JP2007277533A - Method for producing living radical polymer and polymer - Google Patents

Method for producing living radical polymer and polymer Download PDF

Info

Publication number
JP2007277533A
JP2007277533A JP2007060938A JP2007060938A JP2007277533A JP 2007277533 A JP2007277533 A JP 2007277533A JP 2007060938 A JP2007060938 A JP 2007060938A JP 2007060938 A JP2007060938 A JP 2007060938A JP 2007277533 A JP2007277533 A JP 2007277533A
Authority
JP
Japan
Prior art keywords
group
formula
compound represented
living radical
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007060938A
Other languages
Japanese (ja)
Other versions
JP5193480B2 (en
Inventor
Shigeru Yamako
茂 山子
Takashi Kameshima
隆 亀島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP2007060938A priority Critical patent/JP5193480B2/en
Publication of JP2007277533A publication Critical patent/JP2007277533A/en
Application granted granted Critical
Publication of JP5193480B2 publication Critical patent/JP5193480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polymer having an accurate molecular weight distribution (PDI=Mw/Mn) and controlled stereoregularity. <P>SOLUTION: The method for producing a living radical polymer comprises polymerizing a vinyl monomer using (A) at least one selected from organic tellurium compounds represented by formula (1a) (wherein tellurium can be substituted by antimony or bismuth) and (B) a Lewis acid. In the formula, R<SP>1</SP>and R<SP>2</SP>each represents a 1-8C alkyl, aryl, substituted aryl, or aromatic heterocyclic group; R<SP>3</SP>and R<SP>4</SP>each represent a hydrogen atom or a 1-8C alkyl group; and R<SP>5</SP>represents an aryl, substituted aryl, aromatic heterocyclic, acyl, amide, oxycarbonyl, or cyano group. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リビングラジカルポリマーの製造方法に関する。   The present invention relates to a method for producing a living radical polymer.

リビングラジカル重合は、ラジカル重合の簡便性と汎用性を保ちつつ分子構造の精密制御を可能にする重合法で、新しい高分子材料の合成に大きな威力を発揮している。本発明者は、リビングラジカル重合の例として、有機テルル化合物を開始剤として用いたリビングラジカル重合を報告している(例えば、特許文献1参照)。また、有機アンチモン化合物を開始剤として用いたリビングラジカル重合も報告している(例えば、特許文献2参照)。一方、N−アルキルアクリルアミドおよびメタクリルアミド類のアゾ系重合開始剤を用いたラジカル重合にルイス酸を添加することで、ポリマーの立体規則性を制御できることが知られている(例えば、非特許文献1参照)。
WO 2004/14848 WO 2006/01496 J. Am. Chem.Soc. 2001, 123, 7180.
Living radical polymerization is a polymerization method that allows precise control of the molecular structure while maintaining the simplicity and versatility of radical polymerization, and is very effective in the synthesis of new polymer materials. The present inventor has reported living radical polymerization using an organic tellurium compound as an initiator as an example of living radical polymerization (see, for example, Patent Document 1). In addition, living radical polymerization using an organic antimony compound as an initiator has also been reported (for example, see Patent Document 2). On the other hand, it is known that the stereoregularity of a polymer can be controlled by adding a Lewis acid to radical polymerization using an azo polymerization initiator of N-alkylacrylamide and methacrylamide (for example, Non-Patent Document 1). reference).
WO 2004/14848 WO 2006/01496 J. Am. Chem. Soc. 2001, 123, 7180.

この非特許文献1の方法は、アゾ系重合開始剤にルイス酸を添加し、N−アルキルアクリルアミドおよびメタクリルアミド類を重合することにより、生成するラジカルポリマーの立体規則性を制御している。しかし、分子量分布(PDI=Mw/Mn)および立体規則性の両方を、より精密に制御されたポリマーが望まれている。
本発明の課題は、(A)式(1a)で表される有機テルル化合物、式(1b)で表される有機アンチモン化合物および式(1c)で表される有機ビスマス化合物から選ばれる少なくとも1種と、(B)ルイス酸を用いて、ビニルモノマーを重合することにより、精密な分子量分布(PDI=Mw/Mn)及び立体規則性の制御されたポリマーを製造する方法を提供することにある。
In the method of Non-Patent Document 1, the stereoregularity of the generated radical polymer is controlled by adding a Lewis acid to an azo polymerization initiator and polymerizing N-alkylacrylamide and methacrylamide. However, polymers with more precise control over both molecular weight distribution (PDI = Mw / Mn) and stereoregularity are desired.
An object of the present invention is (A) an organic tellurium compound represented by formula (1a), an organic antimony compound represented by formula (1b), and an organic bismuth compound represented by formula (1c). And (B) providing a method for producing a polymer having a precise molecular weight distribution (PDI = Mw / Mn) and stereoregularity by polymerizing a vinyl monomer using a Lewis acid.

本発明は以下の発明に係る。
1.(A)式(1a)で表される有機テルル化合物、式(1b)で表される有機アンチモン化合物および式(1c)で表される有機ビスマス化合物から選ばれる少なくとも1種と、(B)ルイス酸を用いて、ビニルモノマーを重合することを特徴とするリビングラジカルポリマーの製造方法。
The present invention relates to the following inventions.
1. (A) at least one selected from an organic tellurium compound represented by formula (1a), an organic antimony compound represented by formula (1b), and an organic bismuth compound represented by formula (1c), and (B) Lewis A method for producing a living radical polymer, characterized in that a vinyl monomer is polymerized using an acid.

Figure 2007277533
Figure 2007277533

Figure 2007277533
Figure 2007277533

Figure 2007277533
Figure 2007277533

(式中、R及びRは、C〜Cのアルキル基、アリール基、置換アリール基又は芳香族ヘテロ環基を示す。R及びRは、水素原子又はC〜Cのアルキル基を示す。Rは、アリール基、置換アリール基、芳香族ヘテロ環基、アシル基、アミド基、オキシカルボニル基又はシアノ基を示す。) (In the formula, R 1 and R 2 represent a C 1 to C 8 alkyl group, aryl group, substituted aryl group or aromatic heterocyclic group. R 3 and R 4 represent a hydrogen atom or C 1 to C 8. R 5 represents an aryl group, a substituted aryl group, an aromatic heterocyclic group, an acyl group, an amide group, an oxycarbonyl group or a cyano group.

2.(A)式(1a)で表される有機テルル化合物、式(1b)で表される有機アンチモン化合物および式(1c)で表される有機ビスマス化合物から選ばれる少なくとも1種、(B)ルイス酸、(C)式(2a)で表される化合物、式(2b)で表される化合物および式(2c)で表される化合物から選ばれる少なくとも1種を用いて、ビニルモノマーを重合することを特徴とするリビングラジカルポリマーの製造方法。 2. (A) at least one selected from an organic tellurium compound represented by formula (1a), an organic antimony compound represented by formula (1b), and an organic bismuth compound represented by formula (1c), (B) a Lewis acid (C) polymerizing a vinyl monomer using at least one selected from a compound represented by formula (2a), a compound represented by formula (2b), and a compound represented by formula (2c). A method for producing a living radical polymer.

Figure 2007277533
Figure 2007277533

Figure 2007277533
Figure 2007277533

Figure 2007277533
(式中、R及びRは、上記と同じ。)
Figure 2007277533
(In the formula, R 1 and R 2 are the same as above.)

3.(A)式(1a)で表される有機テルル化合物、式(1b)で表される有機アンチモン化合物および式(1c)で表される有機ビスマス化合物から選ばれる少なくとも1種、(B)ルイス酸、(D)アゾ系重合開始剤を用いて、ビニルモノマーを重合することを特徴とするリビングラジカルポリマーの製造方法。 3. (A) at least one selected from an organic tellurium compound represented by formula (1a), an organic antimony compound represented by formula (1b), and an organic bismuth compound represented by formula (1c), (B) a Lewis acid (D) A method for producing a living radical polymer, wherein a vinyl monomer is polymerized using an azo polymerization initiator.

4.(A)式(1a)で表される有機テルル化合物、式(1b)で表される有機アンチモン化合物および式(1c)で表される有機ビスマス化合物から選ばれる少なくとも1種、(B)ルイス酸、(C)式(2a)で表される化合物、式(2b)で表される化合物および式(2c)で表される化合物から選ばれる少なくとも1種、(D)アゾ系重合開始剤を用いて、ビニルモノマーを重合することを特徴とするリビングラジカルポリマーの製造方法。 4). (A) at least one selected from an organic tellurium compound represented by formula (1a), an organic antimony compound represented by formula (1b), and an organic bismuth compound represented by formula (1c), (B) a Lewis acid (C) at least one selected from the compound represented by formula (2a), the compound represented by formula (2b) and the compound represented by formula (2c), and (D) an azo polymerization initiator. A method for producing a living radical polymer, wherein a vinyl monomer is polymerized.

本発明によれば、ビニルモノマーの重合が促進され、反応時間を短縮することができ、精密な分子量分布(PDI=Mw/Mn)及び立体規則性の制御されたポリマーの製造方法を提供する。また、本発明の製造方法により得られたポリマーに、更に、ビニルモノマーを追加することにより、分子量の増大されたポリマー或いは任意のブロック(コ)ポリマーの製造を可能とする。また得られたポリマーは様々な応用分野で興味のある製品を製造することができる。   According to the present invention, there is provided a method for producing a polymer in which polymerization of a vinyl monomer is promoted, reaction time can be shortened, and a precise molecular weight distribution (PDI = Mw / Mn) and stereoregularity are controlled. Further, by adding a vinyl monomer to the polymer obtained by the production method of the present invention, it becomes possible to produce a polymer having an increased molecular weight or an arbitrary block (co) polymer. The resulting polymer can also produce products of interest in various fields of application.

本発明で使用する有機テルル化合物は、式(1a)で表される。   The organic tellurium compound used in the present invention is represented by the formula (1a).

Figure 2007277533
(式中、Rは、C〜Cのアルキル基、アリール基、置換アリール基又は芳香族ヘテロ環基を示す。R及びRは、水素原子又はC〜Cのアルキル基を示す。Rは、アリール基、置換アリール基、芳香族ヘテロ環基、アシル基、アミド基、オキシカルボニル基又はシアノ基を示す。)
Figure 2007277533
(In the formula, R 1 represents a C 1 to C 8 alkyl group, an aryl group, a substituted aryl group or an aromatic heterocyclic group. R 3 and R 4 are a hydrogen atom or a C 1 to C 8 alkyl group. R 5 represents an aryl group, a substituted aryl group, an aromatic heterocyclic group, an acyl group, an amide group, an oxycarbonyl group or a cyano group.

で示される基は、具体的には次の通りである。
〜Cのアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基等の炭素数1〜8の直鎖状、分岐鎖状又は環状のアルキル基を挙げることができる。
好ましいアルキル基としては、炭素数1〜4の直鎖状又は分岐鎖状のアルキル基が良い。
より好ましくは、メチル基、エチル基又はn−ブチル基が良い。
Specific examples of the group represented by R 1 are as follows.
Examples of the C 1 to C 8 alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclobutyl group, and n-pentyl. Examples thereof include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms such as a group, n-hexyl group, n-heptyl group and n-octyl group.
A preferable alkyl group is a linear or branched alkyl group having 1 to 4 carbon atoms.
More preferably, a methyl group, an ethyl group, or an n-butyl group is good.

アリール基としては、フェニル基、ナフチル基等を挙げることができる。
好ましいアリール基としては、フェニル基が良い。
置換アリール基としては、置換基を有しているフェニル基、置換基を有しているナフチル基等を挙げることができる。
Examples of the aryl group include a phenyl group and a naphthyl group.
A preferred aryl group is a phenyl group.
Examples of the substituted aryl group include a phenyl group having a substituent and a naphthyl group having a substituent.

上記置換基を有しているアリール基の置換基としては、例えば、ハロゲン原子、水酸基、アルコキシ基、アミノ基、ニトロ基、シアノ基、−CORで示されるカルボニル含有基(R=C〜Cのアルキル基、アリール基、C〜Cのアルコキシ基、アリーロキシ基)、スルホニル基、トリフルオロメチル基等を挙げることができる。
好ましい置換アリール基としては、トリフルオロメチル置換フェニル基が良い。
また、これら置換基は、1個又は2個置換しているのが良く、パラ位若しくはオルト位が好ましい。
芳香族へテロ環基としては、ピリジル基、ピロール基、フリル基、チエニル基等を挙げることができる。
Examples of the substituent of the aryl group having the above substituent, for example, a halogen atom, a hydroxyl group, an alkoxy group, an amino group, a nitro group, a cyano group, a carbonyl-containing group represented by -COR a (R a = C 1 alkyl group -C 8, aryl group, alkoxy group of C 1 -C 8, an aryloxy group), a sulfonyl group, and a trifluoromethyl group.
A preferred substituted aryl group is a trifluoromethyl-substituted phenyl group.
These substituents may be substituted one or two, and the para position or ortho position is preferable.
Examples of the aromatic heterocyclic group include a pyridyl group, a pyrrole group, a furyl group, and a thienyl group.

及びRで示される各基は、具体的には次の通りである。
〜Cのアルキル基としては、上記Rで示したアルキル基と同様のものを挙げることができる。
Specific examples of each group represented by R 3 and R 4 are as follows.
Examples of the C 1 to C 8 alkyl group include the same alkyl groups as those described above for R 1 .

で示される各基は、具体的には次の通りである。
アリール基、置換アリール基、芳香族へテロ環基としては上記Rで示した基と同様のものを挙げることができる。
アシル基としては、ホルミル基、アセチル基、ベンゾイル基等を挙げることができる。
アミド基としては、アセトアミド、マロンアミド、スクシンアミド、マレアミド、ベンズアミド、2−フルアミド等のカルボン酸アミド、チオアセトアミド、ヘキサンジチオアミド、チオベンズアミド、メタンチオスルホンアミド等のチオアミド、セレノアセトアミド、ヘキサンジセレノアミド、セレノベンズアミド、メタンセレノスルホンアミド等のセレノアミド、N−メチルアセトアミド、ベンズアニリド、シクロヘキサンカルボキサニリド、2,4'−ジクロロアセトアニリド等のN−置換アミド等を挙げることができる。
オキシカルボニル基としては、−COOR(R=H、C〜Cのアルキル基、アリール基)で示される基を挙げることができる。
具体的には、カルボキシル基、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、n−ブトキシカルボニル基、sec−ブトキシカルボニル基、ter−ブトキシカルボニル基、n−ペントキシカルボニル基、フェノキシカルボニル基等を挙げることができる。
好ましいオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基が良い。
Specific examples of each group represented by R 5 are as follows.
Examples of the aryl group, substituted aryl group, and aromatic heterocyclic group include the same groups as those described above for R 1 .
Examples of the acyl group include a formyl group, an acetyl group, and a benzoyl group.
Examples of the amide group include carboxylic acid amides such as acetamide, malonamide, succinamide, maleamide, benzamide, and 2-fluamide, thioamides such as thioacetamide, hexanedithioamide, thiobenzamide, and methanethiosulfonamide, selenoacetamide, hexanediselenoamide, Examples include selenoamides such as selenobenzamide and methaneselenosulfonamide, N-substituted amides such as N-methylacetamide, benzanilide, cyclohexanecarboxanilide, and 2,4′-dichloroacetanilide.
Examples of the oxycarbonyl group include a group represented by —COOR b (R b = H, C 1 to C 8 alkyl group, aryl group).
Specifically, carboxyl group, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, n-butoxycarbonyl group, sec-butoxycarbonyl group, ter-butoxycarbonyl group, n-pentoxycarbonyl group, phenoxycarbonyl group, etc. Can be mentioned.
Preferred oxycarbonyl groups are a methoxycarbonyl group and an ethoxycarbonyl group.

好ましいRで示される各基としては、アリール基、置換アリール基、オキシカルボニル基又はシアノ基が良い。
好ましいアリール基としては、フェニル基が良い。
好ましい置換アリール基としては、ハロゲン原子置換フェニル基、トリフルオロメチル置換フェニル基が良い。
また、これらの置換基は、ハロゲン原子の場合は、1〜5個置換しているのが良い。アルコキシ基やトリフルオロメチル基の場合は、1個又は2個置換しているのが良く、1個置換の場合は、パラ位若しくはオルト位が好ましく、2個置換の場合は、メタ位が好ましい。
好ましいオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基が良い。
Each group represented by R 5 is preferably an aryl group, a substituted aryl group, an oxycarbonyl group or a cyano group.
A preferred aryl group is a phenyl group.
Preferred examples of the substituted aryl group include a halogen atom substituted phenyl group and a trifluoromethyl substituted phenyl group.
In addition, in the case of a halogen atom, these substituents are preferably substituted by 1 to 5 pieces. In the case of an alkoxy group or a trifluoromethyl group, one or two substituents may be substituted. In the case of one substitution, the para position or the ortho position is preferable, and in the case of two substitutions, the meta position is preferable. .
Preferred oxycarbonyl groups are a methoxycarbonyl group and an ethoxycarbonyl group.

好ましい(1a)で示される有機テルル化合物としては、Rが、C〜Cのアルキル基を示し、R及びRが、水素原子又はC〜Cのアルキル基を示し、Rが、アリール基、置換アリール基、オキシカルボニル基で示される化合物が良い。
特に好ましくは、Rが、C〜Cのアルキル基を示し、R及びRが、水素原子又はC〜Cのアルキル基を示し、Rが、フェニル基、置換フェニル基、メトキシカルボニル基、エトキシカルボニル基が良い。
As the preferred organic tellurium compound represented by (1a), R 1 represents a C 1 -C 4 alkyl group, R 3 and R 4 represent a hydrogen atom or a C 1 -C 4 alkyl group, R A compound in which 5 is an aryl group, a substituted aryl group, or an oxycarbonyl group is preferable.
Particularly preferably, R 1 represents a C 1 to C 4 alkyl group, R 3 and R 4 represent a hydrogen atom or a C 1 to C 4 alkyl group, and R 5 represents a phenyl group or a substituted phenyl group. A methoxycarbonyl group and an ethoxycarbonyl group are preferable.

式(1a)で示される有機テルル化合物は、具体的な代表例は次の通りである。
(メチルテラニルメチル)ベンゼン、(1−メチルテラニルエチル)ベンゼン、1−クロロ−4−(1−メチルテラニルエチル)ベンゼン、1−トリフルオロメチル−4−(1−メチルテラニルエチル)ベンゼン、3,5−ビス−トリフルオロメチル−1−(1−メチルテラニルエチル)ベンゼン、1,2,3,4,5−ペンタフルオロ−6−(1−メチルテラニルエチル)ベンゼン、2−メチルテラニルプロピオニトリル、(2−メチルテラニルプロピル)ベンゼン、メチル 2−メチルテラニル−2−メチル−プロピオネート、エチル 2−メチルテラニル−2−メチル−プロピオネート、2−メチルテラニル−2−メチル−プロピオニトリル等を挙げることができる。また、上記において、メチルテラニルの部分がエチルテラニル、n−ブチルテラニル、n−オクチルテラニル等と変更した化合物も全て含まれる。その他WO2004/014962に記載された有機テルル化合物の全てを例示することができる。
Specific representative examples of the organic tellurium compound represented by the formula (1a) are as follows.
(Methylterranylmethyl) benzene, (1-methylterranylethyl) benzene, 1-chloro-4- (1-methylterranylethyl) benzene, 1-trifluoromethyl-4- (1-methylterranylethyl) Benzene, 3,5-bis-trifluoromethyl-1- (1-methylteranylethyl) benzene, 1,2,3,4,5-pentafluoro-6- (1-methylterranylethyl) benzene, 2 -Methyl teranyl propionitrile, (2-methyl teranyl propyl) benzene, methyl 2-methyl teranyl-2-methyl-propionate, ethyl 2-methyl teranyl-2-methyl-propionate, 2-methyl teranyl-2-methyl-propio A nitrile etc. can be mentioned. In addition, in the above, all compounds in which the methyl terranyl moiety is changed to ethyl terranyl, n-butyl terranyl, n-octyl terranyl or the like are also included. In addition, all of the organic tellurium compounds described in WO2004 / 014962 can be exemplified.

本発明で使用する有機アンチモン化合物は、式(1b)で表される。   The organic antimony compound used in the present invention is represented by the formula (1b).

Figure 2007277533
(式中、R及びRは、C〜Cのアルキル基、アリール基、置換アリール基又は芳香族ヘテロ環基を示す。R及びRは、水素原子又はC〜Cのアルキル基を示す。Rは、アリール基、置換アリール基、芳香族ヘテロ環基、アシル基、アミド基、オキシカルボニル基又はシアノ基を示す。)
Figure 2007277533
(In the formula, R 1 and R 2 represent a C 1 to C 8 alkyl group, aryl group, substituted aryl group or aromatic heterocyclic group. R 3 and R 4 represent a hydrogen atom or C 1 to C 8. R 5 represents an aryl group, a substituted aryl group, an aromatic heterocyclic group, an acyl group, an amide group, an oxycarbonyl group or a cyano group.

及びR〜Rで示される基は、上記と同様である。
で示される基は、Rと同様である。
The groups represented by R 1 and R 3 to R 5 are the same as described above.
The group represented by R 2 is the same as R 1 .

式(1b)で示される有機アンチモン化合物は、具体的な代表例は次の通りである。
(ジメチルスチバニル−メチル)ベンゼン、(1−ジメチルスチバニル−エチル)ベンゼン、1−クロロ−4−(1−ジメチルスチバニル−エチル)ベンゼン、1−トリフルオロメチル−4−(1−ジメチルスチバニル−エチル)ベンゼン、3,5−ビス−トリフルオロメチル−1−(1−ジメチルスチバニル−エチル)ベンゼン、1,2,3,4,5−ペンタフルオロ−6−(1−ジメチルスチバニル−エチル)ベンゼン、2−ジメチルスチバニル−プロピオニトリル、(2−ジメチルスチバニル−プロピル)ベンゼン、メチル 2−ジメチルスチバニル−2−メチル−プロピオネート、エチル 2−ジメチルスチバニル−2−メチル−プロピオネート、2−ジメチルスチバニル−2−メチル−プロピオニトリル等を挙げることができる。また、上記において、ジメチルスチバニル−の部分がジエチルスチバニル−、ジn−ブチルスチバニル、ジn−オクチルスチバニル等と変更した化合物も全て含まれる。その他WO2006/001496に記載された有機アンチモン化合物の全てを例示することができる。
Specific representative examples of the organic antimony compound represented by the formula (1b) are as follows.
(Dimethylstivanyl-methyl) benzene, (1-dimethylstibanyl-ethyl) benzene, 1-chloro-4- (1-dimethylstibanyl-ethyl) benzene, 1-trifluoromethyl-4- (1-dimethylsti Vanyl-ethyl) benzene, 3,5-bis-trifluoromethyl-1- (1-dimethylstivanyl-ethyl) benzene, 1,2,3,4,5-pentafluoro-6- (1-dimethylstibanyl) -Ethyl) benzene, 2-dimethylstivanyl-propionitrile, (2-dimethylstibanyl-propyl) benzene, methyl 2-dimethylstivanyl-2-methyl-propionate, ethyl 2-dimethylstibanyl-2-methyl- Examples include propionate and 2-dimethylstivalyl-2-methyl-propionitrile. Further, in the above, all compounds in which the dimethyl stivanyl- moiety is changed to diethyl stivanyl-, di-n-butyl stivanyl, di-n-octyl stivanyl, etc. are also included. Other examples include all organic antimony compounds described in WO2006 / 001496.

本発明で使用する有機ビスマス化合物は、式(1c)で表される。   The organic bismuth compound used in the present invention is represented by the formula (1c).

Figure 2007277533
Figure 2007277533

(式中、R及びRは、C〜Cのアルキル基、アリール基、置換アリール基又は芳香族ヘテロ環基を示す。R及びRは、水素原子又はC〜Cのアルキル基を示す。Rは、アリール基、置換アリール基、芳香族ヘテロ環基、アシル基、アミド基、オキシカルボニル基又はシアノ基を示す。) (In the formula, R 1 and R 2 represent a C 1 to C 8 alkyl group, aryl group, substituted aryl group or aromatic heterocyclic group. R 3 and R 4 represent a hydrogen atom or C 1 to C 8. R 5 represents an aryl group, a substituted aryl group, an aromatic heterocyclic group, an acyl group, an amide group, an oxycarbonyl group or a cyano group.

〜Rで示される基は、上記と同様である。 The groups represented by R 1 to R 5 are the same as described above.

式(1c)で示される有機ビスマス化合物は、具体的な代表例は、上記、式(1b)で示される有機アンチモン化合物の、スチバニルの部分がビスムタニルと変更した化合物を挙げることができる。その他PCT/JP2005/023093に記載された有機ビスマス化合物の全てを例示することができる。   Specific examples of the organic bismuth compound represented by the formula (1c) include compounds in which the stantivanyl moiety of the organic antimony compound represented by the formula (1b) is changed to bismutanyl. In addition, all the organic bismuth compounds described in PCT / JP2005 / 023093 can be exemplified.

本発明で使用するルイス酸は、MXn(n=2、3または4)で表される。
Mは、2族、ランタノイドを含む3族、4族、12族、13族および14族から選ばれる1種の元素である。具体的には、マグネシウム、スカンジウム、イットリウム、ランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロビウム、ガドリニウム、テルビウム、シスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、アルミニウム、スズを挙げることができる。
好ましくは、2族、ランタノイドを含む3族が良い。より好ましくは、ランタノイドが良い。
Xは、ハロゲン塩、トリフルオロメタンスルホン酸塩(トリフラート、OTf)、トリフルオロイミド、テトラアリルボレート、ヘキサフルオロアンチモナート等を挙げることができる。
好ましくは、トリフルオロメタンスルホン酸塩(トリフラート、OTf)が良い。
MXnで表される、具体的な化合物は、例えば臭化マグネシウム、塩化イットリウム、トリフルオロメタンスルホン酸イットリウム、トリフルオロメタンスルホン酸ランタン、トリフルオロメタンスルホン酸セリウム、トリフルオロメタンスルホン酸プラセオジウム、トリフルオロメタンスルホン酸ネオジウム、トリフルオロメタンスルホン酸プロメチウム、トリフルオロメタンスルホン酸サマリウム、トリフルオロメタンスルホン酸ユウロビウム、トリフルオロメタンスルホン酸ガドリニウム、トリフルオロメタンスルホン酸テルビウム、トリフルオロメタンスルホン酸シスプロシウム、トリフルオロメタンスルホン酸ホルミニウム、トリフルオロメタンスルホン酸エルビウム、トリフルオロメタンスルホン酸ツリウム、トリフルオロメタンスルホン酸イッテルビウム、トリフルオロメタンスルホン酸ルテチウム等を挙げることができる。
好ましくは、トリフルオロメタンスルホン酸ランタノイド塩が良い。
The Lewis acid used in the present invention is represented by MXn (n = 2, 3 or 4).
M is one element selected from Group 2, Group 3, Group 4, Group 12, Group 13 and Group 14 including lanthanoids. Specific examples include magnesium, scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, eurobium, gadolinium, terbium, cisprosium, holmium, erbium, thulium, ytterbium, lutetium, aluminum, and tin.
Preferably, Group 2 and Group 3 including lanthanoid are preferable. More preferably, a lanthanoid is good.
Examples of X include halogen salts, trifluoromethanesulfonate (triflate, OTf), trifluoroimide, tetraallylborate, hexafluoroantimonate, and the like.
Trifluoromethanesulfonate (triflate, OTf) is preferable.
Specific compounds represented by MXn include, for example, magnesium bromide, yttrium chloride, yttrium trifluoromethanesulfonate, lanthanum trifluoromethanesulfonate, cerium trifluoromethanesulfonate, praseodymium trifluoromethanesulfonate, neodymium trifluoromethanesulfonate, Promethium trifluoromethanesulfonate, samarium trifluoromethanesulfonate, eurobium trifluoromethanesulfonate, gadolinium trifluoromethanesulfonate, terbium trifluoromethanesulfonate, cisprosium trifluoromethanesulfonate, formium trifluoromethanesulfonate, erbium trifluoromethanesulfonate, trifluoromethane Thulium sulfonate, trifluorometa Acid ytterbium, mention may be made of trifluoromethanesulfonic acid lutetium like.
A lanthanoid trifluoromethanesulfonic acid salt is preferable.

本発明で使用する式(2a)〜(2c)で表される化合物は、次の通りである。   The compounds represented by formulas (2a) to (2c) used in the present invention are as follows.

Figure 2007277533
(式中、Rは、上記と同じ。)
Figure 2007277533
(In the formula, R 1 is the same as above.)

で示される基は、上記に示した通りである。
式(2a)で示される化合物は、具体的には、ジメチルジテルリド、ジエチルジテルリド、ジ−n−プロピルジテルリド、ジイソプロピルジテルリド、ジシクロプロピルジテルリド、ジ−n−ブチルジテルリド、ジ−sec−ブチルジテルリド、ジ−tert−ブチルジテルリド、ジシクロブチルジテルリド、ジフェニルジテルリド、ビス−(p−メトキシフェニル)ジテルリド、ビス−(p−アミノフェニル)ジテルリド、ビス−(p−ニトロフェニル)ジテルリド、ビス−(p−シアノフェニル)ジテルリド、ビス−(p−スルホニルフェニル)ジテルリド、ジナフチルジテルリド、ジピリジルジテルリド等が挙げられる。
好ましい式(2a)で示される化合物としては、RがC〜Cのアルキル基、フェニル基が良い。好ましくは、ジメチルジテルリド、ジエチルジテルリド、ジ−n−プロピルジテルリド、ジ−n−ブチルジテルリド、ジフェニルジテルリドが良い。特に好ましくは、ジメチルジテルリド、ジエチルジテルリド、ジ−n−プロピルジテルリド、ジ−n−ブチルジテルリドが良い。
The group represented by R 1 is as described above.
Specific examples of the compound represented by the formula (2a) include dimethylditelluride, diethylditelluride, di-n-propylditelluride, diisopropylditelluride, dicyclopropylditelluride, di-n- Butyl ditelluride, di-sec-butyl ditelluride, di-tert-butyl ditelluride, dicyclobutyl ditelluride, diphenyl ditelluride, bis- (p-methoxyphenyl) ditelluride, bis- (p-aminophenyl) ditelluride, bis- (p -Nitrophenyl) ditelluride, bis- (p-cyanophenyl) ditelluride, bis- (p-sulfonylphenyl) ditelluride, dinaphthylditelluride, dipyridylditelluride and the like.
As a preferable compound represented by the formula (2a), R 1 is preferably a C 1 to C 4 alkyl group or a phenyl group. Preferred are dimethyl ditelluride, diethyl ditelluride, di-n-propyl ditelluride, di-n-butyl ditelluride, and diphenyl ditelluride. Particularly preferred are dimethyl ditelluride, diethyl ditelluride, di-n-propyl ditelluride and di-n-butyl ditelluride.

Figure 2007277533
(式中、R及びRは、上記と同じ。)
Figure 2007277533
(In the formula, R 1 and R 2 are the same as above.)

及びRで示される基は、上記に示した通りである。
式(2b)で示される化合物は、具体的には、テトラメチルジスチビン、テトラエチルジスチビン、テトラ−n−プロピルジスチビン、テトライソプロピルジスチビン、テトラシクロプロピルジスチビン、テトラ−n−ブチルジスチビン、テトラ−sec−ブチルジスチビン、テトラ−tert−ブチルジスチビン、テトラシクロブチルジスチビン、テトラフェニルジスチビン、テトラ−(p−メトキシフェニル)ジスチビン、テトラ−(p−アミノフェニル)ジスチビン、テトラ−(p−ニトロフェニル)ジスチビン、テトラ−(p−シアノフェニル)ジスチビン、テトラ−(p−スルホニルフェニル)ジスチビン、テトラナフチルジスチビン、テトラピリジルジスチビン等が挙げられる。
The groups represented by R 1 and R 2 are as described above.
Specific examples of the compound represented by the formula (2b) include tetramethyl distibin, tetraethyl distibin, tetra-n-propyl distibin, tetraisopropyl distivin, tetracyclopropyl distibin, tetra-n-butyl distibin, tetra -Sec-butyl distivine, tetra-tert-butyl distivine, tetracyclobutyl distivine, tetraphenyl distibin, tetra- (p-methoxyphenyl) distibin, tetra- (p-aminophenyl) distibin, tetra- (p-nitrophenyl) Examples include distibin, tetra- (p-cyanophenyl) distibin, tetra- (p-sulfonylphenyl) distibin, tetranaphthyl distibin, and tetrapyridyl distibin.

好ましい式(2b)で示される化合物としては、R及びRがC〜Cのアルキル基、フェニル基が良い。好ましくは、テトラメチルジスチビン、テトラエチルジスチビン、テトラ−n−プロピルジスチビン、テトラ−n−ブチルジスチビン、テトラフェニルジスチビンが良い。特に好ましくは、テトラメチルジスチビン、テトラエチルジスチビン、テトラ−n−プロピルジスチビン、テトラ−n−ブチルジスチビンが良い。 As a preferable compound represented by the formula (2b), R 1 and R 2 are preferably C 1 to C 4 alkyl groups and phenyl groups. Tetramethyl distibin, tetraethyl distibin, tetra-n-propyl distibin, tetra-n-butyl distibin, and tetraphenyl distibin are preferable. Particularly preferred are tetramethyl distivin, tetraethyl distibin, tetra-n-propyl distibin, and tetra-n-butyl distibin.

Figure 2007277533
(式中、R及びRは、上記と同じ。)
Figure 2007277533
(In the formula, R 1 and R 2 are the same as above.)

及びRで示される基は、上記に示した通りである。
式(2c)で示される化合物は、具体的には、テトラメチルジビスムチン、テトラエチルジビスムチン、テトラ−n−プロピルジビスムチン、テトライソプロピルジビスムチン、テトラシクロプロピルジビスムチン、テトラ−n−ブチルジビスムチン、テトラ−sec−ブチルジビスムチン、テトラ−tert−ブチルジビスムチン、テトラシクロブチルジビスムチン、テトラフェニルジビスムチン、テトラ−(p−メトキシフェニル)ジビスムチン、テトラ−(p−アミノフェニル)ジビスムチン、テトラ−(p−ニトロフェニル)ジビスムチン、テトラ−(p−シアノフェニル)ジビスムチン、テトラ−(p−スルホニルフェニル)ジビスムチン、テトラナフチルジビスムチン、テトラピリジルジビスムチン等が挙げられる。
The groups represented by R 1 and R 2 are as described above.
Specific examples of the compound represented by the formula (2c) include tetramethyldibismuthine, tetraethyldibismuthine, tetra-n-propyldibismuthine, tetraisopropyldibismuthine, tetracyclopropyldibismuthine, tetra- n-butyldibismuthine, tetra-sec-butyldibismuthine, tetra-tert-butyldibismuthine, tetracyclobutyldibismuthine, tetraphenyldibismuthine, tetra- (p-methoxyphenyl) dibismuthine, tetra- (P-aminophenyl) dibismuthine, tetra- (p-nitrophenyl) dibismuthine, tetra- (p-cyanophenyl) dibismuthine, tetra- (p-sulfonylphenyl) dibismuthine, tetranaphthyldibismuthine, tetrapyridyldibismuthine, etc. Is mentioned.

好ましい式(2c)で示される化合物としては、R及びRがC〜Cのアルキル基、フェニル基が良い。好ましくは、テトラメチルジビスムチン、テトラエチルジビスムチン、テトラ−n−プロピルジビスムチン、テトラ−n−ブチルジビスムチン、テトラフェニルジビスムチンが良い。特に好ましくは、テトラメチルジビスムチン、テトラエチルジビスムチン、テトラ−n−プロピルジビスムチン、テトラ−n−ブチルジビスムチンが良い。 As a preferable compound represented by the formula (2c), R 1 and R 2 are preferably C 1 to C 4 alkyl groups and phenyl groups. Tetramethyldibismuthine, tetraethyldibismuthine, tetra-n-propyldibismuthine, tetra-n-butyldibismuthine, and tetraphenyldibismuthine are preferable. Particularly preferred are tetramethyldibismuthine, tetraethyldibismuthine, tetra-n-propyldibismuthine, and tetra-n-butyldibismuthine.

本発明で使用されるアゾ系重合開始剤は、通常のラジカル重合で使用するアゾ系重合開始剤であれば特に制限なく使用することができる。
例えば2,2'−アゾビス(イソブチロニトリル)(AIBN)、2,2'−アゾビス(2−メチルブチロニトリル)(AMBN)、2,2'−アゾビス(2,4−ジメチルバレロニトリル)(ADVN)、1,1'−アゾビス(1−シクロヘキサンカルボニトリル)(ACHN)、ジメチル−2,2'−アゾビスイソブチレート(MAIB)、4,4'−アゾビス(4−シアノバレリアン酸)(ACVA)、1,1'−アゾビス(1−アセトキシ−1−フェニルエタン)、2,2'−アゾビス(2−メチルブチルアミド)、2,2'−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2'−アゾビス(2−メチルアミジノプロパン)二塩酸塩、2,2'−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、2,2'−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]、2,2'−アゾビス(2,4,4−トリメチルペンタン)、2−シアノ−2−プロピルアゾホルムアミド、2,2'−アゾビス(N−ブチル−2−メチルプロピオンアミド)、2,2'−アゾビス(N−シクロヘキシル−2−メチルプロピオンアミド)等が挙げられる。
The azo polymerization initiator used in the present invention can be used without particular limitation as long as it is an azo polymerization initiator used in normal radical polymerization.
For example, 2,2′-azobis (isobutyronitrile) (AIBN), 2,2′-azobis (2-methylbutyronitrile) (AMBN), 2,2′-azobis (2,4-dimethylvaleronitrile) (ADVN), 1,1′-azobis (1-cyclohexanecarbonitrile) (ACHN), dimethyl-2,2′-azobisisobutyrate (MAIB), 4,4′-azobis (4-cyanovaleric acid) (ACVA) 1,1′-azobis (1-acetoxy-1-phenylethane), 2,2′-azobis (2-methylbutyramide), 2,2′-azobis (4-methoxy-2,4- Dimethylvaleronitrile), 2,2′-azobis (2-methylamidinopropane) dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [ 2-Methyl-N- 2-hydroxyethyl) propionamide], 2,2′-azobis (2,4,4-trimethylpentane), 2-cyano-2-propylazoformamide, 2,2′-azobis (N-butyl-2-methyl) Propionamide), 2,2′-azobis (N-cyclohexyl-2-methylpropionamide) and the like.

これらのアゾ系開始剤は反応条件に応じて適宜選択するのが好ましい。例えば低温重合(40℃以下)の場合は2,2'−アゾビス(2,4−ジメチルバレロニトリル)(ADVN)、2,2'−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、中温重合(40〜80℃)の場合は2,2'−アゾビス(イソブチロニトリル)(AIBN)、2,2'−アゾビス(2−メチルブチロニトリル)(AMBN)、ジメチル−2,2'−アゾビスイソブチレート(MAIB)、1,1'−アゾビス(1−アセトキシ−1−フェニルエタン)、高温重合(80℃以上)の場合は1,1'−アゾビス(1−シクロヘキサンカルボニトリル)(ACHN)、2−シアノ−2−プロピルアゾホルムアミド、2,2'−アゾビス(N−ブチル−2−メチルプロピオンアミド)、2,2'−アゾビス(N−シクロヘキシル−2−メチルプロピオンアミド)、2,2'−アゾビス(2,4,4−トリメチルペンタン)を用いるのがよく、また水系溶剤を用いた反応では4,4'−アゾビス(4−シアノバレリアン酸)(ACVA)、2,2'−アゾビス(2−メチルブチルアミド)、2,2'−アゾビス(2−メチルアミジノプロパン)二塩酸塩、2,2'−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、2,2'−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]を用いるのがよい。   These azo initiators are preferably selected as appropriate according to the reaction conditions. For example, in the case of low temperature polymerization (40 ° C. or lower), 2,2′-azobis (2,4-dimethylvaleronitrile) (ADVN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), In the case of medium temperature polymerization (40-80 ° C.), 2,2′-azobis (isobutyronitrile) (AIBN), 2,2′-azobis (2-methylbutyronitrile) (AMBN), dimethyl-2,2 In the case of '-azobisisobutyrate (MAIB), 1,1'-azobis (1-acetoxy-1-phenylethane), high temperature polymerization (80 ° C or higher), 1,1'-azobis (1-cyclohexanecarbonitrile) ) (ACHN), 2-cyano-2-propylazoformamide, 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis (N-cyclohexyl-2-methylpropion) Amide), 2,2′-azobis (2,4,4-trimethylpentane), and in a reaction using an aqueous solvent, 4,4′-azobis (4-cyanovaleric acid) (ACVA), 2,2'-azobis (2-methylbutyramide), 2,2'-azobis (2-methylamidinopropane) dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] may be used.

本発明で使用するビニルモノマーとしては、ラジカル重合可能なものであれば特に制限なく使用することができる。   The vinyl monomer used in the present invention can be used without particular limitation as long as it is capable of radical polymerization.

例えば、下記のものを挙げることができる。
(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸−2−ヒドロキシエチル等の(メタ)アクリル酸エステル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸シクロドデシル等のシクロアルキル基含有不飽和モノマー。
(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロトン酸、無水マレイン酸等メチル等のカルボキシル基含有不飽和モノマー。
For example, the following can be mentioned.
Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, (meth) acrylic acid-2- Cycloalkyl group-containing unsaturated monomers such as (meth) acrylic acid esters such as hydroxyethyl, cyclohexyl (meth) acrylate, methyl cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and cyclododecyl (meth) acrylate.
(Meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, crotonic acid, maleic anhydride and other carboxyl group-containing unsaturated monomers.

N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリルアミド、2−(ジメチルアミノ)エチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート等の3級アミン含有不飽和モノマー。
N−2−ヒドロキシ−3−アクリロイルオキシプロピル−N,N,N−トリメチルアンモニウムクロライド、N−メタクリロイルアミノエチル−N,N,N−ジメチルベンジルアンモニウムクロライド等の4級アンモニウム塩基含有不飽和モノマー。
(メタ)アクリル酸グリシジル等のエポキシ基含有不飽和モノマー。
3 such as N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylamide, 2- (dimethylamino) ethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, etc. Secondary amine-containing unsaturated monomer.
Quaternary ammonium base-containing unsaturated monomers such as N-2-hydroxy-3-acryloyloxypropyl-N, N, N-trimethylammonium chloride and N-methacryloylaminoethyl-N, N, N-dimethylbenzylammonium chloride.
Epoxy group-containing unsaturated monomers such as (meth) glycidyl acrylate.

スチレン、α−メチルスチレン、4−メチルスチレン(p−メチルスチレン)、2−メチルスチレン(o−メチルスチレン)、3−メチルスチレン(m−メチルスチレン)、4−メトキシスチレン(p−メトキシスチレン)、p−tert−ブチルスチレン、p−n−ブチルスチレン、p−tert−ブトキシスチレン、2−ヒドロキシメチルスチレン、2−クロロスチレン(o−クロロスチレン)、4−クロロスチレン(p−クロロスチレン)、2,4−ジクロロスチレン、1−ビニルナフタレン、ジビニルベンゼン、p−スチレンスルホン酸又はそのアルカリ金属塩(ナトリウム塩、カリウム塩等)等の芳香族不飽和モノマー(スチレン系モノマー)。   Styrene, α-methylstyrene, 4-methylstyrene (p-methylstyrene), 2-methylstyrene (o-methylstyrene), 3-methylstyrene (m-methylstyrene), 4-methoxystyrene (p-methoxystyrene) P-tert-butylstyrene, pn-butylstyrene, p-tert-butoxystyrene, 2-hydroxymethylstyrene, 2-chlorostyrene (o-chlorostyrene), 4-chlorostyrene (p-chlorostyrene), Aromatic unsaturated monomers (styrene monomers) such as 2,4-dichlorostyrene, 1-vinylnaphthalene, divinylbenzene, p-styrenesulfonic acid or alkali metal salts thereof (sodium salt, potassium salt, etc.).

2−ビニルチオフェン、N−メチル−2−ビニルピロール、1−ビニル−2−ピロリドン、2−ビニルピリジン、4−ビニルピリジン等のヘテロ環含有不飽和モノマー。
N−ビニルホルムアミド、N−ビニルアセトアミド等のビニルアミド。
(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド等の(メタ)アクリルアミド系モノマー。
1−ヘキセン、1−オクテン、1−デセン等のα−オレフィン。
ブタジエン、イソプレン、4−メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエン等のジエン類。酢酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステル。(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリロニトリル、メチルビニルケトン、塩化ビニル、塩化ビニリデン。
Heterocycle-containing unsaturated monomers such as 2-vinylthiophene, N-methyl-2-vinylpyrrole, 1-vinyl-2-pyrrolidone, 2-vinylpyridine and 4-vinylpyridine.
Vinylamides such as N-vinylformamide and N-vinylacetamide.
(Meth) acrylamide monomers such as (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, and N, N-dimethyl (meth) acrylamide.
Α-olefins such as 1-hexene, 1-octene and 1-decene.
Dienes such as butadiene, isoprene, 4-methyl-1,4-hexadiene and 7-methyl-1,6-octadiene. Carboxylic acid vinyl esters such as vinyl acetate and vinyl benzoate. Hydroxyethyl (meth) acrylate, (meth) acrylonitrile, methyl vinyl ketone, vinyl chloride, vinylidene chloride.

好ましくは、極性ビニルモノマーであり、3級アミン含有不飽和モノマー、ヘテロ環含有不飽和モノマー、(メタ)アクリルアミド系モノマー、カルボン酸ビニルエステルが良い。尚、上記の「(メタ)アクリル酸」は、「アクリル酸」及び「メタクリル酸」の総称である。   Preferred are polar vinyl monomers, and tertiary amine-containing unsaturated monomers, heterocyclic-containing unsaturated monomers, (meth) acrylamide monomers, and carboxylic acid vinyl esters are preferred. The “(meth) acrylic acid” is a general term for “acrylic acid” and “methacrylic acid”.

本発明のリビングラジカルポリマーの製造方法は、具体的には次の通りである。
不活性ガスで置換した容器で、ビニルモノマー、式(1a)で表される有機テルル化合物、式(1b)で表される有機アンチモン化合物および式(1c)で表される有機ビスマス化合物から選ばれる少なくとも1種(リビングラジカル重合開始剤)およびルイス酸、必要に応じて、式(2a)〜式(2c)で表される化合物、アゾ系重合開始剤を混合する。
The method for producing the living radical polymer of the present invention is specifically as follows.
In a container substituted with an inert gas, selected from a vinyl monomer, an organic tellurium compound represented by formula (1a), an organic antimony compound represented by formula (1b), and an organic bismuth compound represented by formula (1c) At least one (living radical polymerization initiator) and a Lewis acid, and if necessary, a compound represented by formula (2a) to formula (2c) and an azo polymerization initiator are mixed.

次に、上記混合物を撹拌する。反応温度、反応時間は、適宜調節すればよいが、通常、20〜150℃で、1分〜100時間撹拌する。好ましくは、40〜100℃で、0.1〜30時間撹拌するのが良い。また、光を照射することにより、反応温度を低温にすることができる。光の照射方法としては、特に制限されることが無く、イマージョン型の光反応装置や通常の反応容器に光照射を行うことで重合を行うことができる。光照射をした場合、反応温度は、低温にする程ポリマーの立体規則性を制御することができるが、反応時間が長くなるおそれがあるため、0〜80℃、より好ましくは、0〜30℃とするのが良い。この時、圧力は、通常、常圧で行われるが、加圧或いは減圧しても構わない。この時、不活性ガスとしては、窒素、アルゴン、ヘリウム等を挙げることができる。好ましくは、アルゴン、窒素が良い。特に好ましくは、窒素が良い。   Next, the mixture is stirred. The reaction temperature and reaction time may be adjusted as appropriate, but are usually stirred at 20 to 150 ° C. for 1 minute to 100 hours. Preferably, it is good to stir at 40-100 degreeC for 0.1 to 30 hours. Further, the reaction temperature can be lowered by irradiating light. The light irradiation method is not particularly limited, and polymerization can be carried out by irradiating light to an immersion type photoreaction apparatus or a normal reaction vessel. When light irradiation is performed, the lower the reaction temperature, the more the polymer's stereoregularity can be controlled. However, the reaction time may become longer, so 0-80 ° C, more preferably 0-30 ° C. It is good to do. At this time, the pressure is usually a normal pressure, but may be increased or decreased. At this time, examples of the inert gas include nitrogen, argon, helium, and the like. Argon and nitrogen are preferable. Nitrogen is particularly preferable.

ビニルモノマーと式(1a)〜式(1c)で表されるリビングラジカル重合開始剤の使用量としては、得られるリビングラジカルポリマーの分子量或いは分子量分布により適宜調節すればよいが、通常、式(1a)〜式(1c)で表されるリビングラジカル重合開始剤1molに対して、ビニルモノマーを5〜10,000mol、好ましくは50〜5,000molとするのが良い。   The amount of the vinyl monomer and the living radical polymerization initiator represented by the formulas (1a) to (1c) may be appropriately adjusted depending on the molecular weight or molecular weight distribution of the resulting living radical polymer. ) To 1 mol of the living radical polymerization initiator represented by the formula (1c), the vinyl monomer may be 5 to 10,000 mol, preferably 50 to 5,000 mol.

式(1a)〜式(1c)で表されるリビングラジカル重合開始剤とルイス酸の使用量としては、通常、式(1a)〜式(1c)で表されるリビングラジカル重合開始剤1molに対して、ルイス酸を0.01〜500mol、好ましくは0.1〜50molとするのが良い。   The amount of the living radical polymerization initiator represented by formula (1a) to formula (1c) and the Lewis acid used is usually 1 mol of the living radical polymerization initiator represented by formula (1a) to formula (1c). Thus, the Lewis acid may be 0.01 to 500 mol, preferably 0.1 to 50 mol.

式(1a)〜式(1c)で表されるリビングラジカル重合開始剤と式(2a)〜式(2c)で表される化合物を併用する場合、その使用量としては、通常、式(1a)〜式(1c)で表されるリビングラジカル重合開始剤1molに対して、式(2a)〜式(2c)で表される化合物0.01〜100mol、好ましくは0.1〜10mol、特に好ましくは0.1〜5molとするのが良い。   When the living radical polymerization initiator represented by the formula (1a) to the formula (1c) and the compound represented by the formula (2a) to the formula (2c) are used in combination, the amount used is usually the formula (1a). To 0.01 to 100 mol, preferably 0.1 to 10 mol, particularly preferably, the compound represented by the formula (2a) to the formula (2c) with respect to 1 mol of the living radical polymerization initiator represented by the formula (1c). It is good to set it as 0.1-5 mol.

式(1a)〜式(1c)で表されるリビングラジカル重合開始剤とアゾ系重合開始剤を併用する場合、その使用量としては、通常、式(1a)〜式(1c)で表されるリビングラジカル重合開始剤1molに対して、アゾ系重合開始剤0.01〜100mol、好ましくは0.05〜10mol、特に好ましくは0.05〜2molとするのが良い。   When the living radical polymerization initiator represented by the formula (1a) to the formula (1c) and the azo polymerization initiator are used in combination, the amount used is usually represented by the formula (1a) to the formula (1c). The azo polymerization initiator may be 0.01 to 100 mol, preferably 0.05 to 10 mol, particularly preferably 0.05 to 2 mol with respect to 1 mol of the living radical polymerization initiator.

反応は、通常、無溶媒で行うが、ラジカル重合で一般に使用される有機溶媒或いは水性溶媒を使用しても構わない。使用できる有機溶媒としては、例えば、ベンゼン、トルエン、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、アセトン、2−ブタノン(メチルエチルケトン)、ジオキサン、ヘキサフルオロイソプロパオール、クロロホルム、四塩化炭素、テトラヒドロフラン(THF)、酢酸エチル、トリフルオロメチルベンゼン等が挙げられる。また、水性溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、n−ブタノール、エチルセロソルブ、ブチルセロソルブ、1−メトキシ−2−プロパノール、ジアセトンアルコール等が挙げられる。溶媒の使用量としては適宜調節すればよいが、例えば、ビニルモノマー1gに対して、溶媒を0.01〜50ml、好ましくは、0.05〜10mlが、特に好ましくは、0.1〜5mlが良い。   The reaction is usually carried out without a solvent, but an organic solvent or an aqueous solvent generally used in radical polymerization may be used. Examples of the organic solvent that can be used include benzene, toluene, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, 2-butanone (methyl ethyl ketone), dioxane, hexafluoroisopropol, chloroform, tetrachloride. Examples thereof include carbon, tetrahydrofuran (THF), ethyl acetate, trifluoromethylbenzene and the like. Examples of the aqueous solvent include water, methanol, ethanol, isopropanol, n-butanol, ethyl cellosolve, butyl cellosolve, 1-methoxy-2-propanol, diacetone alcohol and the like. The amount of the solvent used may be adjusted as appropriate. For example, the solvent is 0.01 to 50 ml, preferably 0.05 to 10 ml, particularly preferably 0.1 to 5 ml with respect to 1 g of the vinyl monomer. good.

反応終了後、常法により使用溶媒や残存モノマーを減圧下除去して目的ポリマーを取り出したり、目的ポリマー不溶溶媒を使用して再沈澱処理により目的物を単離する。反応処理については、目的物に支障がなければどのような処理方法でも行う事ができる。   After completion of the reaction, the solvent or residual monomer is removed under reduced pressure by a conventional method to take out the target polymer, or the target product is isolated by reprecipitation using a target polymer insoluble solvent. The reaction treatment can be performed by any treatment method as long as there is no problem with the object.

本発明のリビングラジカルポリマーの製造方法では、ビニルモノマーを複数使用することができる。例えば、2種以上のビニルモノマーを同時に反応させるとランダム共重合体を得ることができる。該ランダム共重合体は、モノマーの種類に関係なく、反応させるモノマーの比率(モル比)通りのポリマーを得ることができる。ビニルモノマーAとビニルモノマーBを同時に反応させランダム共重合体を得るとほぼ原料比(モル比)通りのものを得ることができる。また、2種のビニルモノマーを順次反応させるとブロック共重合体を得ることができる。該ブロック共重合体は、モノマーの種類に関係なく、反応させるモノマーの順番によるポリマーを得ることができる。ビニルモノマーAとビニルモノマーBを用いてブロック共重合体を得る場合、反応させる順番によりA−Bのもの、B−Aのものを得ることができる。   In the method for producing a living radical polymer of the present invention, a plurality of vinyl monomers can be used. For example, a random copolymer can be obtained by simultaneously reacting two or more kinds of vinyl monomers. The random copolymer can obtain a polymer in accordance with the ratio (molar ratio) of the monomer to be reacted, regardless of the type of monomer. When the vinyl monomer A and the vinyl monomer B are reacted at the same time to obtain a random copolymer, it is possible to obtain a raw material ratio (molar ratio). A block copolymer can be obtained by sequentially reacting two kinds of vinyl monomers. The block copolymer can obtain a polymer according to the order of monomers to be reacted, regardless of the type of monomer. When a block copolymer is obtained using vinyl monomer A and vinyl monomer B, those of AB and BA can be obtained depending on the order of reaction.

本発明で得られるリビングラジカルポリマーの分子量は、反応時間及び有機ビスマス化合物の量により調整可能であるが、数平均分子量500〜1,000,000のリビングラジカルポリマーを得ることができる。特に数平均分子量1,000〜50,000のリビングラジカルポリマーを得るのに好適である。
本発明で得られるリビングラジカルポリマーの分子量分布(PDI=Mw/Mn)は、1.01〜1.50の間で制御される。より好ましくは1.01〜1.40、1.01〜1.30、1.01〜1.20、1.01〜1.10、1.01〜1.05である。
本発明で得られるリビングラジカルポリマーの立体規則性は、ポリマー中のメソ二連子(m)とラセモ二連子(r)の比(m:r)で表される。これらは、H−NMR分析で決定することができる。好ましい立体規則性は、m=60〜100、より好ましくは、m=65〜100、更に好ましくは、m=70〜100が良い。
Although the molecular weight of the living radical polymer obtained by this invention can be adjusted with reaction time and the quantity of an organic bismuth compound, the living radical polymer of number average molecular weight 500-1,000,000 can be obtained. It is particularly suitable for obtaining a living radical polymer having a number average molecular weight of 1,000 to 50,000.
The molecular weight distribution (PDI = Mw / Mn) of the living radical polymer obtained in the present invention is controlled between 1.01 and 1.50. More preferably, they are 1.01 to 1.40, 1.01 to 1.30, 1.01 to 1.20, 1.01 to 1.10, 1.01 to 1.05.
The stereoregularity of the living radical polymer obtained in the present invention is represented by the ratio (m: r) of the meso duplex (m) and the racemo duplex (r) in the polymer. These can be determined by 1 H-NMR analysis. Preferred stereoregularity is m = 60-100, more preferably m = 65-100, and still more preferably m = 70-100.

本発明で得られるリビングラジカルポリマーの成長末端は、リビングラジカル重合開始剤由来の反応性の高い有機金属(有機テルル、有機アンチモン或いは有機ビスマス)であることが確認されている。従って、式(1a)〜式(1c)の化合物をリビングラジカル重合に用いることにより従来のリビングラジカル重合で得られるリビングラジカルポリマーよりも末端基を他の官能基へ変換することが容易である。これらにより、本発明で得られるリビングラジカルポリマーは、マクロリビングラジカル重合開始剤(マクロイニシエーター)として用いることができる。   It has been confirmed that the growth terminal of the living radical polymer obtained in the present invention is a highly reactive organic metal (organic tellurium, organic antimony or organic bismuth) derived from the living radical polymerization initiator. Therefore, by using the compounds of the formulas (1a) to (1c) for living radical polymerization, it is easier to convert the terminal group to another functional group than the living radical polymer obtained by conventional living radical polymerization. By these, the living radical polymer obtained by this invention can be used as a macro living radical polymerization initiator (macroinitiator).

即ち、本発明のマクロリビングラジカル重合開始剤を用いて、例えばN−アルキル(メタ)アクリル酸アミド−スチレン等のA−Bジブロック共重合体、スチレン−N−アルキル(メタ)アクリル酸アミド等のB−Aジブロック共重合体、N−アルキル(メタ)アクリル酸アミド−スチレン−N−アルキル(メタ)アクリル酸アミド等のA−B−Aトリブロック共重合体を得ることができる。   That is, using the macro living radical polymerization initiator of the present invention, for example, an AB diblock copolymer such as N-alkyl (meth) acrylamidoamide-styrene, styrene-N-alkyl (meth) acrylamide, etc. A-B-A triblock copolymers such as N-alkyl (meth) acrylic acid amide-styrene-N-alkyl (meth) acrylic acid amide can be obtained.

本発明のリビングラジカルポリマーの製造方法では、ビニルモノマーの重合が促進され、反応時間を短縮することができる。また、得られるポリマーの分子量分布を制御し、且つ、立体規則性をも制御することができる。   In the method for producing a living radical polymer of the present invention, polymerization of a vinyl monomer is promoted, and the reaction time can be shortened. Moreover, the molecular weight distribution of the obtained polymer can be controlled, and the stereoregularity can also be controlled.

以下、本発明を実施例に基づいて具体的に説明するが何らこれらに限定されるものではない。また、実施例および比較例において、各種物性測定は以下の機器により測定を行った。
H−NMR:Varian VXR−300S(300MHz)
MS(GCMS):Hewlett Packard 5972
分子量及び分子量分布:
装置:ゲルパーミエーションクロマトグラフィー 日本Waters GPCV2000
カラム:TSKgel GMHXL;TSKgel G3000HXL
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, it is not limited to these at all. In Examples and Comparative Examples, various physical properties were measured using the following equipment.
1 H-NMR: Varian VXR-300S (300 MHz)
MS (GCMS): Hewlett Packard 5972
Molecular weight and molecular weight distribution:
Apparatus: Gel permeation chromatography Japan Waters GPCV2000
Column: TSKgel GMHXL; TSKgel G3000HXL

合成例1(エチル 2−メチル−2−メチルテラニル−プロピオネート)
金属テルル〔Aldrich製、商品名:Tellurium(−40mesh)〕 6.38g(50mmol)をTHF 50mlに懸濁させ、これにメチルリチウム(上記と同じ) 52.9ml(1.04Mジエチルエーテル溶液、55mmol)を、室温でゆっくり滴下した(10分間)。この反応溶液を金属テルルが完全に消失するまで撹拌した(20分間)。この反応溶液に、エチル−2−ブロモ−イソブチレート 10.7g(55mmol)を室温で加え、2時間撹拌した。反応終了後、減圧下で溶媒を濃縮し、続いて減圧蒸留して、黄色油状物 6.53g(収率51%)を得た。
Synthesis Example 1 (Ethyl 2-methyl-2-methylterranyl-propionate)
Metal tellurium (Aldrich, trade name: Tellurium (−40 mesh)) 6.38 g (50 mmol) was suspended in 50 ml of THF, and 52.9 ml of methyllithium (same as above) (1.04 M diethyl ether solution, 55 mmol). ) Was slowly added dropwise at room temperature (10 minutes). The reaction solution was stirred until the metal tellurium disappeared completely (20 minutes). To this reaction solution, 10.7 g (55 mmol) of ethyl-2-bromo-isobutyrate was added at room temperature and stirred for 2 hours. After completion of the reaction, the solvent was concentrated under reduced pressure, followed by distillation under reduced pressure to obtain 6.53 g (yield 51%) of a yellow oil.

合成例2(ジメチルジテルリド)
金属テルル(上記と同じ) 3.19g(25mmol)をTHF 25mlに懸濁させ、メチルリチウム(関東化学株式会社製、ジエチルエーテル溶液) 25ml(28.5mmol)を0℃でゆっくり加えた(10分間)。この反応溶液を金属テルルが完全に消失するまで撹拌した(10分間)。この反応溶液に、塩化アンモニウム溶液20mlを室温で加え、1時間撹拌した。有機層を分離し、水層をジエチルエーテルで3回抽出した。集めた有機層を芒硝で乾燥後、減圧濃縮し、黒紫色油状物 2.69g(9.4mmol:収率75%)を得た。
Synthesis Example 2 (Dimethylditelluride)
3.19 g (25 mmol) of metal tellurium (same as above) was suspended in 25 ml of THF, and 25 ml (28.5 mmol) of methyl lithium (manufactured by Kanto Chemical Co., Ltd., diethyl ether solution) was slowly added at 0 ° C. (10 minutes) ). The reaction solution was stirred until the metal tellurium disappeared completely (10 minutes). To this reaction solution, 20 ml of ammonium chloride solution was added at room temperature and stirred for 1 hour. The organic layer was separated and the aqueous layer was extracted 3 times with diethyl ether. The collected organic layer was dried over sodium sulfate and concentrated under reduced pressure to obtain 2.69 g (9.4 mmol: yield 75%) of a black purple oily substance.

合成例3(トリメチルスチバニルジブロマイド)
ジエチルエーテル 900mlにマグネシウム 37.7g(1.55mol)とヨウ化メチル 235.4g(1.65mol)を仕込み、ヨウ化メチルマグネシウム溶液を調製する。三塩化アンチモン 114g(0.5mol)をTHF 100mlに溶解した液を0℃で、ゆっくり滴下する(40分間)。その後1.5時間室温で撹拌した。副製した塩を濾別し溶媒を濃縮後、減圧下(20−30℃、200−300mmHg)で蒸留した。得られら液に撹拌しながら、臭素を加えた(臭素による着色が見られるまで)。得られた沈殿物を冷却したエーテルで数回洗浄後、室温で減圧乾燥することで白色固体 115.6g(収率71%)を得た。
Synthesis Example 3 (Trimethylstivanyl dibromide)
900 ml of diethyl ether is charged with 37.7 g (1.55 mol) of magnesium and 235.4 g (1.65 mol) of methyl iodide to prepare a methyl magnesium iodide solution. A solution obtained by dissolving 114 g (0.5 mol) of antimony trichloride in 100 ml of THF is slowly added dropwise at 0 ° C. (40 minutes). The mixture was then stirred at room temperature for 1.5 hours. The by-produced salt was filtered off and the solvent was concentrated, followed by distillation under reduced pressure (20-30 ° C., 200-300 mmHg). Bromine was added to the resulting liquid while stirring (until coloring with bromine was observed). The obtained precipitate was washed several times with cooled ether and then dried under reduced pressure at room temperature to obtain 115.6 g (yield 71%) of a white solid.

合成例4(ジメチルスチバニルブロマイド)
トリメチルスチバニルジブロマイド 16.3g(50mmol)を減圧下(50mmHg)で180℃に加熱する。その後蒸留することで、黄色油状物のジメチルスチバニルブロマイド 9.27g(収率90.0%)を得た。
Synthesis Example 4 (Dimethylstivalyl bromide)
16.3 g (50 mmol) of trimethylstivanyl dibromide are heated to 180 ° C. under reduced pressure (50 mmHg). Thereafter, distillation was performed to obtain 9.27 g (yield: 90.0%) of dimethyl stivanyl bromide as a yellow oily substance.

合成例5(エチル 2−ジメチルスチバニル−2−メチル−プロピオネート)
イソ酪酸エチル 3.48g(30mmol)をTHF 50mlに加え−78℃に冷却し、これにリチウムイソプロピルアミド(Aldrich製、2.0Mヘプタン・THF・エチルベンゼン溶液) 16.5ml(33mmol)をゆっくり滴下した(10分間)。この反応液を−78℃に保ちながら撹拌した(1時間)。この溶液にジメチルスチバニルブロマイド 6.9g(29.8mmol)を0℃で加え、その後2時間室温で撹拌した。反応終了後、減圧下で溶媒を濃縮し、続いて減圧蒸留して、無色油状物 3.98g(収率50.0%)を得た。
Synthesis Example 5 (Ethyl 2-dimethylstivanyl-2-methyl-propionate)
3.48 g (30 mmol) of ethyl isobutyrate was added to 50 ml of THF and cooled to −78 ° C., and 16.5 ml (33 mmol) of lithium isopropylamide (manufactured by Aldrich, 2.0 M heptane / THF / ethylbenzene solution) was slowly added dropwise. (10 minutes). The reaction solution was stirred while maintaining at -78 ° C (1 hour). To this solution, 6.9 g (29.8 mmol) of dimethyl stivanyl bromide was added at 0 ° C., and then stirred at room temperature for 2 hours. After completion of the reaction, the solvent was concentrated under reduced pressure, followed by distillation under reduced pressure to obtain 3.98 g (yield 50.0%) of a colorless oil.

実施例1〜17及び比較例1
リビングラジカルポリマーの合成
窒素置換したグローブボックス内で、エチル 2−メチル−2−メチルテラニル−プロピオネート 25.8mg(0.10mmol)を1当量として、ルイス酸 1mmol(10当量)、AIBN 4.1mg(0.025mmol)(0.25当量)、N−イソプロピルアクリルアミド 2.26mg(20mmol)(200当量)及びエタノール 1mlの割合で仕込んだ溶液を、60℃で2時間反応させた。反応終了後、テトラヒドロフラン 10mlに溶解した後、その溶液を攪拌しているジエチルエーテル 200ml中に注いだ。沈殿したポリマーを吸引ろ過、乾燥することにより目的物を得た。
H−NMRとGPC分析(ポリメタクリル酸メチル標準サンプルの分子量を基準)による結果を表1に示した。
Examples 1 to 17 and Comparative Example 1
Synthesis of Living Radical Polymer In a nitrogen-substituted glove box, 25.8 mg (0.10 mmol) of ethyl 2-methyl-2-methylterranyl-propionate was used as 1 equivalent, 1 mmol of Lewis acid (10 equivalents), 4.1 mg of AIBN (0 0.025 mmol) (0.25 equivalent), N-isopropylacrylamide 2.26 mg (20 mmol) (200 equivalents), and a solution charged with ethanol 1 ml were reacted at 60 ° C. for 2 hours. After completion of the reaction, the reaction mixture was dissolved in 10 ml of tetrahydrofuran, and the solution was then poured into 200 ml of stirring diethyl ether. The precipitated polymer was suction filtered and dried to obtain the desired product.
The results of 1 H-NMR and GPC analysis (based on the molecular weight of a polymethyl methacrylate standard sample) are shown in Table 1.

Figure 2007277533
Figure 2007277533

実施例18〜32及び比較例2
リビングラジカルポリマーの合成
窒素置換したグローブボックス内で、エチル 2−メチル−2−メチルテラニル−プロピオネート 25.8mg(0.10mmol)を1当量として、ルイス酸 1mmol(10当量)、ジメチルジテルリド 28.5mg(0.10mmol)(1当量)、AIBN 4.1mg(0.025mmol)(0.25当量)、N−イソプロピルメタクリルアミド 2.54mg(20mmol)(200当量)及びエタノール 1mlの割合で仕込んだ溶液を、60℃で6時間反応させた。反応終了後、ジエチルエーテル 10mlに溶解した後、その溶液を攪拌しているメタノール 200ml中に注いだ。沈殿したポリマーを吸引ろ過、乾燥することにより目的物を得た。
H−NMRとGPC分析(ポリメタクリル酸メチル標準サンプルの分子量を基準)による結果を表2に示した。
Examples 18 to 32 and Comparative Example 2
Synthesis of Living Radical Polymer In a nitrogen-substituted glove box, 25.8 mg (0.10 mmol) of ethyl 2-methyl-2-methylteranyl-propionate was used as 1 equivalent, 1 mmol (10 equivalents) of Lewis acid, dimethyl ditelluride 28. 5 mg (0.10 mmol) (1 eq), AIBN 4.1 mg (0.025 mmol) (0.25 eq), N-isopropylmethacrylamide 2.54 mg (20 mmol) (200 eq) and ethanol 1 ml were charged. The solution was reacted at 60 ° C. for 6 hours. After completion of the reaction, the reaction mixture was dissolved in 10 ml of diethyl ether, and the solution was then poured into 200 ml of stirring methanol. The precipitated polymer was suction filtered and dried to obtain the desired product.
The results of 1 H-NMR and GPC analysis (based on the molecular weight of a polymethyl methacrylate standard sample) are shown in Table 2.

Figure 2007277533
Figure 2007277533

実施例33〜36及び比較例3
リビングラジカルポリマーの合成
窒素置換したグローブボックス内で、エチル 2−ジメチルスチバニル−2−メチル−プロピオネート 26.7mg(0.10mmol)を1当量として、ルイス酸 1mmol(10当量)、AIBN 4.1mg(0.025mmol)(0.25当量)、N−イソプロピルアクリルアミド 2.26mg(20mmol)(200当量)及びDMF 1mlの割合で仕込んだ溶液を、60℃で1時間反応させた。反応終了後、ジエチルエーテル 10mlに溶解した後、その溶液を攪拌しているメタノール 200ml中に注いだ。沈殿したポリマーを吸引ろ過、乾燥することにより目的物を得た。
H−NMRとGPC分析(ポリメタクリル酸メチル標準サンプルの分子量を基準)による結果を表3に示した。
Examples 33 to 36 and Comparative Example 3
Synthesis of Living Radical Polymer In a nitrogen-substituted glove box, 26.7 mg (0.10 mmol) of ethyl 2-dimethylstavanyl-2-methyl-propionate was used as 1 equivalent, 1 mmol (10 equivalents) of Lewis acid, and 4.1 mg of AIBN. A solution prepared by mixing (0.025 mmol) (0.25 equivalent), N-isopropylacrylamide 2.26 mg (20 mmol) (200 equivalent) and 1 ml of DMF was reacted at 60 ° C. for 1 hour. After completion of the reaction, the reaction mixture was dissolved in 10 ml of diethyl ether, and the solution was then poured into 200 ml of stirring methanol. The precipitated polymer was suction filtered and dried to obtain the desired product.
The results of 1 H-NMR and GPC analysis (based on the molecular weight of a polymethyl methacrylate standard sample) are shown in Table 3.

Figure 2007277533
Figure 2007277533

実施例37
リビングラジカルポリマーの合成
窒素置換したグローブボックス内で、エチル 2−メチル−2−メチルテラニル−プロピオネート 25.8mg(0.10mmol)を1当量として、ルイス酸 2mmol(20当量)、AIBN 4.1mg(0.025mmol)(0.25当量)、N−イソプロピルアクリルアミド 2.26mg(20mmol)(200当量)及びエタノール 1mlの割合で仕込んだ溶液を、60℃で2時間反応させた。反応終了後、テトラヒドロフラン 10mlに溶解した後、その溶液を攪拌しているジエチルエーテル 200ml中に注いだ。沈殿したポリマーを吸引ろ過、乾燥することにより目的物を得た。
H−NMRとGPC分析(ポリメタクリル酸メチル標準サンプルの分子量を基準)による結果を表4に示した。
Example 37
Synthesis of Living Radical Polymer In a nitrogen-substituted glove box, 25.8 mg (0.10 mmol) of ethyl 2-methyl-2-methylterranyl-propionate was used as 1 equivalent, 2 mmol (20 equivalents) of Lewis acid, 4.1 mg of AIBN (0 0.025 mmol) (0.25 equivalent), N-isopropylacrylamide 2.26 mg (20 mmol) (200 equivalents), and a solution charged with ethanol 1 ml were reacted at 60 ° C. for 2 hours. After completion of the reaction, the reaction mixture was dissolved in 10 ml of tetrahydrofuran, and the solution was then poured into 200 ml of stirring diethyl ether. The precipitated polymer was suction filtered and dried to obtain the desired product.
Table 4 shows the results of 1 H-NMR and GPC analysis (based on the molecular weight of a polymethyl methacrylate standard sample).

実施例38
ルイス酸を2mmol(20当量)から3mmol(30当量)に変更した以外は、実施例37と同様にしてリビングラジカルポリマーを得た。
H−NMRとGPC分析(ポリメタクリル酸メチル標準サンプルの分子量を基準)による結果を表4に示した。
Example 38
A living radical polymer was obtained in the same manner as in Example 37 except that the Lewis acid was changed from 2 mmol (20 equivalents) to 3 mmol (30 equivalents).
Table 4 shows the results of 1 H-NMR and GPC analysis (based on the molecular weight of a polymethyl methacrylate standard sample).

Figure 2007277533
Figure 2007277533

実施例39
リビングラジカルポリマーの合成
窒素置換したグローブボックス内で、パイレックス(登録商標)ガラス管に、エチル 2−メチル−2−メチルテラニル−プロピオネート 25.8mg(0.10mmol)を1当量として、ルイス酸 1mmol(10当量)、N−イソプロピルアクリルアミド 2.26mg(20mmol)(200当量)及びエタノール 1mlの割合で仕込んだ溶液を、シャープカット光学フィルター(Y−52、50%光遮断波長=520nm)を通して、25℃で2時間反応させた。反応終了後、テトラヒドロフラン 10mlに溶解した後、その溶液を攪拌しているジエチルエーテル 200ml中に注いだ。沈殿したポリマーを吸引ろ過、乾燥することにより目的物を得た。
H−NMRとGPC分析(ポリメタクリル酸メチル標準サンプルの分子量を基準)による結果を表5に示した。
Example 39
Synthesis of Living Radical Polymer In a nitrogen-substituted glove box, 25.8 mg (0.10 mmol) of ethyl 2-methyl-2-methylterranyl-propionate was used as an equivalent in a Pyrex (registered trademark) glass tube. Equivalent), N-isopropylacrylamide 2.26 mg (20 mmol) (200 equivalents) and 1 ml of ethanol were passed through a sharp cut optical filter (Y-52, 50% light blocking wavelength = 520 nm) at 25 ° C. The reaction was performed for 2 hours. After completion of the reaction, the reaction mixture was dissolved in 10 ml of tetrahydrofuran, and the solution was then poured into 200 ml of stirring diethyl ether. The precipitated polymer was suction filtered and dried to obtain the desired product.
The results of 1 H-NMR and GPC analysis (based on the molecular weight of a polymethyl methacrylate standard sample) are shown in Table 5.

実施例40
温度を25℃から0℃に変更した以外は、実施例39と同様にしてリビングラジカルポリマーを得た。
H−NMRとGPC分析(ポリメタクリル酸メチル標準サンプルの分子量を基準)による結果を表5に示した。
Example 40
A living radical polymer was obtained in the same manner as in Example 39 except that the temperature was changed from 25 ° C to 0 ° C.
The results of 1 H-NMR and GPC analysis (based on the molecular weight of a polymethyl methacrylate standard sample) are shown in Table 5.

Figure 2007277533
Figure 2007277533

Claims (14)

(A)式(1a)で表される有機テルル化合物、式(1b)で表される有機アンチモン化合物および式(1c)で表される有機ビスマス化合物から選ばれる少なくとも1種と、(B)ルイス酸を用いて、ビニルモノマーを重合することを特徴とするリビングラジカルポリマーの製造方法。
Figure 2007277533
Figure 2007277533
Figure 2007277533
(式中、R及びRは、C〜Cのアルキル基、アリール基、置換アリール基又は芳香族ヘテロ環基を示す。R及びRは、水素原子又はC〜Cのアルキル基を示す。Rは、アリール基、置換アリール基、芳香族ヘテロ環基、アシル基、アミド基、オキシカルボニル基又はシアノ基を示す。)
(A) at least one selected from an organic tellurium compound represented by formula (1a), an organic antimony compound represented by formula (1b), and an organic bismuth compound represented by formula (1c), and (B) Lewis A method for producing a living radical polymer, characterized in that a vinyl monomer is polymerized using an acid.
Figure 2007277533
Figure 2007277533
Figure 2007277533
(In the formula, R 1 and R 2 represent a C 1 to C 8 alkyl group, aryl group, substituted aryl group or aromatic heterocyclic group. R 3 and R 4 represent a hydrogen atom or C 1 to C 8. R 5 represents an aryl group, a substituted aryl group, an aromatic heterocyclic group, an acyl group, an amide group, an oxycarbonyl group or a cyano group.
(A)式(1a)で表される有機テルル化合物、式(1b)で表される有機アンチモン化合物および式(1c)で表される有機ビスマス化合物から選ばれる少なくとも1種、(B)ルイス酸、(C)式(2a)で表される化合物、式(2b)で表される化合物および式(2c)で表される化合物から選ばれる少なくとも1種を用いて、ビニルモノマーを重合することを特徴とするリビングラジカルポリマーの製造方法。
Figure 2007277533
Figure 2007277533
Figure 2007277533
(式中、R及びRは、上記と同じ。)
(A) at least one selected from an organic tellurium compound represented by formula (1a), an organic antimony compound represented by formula (1b), and an organic bismuth compound represented by formula (1c), (B) a Lewis acid (C) polymerizing a vinyl monomer using at least one selected from a compound represented by formula (2a), a compound represented by formula (2b), and a compound represented by formula (2c). A method for producing a living radical polymer.
Figure 2007277533
Figure 2007277533
Figure 2007277533
(In the formula, R 1 and R 2 are the same as above.)
(A)式(1a)で表される有機テルル化合物、式(1b)で表される有機アンチモン化合物および式(1c)で表される有機ビスマス化合物から選ばれる少なくとも1種、(B)ルイス酸、(D)アゾ系重合開始剤を用いて、ビニルモノマーを重合することを特徴とするリビングラジカルポリマーの製造方法。   (A) at least one selected from an organic tellurium compound represented by formula (1a), an organic antimony compound represented by formula (1b), and an organic bismuth compound represented by formula (1c), (B) a Lewis acid (D) A method for producing a living radical polymer, wherein a vinyl monomer is polymerized using an azo polymerization initiator. (A)式(1a)で表される有機テルル化合物、式(1b)で表される有機アンチモン化合物および式(1c)で表される有機ビスマス化合物から選ばれる少なくとも1種、(B)ルイス酸、(C)式(2a)で表される化合物、式(2b)で表される化合物および式(2c)で表される化合物から選ばれる少なくとも1種、(D)アゾ系重合開始剤を用いて、ビニルモノマーを重合することを特徴とするリビングラジカルポリマーの製造方法。   (A) at least one selected from an organic tellurium compound represented by formula (1a), an organic antimony compound represented by formula (1b), and an organic bismuth compound represented by formula (1c), (B) a Lewis acid (C) at least one selected from the compound represented by formula (2a), the compound represented by formula (2b) and the compound represented by formula (2c), and (D) an azo polymerization initiator. A method for producing a living radical polymer, wherein a vinyl monomer is polymerized. ルイス酸が、MXn(Mは、2族、ランタノイドを含む3族、4族、12族、13族および14族から選ばれる1種の元素、Xは、ハロゲン塩、トリフルオロメタンスルホン酸塩、トリフルオロイミド、テトラアリルボレート、ヘキサフルオロアンチモナート、n=2、3または4である。)で表される請求項1〜4のいずれかに記載のリビングラジカルポリマーの製造方法。   Lewis acid is MXn (M is one element selected from group 2, group 4, group 12, group 13, group 14 and group 14 including lanthanoids, X is a halogen salt, trifluoromethanesulfonate, The method for producing a living radical polymer according to any one of claims 1 to 4, which is represented by: fluoroimide, tetraallylborate, hexafluoroantimonate, n = 2, 3 or 4. Mが、2族またはランタノイドを含む3族から選ばれる少なくとも1種である請求項5に記載のリビングラジカルポリマーの製造方法。   The method for producing a living radical polymer according to claim 5, wherein M is at least one selected from Group 2 or Group 3 containing lanthanoids. Xが、ハロゲン塩またはトリフルオロメタンスルホン酸塩から選ばれる少なくとも1種である請求項5に記載のリビングラジカルポリマーの製造方法。   The method for producing a living radical polymer according to claim 5, wherein X is at least one selected from a halogen salt or a trifluoromethanesulfonate. ルイス酸が、Mが、ランタノイドを含む3族であり、Xが、トリフルオロメタンスルホン酸塩である化合物から選ばれる少なくとも1種である請求項7に記載のリビングラジカルポリマーの製造方法。   The method for producing a living radical polymer according to claim 7, wherein the Lewis acid is at least one compound selected from compounds in which M is a group 3 containing a lanthanoid and X is trifluoromethanesulfonate. 請求項1〜8のいずれかに記載の製造方法で製造されたリビングラジカルポリマー。   The living radical polymer manufactured with the manufacturing method in any one of Claims 1-8. 請求項1〜8のいずれかに記載の方法でビニルモノマーを重合して得られたマクロリビング重合イニシエーター。   The macro living polymerization initiator obtained by superposing | polymerizing a vinyl monomer by the method in any one of Claims 1-8. 請求項10のマクロリビング重合イニシエーターを用いて、ビニルモノマーを重合することを特徴とするブロック共重合体の製造方法。   A method for producing a block copolymer, wherein a vinyl monomer is polymerized using the macro-living polymerization initiator according to claim 10. 請求項11に記載の製造方法で製造されたブロック共重合体。   The block copolymer manufactured with the manufacturing method of Claim 11. 請求項1〜8のいずれかに記載の方法で2種以上のビニルモノマーを重合することを特徴とするランダム共重合体の製造方法。   A method for producing a random copolymer, wherein two or more kinds of vinyl monomers are polymerized by the method according to claim 1. 請求項13に記載の製造方法で製造されたランダム共重合体。   A random copolymer produced by the production method according to claim 13.
JP2007060938A 2006-03-11 2007-03-09 Method for producing living radical polymer and polymer Active JP5193480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007060938A JP5193480B2 (en) 2006-03-11 2007-03-09 Method for producing living radical polymer and polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006066827 2006-03-11
JP2006066827 2006-03-11
JP2007060938A JP5193480B2 (en) 2006-03-11 2007-03-09 Method for producing living radical polymer and polymer

Publications (2)

Publication Number Publication Date
JP2007277533A true JP2007277533A (en) 2007-10-25
JP5193480B2 JP5193480B2 (en) 2013-05-08

Family

ID=38679306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007060938A Active JP5193480B2 (en) 2006-03-11 2007-03-09 Method for producing living radical polymer and polymer

Country Status (1)

Country Link
JP (1) JP5193480B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157536A1 (en) 2008-06-27 2009-12-30 大日精化工業株式会社 Method for producing dye polymer, dye polymer and use of the same
WO2010013651A1 (en) 2008-07-28 2010-02-04 大日精化工業株式会社 Aqueous pigment dispersion and applications thereof
WO2010016523A1 (en) 2008-08-05 2010-02-11 大日精化工業株式会社 Pigment dispersions, block polymers and manufacturing method therefor
JP2010209283A (en) * 2009-03-12 2010-09-24 Otsuka Chem Co Ltd Living radical polymerization initiator, and method for producing polymer using the same
WO2011108435A1 (en) 2010-03-02 2011-09-09 大日精化工業株式会社 Alkoxysilyl group-containing block copolymer, method for producing the same, resin-treated pigment, and pigment dispersion
WO2015080189A1 (en) 2013-11-27 2015-06-04 日本ゼオン株式会社 Radical polymerization initiator and method for producing polymers
WO2018164147A1 (en) * 2017-03-09 2018-09-13 Agc株式会社 Method for producing polymer
WO2018174297A1 (en) 2017-03-24 2018-09-27 大日精化工業株式会社 Production method for polymer, compound containing radical-polymerization initiation group, and polymer
KR20180117142A (en) 2016-02-29 2018-10-26 다이니치 세이카 고교 가부시키가이샤 Method of producing polymer and initiating radical polymerization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145914A (en) * 2000-11-08 2002-05-22 Japan Chemical Innovation Institute Method for controlling stereoregularity in radical polymerization
JP2005128049A (en) * 2003-10-21 2005-05-19 Jsr Corp Radiation-sensitive resin composition
JP2005126459A (en) * 2003-10-21 2005-05-19 Jsr Corp Acid-dissociating-group-containing resin and its production method
WO2006001496A1 (en) * 2004-06-23 2006-01-05 Otsuka Chemical Co., Ltd. Organic antimony compound, process for producing the same, living radical polymerization initiator, process for producing polymer using the same, and polymer
WO2006062255A1 (en) * 2004-12-10 2006-06-15 Otsuka Chemical Co., Ltd. Organic bismuth compound, method for producing same, living radical polymerization initiator, method for producing polymer using same, and polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145914A (en) * 2000-11-08 2002-05-22 Japan Chemical Innovation Institute Method for controlling stereoregularity in radical polymerization
JP2005128049A (en) * 2003-10-21 2005-05-19 Jsr Corp Radiation-sensitive resin composition
JP2005126459A (en) * 2003-10-21 2005-05-19 Jsr Corp Acid-dissociating-group-containing resin and its production method
WO2006001496A1 (en) * 2004-06-23 2006-01-05 Otsuka Chemical Co., Ltd. Organic antimony compound, process for producing the same, living radical polymerization initiator, process for producing polymer using the same, and polymer
WO2006062255A1 (en) * 2004-12-10 2006-06-15 Otsuka Chemical Co., Ltd. Organic bismuth compound, method for producing same, living radical polymerization initiator, method for producing polymer using same, and polymer

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157536A1 (en) 2008-06-27 2009-12-30 大日精化工業株式会社 Method for producing dye polymer, dye polymer and use of the same
US8546502B2 (en) 2008-06-27 2013-10-01 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Method for producing dye polymer, dye polymer and use of the same
KR101394761B1 (en) 2008-06-27 2014-05-15 고쿠리츠 다이가쿠 호진 교토 다이가쿠 Method for producing dye polymer, dye polymer and use of the same
US9120948B2 (en) 2008-07-28 2015-09-01 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Process for producing block polymer, coated pigment and aqueous pigment dispersion
WO2010013651A1 (en) 2008-07-28 2010-02-04 大日精化工業株式会社 Aqueous pigment dispersion and applications thereof
WO2010016523A1 (en) 2008-08-05 2010-02-11 大日精化工業株式会社 Pigment dispersions, block polymers and manufacturing method therefor
US8822591B2 (en) 2008-08-05 2014-09-02 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Pigment dispersions
JP2010209283A (en) * 2009-03-12 2010-09-24 Otsuka Chem Co Ltd Living radical polymerization initiator, and method for producing polymer using the same
US9512321B2 (en) 2010-03-02 2016-12-06 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Alkoxysilyl group-containing block copolymer, method for producing the same, resin-treated pigment, and pigment dispersion
WO2011108435A1 (en) 2010-03-02 2011-09-09 大日精化工業株式会社 Alkoxysilyl group-containing block copolymer, method for producing the same, resin-treated pigment, and pigment dispersion
WO2015080189A1 (en) 2013-11-27 2015-06-04 日本ゼオン株式会社 Radical polymerization initiator and method for producing polymers
US10689336B2 (en) 2013-11-27 2020-06-23 Zeon Corporation Radical polymerization initiator and method for producing polymers
KR20180117142A (en) 2016-02-29 2018-10-26 다이니치 세이카 고교 가부시키가이샤 Method of producing polymer and initiating radical polymerization
US10982033B2 (en) 2016-02-29 2021-04-20 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Polymer production method and radical polymerization initiating group-containing compound
US11746178B2 (en) 2016-02-29 2023-09-05 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Polymer production method and radical polymerization initiating group-containing compound
WO2018164147A1 (en) * 2017-03-09 2018-09-13 Agc株式会社 Method for producing polymer
JPWO2018164147A1 (en) * 2017-03-09 2019-11-07 Agc株式会社 Method for producing polymer
US10961332B2 (en) 2017-03-09 2021-03-30 AGC Inc. Method for producing polymer
WO2018174297A1 (en) 2017-03-24 2018-09-27 大日精化工業株式会社 Production method for polymer, compound containing radical-polymerization initiation group, and polymer
KR20190125495A (en) 2017-03-24 2019-11-06 다이니치 세이카 고교 가부시키가이샤 Manufacturing method of the polymer
US10995159B2 (en) 2017-03-24 2021-05-04 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Production method for polymer

Also Published As

Publication number Publication date
JP5193480B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5193480B2 (en) Method for producing living radical polymer and polymer
JP4539843B2 (en) Method for producing aqueous liquid using organic tellurium compound
JP3845109B2 (en) Method for producing living radical polymer and polymer
JP4107996B2 (en) Method for producing living radical polymer and polymer
JP6733807B2 (en) Method for producing polymer
JP4539878B2 (en) Organic bismuth compound, method for producing the same, living radical polymerization initiator, method for producing polymer using the same, and polymer
KR100633200B1 (en) Process for the production of living radical polymers and polymers
JP5380709B2 (en) Living radical polymerization reaction promoter
JP6754124B2 (en) Method for manufacturing multi-branched polymer and multi-branched polymer
JP2007302737A (en) Preparation of living radical polymer
JP5963516B2 (en) Method for producing polymer and polymer produced by the method
JP5176120B2 (en) Living radical polymerization initiator and polymer production method using the same
JP5083556B2 (en) Living radical polymerization initiator and method for producing polymer
JP5261717B2 (en) Block copolymer and method for producing the same
JP2008291216A (en) Polyfunctional living radical polymerization initiator and method for producing polymer
JP7070897B2 (en) Manufacturing method of multi-branched polymer and multi-branched polymer, conjugated diene monomer
JP2009215472A (en) Process for producing living radical polymer having functional group at terminal
US20190092890A1 (en) Method for producing copolymer, and method for producing latex

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Ref document number: 5193480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250