layer. In the welding of the first layer portion, since a very large structure is welded, the first layer portion tends to be slightly incompletely melted into the back wave, but by providing the raised portion 3 of this embodiment, the back wave is melted. It becomes easier and less defects are generated. The welded portion shrinks in the radial direction due to heat shrinkage after welding, and is slightly recessed at the outer peripheral portion and slightly convex toward the inner peripheral side at the inner peripheral portion, but their deformation is small. The reason why the deformation at the inner and outer peripheral portions is small is due to the formation of the inner and outer peripheral raised portions 3 and 4 in this embodiment.

図2は溶接部断面の顕微鏡組織写真(100倍)を示す図である。厚み方向での組織的特徴は、溶接最終層近傍(a)が粗粒を有するのに対して、最終層近傍以外は微細な結晶組織を呈していた(b)。   FIG. 2 is a view showing a microscopic microstructure photograph (100 times) of a welded section. As for the structural characteristics in the thickness direction, the vicinity of the final weld layer (a) has coarse grains, whereas the fine structure except for the vicinity of the final layer was exhibited (b).

表2は溶接部の引張試験及び衝撃試験の結果を示すものである。初層、最終層近傍において、延性、靭性が低い傾向にあり、特に最終層近傍で低下量が大きかった。溶接部の初層及び最終層近傍は、機械的性質が低下しており、ロータ母材からは、欠陥部と同等と考えられる。しかし、本発明の外周側***部4を有するものでは、最終層近傍を切削除去することができ、最終層近傍の無い基部と同じ高さのものを得ることができる。   Table 2 shows the results of the tensile test and impact test of the weld. The ductility and toughness tend to be low in the vicinity of the first layer and the final layer, and the amount of decrease was particularly large in the vicinity of the final layer. In the vicinity of the first layer and the final layer of the welded portion, the mechanical properties are lowered, and from the rotor base material, it is considered equivalent to the defective portion. However, in the thing which has the outer peripheral side protruding part 4 of this invention, the last layer vicinity can be cut off and the thing of the same height as the base without the last layer vicinity can be obtained.

Figure 2007278064
図3は、溶接部表面に欠陥が存在する場合、開先部の***構造が疲労強度の保持に有効か否かを評価するため、人口欠陥を導入した疲労試験に用いた試験片形状を示す平面図である。平行部径6mmの試験片(a)を基準とし、平滑面から0.5mmの***構造部に0.5mm、稜角90°のVノッチを環状に導入したもの(b)、直径7mmの平滑平行部中央に深さ0.5mm、稜角90°のVノッチを環状に導入したもの(c)のそれぞれを試験した。
Figure 2007278064
FIG. 3 shows the shape of a specimen used in a fatigue test in which artificial defects are introduced in order to evaluate whether or not the raised structure of the groove portion is effective in maintaining fatigue strength when defects are present on the weld surface. It is a top view. Using a test piece (a) with a parallel part diameter of 6 mm as a reference, a 0.5 mm, raised notch with a ridge angle of 90 ° was introduced into a raised structure part of 0.5 mm from the smooth surface (b), a smooth parallel with a diameter of 7 mm. Each of the samples (c) in which a V notch having a depth of 0.5 mm and a ridge angle of 90 ° was introduced into a ring shape in the center of each part was tested.

図4は、回転曲げ疲労試験結果を示す線図である。本発明の***構造を有する試験片(b)の破断位置はR部であり、ほぼ母材(a)と同等の疲労強度を有していたが、***構造を持たない試験片(c)は母材強度より低下しており、***構造が欠陥の存在に対して有効に働いていた。   FIG. 4 is a diagram showing the results of a rotating bending fatigue test. The fracture position of the test piece (b) having the raised structure of the present invention was the R portion, and had a fatigue strength substantially equal to that of the base material (a), but the test piece (c) having no raised structure was It was lower than the base metal strength, and the raised structure worked effectively against the presence of defects.

図5は、本発明の***構造を有する試験片の溶接部の表曲げ及び側曲げ試験結果を示す図である。いずれの曲げ試験においても割れは認められず良好な溶接部を形成していた。   FIG. 5 is a diagram showing the surface bending and side bending test results of the welded portion of the test piece having the raised structure of the present invention. In any bending test, no crack was observed and a good weld was formed.

本実施例の溶接部について非破壊検査(磁紛探傷試験、浸透探傷試験、超音波探傷試験)の結果、初層部では裏波にやや不完全な溶接部分が有ったが、初層部以降の溶接中央部には欠陥が認められなかった。   As a result of nondestructive inspection (magnetic flaw detection test, penetration flaw detection test, ultrasonic flaw detection test) on the welded part of this example, the first layer part had a slightly incomplete welded part. No defects were observed in the center of the subsequent weld.

本実施例の外周側***部4の曲率半径R5部は、積層溶接における最終溶接によって形成される約5mm程度の熱影響部がかからないものであり、更に、内周側***部3の曲率半径R5部も積層溶接における初層溶接によって形成される熱影響部がかからないものであり、いずれも応力集中は曲率半径R5の部分にかかり、熱影響部にはかからない充分な幅と高さを有するものであった。   The radius of curvature R5 of the outer peripheral bulging portion 4 of this embodiment is such that a heat affected zone of about 5 mm formed by final welding in the lamination welding is not applied. Further, the radius of curvature R5 of the inner peripheral bulging portion 3 is not applied. The heat affected zone formed by the first layer welding in the lamination welding is not applied to any part, and stress concentration is applied to the portion of the radius of curvature R5 and has a sufficient width and height not applied to the heat affected zone. there were.

その結果、従来の溶接構造では溶接熱影響部に応力集中がかかり、その部分での疲労強度が低いためにその部分での設計強度にて設計せざるを得ないものであったが、本発明においては溶接熱影響部に応力集中がかかる位置を内外周側***部の曲率半径R部にすることができることからタービンロータ材の母材での強度設計ができることからより蒸気条件の高温高圧化、発電プラントの大出力化に対応することができる。   As a result, in the conventional welded structure, stress concentration is applied to the weld heat affected zone, and the fatigue strength at that portion is low, so the design strength at that portion had to be designed. In this case, since the position where the stress concentration is applied to the weld heat affected zone can be the radius of curvature R portion of the inner and outer peripheral bulges, the strength design of the base material of the turbine rotor material can be performed, so the steam conditions are increased in temperature and pressure. It can cope with the large output of the power plant.

以上のように、本実施例によれば、積層溶接における最終溶接によって形成される熱影響部に応力集中がかからず、又、初層溶接部に形成される熱影響部への応力集中がかからず、高い疲労強度を有する分割構造型の蒸気タービン溶接ロータを作製することができ、それを用いることによって蒸気条件の高温高圧化、発電プラントの大出力化に対応することができる。   As described above, according to this embodiment, no stress concentration is applied to the heat-affected zone formed by the final welding in the lamination welding, and the stress concentration to the heat-affected zone formed in the first layer weld is not. However, a split structure type steam turbine welding rotor having high fatigue strength can be produced, and by using it, it is possible to cope with high-temperature and high-pressure steam conditions and high power plant output.

又、溶接構造とすることで、突合せ面を中空化できることからロータ重量を軽くでき、又、熱応力を低減できることから起動停止を急速に行えるのでプラントの運用性を高めることができる。   In addition, by adopting a welded structure, the butt surface can be made hollow, so that the weight of the rotor can be reduced, and since the thermal stress can be reduced, the start and stop can be performed rapidly, so that the operability of the plant can be improved.

図6は本発明に係る低圧複流蒸気タービン用溶接ロータの断面図である。本低圧複流蒸気タービン用溶接ロータロータは、左右対称に6段のタービン動翼が植え込まれる構造を有し、その中央部から左右に蒸気が流入される複流型である。本実施例では、最終段以外のタービン動翼が植え込まれる中央部の蒸気流入側ロータ12に対してその両側に最終段タービン動翼が植え込まれるジャーナル部を有する最終段落側ロータ11、13が夫々溶接部16、17で溶接接合する構造を有するものである。   FIG. 6 is a cross-sectional view of a welding rotor for a low-pressure double-flow steam turbine according to the present invention. The welding rotor rotor for a low-pressure double-flow steam turbine has a structure in which six stages of turbine rotor blades are implanted symmetrically, and is a double-flow type in which steam flows from the center to the left and right. In the present embodiment, the final stage rotors 11 and 13 having journal portions in which the final stage turbine rotor blades are implanted on both sides of the central steam inflow side rotor 12 in which turbine blades other than the final stage are implanted. However, it has the structure weld-joined by the welding parts 16 and 17, respectively.

本実施例の継手部の構造は前述の実施例1と同様の構造を有し、中空部14、15を形成して軽量化を図っている。又、蒸気流入側ロータ12及び最終段落側ロータ11、13のいずれも表1の3〜4%Ni−Cr−Mo−V鋼を用い、実施例1のTIG溶接と同様の条件で溶接部16、17で接合した。本実施例の外周側***部4は、3層の積層溶接層によって形成されたものである。本実施例の蒸気タービン用溶接ロータは、中空部8以外は中実であるが、径方向中心部に軸方向全体に亘って中空部14,15の径より小さい中心孔を形成することができ、それによってタービンロータ内面の欠陥の検査を行うことができる。   The structure of the joint part of the present embodiment has the same structure as that of the first embodiment, and the hollow portions 14 and 15 are formed to reduce the weight. Further, each of the steam inflow side rotor 12 and the final stage side rotors 11 and 13 uses 3 to 4% Ni—Cr—Mo—V steel of Table 1, and the weld portion 16 under the same conditions as the TIG welding in Example 1. , 17. The outer peripheral bulging portion 4 of this embodiment is formed by three laminated weld layers. The steam turbine welding rotor of the present embodiment is solid except for the hollow portion 8, but a central hole smaller than the diameter of the hollow portions 14 and 15 can be formed in the central portion in the radial direction over the entire axial direction. Thereby, it is possible to inspect for defects on the inner surface of the turbine rotor.

本実施例による溶接部16、17は、それらの外周部では、熱収縮によって緩やかにやや凹んだ形状を有し、その溶接のままでも良い。又、その凹んだ部分を含め溶接部の最終層部分を含めて全体を胴部に対して平行になるように切削加工するのも良い。切削加工においては、切削後には溶接部の最終層が残らない高さの外周側***部4を設けるようにすることが好ましい。又、この切削加工は、図1に示す外周側***部4を設けることによって胴部全体を切削加工することなく、外周側***部4についてのみ行うことができるので、その切削量が少ないこと等、製造が容易である。   The welded portions 16 and 17 according to the present embodiment have a slightly slightly depressed shape due to thermal contraction at their outer peripheral portions, and the welds may remain as they are. Moreover, it is good also to cut so that the whole including the last layer part of a welding part including the recessed part may become parallel with respect to a trunk | drum. In the cutting process, it is preferable to provide the outer peripheral bulge 4 having a height that does not leave the final layer of the weld after cutting. In addition, since the cutting can be performed only on the outer peripheral side raised portion 4 without cutting the entire body portion by providing the outer peripheral side raised portion 4 shown in FIG. 1, the cutting amount is small, etc. Easy to manufacture.

本実施例の溶接部について非破壊検査の結果、初層部での欠陥が少なく、一方、初層部以降の溶接中央部にはほぼ欠陥が認められなかった。   As a result of the nondestructive inspection of the welded part of this example, there were few defects in the first layer part, while almost no defects were found in the weld center part after the first layer part.

又、本実施例の外周側***部の曲率半径R部は、積層溶接における最終溶接によって形成される約5mm程度の熱影響部がかからないものであり、更に、内周側***部の曲率半径R部も積層溶接における初層溶接によって形成される熱影響部がかからないものであり、いずれも応力集中は曲率半径にかかり、熱影響部にはかからない充分な幅を有するものであった。   In addition, the radius of curvature R of the outer peripheral bulge in this embodiment is not affected by the heat-affected zone of about 5 mm formed by the final welding in the lamination welding. Further, the radius of curvature R of the inner bulge is further increased. Also, the heat affected zone formed by the first layer welding in the lamination welding is not applied to any part, and in both cases, the stress concentration is applied to the radius of curvature and has a sufficient width not to be applied to the heat affected zone.

以上のように、本実施例によれば、実施例1と同様に積層溶接における最終溶接によって形成される熱影響部に応力集中がかからず、又、初層溶接部に形成される熱影響部への応力集中がかからず、高い疲労強度を有する分割構造型の蒸気タービン溶接ロータを作製することができ、それを用いることによって蒸気条件の高温高圧化、発電プラントの大出力化に対応することができるものである。   As described above, according to the present embodiment, as in the first embodiment, no stress concentration is applied to the heat affected zone formed by the final welding in the lamination welding, and the heat effect formed in the first layer welded portion. Can produce a split structure type steam turbine welded rotor with high fatigue strength without stress concentration on the part, which can be used for high-temperature and high-pressure steam conditions and high power plant output Is something that can be done.

ロータの長さ、分割数、胴部径は蒸気タービンの出力及び回転数により変わるが、種々のロータ形状に対して、同様に溶接接合が可能である。   The length of the rotor, the number of divisions, and the body diameter vary depending on the output and the rotational speed of the steam turbine, but various types of rotor shapes can be similarly welded.

図7は本発明に係る蒸気タービン用溶接ロータの継手の全体構造を示す部分断面図(a)及び継手部を示す部分断面図(b)である。タービンロータ21、タービンロータ22が突合せ部28で突き合わされ、開先は、溶接表面が軸面と同一面にならないよう曲率半径R25を有し、タービンロータの内周側に内周側***部23、外周側に外周側***部24を形成し、狭開先部27をTIG溶接等にて同系ワイヤを溶加材として積層溶接接合する。突合せ部28は実施例1と同様である。   FIG. 7: is the fragmentary sectional view (a) which shows the whole structure of the coupling of the welding rotor for steam turbines which concerns on this invention, and the fragmentary sectional view (b) which shows a coupling part. The turbine rotor 21 and the turbine rotor 22 are abutted at the abutting portion 28, and the groove has a radius of curvature R25 so that the welding surface is not flush with the shaft surface, and the inner peripheral side raised portion 23 on the inner peripheral side of the turbine rotor. The outer peripheral bulge 24 is formed on the outer peripheral side, and the narrow groove 27 is laminated and joined by TIG welding or the like using a similar wire as a filler material. The butt 28 is the same as that in the first embodiment.

本実施例では、一方のタービンロータ22の突合せ部28にバタリング層26を形成するものである。外周面側***部24の高さa、内周面側***部23の高さbはそれぞれ10mm、開先深さd=100mm、間隔W=12mm、バタリング層幅Y=10mm、ルートフェースe=2mm、ルート間隔は0mmとし、平滑部の突合せ及びインロー構造としても良い。表3は母材及び溶接ワイヤの化学組成(重量%)を示し、残部Feである。他の要件は、実施例1と同様である。   In this embodiment, the buttering layer 26 is formed at the abutting portion 28 of one turbine rotor 22. The height a of the outer peripheral surface side raised portion 24 and the height b of the inner peripheral surface side raised portion 23 are 10 mm, groove depth d = 100 mm, interval W = 12 mm, buttering layer width Y = 10 mm, root face e = It may be 2 mm, the route interval may be 0 mm, and a smooth portion butt and inlay structure may be used. Table 3 shows the chemical composition (% by weight) of the base material and the welding wire, and the balance is Fe. Other requirements are the same as in the first embodiment.

Figure 2007278064
図8は本発明に係る高低圧一体型タービン用溶接ロータの断面図である。高温側ロータ31と低温側ロータ32の2つに分割され、溶接部34で接合した。継手部の構造は実施例3と同様の構造を有し、継手部は中空部33を形成し、軽量化を図っている。高温側ロータ31は表3の1%Cr−Mo−V系鋼、低温側ロータ32は表3の3〜4%Ni−Cr−Mo−V系鋼より構成されている。
Figure 2007278064
FIG. 8 is a cross-sectional view of a welding rotor for a high / low pressure integrated turbine according to the present invention. It was divided into two, a high temperature side rotor 31 and a low temperature side rotor 32, and joined by a weld 34. The structure of the joint part has the same structure as in Example 3, and the joint part forms a hollow part 33 to reduce the weight. The high-temperature side rotor 31 is made of 1% Cr—Mo—V steel shown in Table 3, and the low temperature side rotor 32 is made of 3 to 4% Ni—Cr—Mo—V steel shown in Table 3.

バタリング層は表3の溶接ワイヤ(バタリング)を用い、高温側ロータ31の軸を横向きにして、突合せ溶接により形成した。バタリング層の形成は、250℃〜300℃に予熱後、パス間温度を400℃以下にして行った。溶接後、400℃に保持して脱水素処理を行い、軸を横切る面で切断後、残留応力除去のため、630℃に昇温して保持した。バタリング層の組成は、母材に比較してC量を0.02〜0.06%、Mo量を0.8〜1.1%と少なくし、Si量を0.3〜0.6%、Mn量を0.9〜1.3%、Cr量を2.0〜2.5%と多くし、Niを含まないものである。   The buttering layer was formed by butt welding using the welding wire (buttering) shown in Table 3 with the axis of the high temperature side rotor 31 facing sideways. The buttering layer was formed by preheating to 250 ° C. to 300 ° C. and then setting the temperature between passes to 400 ° C. or less. After welding, dehydrogenation treatment was performed by maintaining the temperature at 400 ° C., and after cutting at a surface crossing the shaft, the temperature was increased to 630 ° C. and retained for removing residual stress. The composition of the buttering layer is such that the C amount is 0.02 to 0.06%, the Mo amount is 0.8 to 1.1% and the Si amount is 0.3 to 0.6% compared to the base material. The Mn content is increased to 0.9 to 1.3%, the Cr content is increased to 2.0 to 2.5%, and Ni is not included.

図9は、バタリング層を形成する際のタービンロータ向きによるバタリング層組織の相違を模式的に示す断面図である。図9(a)は、タービンロータを縦向きにして積層溶接したときのバタリング層組織35を示し、溶接パス界面はタービンロータ軸を横切る方向に形成される。図9(b)はタービンロータを横向きにして積層したときのバタリング層組織36を示し、溶接パス界面はロータ軸と平行に形成される。そして、バタリング層組織36は、タービンロータ軸の曲げ応力に抗するには、溶接パス界面がロータ軸と平行になることがより好ましい。   FIG. 9 is a cross-sectional view schematically showing the difference in the buttering layer structure depending on the turbine rotor direction when forming the buttering layer. FIG. 9 (a) shows a buttering layer structure 35 when the turbine rotor is laminated and welded vertically, and the weld path interface is formed in a direction crossing the turbine rotor axis. FIG. 9 (b) shows a buttering layer structure 36 when the turbine rotor is laminated sideways, and the weld path interface is formed parallel to the rotor axis. In order for the buttering layer structure 36 to withstand the bending stress of the turbine rotor shaft, the weld path interface is more preferably parallel to the rotor shaft.

タービンロータ41、タービンロータ42が突合せ部48で突き合わされ、開先は、溶接表面が軸面と同一面にならないよう曲率半径R46を有し、タービンロータの内周側に内周側***部47、外周側に外周側***部45を形成し、狭開先部をTIG溶接等にて同系ワイヤを溶加材として積層溶接接合する。突合せ部48は実施例1と同様である。バタリング層の形成は、250℃〜300℃に予熱後、パス間温度を400℃以下にして行った。溶接後、400℃に保持して脱水素処理を行い、軸を横切る面で切断後、残留応力除去のため、630℃に昇温して保持した。   The turbine rotor 41 and the turbine rotor 42 are abutted at the abutting portion 48, and the groove has a radius of curvature R 46 so that the welding surface is not flush with the shaft surface, and the inner circumferential side raised portion 47 on the inner circumferential side of the turbine rotor. The outer peripheral bulging portion 45 is formed on the outer peripheral side, and the narrow groove portion is laminated and joined by TIG welding or the like using a similar wire as a filler material. The butt 48 is the same as that in the first embodiment. The buttering layer was formed by preheating to 250 ° C. to 300 ° C. and then setting the temperature between passes to 400 ° C. or less. After welding, dehydrogenation treatment was performed by maintaining the temperature at 400 ° C., and after cutting at a surface crossing the shaft, the temperature was increased to 630 ° C. and retained for removing residual stress.

本実施例では、実施例1と同様に狭開先形状に加工後、積層溶接による突合せ溶接により実施例1のTIG溶接と同様の条件で溶接部34で接合した。積層溶接は250℃〜300℃に予熱後、パス間温度を400℃以下にして行った。溶接後、400℃に保持して脱水素処理を行い、残留応力除去のため、570℃に昇温して保持した。溶接ワイヤの組成は実施例1と同様の組成を有し、低温側ロータ32の3〜4%Ni−Cr−Mo−V系鋼に対して同様の関係を有するものである。本実施例の蒸気タービン用溶接ロータは、中空部33以外は中実であるが、径方向中心部に軸方向全体に亘って中空部33の径より小さい中心孔を形成することができ、それによってタービンロータ内面の欠陥の検査を行うことができる。   In this example, after processing into a narrow groove shape like Example 1, it was joined at the weld 34 under the same conditions as TIG welding of Example 1 by butt welding by lamination welding. Laminate welding was performed after preheating to 250 ° C. to 300 ° C., and the interpass temperature was 400 ° C. or lower. After welding, dehydrogenation treatment was performed while maintaining the temperature at 400 ° C., and the temperature was increased to 570 ° C. and retained in order to remove residual stress. The composition of the welding wire has the same composition as in Example 1, and has the same relationship with the 3-4% Ni—Cr—Mo—V steel of the low temperature side rotor 32. The steam turbine welding rotor of the present embodiment is solid except for the hollow portion 33, but a central hole smaller than the diameter of the hollow portion 33 can be formed in the central portion in the radial direction over the entire axial direction. By this, it is possible to inspect for defects on the inner surface of the turbine rotor.

図10は、バタリング層の形成方法を模式的に示す断面図である。図10(a)はタービンロータ42に対して図9に示すタービンロータ41の開先形状と同様の形状に加工したタービンロータとは異なる開先部近傍だけを形成した部材49を突合せて横向きにしたもの、図10(b)は部材49とタービンロータ42とを回転させながら積層溶接しバタリング層となる溶接層44’を形成したもの、図10(c)はタービンロータ42側にバタリング層44を残して切断し、開先形状に切削加工したもの、図10(d)は実際のタービンロータ41、42と突合せて実施例3と同様に積層溶接を行うものである。開先形状は実施例1と同様である。部材49には炭素鋼等を用いることができる。   FIG. 10 is a cross-sectional view schematically showing a method for forming a buttering layer. FIG. 10A shows the turbine rotor 42 which is faced sideways by abutting a member 49 formed only in the vicinity of a groove portion different from the turbine rotor processed into the same shape as the groove shape of the turbine rotor 41 shown in FIG. FIG. 10B shows a welded layer 44 ′ that is laminated and welded while rotating the member 49 and the turbine rotor 42, and FIG. 10C shows the buttering layer 44 on the turbine rotor 42 side. FIG. 10 (d) shows a case in which lamination welding is performed in the same manner as in the third embodiment, butting with the actual turbine rotors 41 and 42. FIG. The groove shape is the same as that of the first embodiment. Carbon steel or the like can be used for the member 49.

本実施例の継手部の構造は前述の実施例1と同様の構造を有し、中空部33を形成して軽量化を図っている。本実施例による溶接部34は、それらの外周部では、熱収縮によって緩やかにやや凹んだ形状を有し、その溶接のままでも良いが、その凹んだ部分を含め、又、溶接部の最終層部分を含めて全体を胴部に対して平行になるように切削加工するのが好ましい。この切削加工は、外周側***部45を設けることによって胴部全体を切削加工することなく、外周側***部45についてのみ行うことができるので、その切削量が少ないこと等、製造が容易である。   The structure of the joint portion of the present embodiment has the same structure as that of the first embodiment described above, and the hollow portion 33 is formed to reduce the weight. The welded portions 34 according to the present embodiment have a slightly slightly recessed shape due to heat shrinkage at the outer peripheral portion thereof, and the welded portion 34 may remain as it is. However, including the recessed portion, the final layer of the welded portion is also included. It is preferable to cut the entire body including the portion so as to be parallel to the body portion. Since this cutting process can be performed only on the outer peripheral side raised portion 45 without cutting the entire body portion by providing the outer peripheral side raised portion 45, the manufacturing is easy because the cutting amount is small. .

本実施例の溶接部について非破壊検査の結果、初層部での欠陥が少なく、一方、初層部以降の溶接中央部にはほぼ欠陥が認められなかった。   As a result of the nondestructive inspection of the welded part of this example, there were few defects in the first layer part, while almost no defects were found in the weld center part after the first layer part.

本実施例においても、実施例1と同様に、積層溶接における最終溶接によって形成される熱影響部に応力集中がかからず、又、初層溶接部に形成される熱影響部への応力集中がかからず、高い疲労強度を有する分割構造型の蒸気タービン溶接ロータを作製することができ、それを用いることによって蒸気条件の高温高圧化、発電プラントの大出力化に対応することができるものである。   Also in this example, as in Example 1, no stress concentration is applied to the heat affected zone formed by the final welding in the lamination welding, and the stress concentration to the heat affected zone formed in the first layer weld zone. Can produce a split structure type steam turbine welded rotor with high fatigue strength, which can be used for high-temperature and high-pressure steam conditions and high power plant output. It is.

高温側ロータ31を1%Cr−Mo−V系鋼に代えて12%Cr系鋼と溶接ロータで構成した場合も、良好な溶接結果が得られた。   Good welding results were also obtained when the high temperature side rotor 31 was composed of 12% Cr steel and a welded rotor instead of 1% Cr—Mo—V steel.

図11は本発明に係る異なる材料を組み合わせた高圧蒸気タービン及び高中圧蒸気タービン用溶接ロータの継手部を示す断面図である。狭開先部58には、バタリング層が無いものである。溶接表面が軸面と同一面にならないよう曲率半径R55を有し、ロータの内周側***部56、外周側***部57を形成して狭開先部58をTIG溶接等にて母材と同等の組成を有する溶接ワイヤを溶加材として積層溶接接合する。表4は母材及び溶接ワイヤの化学組成(重量%)を示し、残部がFeである。   FIG. 11 is a cross-sectional view showing a joint portion of a welding rotor for a high-pressure steam turbine and a high-medium pressure steam turbine in which different materials according to the present invention are combined. The narrow groove portion 58 has no buttering layer. The welding surface has a radius of curvature R55 so that the welding surface is not flush with the shaft surface, and forms an inner peripheral bulged portion 56 and an outer peripheral bulged portion 57 of the rotor. Lamination welding is performed using a welding wire having an equivalent composition as a filler material. Table 4 shows the chemical composition (wt%) of the base metal and the welding wire, with the balance being Fe.

Figure 2007278064
Figure 2007278064

図12は本発明に係る高圧蒸気タービン用溶接ロータの断面図である。図12に示すように、高温側ロータ61、低温側ロータ62、高温側ロータ61に接続された軸受部63の3つに分割され、各々が溶接部66、67で接合される。継手部は中空部64、65が形成され、軽量化を図っている。高温側ロータ61は表4の12%Cr系鋼、低温側ロータ62及び軸受部63は表4の1%Cr−Mo−V系鋼より構成されている。   FIG. 12 is a cross-sectional view of a high pressure steam turbine welding rotor according to the present invention. As shown in FIG. 12, the high-temperature side rotor 61, the low-temperature side rotor 62, and the bearing portion 63 connected to the high-temperature side rotor 61 are divided into three parts, which are joined by welds 66 and 67. The joint portion is formed with hollow portions 64 and 65 to reduce the weight. The high temperature side rotor 61 is made of 12% Cr steel shown in Table 4, and the low temperature side rotor 62 and the bearing portion 63 are made of 1% Cr—Mo—V steel shown in Table 4.

狭開先部には、バタリング層が無く、溶接表面が軸面と同一面にならないよう曲率半径Rを有し、高温側ロータ61、低温側ロータ62、軸受部63の内周側には図11に示す内周側***部56及び外周側に外周側***部57が形成され、狭開先部をTIG溶接等にて表4に示す溶接ワイヤを溶加材として実施例1と同様に積層溶接接合する。積層溶接は250℃〜300℃に予熱後、パス間温度を400℃以下にして行った。その溶接後、400℃に保持して脱水素処理を行い、残留応力除去のため、630℃に昇温して保持した。溶接ワイヤの組成は、低温側ロータ62及び軸受部63の母材に比較してC量を0.02〜0.06%、Mo量を0.8〜1.1%と少なくし、Si量を0.3〜0.6%、Mn量を0.9〜1.3%、Cr量を2.0〜2.5%と多くし、Niを含まないものである。   The narrow groove portion has no buttering layer and has a radius of curvature R so that the welding surface is not flush with the shaft surface. The high temperature side rotor 61, the low temperature side rotor 62, and the inner peripheral side of the bearing portion 63 are illustrated in FIG. 11 is formed on the outer circumferential side and the outer circumferential side raised portion 57 is formed on the outer circumferential side, and the narrow groove portion is laminated by TIG welding or the like using the welding wire shown in Table 4 as a filler material in the same manner as in the first embodiment. Join by welding. Laminate welding was performed after preheating to 250 ° C. to 300 ° C., and the interpass temperature was 400 ° C. or lower. After the welding, dehydrogenation treatment was performed while maintaining the temperature at 400 ° C., and the temperature was increased to 630 ° C. and retained for removing residual stress. The composition of the welding wire is such that the C content is reduced by 0.02 to 0.06% and the Mo content is reduced by 0.8 to 1.1% compared to the base material of the low temperature side rotor 62 and the bearing portion 63, and the Si content. Is 0.3 to 0.6%, Mn is 0.9 to 1.3%, Cr is 2.0 to 2.5%, and Ni is not included.

図13は、高中圧蒸気タービン用溶接ロータの断面図である。図13に示すように、高温側ロータ71とそれぞれの後側段落に接続された低温側ロータ72、73の3つに分割され、溶接部76、77で接合される。継手部は中空部74、75が形成され、軽量化を図っている。高温側ロータ71は表4の12%Cr系鋼、低温側ロータ72、73は表4の1%Cr-Mo-V系鋼より構成されている。   FIG. 13 is a cross-sectional view of a welding rotor for a high intermediate pressure steam turbine. As shown in FIG. 13, the high-temperature side rotor 71 and the low-temperature side rotors 72 and 73 connected to the respective rear paragraphs are divided into three parts and joined by welds 76 and 77. The joint portion is formed with hollow portions 74 and 75 to reduce the weight. The high temperature side rotor 71 is made of 12% Cr steel in Table 4, and the low temperature rotors 72 and 73 are made of 1% Cr—Mo—V steel in Table 4.

ルートフェース底部がI型の狭開先部には、バタリング層が無く、溶接表面が軸面と同一面にならないよう曲率半径Rを有し、図11に示すように、タービンロータの内周側に内周側***部53、外周側に外周側***部57を形成して狭開先部をTIG溶接等にて表4に示す溶接ワイヤを溶加材として実施例1と同様に積層溶接接合する。積層溶接は250℃〜300℃に予熱後、パス間温度を400℃以下にして行った。溶接後、400℃に保持して脱水素処理を行い、残留応力除去のため、630℃に昇温して保持した。溶接ワイヤの組成は、低温側ロータ72、73の母材に比較してC量を0.02〜0.06%、Mo量を0.8〜1.1%と少なくし、Si量を0.3〜0.6%、Mn量を0.9〜1.3%、Cr量を2.0〜2.5%と多くし、Niを含まないものである。   The root face bottom I-type narrow groove portion has no buttering layer and has a radius of curvature R so that the welding surface is not flush with the shaft surface. As shown in FIG. The inner peripheral side raised portion 53 is formed on the outer peripheral side, and the outer peripheral side raised portion 57 is formed on the outer peripheral side, and the narrow groove portion is welded as shown in Table 4 by TIG welding or the like. To do. Laminate welding was performed by preheating to 250 ° C. to 300 ° C. and then setting the temperature between passes to 400 ° C. or less. After welding, dehydrogenation treatment was performed while maintaining the temperature at 400 ° C., and the temperature was increased to 630 ° C. and retained in order to remove residual stress. The composition of the welding wire is such that the C amount is reduced to 0.02 to 0.06%, the Mo amount is reduced to 0.8 to 1.1%, and the Si amount is 0 as compared with the base material of the low temperature rotors 72 and 73. .3 to 0.6%, Mn amount is 0.9 to 1.3%, Cr amount is 2.0 to 2.5%, and Ni is not included.

本実施例のいずれの蒸気タービン用溶接ロータにおいても、中空部を有する以外は中実であるが、径方向中心部に軸方向全体に亘って中空部の径より小さい中心孔を形成することができ、それによってタービンロータ内面の欠陥の検査を行うことができる。   In any of the steam turbine welding rotors of the present embodiment, it is solid except for having a hollow portion, but it is possible to form a central hole smaller than the diameter of the hollow portion over the entire axial direction in the central portion in the radial direction. And thereby can be inspected for defects on the inner surface of the turbine rotor.

本実施例の溶接部について非破壊検査の結果、初層部での欠陥が少なく、初層部以降の溶接中央部にはほぼ欠陥が認められなかった。又、実施例1と同様に、積層溶接における最終溶接によって形成される熱影響部に応力集中がかからず、又、初層溶接部に形成される熱影響部への応力集中がかからず、高い疲労強度を有する分割構造型の蒸気タービン溶接ロータを作製することができ、それを用いることによって蒸気条件の高温高圧化、発電プラントの大出力化に対応することができるものである。   As a result of the nondestructive inspection of the welded portion of this example, there were few defects in the first layer portion, and almost no defects were found in the weld center portion after the first layer portion. Similarly to Example 1, no stress concentration is applied to the heat affected zone formed by the final welding in the lamination welding, and no stress concentration is applied to the heat affected zone formed in the first layer weld. A split structure type steam turbine welding rotor having high fatigue strength can be produced, and by using this, it is possible to cope with high-temperature and high-pressure steam conditions and high power plant output.

本実施例は、実施例2〜4のいずれかに記載の蒸気タービン用溶接ロータを高低圧一体型蒸気タービン、高圧蒸気タービン、高中圧一体型蒸気タービン及び低圧蒸気タービンの各々のロータに用いた蒸気タービン発電プラントを構成するものである。   In this embodiment, the welding rotor for a steam turbine described in any one of Embodiments 2 to 4 was used for each rotor of a high-low pressure integrated steam turbine, a high-pressure steam turbine, a high-medium pressure integrated steam turbine, and a low-pressure steam turbine. It constitutes a steam turbine power plant.

高低圧一体型蒸気タービンは、高圧側(HP)と低圧側(LP)とが一体のタービンロータによって形成され、高圧蒸気がその中央部よりやや片側に設けられたノズルボックスより主蒸気温度が500℃以上の蒸気がHP側の初段である調速段のタービン動翼に導かれ、HPの7段のタービン動翼を通ってLPの10段のタービン動翼に導入される蒸気タービン発電プラントを構成することができる。これらのタービン動翼に対応して各々静翼が設けられる。タービンロータは、実施例3の図8に示す蒸気タービン用溶接ロータが用いられ、軸部と、軸部に連なる胴部とを有し、胴部の軸方向にタービン動翼が植設される複数のディスク部を有し、このディスク部は軸方向に沿った翼溝が形成され、翼溝は調速段を含め全タービン動翼が植え込まれる翼根元部の断面形状と相似形の断面形状を有する。   The high-low pressure integrated steam turbine is formed by a turbine rotor in which a high-pressure side (HP) and a low-pressure side (LP) are integrated, and the high-pressure steam has a main steam temperature of 500 from a nozzle box provided slightly on one side from the center. A steam turbine power plant in which steam of over ℃ is introduced to the turbine blade of the speed-control stage, which is the first stage on the HP side, and introduced into the 10-stage turbine blade of LP through the 7-stage turbine blade of HP Can be configured. A stationary blade is provided for each of these turbine blades. As the turbine rotor, a steam turbine welding rotor shown in FIG. 8 of the third embodiment is used. The turbine rotor has a shaft portion and a trunk portion connected to the shaft portion, and turbine blades are implanted in the axial direction of the trunk portion. It has a plurality of disk parts, and the disk part is formed with a blade groove along the axial direction, and the blade groove has a cross-section similar to the cross-sectional shape of the blade root part into which all turbine blades including the speed control stage are implanted. Has a shape.

高圧蒸気タービン(HP)は、タービン動翼の初段が調速段で複流であり、片側に9段有し、これらのタービン動翼に対応して各々静翼が設けられる。タービンロータは、実施例4の図11に示す蒸気タービン用溶接ロータが用いられ、軸部と、軸部に連なる胴部とを有し、胴部の軸方向にタービン動翼が植設される複数のディスク部が形成されている。このディスク部は軸方向に沿った翼溝が形成され、翼溝は初段である調速段を含め全タービン動翼が植え込まれる翼根元部の断面形状と相似形の断面形状を有する。また、本実施例においては、中圧タービン(IP)及び低圧蒸気タービン(LP)が連結され、(HP)−(IP)−発電機とLP2台−発電機、又、(HP)−(LP)−発電機と(IP)-(LP)−発電機の組み合わせによって主蒸気温度500℃以上の蒸気タービン発電プラントを構成することができる。   In the high-pressure steam turbine (HP), the first stage of the turbine blades is a speed-regulating stage and is a double flow, has nine stages on one side, and a stationary blade is provided for each of these turbine blades. As the turbine rotor, a steam turbine welding rotor shown in FIG. 11 of the fourth embodiment is used. The turbine rotor has a shaft portion and a trunk portion connected to the shaft portion, and turbine blades are implanted in the axial direction of the trunk portion. A plurality of disk portions are formed. The disk part is formed with a blade groove along the axial direction, and the blade groove has a cross-sectional shape similar to the cross-sectional shape of the blade root part into which all turbine blades are implanted, including the first speed-control stage. In this embodiment, an intermediate pressure turbine (IP) and a low pressure steam turbine (LP) are connected, and (HP)-(IP) -generator and two LP units-generator, or (HP)-(LP ) -Generator and (IP)-(LP) -generator can constitute a steam turbine power plant having a main steam temperature of 500 ° C. or higher.

高中圧一体型蒸気タービンは、高圧部(HP)と中圧部(IP)とが一体のタービンロータによって形成され、高圧蒸気がその中央部に設けられたノズルボックスよりHP側の初段である調速段のタービン動翼に導かれ、HPの8段のタービン動翼を通ってIPの6段のタービン動翼に導入される。これらのタービン動翼に対応して各々静翼が設けられる。タービンロータは、実施例4の図12に示す蒸気タービン用溶接ロータが用いられ、軸部と、軸部に連なる胴部とを有し、胴部の軸方向にタービン動翼が植設される複数のディスク部を有し、このディスク部は軸方向に沿った翼溝が形成され、翼溝は調速段を含め全タービン動翼が植え込まれる翼根元部の断面形状と相似形の断面形状を有する。本実施例においては、(HP・IP)と低圧蒸気タービン(LP)1台又は2台で、HPの主蒸気温度は500℃以上、IPの蒸気温度は500℃以上に再熱器によって加熱されて導入され、本蒸気タービンによって回転する発電機を有する蒸気タービン発電プラントを構成することができる。   The high-medium pressure integrated steam turbine is formed by a turbine rotor in which a high-pressure part (HP) and an intermediate-pressure part (IP) are integrated, and the high-pressure steam is the first stage on the HP side from the nozzle box provided in the center part. It is guided to the high-speed turbine blade and introduced into the IP 6-stage turbine blade through the HP 8-stage turbine blade. A stationary blade is provided for each of these turbine blades. As the turbine rotor, a steam turbine welding rotor shown in FIG. 12 of the fourth embodiment is used. The turbine rotor has a shaft portion and a trunk portion connected to the shaft portion, and turbine blades are implanted in the axial direction of the trunk portion. It has a plurality of disk parts, and the disk part is formed with a blade groove along the axial direction, and the blade groove has a cross-section similar to the cross-sectional shape of the blade root part into which all turbine blades including the speed control stage are implanted. Has a shape. In this embodiment, HP or IP and one or two low-pressure steam turbines (LP) are heated by a reheater so that the main steam temperature of HP is 500 ° C or higher and the steam temperature of IP is 500 ° C or higher. Thus, a steam turbine power plant having a power generator that is introduced and rotated by the steam turbine can be configured.

前述の各発電プラントに組み込まれる低圧蒸気タービン(LP)は、そのタービンロータに、実施例2の図6に示す蒸気タービン用溶接ロータが用いられ、軸部と、軸部に連なる胴部とを有し、胴部の軸方向にタービン動翼が植設される複数のディスク部を有し、このディスク部は軸方向に沿った翼溝が形成され、翼溝は調速段を含め全タービン動翼が植え込まれる翼根元部の断面形状と相似形の断面形状を有する。   The low-pressure steam turbine (LP) incorporated in each power plant described above uses the steam turbine welding rotor shown in FIG. 6 of Example 2 as the turbine rotor, and includes a shaft portion and a body portion connected to the shaft portion. Having a plurality of disk parts in which turbine blades are implanted in the axial direction of the body part, the disk parts being formed with blade grooves along the axial direction, and the blade grooves including all the speed control stages It has a cross-sectional shape similar to the cross-sectional shape of the blade root part into which the moving blade is implanted.

本実施例においては、実施例2〜4における蒸気タービン溶接ロータを用いたときと同様に蒸気タービンとして高温強度が必要な高温域には、高温強度の高いNi基合金、12%Cr鋼、1%Cr−Mo−V鋼のいずれかを用い、靭性が必要な低温域には3〜4%Ni−Cr−Mo−V鋼を用いることができ、高温化、大容量化、より熱効率の高い蒸気タービン発電プラントが得られるものである。   In the present example, similarly to the case of using the steam turbine welded rotor in Examples 2 to 4, a high temperature region where high temperature strength is required as a steam turbine includes Ni-based alloy, 12% Cr steel, % Cr-Mo-V steel can be used, and 3-4% Ni-Cr-Mo-V steel can be used in the low temperature range where toughness is required, resulting in higher temperature, higher capacity, and higher thermal efficiency. A steam turbine power plant is obtained.

本発明に係る蒸気タービン用溶接ロータの継手の全体構造を示す部分断面図(a)及び継手構造を示す部分断面図(b)である。It is the fragmentary sectional view (a) which shows the whole structure of the coupling of the welding rotor for steam turbines concerning this invention, and the fragmentary sectional view (b) which shows a coupling structure. 本発明に係る蒸気タービン用溶接ロータの溶接継手部の断面の顕微鏡組織を示す図である。It is a figure which shows the microscope structure of the cross section of the welding joint part of the welding rotor for steam turbines which concerns on this invention. 疲労試験片の形状を示す平面図である。It is a top view which shows the shape of a fatigue test piece. 本発明に係る蒸気タービン用溶接ロータの疲労試験結果を示す線図である。It is a diagram which shows the fatigue test result of the welding rotor for steam turbines which concerns on this invention. 本発明に係る蒸気タービン用溶接ロータの溶接継手部の曲げ試験結果を示す図である。It is a figure which shows the bending test result of the welding joint part of the welding rotor for steam turbines which concerns on this invention. 本発明に係る低圧複流タービン用溶接ロータの断面図である。It is sectional drawing of the welding rotor for low pressure double flow turbines concerning this invention. 本発明に係る蒸気タービン用溶接ロータとしてバタリング層を形成した継手の全体構造を示す部分断面図(a)及び継手構造を示す部分断面図(b)である。It is the fragmentary sectional view (a) which shows the whole structure of the joint which formed the buttering layer as a welding rotor for steam turbines concerning the present invention, and the fragmentary sectional view (b) which shows a joint structure. 本発明に係る高低圧一体型蒸気タービン用溶接ロータの断面図である。It is sectional drawing of the welding rotor for high-low pressure integrated steam turbines based on this invention. 本発明に係る蒸気タービン用溶接ロータにおけるバタリング層の組織を示す模式図である。It is a schematic diagram which shows the structure | tissue of the buttering layer in the welding rotor for steam turbines which concerns on this invention. 本発明に係る蒸気タービン用溶接ロータにおけるバタリング層の組織を示す模式図である。It is a schematic diagram which shows the structure | tissue of the buttering layer in the welding rotor for steam turbines which concerns on this invention. 本発明に係る蒸気タービン用溶接ロータとして異材による継手部を示す断面図である。It is sectional drawing which shows the joint part by a dissimilar material as a welding rotor for steam turbines concerning this invention. 本発明に係る高圧蒸気タービン用溶接ロータの断面図である。It is sectional drawing of the welding rotor for high pressure steam turbines which concerns on this invention. 本発明に係る高中圧蒸気タービン用溶接ロータの断面図である。It is sectional drawing of the welding rotor for high intermediate pressure steam turbines which concerns on this invention.

符号の説明Explanation of symbols

1、2、21、22、51,52…タービンロータ、3、23、47、53…内周側***部、4、24、45、57…外周側***部、5、25、55…曲率半径R、6、28、48、54…突合せ部、7、27、58…狭開先部、11、13…最終段落側ロータ、12…蒸気流入側ロータ、14、15、33、64,65、74、75…中空部、16、17、34、66、67、76、77…溶接部、26…バタリング層、31、42、61、71…高温側ロータ、32、41、62、72、73…低温側ロータ、43…ロータを縦向きで積層したバタリング層、44…ロータを横向きで積層したバタリング層、49…部材、63…軸受部。
1, 2, 21, 22, 51, 52 ... Turbine rotor, 3, 23, 47, 53 ... Inner peripheral bulge part, 4, 24, 45, 57 ... Outer peripheral bulge part, 5, 25, 55 ... Radius of curvature R, 6, 28, 48, 54 ... butting part, 7, 27, 58 ... narrow groove part, 11, 13 ... last stage rotor, 12 ... steam inlet side rotor, 14, 15, 33, 64, 65, 74, 75 ... hollow portion, 16, 17, 34, 66, 67, 76, 77 ... welded portion, 26 ... buttering layer, 31, 42, 61, 71 ... high temperature side rotor, 32, 41, 62, 72, 73 ... Low temperature side rotor, 43... Buttering layer in which rotors are stacked vertically, 44... Buttering layer in which rotors are stacked horizontally, 49.

Claims (20)

少なくとも2個に分割されたタービンロータを突合せ溶接により接続された蒸気タービン溶接ロータにおいて、前記タービンロータの両者の突合せ部は、その中心部に形成された中空部と、その外周側に形成された前記タービンロータの基部面より径方向に対して***した外周側***部とを有し、前記突合せ部に形成された開先部が積層溶接によって前記突合せ溶接されていることを特徴とする蒸気タービン溶接ロータ。   In a steam turbine welding rotor in which at least two turbine rotors are connected by butt welding, both butt portions of the turbine rotor are formed in a hollow portion formed in a central portion thereof and on an outer peripheral side thereof. A steam turbine having an outer peripheral bulging portion that is bulged in a radial direction from a base surface of the turbine rotor, and a groove portion formed in the butt portion is butt welded by lamination welding. Welding rotor. 請求項1において、前記中空部の内周側に前記タービンロータの基部面より径方向に対して***した内周側***部を有することを特徴とする蒸気タービン溶接ロータ。   2. The steam turbine welding rotor according to claim 1, further comprising an inner peripheral bulging portion that protrudes in a radial direction from a base surface of the turbine rotor on an inner peripheral side of the hollow portion. 請求項1又は2において、前記積層溶接における最終溶接によって形成される熱影響部が前記基部面にかからないような前記外周側***部の前記タービンロータの軸方向幅を有することを特徴とする蒸気タービン溶接ロータ。   3. The steam turbine according to claim 1, wherein a heat-affected zone formed by final welding in the lamination welding has a width in an axial direction of the turbine rotor of the outer peripheral bulge portion so as not to cover the base surface. Welding rotor. 請求項2又は3において、前記積層溶接における初層溶接によって形成される熱影響部が前記基部面にかからないような前記内周側***部の前記タービンロータの軸方向幅を有することを特徴とする蒸気タービン溶接ロータ。   4. The turbine rotor according to claim 2, wherein the heat affected zone formed by the first layer welding in the lamination welding has a width in the axial direction of the turbine rotor of the inner peripheral bulging portion so as not to cover the base surface. Steam turbine welding rotor. 請求項1〜4のいずれかにおいて、前記突合せ部の少なくとも一方の全面に前記積層溶接の組成を緩和するバタリング層が形成され、該バタリング層を介して前記積層溶接されていることを特徴とする蒸気タービン溶接ロータ。   5. The method according to claim 1, wherein a buttering layer that relaxes the composition of the lamination welding is formed on the entire surface of at least one of the butted portions, and the lamination welding is performed via the buttering layer. Steam turbine welding rotor. 請求項1〜5のいずれかにおいて、前記タービンロータの少なくとも一方が、質量で、C0.25〜0.35%、Mn1%以下、Ni1%以下、Cr0.8〜1.5%、Mo1.0〜1.5%、V0.2〜0.3%を含むベーナイト組織を有する1%Cr−Mo−V系鋼よりなることを特徴とする蒸気タービン溶接ロータ。   In any one of Claims 1-5, at least one of the said turbine rotor is mass C0.25-0.35%, Mn1% or less, Ni1% or less, Cr0.8-1.5%, Mo1.0. A steam turbine welded rotor comprising a 1% Cr-Mo-V steel having a bainite structure containing -1.5% and V0.2-0.3%. 請求項1〜5のいずれかにおいて、前記タービンロータの少なくとも一方が、質量で、C0.1〜0.2%、Mn0.3〜1.0%、Ni1%以下、Cr9〜13%、Mo0.1〜1.5%、W0.2〜3%、Nb0.02〜0.1%、Co3%以下、B0.01%以下を含む全焼戻しマルテンサイト組織を有する12%Cr系鋼よりなることを特徴とする蒸気タービン溶接ロータ。   In any one of Claims 1-5, at least one of the said turbine rotor is C0.1-0.2%, Mn0.3-1.0%, Ni1% or less, Cr9-13%, Mo0. 1 to 1.5%, W 0.2 to 3%, Nb 0.02 to 0.1%, Co 3% or less, and consisting of 12% Cr steel having a total tempered martensite structure including B 0.01% or less. A steam turbine welding rotor characterized. 請求項1〜5のいずれかにおいて、前記タービンロータの少なくとも一方が、質量で、Cr12〜20%、Nb1.5〜3.5%、Ti1.5〜2.0%、Al0.2〜1.5%を含むNi基合金、又は、質量で、Cr15〜20%、Mo5〜15%、Ti1.0〜2.0%、Al0.2〜2.0%を含むNi基合金よりなることを特徴とする蒸気タービン溶接ロータ。   In any one of Claims 1-5, at least one of the said turbine rotor is a mass, Cr12-20%, Nb1.5-3.5%, Ti1.5-2.0%, Al0.2-1. It is made of a Ni-based alloy containing 5% or a Ni-based alloy containing 15 to 20% Cr, 5 to 15% Mo, 1.0 to 2.0% Ti, and 0.2 to 2.0% Al by mass. Steam turbine welding rotor. 請求項1〜5のいずれかにおいて、前記タービンロータの少なくとも一方が、質量で、C0.17〜0.32%、Mn0.20〜0.40%、Ni3〜4%、Cr1.25〜2.0%、Mo0.25〜0.60%、V0.05〜0.15%を含むベーナイト組織を有する3〜4%Ni−Cr−Mo−V系鋼よりなることを特徴とする蒸気タービン溶接ロータ。   6. The method according to claim 1, wherein at least one of the turbine rotors is C0.17 to 0.32%, Mn 0.20 to 0.40%, Ni 3 to 4%, Cr 1.25 to 2. Steam turbine welded rotor comprising 3-4% Ni-Cr-Mo-V steel having a bainite structure containing 0%, Mo 0.25-0.60%, V 0.05-0.15% . 高圧蒸気タービン用ロータ、中圧蒸気タービン用ロータ及び高中圧蒸気タービン用ロータのいずれかであって、蒸気温度の高い高温側が請求項7に記載の12%Cr系鋼よりなり、前記温度の低下した低温側及び軸受部の少なくとも一方が請求項6に記載の1%Cr−Mo−V系鋼よりなることを特徴とする蒸気タービン溶接ロータ。   The rotor for high-pressure steam turbine, the rotor for medium-pressure steam turbine, and the rotor for high-medium-pressure steam turbine, the high temperature side having a high steam temperature is made of the 12% Cr-based steel according to claim 7, and the temperature decreases A steam turbine welding rotor, wherein at least one of the low temperature side and the bearing portion is made of the 1% Cr—Mo—V steel according to claim 6. 高圧蒸気タービン用ロータ、中圧蒸気タービン用ロータ及び高中圧蒸気タービン用ロータのいずれかであって、蒸気温度の高い高温側が請求項8に記載のNi基超合金よりなり、前記温度の低下した低温側及び軸受部の少なくとも一方が請求項6に記載の1%Cr−Mo−V系鋼又は請求項7に記載の12%Cr系鋼よりなることを特徴とする蒸気タービン溶接ロータ。   The high temperature steam turbine rotor, the intermediate pressure steam turbine rotor, or the high intermediate pressure steam turbine rotor, wherein the high temperature side of the steam temperature is made of the Ni-based superalloy according to claim 8, and the temperature is decreased. A steam turbine welding rotor, wherein at least one of the low temperature side and the bearing portion is made of the 1% Cr-Mo-V steel according to claim 6 or the 12% Cr steel according to claim 7. 高圧ロータ及び中圧ロータのいずれか一方と低圧ロータとを突合せ溶接により接続された高低圧一体型蒸気タービン用ロータ又は中低圧一体型蒸気タービン用ロータであって、前記高圧ロータ及び中圧ロータは請求項6に記載の1%Cr−Mo−V系鋼又は請求項7に記載の12%Cr系鋼よりなり、前記低圧ロータは請求項9に記載の3〜4%Ni−Cr−Mo−V系鋼よりなることを特徴とする蒸気タービン溶接ロータ。   A high pressure / low pressure integrated steam turbine rotor or a medium / low pressure integrated steam turbine rotor in which one of a high pressure rotor and an intermediate pressure rotor and a low pressure rotor are connected by butt welding, wherein the high pressure rotor and the intermediate pressure rotor are: The 1% Cr-Mo-V steel according to claim 6 or the 12% Cr steel according to claim 7, wherein the low-pressure rotor is 3-4% Ni-Cr-Mo- according to claim 9. A steam turbine welding rotor comprising a V-series steel. 2個に分割された低圧ロータを突合せ溶接により接続された低圧蒸気タービン用ロータであって、前記低圧ロータの両者が、請求項9に記載の3〜4%Ni−Cr−Mo−V系鋼よりなることを特徴とする蒸気タービン溶接ロータ。   A low-pressure steam turbine rotor in which a low-pressure rotor divided into two parts is connected by butt welding, both of the low-pressure rotors being 3 to 4% Ni-Cr-Mo-V steel according to claim 9. A steam turbine welding rotor comprising: 少なくとも2個に分割されたタービンロータを突合せ溶接により接続する蒸気タービン溶接ロータの製造方法において、前記タービンロータの突合せ部の中心部に中空部を形成すると共に、前記突合せ部の外周側に前記タービンロータの基部面より***した外周側***部を形成し、前記突合せ部に形成された開先部を積層溶接することを特徴とする蒸気タービン溶接ロータの製造方法。   In the method of manufacturing a steam turbine welded rotor in which at least two turbine rotors are connected by butt welding, a hollow portion is formed in the center of the butt portion of the turbine rotor, and the turbine is formed on the outer peripheral side of the butt portion. A method for manufacturing a steam turbine welded rotor, comprising forming an outer peripheral raised portion that is raised from a base surface of a rotor, and laminating and welding a groove portion formed in the butt portion. 請求項14において、前記中空部の内周側に前記タービンロータの基部面より***した内周側***部を形成することを特徴とする蒸気タービン溶接ロータの製造方法。   The method for manufacturing a steam turbine welding rotor according to claim 14, wherein an inner peripheral side raised portion that is raised from a base surface of the turbine rotor is formed on an inner peripheral side of the hollow portion. 請求項14又は15において、前記タービンロータは互いに材質が異なり、前記積層溶接する前に、前記タービンロータの少なくとも一方の前記突合せ部の全面に前記積層溶接の組成を緩和するバタリング層を形成した後、前記開先部を形成することを特徴とする蒸気タービン溶接ロータの製造方法。   16. The turbine rotor according to claim 14, wherein the turbine rotors are made of different materials, and a buttering layer that relaxes the composition of the lamination welding is formed on the entire surface of at least one of the butt portions of the turbine rotor before the lamination welding is performed. A method for manufacturing a steam turbine welding rotor, wherein the groove portion is formed. 請求項14〜16のいずれかにおいて、前記タービンロータの軸を縦向きにして前記バタリング層を形成し、又は、前記タービンロータ軸を横向きにして回転させながら他の部材との間に溶接金属部を形成する突合せ溶接した後前記タービンロータ軸を径方向で横切る面で前記溶接金属部を残して切断して前記バタリング層を形成し、前記バタリング層の残留応力除去焼鈍を施した後、前記開先部を形成することを特徴とする蒸気タービン溶接ロータの製造方法。   The weld metal part according to any one of claims 14 to 16, wherein the buttering layer is formed with the shaft of the turbine rotor vertically oriented, or is rotated with the turbine rotor shaft turned sideways. After butt welding to form the buttering layer by cutting the turbine rotor shaft in a surface transverse to the turbine rotor, leaving the weld metal part, and forming the buttering layer, annealing the residual stress of the buttering layer, and then opening the opening. A method for manufacturing a steam turbine welded rotor comprising forming a tip. 請求項14〜16のいずれかにおいて、前記タービンロータ軸を横向きにして回転させながら他の部材との間に溶接金属部を形成する突合せ溶接した後、前記溶接金属部の残留応力除去焼鈍を施してから前記タービンロータ軸を径方向で横切る面で前記溶接金属部を残して切断し、次いで前記開先部を形成することを特徴とする蒸気タービン溶接ロータの製造方法。   17. The butt welding for forming a weld metal part with another member while rotating the turbine rotor shaft in a horizontal direction according to claim 14 and then subjecting the weld metal part to residual stress removal annealing. A method for manufacturing a steam turbine welded rotor comprising: cutting the surface of the turbine rotor shaft in a radial direction while leaving the weld metal portion, and then forming the groove portion. タービン動翼と、該動翼を複数の段落に植設するタービンロータとを有する蒸気タービンにおいて、前記タービンロータが、請求項1〜13のいずれかに記載の蒸気タービン溶接ロータのいずれか又は請求項14〜18のいずれかに記載の蒸気タービン溶接ロータの製造法のいずれかによって製造された蒸気タービン溶接ロータで構成されていることを特徴とする蒸気タービン。   A steam turbine having a turbine rotor blade and a turbine rotor in which the rotor blade is implanted in a plurality of stages, wherein the turbine rotor is any one of the steam turbine welded rotors according to any one of claims 1 to 13. Item 19. A steam turbine comprising a steam turbine welded rotor manufactured by any one of the methods for manufacturing a steam turbine welded rotor according to any one of Items 14 to 18. 高圧蒸気タービン-中圧蒸気タービン-低圧蒸気タービン、高中圧一体型蒸気タービン-低圧蒸気タービン、及び高低圧一体型蒸気タービンのいずれかと発電機とを有し、前記高圧蒸気タービン、中圧蒸気タービン、高中圧一体型蒸気タービン、高低圧一体型蒸気タービン及び低圧蒸気タービンのいずれかが請求項19に記載の蒸気タービンよりなることを特徴とする蒸気タービン発電プラント。
High pressure steam turbine-Medium pressure steam turbine-Low pressure steam turbine, High / medium pressure integrated steam turbine-Low pressure steam turbine, High / low pressure integrated steam turbine and generator A steam turbine power plant, wherein any one of the high and medium pressure integrated steam turbine, the high and low pressure integrated steam turbine, and the low pressure steam turbine comprises the steam turbine according to claim 19.
JP2006101316A 2006-04-03 2006-04-03 Steam turbine welded rotor and method of manufacturing it, and steam turbine and power generating plant using it Pending JP2007278064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101316A JP2007278064A (en) 2006-04-03 2006-04-03 Steam turbine welded rotor and method of manufacturing it, and steam turbine and power generating plant using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101316A JP2007278064A (en) 2006-04-03 2006-04-03 Steam turbine welded rotor and method of manufacturing it, and steam turbine and power generating plant using it

Publications (1)

Publication Number Publication Date
JP2007278064A true JP2007278064A (en) 2007-10-25

Family

ID=38679771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101316A Pending JP2007278064A (en) 2006-04-03 2006-04-03 Steam turbine welded rotor and method of manufacturing it, and steam turbine and power generating plant using it

Country Status (1)

Country Link
JP (1) JP2007278064A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018773A1 (en) * 2008-08-11 2010-02-18 三菱重工業株式会社 Rotor for low-pressure turbine
JP2011505254A (en) * 2007-11-19 2011-02-24 アルストム テクノロジー リミテッド Method for making a rotor
CN102615394A (en) * 2012-04-23 2012-08-01 杭州泽军机电有限公司 Method for welding chromium molybdenum vanadium steel
JP2012154323A (en) * 2011-01-21 2012-08-16 General Electric Co <Ge> Welded rotor, steam turbine having welded rotor, and method for producing welded rotor
EP2527073A1 (en) 2011-05-23 2012-11-28 Hitachi Ltd. Dissimilar metal weld and its manufacturing method of large welded structures such as the turbine rotor
CN102935545A (en) * 2012-11-14 2013-02-20 哈尔滨汽轮机厂有限责任公司 Narrow-gap metal active gas (MAG) welding method for large-thickness shroud type diaphragms of turbines
JP2014005754A (en) * 2012-06-22 2014-01-16 Hitachi Ltd Turbine rotor, manufacturing method thereof and steam turbine using turbine rotor
JP2014083579A (en) * 2012-10-26 2014-05-12 Hitachi Ltd Welding method for steam turbine rotor
JP2014202212A (en) * 2013-04-04 2014-10-27 アルストム テクノロジー リミテッドALSTOM Technology Ltd Method for welding rotors for power generating unit

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505254A (en) * 2007-11-19 2011-02-24 アルストム テクノロジー リミテッド Method for making a rotor
US8533948B2 (en) 2007-11-19 2013-09-17 Alstom Technology Ltd Process for producing a rotor
WO2010018773A1 (en) * 2008-08-11 2010-02-18 三菱重工業株式会社 Rotor for low-pressure turbine
JPWO2010018773A1 (en) * 2008-08-11 2012-01-26 三菱重工業株式会社 Rotor for low pressure turbine
JP4995317B2 (en) * 2008-08-11 2012-08-08 三菱重工業株式会社 Rotor for low pressure turbine
JP2012154323A (en) * 2011-01-21 2012-08-16 General Electric Co <Ge> Welded rotor, steam turbine having welded rotor, and method for producing welded rotor
JP2012240108A (en) * 2011-05-23 2012-12-10 Hitachi Ltd Dissimilar metal weld of large welded structure such as turbine rotor and method of manufacturing the same
US20120301309A1 (en) * 2011-05-23 2012-11-29 Hitachi, Ltd. Dissimilar metal welds and its manufacturing method of large welded structures such as the turbine rotor
EP2527073A1 (en) 2011-05-23 2012-11-28 Hitachi Ltd. Dissimilar metal weld and its manufacturing method of large welded structures such as the turbine rotor
CN102615394A (en) * 2012-04-23 2012-08-01 杭州泽军机电有限公司 Method for welding chromium molybdenum vanadium steel
JP2014005754A (en) * 2012-06-22 2014-01-16 Hitachi Ltd Turbine rotor, manufacturing method thereof and steam turbine using turbine rotor
EP2676759A3 (en) * 2012-06-22 2016-11-23 Mitsubishi Hitachi Power Systems, Ltd. Turbine rotor, manufacturing method thereof and steam turbine using turbine rotor
US9598962B2 (en) 2012-06-22 2017-03-21 Mitsubishi Hitachi Power Systems, Ltd. Turbine rotor, manufacturing method thereof and steam turbine using turbine rotor
JP2014083579A (en) * 2012-10-26 2014-05-12 Hitachi Ltd Welding method for steam turbine rotor
CN102935545A (en) * 2012-11-14 2013-02-20 哈尔滨汽轮机厂有限责任公司 Narrow-gap metal active gas (MAG) welding method for large-thickness shroud type diaphragms of turbines
JP2014202212A (en) * 2013-04-04 2014-10-27 アルストム テクノロジー リミテッドALSTOM Technology Ltd Method for welding rotors for power generating unit
US9441487B2 (en) 2013-04-04 2016-09-13 General Electric Technology Gmbh Method for welding rotors for power generation

Similar Documents

Publication Publication Date Title
JP2007278064A (en) Steam turbine welded rotor and method of manufacturing it, and steam turbine and power generating plant using it
US6596411B2 (en) High energy beam welding of single-crystal superalloys and assemblies formed thereby
JP5955125B2 (en) Turbine rotor, manufacturing method thereof, and steam turbine using the turbine rotor
KR970010894B1 (en) More creep resistant turbine rotor and procedures for repair welding of low alloy ferrous turbine components
US4958431A (en) More creep resistant turbine rotor, and procedures for repair welding of low alloy ferrous turbine components
JP4288304B1 (en) Turbine rotor and method of manufacturing turbine rotor
US20170100804A1 (en) Method of repairing and manufacturing of turbine engine components and turbine engine component repaired or manufactured using the same
JP5011931B2 (en) Steam turbine welding rotor
JPH03237205A (en) Turbine rotor and formation of turbine rotor
EP2298489A1 (en) Superalloy composition and method of forming a turbine engine component
CN1215131A (en) Gas turbine nozzle, Gas turbine for electricity generation, cobalrt base alloy and material for welding
US20130323533A1 (en) Repaired superalloy components and methods for repairing superalloy components
US20050050705A1 (en) Repair of nickel-based alloy turbine disk
US8961144B2 (en) Turbine disk preform, welded turbine rotor made therewith and methods of making the same
US20100059572A1 (en) Weld repair process and article repaired thereby
US7108483B2 (en) Composite gas turbine discs for increased performance and reduced cost
JP2001317301A (en) Steam turbine rotor and its manufacturing method
US20110100961A1 (en) Welding process for producing rotating turbomachinery
JP5973870B2 (en) Steam turbine rotor welding method
Gabrielli et al. Blades and vanes platform laser rebuilding
JPH0510191B2 (en)
JP4283380B2 (en) Dissimilar material welded turbine rotor and method of manufacturing the same
Sarafan et al. Mehanical properties of electron beam welded joints in thick gage CA6NM stainless steel
JPWO2016111249A1 (en) Austenitic heat resistant steel and turbine parts
JP2014020328A (en) Method of producing turbine rotor, turbine rotor, and welding method