JP2007274659A - Radar interference wave detection circuit - Google Patents

Radar interference wave detection circuit Download PDF

Info

Publication number
JP2007274659A
JP2007274659A JP2006122649A JP2006122649A JP2007274659A JP 2007274659 A JP2007274659 A JP 2007274659A JP 2006122649 A JP2006122649 A JP 2006122649A JP 2006122649 A JP2006122649 A JP 2006122649A JP 2007274659 A JP2007274659 A JP 2007274659A
Authority
JP
Japan
Prior art keywords
threshold
circuit
pulse
function
reception level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006122649A
Other languages
Japanese (ja)
Other versions
JP4344736B2 (en
Inventor
Katsumi Tokuyama
勝己 徳山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEY STREAM KK
Original Assignee
KEY STREAM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEY STREAM KK filed Critical KEY STREAM KK
Priority to JP2006122649A priority Critical patent/JP4344736B2/en
Publication of JP2007274659A publication Critical patent/JP2007274659A/en
Application granted granted Critical
Publication of JP4344736B2 publication Critical patent/JP4344736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulation Of Pulses (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect the effective length of a pulse width of an irregular peak pulse whose reception level goes up and down in the vicinity of a threshold, or a peak pulse similar to a random noise, and a no-signal section after a constant pulse, and to reduce the error detection probability of radar interference waves. <P>SOLUTION: The frequency beyond the threshold and the frequency below the threshold are counted to perform effectiveness determination of the pulse by using a threshold detection circuit and an up/down counter of a reception field strength signal level. Simultaneously, effectiveness of the pulse is determined which is stable in a circuit for counting a time width from the start to the end of the effective pulse. Reception IQ signal power which has a constant temporal space from the start of the effective pulse is compared with signal power after limiting a passband with a steep digital filter. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、気象レーダ等のレーダと使用する周波数帯域を共有する5GHz帯小電力データ通信システム又はIEEE802.11a規格に準拠する無線LAN装置のレーダ干渉波の検出方法に関するものである。  The present invention relates to a radar interference wave detection method for a 5 GHz band low-power data communication system or a wireless LAN device compliant with the IEEE802.11a standard sharing a frequency band to be used with a radar such as a weather radar.

1999年11月にヨーロッパ無線通信委員会(European Radiocommunications Committee)は通信前に周波数の空き帯域を調べてから電波を発することで電波の混信を防ぐ機能(Dynamic Frequency Selection、DFS)をHYPERLANsに使用する事を採択し、European Telecommunications Standards Institute(ETSI)は2000年4月にETSI TS 101 761−2V1.1.1HYPERLAN Type2を制定した。米国では無線LANの追加機能として、このDFSをIEEE Std.802.11h−2003で制定した。同様に、日本では総務省令第94号にて2005年5月に電波法の改訂がおこなわれ、5250−5350MHz帯を使用する親局無線設備はDFSの機能の具備が義務付けられた。  In November 1999, the European Radiocommunications Committee used HYPERLANs to prevent radio frequency interference (DFS) by emitting radio waves after checking available frequency bands before communication. In April 2000, the European Telecommunications Standards Institute (ETSI) established ETSI TS 101 761-2V1.1.1 HYPERLAN Type2. In the United States, as an additional function of wireless LAN, this DFS is used as IEEE Std. Established in 802.11h-2003. Similarly, in Japan, the Radio Law was revised in May 2005 by the Ministry of Internal Affairs and Communications Ordinance No. 94, and the master station radio equipment using the 5250-5350 MHz band was required to have DFS function.

無線LANで検出すべき受信するレーダ干渉波の例を図1に示す。最大等価等方出力が0.2W未満の無線LANはパルス幅1usec、周波数700Hz又は、パルス幅2.5usec、周波数260Hz、連続するパルスの数が18で−62dBmの受信入力のレーダ干渉波を検出する機能を備える必要がある。  An example of a received radar interference wave to be detected by the wireless LAN is shown in FIG. A wireless LAN with a maximum equivalent isotropic output of less than 0.2 W detects a radar interference wave of a received input of -62 dBm with a pulse width of 1 usec, a frequency of 700 Hz, or a pulse width of 2.5 usec, a frequency of 260 Hz, and the number of consecutive pulses is 18. It is necessary to have the function to do.

レーダ干渉波を検出する従来技術の一例を図2に示す。無線LANの信号(OFDM)はアンテナ101で受信し、受信機102でベースバンド信号に復調する。このベースバンド信号はディジタル処理回路103にあるA/D変換器でアナログ信号をディジタル信号に変換した後、ディジタル処理によってOFDM信号を情報信号復調する。アクセス制御回路104は情報信号の内容を高速で分析し、再送等の送受信アクセス制御を行う。プロトコルエンジン回路106では無線LANに関わる通信手順を実行し、正常な情報の授受を行う。又、ディジタル処理回路103は常時A/D変換器のディジタル信号出力をデータ記憶装置に蓄積すると同時にこの記憶装置からデータを読み出し、高速フーリエ変換してレーダ干渉波のスペクトラムとパルス幅の情報を検出し、その波形情報をレーダ波検出回路105に渡す。レーダ波検出回路105は波形情報と受信機102の利得制御情報を基に受信強度の算出を行い受信信号が閾値以上であるかの判断とパルスの発生時間を分析して、レーダ干渉波の有無を判断している。  An example of a conventional technique for detecting radar interference waves is shown in FIG. The wireless LAN signal (OFDM) is received by the antenna 101 and demodulated into a baseband signal by the receiver 102. This baseband signal is converted from an analog signal to a digital signal by an A / D converter in the digital processing circuit 103, and then an OFDM signal is demodulated as an information signal by digital processing. The access control circuit 104 analyzes the contents of the information signal at high speed and performs transmission / reception access control such as retransmission. The protocol engine circuit 106 executes a communication procedure related to the wireless LAN and exchanges normal information. The digital processing circuit 103 always stores the digital signal output of the A / D converter in the data storage device, and simultaneously reads out the data from the storage device, and performs fast Fourier transform to detect the radar interference wave spectrum and pulse width information. Then, the waveform information is passed to the radar wave detection circuit 105. The radar wave detection circuit 105 calculates the reception intensity based on the waveform information and the gain control information of the receiver 102, determines whether the received signal is equal to or greater than the threshold, analyzes the pulse generation time, and determines whether there is a radar interference wave. Judging.

他のレーダ干渉波を検出する従来技術としては、指数比例特性を有する受信電界強度(RSSI)信号を使用して、受信キャリヤが指定の閾値を超える時間が伝送するパケットより短いことをもってレーダ干渉波であることを判断する方法が提案されていた。
US6,697,013 特開平5−130053号 特開平6−37762号 ERC Decision of 29 November 1999 on the harmonized frequency bands to be designed for the introduction of High Performance Radio Local Area Networks(ERC/DEC/(99)23)
As a conventional technique for detecting other radar interference waves, a reception field strength (RSSI) signal having an exponential proportional characteristic is used, and the time when the reception carrier exceeds a specified threshold is shorter than the transmitted packet. A method for determining whether or not this is the case has been proposed.
US 6,697,013 JP-A-5-130053 JP-A-6-37762 ERC Decision of 29 November 1999 on the harmonized frequency bands to be designed for the introduction of High Performance Radio 23

しかしながら、信号処理する方法では、ディジタル変換した受信信号をデータ記憶装置に蓄積し、情報処理する必要がある。レーダが送信するパルス幅1usec又は2.5usecのデータを蓄積するには少なくとも、パルス幅1usecが処理できる分解能のサンプリング周波数以上で、2.5usec以上の区間のIQデータを蓄積する必要がある。無線LANとしてOFDM信号を復調するためにサンプリング周波数40Mspsが使用されており、このサンプリングデータをレーダ干渉波検出に共用する。この蓄積したデータをもとに信号処理を行う事により、正確なレーダ干渉波の検出が可能となるが、この信号処理に供するハード回路規模は大きく、消費電流の増加とLSIのチップサイズが大きくなる課題がある。  However, in the signal processing method, the digitally converted received signal needs to be stored in a data storage device and processed. In order to accumulate data with a pulse width of 1 usec or 2.5 usec transmitted by the radar, it is necessary to accumulate IQ data of a section of 2.5 usec or more at least at a sampling frequency with a resolution that can be processed by the pulse width of 1 usec. A sampling frequency of 40 Msps is used for demodulating an OFDM signal as a wireless LAN, and this sampling data is shared for radar interference wave detection. By performing signal processing based on this accumulated data, it is possible to accurately detect radar interference waves, but the hardware circuit used for this signal processing is large, increasing the current consumption and increasing the chip size of the LSI. There is a problem.

他の受信キャリヤが指定の閾値を超える時間が伝送するパケットより短いことをもってレーダ干渉波であることを判断する方法は簡単な論理で回路規模は非常に少なくて実現できるが、レーダ干渉波が多重回折による波形歪を有し、その信号レベル変動が閾値近傍である場合、及び、OFDM信号はランダム雑音に近い波形を持っており、そのレベルの平均値が指定の閾値に近いレベルの場合、瞬時的な受信信号レベルは閾値を上下し、単純なレベル判定では誤動作する確率が上がる欠点を持っている。  The method for determining that the other receiving carrier exceeds the specified threshold is shorter than the packet to be transmitted is a radar interference wave, and can be realized with simple logic and a very small circuit scale. When there is waveform distortion due to diffraction and the signal level fluctuation is near the threshold, and when the OFDM signal has a waveform close to random noise and the average value of the level is close to the specified threshold, the instantaneous A typical received signal level has a disadvantage that the threshold is raised and lowered, and the probability of malfunctioning increases with simple level determination.

更に、レーダシステムと共有する無線LANの周波数は、5,280MHz、5,300MHzと5,320MHzが割り当てられ、その周波数間隔は20MHzである。一方、レーダ波は5,260MHzから5MHz間隔で割り当てられている。従い、無線LANの受信機ではレーダ干渉波は同一受信周波数と上下に5MHz、10MHz、15MHzと5MHz毎に干渉波として受信する。OFDM信号の占有帯域幅は16.6MHz(+/−8.3MHz)であり、キャリヤ周波数から+/−10MHz離れた周波数に尽ける信号レベルは帯域内信号レベルと比較して約20dB低い。一方、RSSIは16.6MHz帯域幅のOFDM信号を検出するが、無線部に使用されているRSSI用のアナログ通過帯域フィルタは急峻でなく、10MHz離れたレーダ干渉波はほとんど除去できず、帯域内の干渉波として誤検出する可能性を有する。  Furthermore, the frequency of the wireless LAN shared with the radar system is assigned 5,280 MHz, 5,300 MHz, and 5,320 MHz, and the frequency interval is 20 MHz. On the other hand, radar waves are allocated at intervals of 5260 MHz to 5 MHz. Accordingly, a radar interference wave is received as an interference wave at the same reception frequency and every 5 MHz, 10 MHz, 15 MHz, and 5 MHz at the wireless LAN receiver. The occupied bandwidth of the OFDM signal is 16.6 MHz (+/− 8.3 MHz), and the signal level exhausted at a frequency +/− 10 MHz away from the carrier frequency is about 20 dB lower than the in-band signal level. On the other hand, RSSI detects an OFDM signal having a 16.6 MHz bandwidth, but the analog passband filter for RSSI used in the radio unit is not steep, and radar interference waves separated by 10 MHz can hardly be removed. There is a possibility of erroneous detection as an interference wave.

請求項1では、RSSI信号レベルの閾値検出回路とアップ・ダウンカウンターを用いて、閾値を超える回数と閾値未満の回数を計数してパルスの有効判定を行うと同時に、パルスの開始から終了までの時間幅を計数する。  In claim 1, the RSSI signal level threshold value detection circuit and the up / down counter are used to count the number of times exceeding the threshold value and the number of times less than the threshold value to determine the validity of the pulse, and at the same time from the start to the end of the pulse. Count the time span.

更に請求項2では、パルスの開始時から一定の時間間隔の受信IQ信号電力と急峻なディジタルフィルタで通過帯域制限した後のIQ信号電力の比較を行い、前述のパルスの帯域内外判定を行う。  Further, in claim 2, the received IQ signal power at a fixed time interval from the start of the pulse is compared with the IQ signal power after the pass band is limited by the steep digital filter, and the above-described in-band determination of the pulse is performed.

請求項1の発明によれば、受信レベルが閾値近傍を上下する不規則な波高パルスやランダム雑音に近い波高パルスのパルス幅の有効長と一定のパルス後の無信号区間を検出し、レーダ干渉波の誤検出確率の低減を可能とする。  According to the first aspect of the present invention, the effective length of the pulse width of the irregular pulse height pulse whose reception level fluctuates in the vicinity of the threshold value or the pulse height pulse close to random noise and the no-signal section after a certain pulse are detected, and radar interference is detected. This makes it possible to reduce the false detection probability of waves.

また、請求項2の発明によれば、請求項1と請求項2の発明の検出情報が受信している無線チャネルの帯域内である事を確定し、受信帯域外のレーダ干渉波による誤検出の低減を可能とする。  According to the invention of claim 2, it is determined that the detection information of the invention of claims 1 and 2 is within the band of the received radio channel, and erroneous detection due to radar interference waves outside the reception band. Can be reduced.

発明を実施するため最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明のレーダ干渉波検出回路は、RSSI信号を使用してレーダパルス幅を測定し、同時刻に受信したベースバンド信号のスペクトラムで受信帯域内外の判定を行う。  The radar interference wave detection circuit of the present invention measures the radar pulse width using the RSSI signal, and determines whether the reception band is inside or outside the spectrum of the baseband signal received at the same time.

以下、この発明の実施の形態について図3、図4、図5と図6を用いて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. 3, 4, 5 and 6.

図3はレーダ干渉波検出回路の構成例を示す。アンテナ201で受信した5GHz帯の占有帯域幅16.6MHzのOFDM無線信号は高周波増幅器202で増幅され、ローカル発信器204より供給される受信周波数と同一のローカル信号によってIQ復調器203で0Hzから8.3MHZのIQベースバンド信号に復調される。この復調方式はダイレクトコンバージョン受信方式と称される。  FIG. 3 shows a configuration example of the radar interference wave detection circuit. An OFDM radio signal having an occupied bandwidth of 16.6 MHz in the 5 GHz band received by the antenna 201 is amplified by the high-frequency amplifier 202, and is output from 0 Hz to 8 by the IQ demodulator 203 using the same local signal as the reception frequency supplied from the local oscillator 204. .3MHZ demodulated to IQ baseband signal. This demodulation method is called a direct conversion reception method.

IQベースバンド信号は低域通過フィルタ205で帯域外信号を除去し、可変利得のベースバンド増幅器206で増幅し、40Mspsのサンプリング周波数を使用するアナログ・ディジタル変換器(BBADC)207でIQディジタル信号に変換される。このIQディジタル信号はこの構成例に記載されていないOFDM信号復調器で情報信号に復調される。  The IQ baseband signal is removed from the out-of-band signal by the low-pass filter 205, amplified by the variable gain baseband amplifier 206, and converted to the IQ digital signal by the analog-to-digital converter (BBADC) 207 using a sampling frequency of 40 Msps. Converted. This IQ digital signal is demodulated into an information signal by an OFDM signal demodulator not described in this configuration example.

又、IQベースバンド信号は固定利得の対数直線性を有する受信電界強度(RSSI)増幅器210で変換しモニタ表示に使用される。このRSSI増幅器210は時定数0.1usecで対数直線変換を行うが、この時定数より早いOFDMの瞬時波形はRSSI出力の平均値に重畳される。  The IQ baseband signal is converted by a received electric field strength (RSSI) amplifier 210 having a logarithmic linearity with a fixed gain and used for monitor display. The RSSI amplifier 210 performs logarithmic linear conversion with a time constant of 0.1 usec. An instantaneous waveform of OFDM that is earlier than this time constant is superimposed on the average value of the RSSI output.

受信周波数と同一周波数のレーダ干渉波を受信した場合、RSSI増幅器210の出力はRSSIアナログ・ディジタル変換器(RSSIADC)211でディジタル値に変換し、RSSI判定器212はRSSI信号が閾値より大きい場合[1]を、小さい場合[0]を出力し、レーダパルス幅判定回路213に情報を渡す。  When a radar interference wave having the same frequency as the reception frequency is received, the output of the RSSI amplifier 210 is converted into a digital value by the RSSI analog-to-digital converter (RSSIADC) 211, and the RSSI determiner 212 determines that the RSSI signal is larger than the threshold value [ 1] is output, and if it is smaller, [0] is output and information is passed to the radar pulse width determination circuit 213.

レーダパルス幅判定回路213はRSSIが閾値以上の回数を加算し、閾値以下の回数を減算するアップ・ダウンカウンター(以下PwerCntと略す)とパルスの開始から終了までの時間幅を計数するカウンター(以下WidthCntと略す)の基本回路とRSSIが閾値以上である事を示すフラグ(以下RSSIflagと略す)、過去にRSSIが閾値以上であった事を示すフラグ(以下Pwrflagと略す)、アップ・ダウンカウンター値が規定の数値にこでは初期値より7大きい値:0.7usec、最小パルス幅を示す)に達した事を示すフラグ(以下PwrDetflagと略す)、帯域判定回路209で生成される帯域内信号を示すフラグ(以下InBandflagと略す)とパルスがレーダ干渉波である事を示すフラグ(以下RadarDetflagと略す)と各種フラグ及びカウンター値による条件分岐回路等で構成される。真値の場合のフラグは[1]を示す。  Radar pulse width determination circuit 213 adds up / down counter (hereinafter abbreviated as PwerCnt) that adds the number of times RSSI is equal to or greater than a threshold value, and subtracts the number of times less than or equal to the threshold value, and a counter (hereinafter referred to as pulse width count) Basic circuit of WidthCnt) and a flag indicating that RSSI is equal to or greater than a threshold (hereinafter abbreviated as RSSIflag), a flag indicating that RSSI was equal to or greater than a threshold in the past (hereinafter abbreviated as Pwrflag), and an up / down counter value Is a specified numerical value, a flag (hereinafter abbreviated as PwrDetflag) indicating that the value reached 7 larger than the initial value: 0.7 usec, indicating a minimum pulse width), and an in-band signal generated by the band determination circuit 209. A flag (hereinafter abbreviated as InBandflag) and a pulse indicating a radar interference wave Lag (hereinafter referred to as RadarDetflag) and composed of a conditional branch circuit or the like according to various flags and the counter value. The flag in the case of a true value indicates [1].

レーダパルス幅判定回路213は10MHzのクロックで動作し、クロック毎の動作を図4レーダパルス幅判定回路の動作手順に示し、カウンターの動きを図5に示す。  The radar pulse width determination circuit 213 operates with a clock of 10 MHz, the operation for each clock is shown in the operation procedure of the radar pulse width determination circuit in FIG. 4, and the operation of the counter is shown in FIG.

初期状態では全てのフラグとカウンター値は[0]で、受信入力が無いため、ステップ301でRSSIflagによる分岐とステップ321でPwerflagによる分岐を経由し、状態の変化無くクロック内の処理は終了する。  In the initial state, all the flags and counter values are [0] and there is no reception input. Therefore, the process in the clock is terminated without changing the state through the branch by RSSI flag in step 301 and the branch by Pwerflag in step 321.

閾値以上の受信入力が発生した場合(RSSIflag=1)、最初のクロック内で次の処理する。ステップ301でRSSIflagによる分岐とステップ302でPwrflagによる分岐を経てステップ308に行く。ステップ308ではPwrflagを[1]に設定し、PwrCntに初期値[32]を設定する。更にステップ309でWidthCntに[1]を加算し、クロック内の処理を終える。  When a reception input exceeding the threshold value is generated (RSSIflag = 1), the next process is performed within the first clock. Step 301 is followed by branching by RSSI flag and step 302 by branching by Pwrflag. In step 308, Pwrflag is set to [1], and an initial value [32] is set to PwrCnt. In step 309, [1] is added to WidthCnt, and the processing in the clock is finished.

次のクロック(2回目)でRSSI以上の受信入力が連続した場合、ステップ301でRSSIflagによる分岐とステップ302でPwrflagによる分岐を経てステップ303に行く。ここでは前の処理のPwrCntが[32]であるため、ステップ304に進む。ステップ304では過去のPwrDetflagが[0]であるためステップ305に移行する。ステップ305ではPwrCntに[1]を加算しステップ306に移行する。PwrCntの加算結果は[33]となる。ステップ306ではPwrCntが[33]であるためステップ309に移行する。ステップ309でWidthCntに[1]を加算し、WidthCntの加算結果は[2]となり、クロック内の処理を終える。更に連続してRSSIが閾値以上の場合、3回目から7回目までのクロックの処理は、2回目と同一の処理経路をとりPwrCntとWidthCntが増加して行く。  If reception input equal to or higher than RSSI continues at the next clock (second time), the process goes to step 303 after branching by RSSI flag in step 301 and branching by Pwrflag in step 302. Here, since PwrCnt of the previous process is [32], the process proceeds to step 304. In step 304, since the past PwrDetflag is [0], the process proceeds to step 305. In step 305, [1] is added to PwrCnt and the process proceeds to step 306. The addition result of PwrCnt is [33]. In step 306, since PwrCnt is [33], the process proceeds to step 309. In step 309, [1] is added to WidthCnt, the addition result of WidthCnt is [2], and the processing in the clock is finished. Further, when RSSI is continuously greater than or equal to the threshold, the clock processing from the third time to the seventh time takes the same processing path as the second time, and PwrCnt and WidthCnt increase.

更に8回目のクロック時もRSSIが閾値以上の場合、前述の処理と同一経路を辿るが、ステップ305のPwrCntの加算結果は[39]となり、次のステップ306ではPwrCntが[39]であるためステップ307に移行する。ステップ307ではPwrDetflagを[1]に設定し、ステップ309でWidthCntに[1]を加算し、クロック内の処理を終える。この時点のWidthCntは[8]を示す。  Furthermore, if the RSSI is equal to or greater than the threshold at the eighth clock, the same route as described above is followed, but the addition result of PwrCnt in step 305 is [39], and in the next step 306, PwrCnt is [39]. The process proceeds to step 307. In step 307, PwrDetflag is set to [1]. In step 309, [1] is added to WidthCnt, and the processing in the clock is finished. Width Cnt at this time indicates [8].

更に9回目と10回目のクロック時にRSSIが閾値以上の場合、ステップ301とステップ302を経てステップ303に移行する。ステップ303ではPwrCntが[39]であるためステップ309に移行し、WidthCntに[1]を加算し、クロック内の処理を終える。この処理は、PwrCntを[39]に維持し、WidthCntをカウントアップしている。  Further, if the RSSI is equal to or greater than the threshold value at the ninth and tenth clocks, the process proceeds to step 303 through step 301 and step 302. In step 303, since PwrCnt is [39], the process proceeds to step 309, [1] is added to WidthCnt, and the processing in the clock is finished. In this process, PwrCnt is maintained at [39] and WidthCnt is counted up.

11回目のクロック時(1回目のクロックより1usec経過)にRSSIが閾値以下の場合、ステップ301からステップ321を経由してステップ322に至る。ステップ322ではPwrCntから[1]を減算し、減算結果が[38]になる。次のステップ323ではPwrCntの値が[23]でないため、ステップ309に移行し、WidthCntに[1]を加算し、クロック内の処理を終える。  If the RSSI is equal to or less than the threshold at the eleventh clock (1 usec has elapsed from the first clock), the process goes from step 301 to step 322 via step 321. In step 322, [1] is subtracted from PwrCnt, and the subtraction result is [38]. In the next step 323, since the value of PwrCnt is not [23], the process proceeds to step 309, [1] is added to WidthCnt, and the processing in the clock is finished.

12回目以降のクロック時も同様に連続してRSSIが閾値以下の場合、11回目のクロック時と同一の処理経路をとりPwrCntから[1]を減算し、WidthCntに[1]を加算してクロック内の処理を終了する。  Similarly, when the RSSI is continuously below the threshold at the 12th clock and thereafter, the same processing path as that at the 11th clock is taken, [1] is subtracted from PwrCnt, and [1] is added to WidthCnt. The process in is terminated.

26回目のクロック時(RSSIが閾値以下になって1.5usec後、無信号区間)は、ステップ301とステップ321を経由してステップ322に移行する。ステップ322でPwrCntを[1]減算しステップ323に移行する。この時のPwrCntの減算結果が[23]であるため、ステップ324に移行する。又この時のWidthCntは[27]でステップ324の分岐条件より、ステップ325に移行する。ステップ325の分岐条件であるPwrDetflagは8回目のクロック時に[1]となっており、ステップ326に移行する。ステップ326のInBandflagの情報は後述の帯域内電力判定回路から与えられ、閾値を超えるRSSIのスペクトラムが受信帯域内である場合[1]が既に来ており、ステップ327に移行する。ステップ327では、レーダ干渉波の受信を示すRadMDetflagを[1]にし、レーダーパルス幅判定器で使用しているカウンターとフラグの初期化を行う。RadarDetflagは上位のファームウェアで常時監視し、ファームウェアによる読み取り処理が完了した時点で[0]に戻し正常受信の処理が全て終了する。  At the time of the 26th clock (1.5 seconds after the RSSI becomes equal to or less than the threshold), the process proceeds to step 322 via step 301 and step 321. In step 322, [1] is subtracted from PwrCnt and the process proceeds to step 323. Since the subtraction result of PwrCnt at this time is [23], the process proceeds to step 324. Also, WidthCnt at this time is [27], and the process proceeds to step 325 from the branch condition in step 324. PwrDetflag, which is the branch condition in step 325, is [1] at the eighth clock, and the process proceeds to step 326. The InBandflag information in step 326 is given from an in-band power determination circuit described later. When the RSSI spectrum exceeding the threshold is within the reception band, [1] has already come, and the process proceeds to step 327. In step 327, the RadMDetflag indicating the reception of the radar interference wave is set to [1], and the counter and flag used in the radar pulse width determiner are initialized. The RadarDetflag is constantly monitored by the upper firmware, and when the reading process by the firmware is completed, it is returned to [0] and all the normal reception processes are completed.

上記は1usecパルス幅のレーダ干渉波で説明したが、この説明では有効パルス幅の最小値を0.7usecとし、最大値は2.5usecのパルス幅にマルチパス300mの遅延の重畳を加味し、3.5usecと定める。又、パルス終了後から連続して1.5usecの無信号区間がある事を持って有効パルスの条件とする。この条件判断はステップ324で行い、有効パルス幅はWidthCntが[17]を超え、[53]を超えてはならない。  The above is described with a radar interference wave having a 1 usec pulse width. In this description, the minimum effective pulse width is set to 0.7 usec, and the maximum value is obtained by adding a multipath 300 m delay to a 2.5 usec pulse width, It is determined as 3.5 usec. Also, the effective pulse condition is that there is a 1.5 usec no-signal section continuously after the end of the pulse. This condition determination is made in step 324, and the effective pulse width should not exceed [53] with WidthCnt exceeding [17].

ステップ325はPwrDetflagが[1]でRSSIの閾値を超える連続したパルスが[8]回、又は閾値を上下するRSSIにおいて、RSSIの閾値を超える回数が平均値より8回多い場合に有効パルスと判断する。この処理はRSSIが雑音性である場合、その平均が閾値以上である事を保証する為に設ける。  Step 325 is determined to be an effective pulse when PwrDetflag is [1] and the number of consecutive pulses exceeding the RSSI threshold is [8] times, or the RSSI exceeding the threshold is 8 times more than the average value in the RSSI. To do. This processing is provided to ensure that the average is equal to or greater than the threshold when the RSSI is noisy.

又、RSSIが雑音性である場合、PwrCntは上下を繰り返すが、一度PwrDetflagが[1]を設定した条件化でRSSIが閾値を以下を検出し、PwrCntが[39]以下になり、次にRSSIが閾値以上である場合、ステップ310で強制的にPwrCntを[39]に設定する。これは信号成分の閾値を超える最終クロック点を求めている。  Also, if RSSI is noisy, PwrCnt repeats up and down, but once PwrDetflag is set to [1], the RSSI detects the threshold below, PwrCnt falls below [39], and then RSSI Is greater than or equal to the threshold, step 310 forcibly sets PwrCnt to [39]. This seeks the last clock point that exceeds the signal component threshold.

ステップ324、ステップ325とステップ326の条件を満たさぬ場合は、無効パルスと判断し、ステップ328に移行し、全てのカウンターとフラグの初期化を行う。  If the conditions of step 324, step 325, and step 326 are not satisfied, it is determined that the pulse is an invalid pulse, the process proceeds to step 328, and all counters and flags are initialized.

次に受信した信号の帯域内外判定方法を説明する。図3レーダ干渉波検出回路のベースバンド増幅器207は60dB程度の利得可変範囲を有し、アンテナ201の入力端で−92dBmの受信強度のOFDM信号を受信するため、最大利得に設定して受信信号を待ち受けている。ここで−62dBmの閾値を超えるレーダ干渉波を受信した場合、ベースバンド増幅器207は飽和したIQベースバンド信号をベースバンドアナログ・ディジタル変換器207に渡す。ベースバンドアナログ・ディジタル変換器207のIQディジタル信号出力はこの構成例に記載されていないOFDM信号復調器で信号処理され、基準のレベルにすべく、ベースバンド増幅器207の利得を調整する。従い、数usecのレーダ干渉波のIQベースバンド信号出力は時間の経過と供に変化する特性を示している。  Next, a method for determining whether the received signal is in or out of band will be described. 3 The baseband amplifier 207 of the radar interference wave detection circuit has a variable gain range of about 60 dB, and receives an OFDM signal having a reception intensity of −92 dBm at the input end of the antenna 201. I am waiting for you. Here, when a radar interference wave exceeding the threshold of −62 dBm is received, the baseband amplifier 207 passes the saturated IQ baseband signal to the baseband analog-digital converter 207. The IQ digital signal output of the baseband analog-to-digital converter 207 is signal-processed by an OFDM signal demodulator not described in this configuration example, and the gain of the baseband amplifier 207 is adjusted to reach a reference level. Accordingly, the IQ baseband signal output of the radar interference wave of several usec shows a characteristic that changes with time.

レーダ干渉波の帯域内外判定は8.3MHz以下で3dBの通過帯域損失、10MHz点で20dB及び15MHz点で40dBの減衰特性と18クロックの遅延時間を有するディジタル低域通過フィルタ208の前後の或る特定の時間幅(0.7usec)の電力を比較することによって実現できる。  Radar interference wave inside / outside determination is about 8.3 MHz or less, 3 dB passband loss, 20 dB at 10 MHz point, 40 dB attenuation at 15 MHz point, and before and after digital low-pass filter 208 having 18 clock delay time. This can be realized by comparing the power of a specific time width (0.7 usec).

図6に帯域判定回路209の動作手順を示す。帯域判定回路209は40Mspsのクロックで動作し、測定時間幅を規定するカウンター(以下BandCntと略す)、ディジタル低域通過フィルタ208の前置の電力(Pb)を求める加算器とその累積和(以下AccmPbと略す)を求める加算器、ディジタル低域通過フィルタ208の後置の電力(Pa)を求める加算器とその累積和(以下AccmPaと略す)を求める加算器、測定時間が完了した事を示すフラグ(以下BandCntflagと略す)各種フラグによる条件分岐回路等で構成される。初期値はカウンター値とフラグはすべて[0]に設定する。この回路の動作結果が帯域内である場合、帯域内信号である事を示すフラグ(以下InBandflagと略す)を[1]とし、帯域外の場合[0]を出力する。  FIG. 6 shows an operation procedure of the band determination circuit 209. The band determination circuit 209 operates with a clock of 40 Msps, a counter that defines the measurement time width (hereinafter abbreviated as BandCnt), an adder that calculates the power (Pb) before the digital low-pass filter 208, and a cumulative sum (hereinafter referred to as a cumulative sum). An adder for calculating AccmPb), an adder for calculating the power (Pa) after the digital low-pass filter 208, an adder for calculating its accumulated sum (hereinafter abbreviated as AccmPa), and indicating that the measurement time has been completed. A flag (hereinafter abbreviated as “BandCntflag”) includes a conditional branch circuit using various flags. The initial value is a counter value and all flags are set to [0]. When the operation result of this circuit is within the band, a flag indicating that it is an in-band signal (hereinafter abbreviated as InBandflag) is set to [1], and when it is out of band, [0] is output.

無入力の場合、ステップ401で前述のレーダパルス幅判定回路212で生成されるPwrflagが[0]であることより、この回路の処理は実行されず、クロック内の処理は完了する。  When there is no input, since the Pwrflag generated by the radar pulse width determination circuit 212 in step 401 is [0], the processing of this circuit is not executed and the processing within the clock is completed.

レーダ干渉波が検出された直後のクロックの処理は、ステップ401とステップ402を経て、ステップ403に移行する。ステップ403でBandCntに[1]を加え、ステップ404の分岐処理を経てステップ405に移行する。ステップ405ではPbの電力{Pb=(I^2+Q^2)^1/2}を演算し、その演算結果をAccumPbに加える。この処理を18回繰り返す。  The processing of the clock immediately after the radar interference wave is detected goes to Step 403 through Step 401 and Step 402. In step 403, [1] is added to BandCnt, and the process proceeds to step 405 through the branch process in step 404. In step 405, Pb power {Pb = (I ^ 2 + Q ^ 2) ^ 1/2} is calculated, and the calculation result is added to AccumPb. This process is repeated 18 times.

19回目から28回目までは、ステップ401、ステップ402、ステップ403、ステップ404とステップ406を経てステップ407に移行する。ステップ407ではPbの電力{Pb=(I^2+Q^2)^1/2}を演算し、その演算結果をAccumPbに加え、又ディジタル低域通過フィルタの遅延を経てこのクロックよりPaの電力{Pa=(I^2+Q^2)^1/2}を演算し、その演算結果をAccumPaに加える。28回目まで、この処理を繰り返す。28回目のAccumPbには28サンプル(0.7usec)間の累積和が得られている。  From the 19th time to the 28th time, the process proceeds to Step 407 through Step 401, Step 402, Step 403, Step 404 and Step 406. In step 407, the power of Pb {Pb = (I ^ 2 + Q ^ 2) ^ 1/2} is calculated, the calculation result is added to AccuPb, and the power of Pa from this clock is passed through the delay of the digital low-pass filter { Pa = (I ^ 2 + Q ^ 2) ^ 1/2} is calculated, and the calculation result is added to AccuPa. This process is repeated up to the 28th time. Accumulated sum of 28 samples (0.7 usec) is obtained for the 28th AccumPb.

29回目から46回目までは、ステップ401、ステップ402、ステップ403、ステップ404、ステップ406とステップ408を経てステップ409に移行する。ステップ409ではPaの電力{Pa=(I^2+Q^2)^1/2}を演算し、その演算結果をAccumPaに加える。28回目のAccumPaには18クロック遅延後の28サンプル(0.7usec)間の累積和が得られている。  From the 29th time to the 46th time, the process proceeds to step 409 through step 401, step 402, step 403, step 404, step 406 and step 408. In step 409, Pa power {Pa = (I ^ 2 + Q ^ 2) ^ 1/2} is calculated, and the calculation result is added to AccuPa. Accumulated sum of 28 samples (0.7 usec) after 18 clock delays is obtained in the 28th AccumPa.

47回目のクロックでは、ステップ401、ステップ402、ステップ403、ステップ404、ステップ406とステップ408を経てステップ410に移行する。ステップ410でBandCntflagに[1]を設定し、ステップ411でディジタル低域通過フィルタ前後の累積電力和の比較を行う。判断基準は2倍のAccumPaがAccumPbより大きい場合は帯域内と判断する。帯域内であった場合ステップ142に移行し、InBandflagに[1]を設定する。帯域外の場合は[0]に設定し、クロック内と帯域判定回路の判断処理を完了する。この処理は47/40usecの時間を要する。  In the 47th clock, the process proceeds to step 410 through step 401, step 402, step 403, step 404, step 406 and step 408. In Step 410, BandCntflag is set to [1], and in Step 411, the cumulative power sums before and after the digital low-pass filter are compared. The criterion is that if the double AccuPa is larger than AccuPb, it is determined to be within the band. If it is within the band, the process proceeds to step 142, and [1] is set to InBandflag. If it is out of band, it is set to [0], and the determination processing in the clock and the band determination circuit is completed. This process takes 47/40 usec.

48回目以降の処理はステップ401とステップ402を経て終了しする。この回路に使用するカウンター、加算器とフラグはレーダパルス幅判定回路の動作完了時にすべて[0]に設定される。  The 48th and subsequent processes are completed through step 401 and step 402. The counter, adder, and flag used in this circuit are all set to [0] when the operation of the radar pulse width determination circuit is completed.

レーダパルスの波形の例を示す。An example of a radar pulse waveform is shown. 従来技術によるレーダ干渉波検出の実施例を示す。An example of radar interference wave detection according to the prior art will be described. レーダ干渉波検出回路の実施例を示す。An embodiment of a radar interference wave detection circuit will be described. レーダパルス幅判定回路の動作手順を示す。The operation procedure of the radar pulse width determination circuit is shown. レーダパルス幅判定回路に使用しているカウンターの動作例を示す。An example of the operation of the counter used in the radar pulse width determination circuit is shown. 帯域判定回路の動作手順を示す。The operation procedure of the band judgment circuit is shown.

符号の説明Explanation of symbols

101 アンテナ
102 受信機
103 ディジタル処理回路
104 アクセス制御回路
105 レーダ波検出回路
106 プロトコルエンジン回路
201 アンテナ
202 高周波増幅器
203 IQ復調器
204 ローカル発信器
205 低域通過フィルタ
206 ベースバンド増幅器
207 ベースバンドアナログ・ディジタル変換器(BBADC)
208 ディジタル低域通過フィルタ
209 帯域判定回路
210 RSSI増幅器
211 RSSIアナログ・ディジタル変換器(RSSIADC)
212 RSSI判定回路
213 レーダパルス幅判定回路
301 RSSIの閾値上下(RSSIflag)の分岐処理
302 過去に閾値を超えるRSSI検出の有無(Pwrflag)の分岐処理
303 アップ・ダウンカウンター(PwrCnt)値の分岐処理
304 最小パルス幅の検出(PwrDetflag)の分岐処理
305 アップ・ダウンカウンター(PwrCnt)に[1]を加算する処理
306 アップ・ダウンカウンター(PwrCnt)値の分岐処理
307 最小パルス幅の検出フラグ(PwrDetflag)を[1]に設定する処理
308 過去に閾値を超えるRSSI検出の有無示す(Pwrflag)を[1]に、アップ・ダウンカウンター(PwrCnt)に初期値[32]を設定する処理
309 時間幅を計数するカウンター(WidthCnt)に[1]を加算する処理
310 アップ・ダウンカウンター(PwrCnt)を[39]に設定する処理
321 過去に閾値を超えるRSSI検出の有無(Pwrflag)の分岐処理
322 時間幅を計数するカウンター(WidthCnt)に[1]を減算する処理
323 アップ・ダウンカウンター(PwrCnt)値の分岐処理
324 時間幅を計数するカウンター(WidthCnt)の分岐処理
325 最小パルス幅の検出(PwrDetflag)の分岐処理
326 帯域内信号を示すフラグ(InBandflag)の分岐処理
327 レーダ干渉波の検出を示すフラグ(RadarDetflag)を[1]に設定する処理及びすべてのカウンターとフラグを初期値の[0]に設定する処理
328 すべてのカウンターとフラグを初期値の[0]に設定する処理
401 過去に閾値を超えるRSSI検出の有無(Pwrflag)の分岐処理
402 帯域測定完了を示すフラグ(BnadCntflag)の分岐処理
403 時間幅を計数するカウンター(BandCnt)に[1]を加算する処理
404 時間幅を計数するカウンター(BandCnt)値の分岐処理
405 ディジタル低域通過フィルタの前置の電力(Pb)演算処理とその累積和(AccumPb)を求める処理
406 時間幅を計数するカウンター(BandCnt)値の分岐処理
407 ディジタル低域通過フィルタの前置の電力(Pb)演算処理とその累積和(AccumPb)及び後置の電力(Pa)演算処理とその累積和(AccumPa)を求める処理
408 時間幅を計数するカウンター(BandCnt)値の分岐処理
409 ディジタル低域通過フィルタの後置の電力(Pa)演算処理とその累積和(AccumPa)を求める処理
410 帯域測定完了を示すフラグ(BnadCntflag)を[1]に設定する処理
411 ディジタル低域通過フィルタの前後置の累積電力和を比較する処理
412 帯域内信号である事を示すフラグ(InBandnag)を[1]に設定する処理
Reference Signs List 101 antenna 102 receiver 103 digital processing circuit 104 access control circuit 105 radar wave detection circuit 106 protocol engine circuit 201 antenna 202 high frequency amplifier 203 IQ demodulator 204 local oscillator 205 low pass filter 206 baseband amplifier 207 baseband analog / digital Converter (BBADC)
208 Digital Low-Pass Filter 209 Band Determination Circuit 210 RSSI Amplifier 211 RSSI Analog to Digital Converter (RSSIADC)
212 RSSI determination circuit 213 Radar pulse width determination circuit 301 Branching process of RSSI threshold above and below (RSSI flag) 302 Branching process of presence / absence of detection of RSSI exceeding the threshold (Pwrflag) 303 Branching process of up / down counter (PwrCnt) value 304 Branch processing of minimum pulse width detection (PwrDetflag) 305 Processing of adding [1] to up / down counter (PwrCnt) 306 Branch processing of up / down counter (PwrCnt) value 307 Minimum pulse width detection flag (PwrDetflag) Processing 308 for setting [1] 309 Processing for setting the initial value [32] for the up / down counter (PwrCnt) indicating the presence or absence of RSSI detection exceeding the threshold value (Pwrflag) in [1] 309 Counting the time width Processing to add [1] to the counter (WidthCnt) 310 Processing to set the up / down counter (PwrCnt) to [39] 321 Branch processing of presence / absence of RSSI detection exceeding the threshold (Pwrflag) 322 Count the time width Processing for subtracting [1] from the counter (WidthCnt) 323 Branch processing for up / down counter (PwrCnt) value 324 Counter processing for counting time width (WidthCnt) branch processing 325 Minimum pulse width detection (PwrDetflag) branch processing 326 Branch processing 327 of a flag indicating an in-band signal (InBandflag) Processing for setting a flag (RadarDetflag) indicating detection of a radar interference wave to [1] and processing for setting all counters and flags to an initial value [0] 328 You Processing for setting all counters and flags to the initial value [0] 401 Branch processing for presence / absence of RSSI detection exceeding the threshold (Pwrflag) 402 Branch processing for flag (BnadCntflag) indicating completion of bandwidth measurement 403 Time width Processing for adding [1] to the counter (BandCnt) for counting 404 Branch processing for the counter (BandCnt) value for counting time width 405 Power (Pb) calculation processing before the digital low-pass filter and its cumulative sum (AccumPb) 406 for calculating the time width of the counter (BandCnt) value branching process 407 Digital low-pass filter pre-power (Pb) calculation process, cumulative sum (AccumPb) and post-power (Pa) calculation Processing 408 hours to calculate processing and its cumulative sum (AccumPa) The counter (BandCnt) value branching process 409 for counting 409 The post-power (Pa) calculation process of the digital low-pass filter and the process for obtaining the accumulated sum (AccumPa) 410 The flag (BnadCntflag) indicating the completion of the band measurement is set to [1] 411 processing for setting the sum of power before and after the digital low-pass filter 412 processing for setting a flag (InBandnag) indicating that the signal is an in-band signal to [1]

Claims (2)

一定のクロックで動作するアップ・ダウンカンターとタイマーカウンターで構成されるパルス幅計数回路において、
最初に受信レベルが閾値以上である事を検出した場合、アップ・ダウンカンターに初期値を設定する機能、受信レベルが閾値以上である場合、アップ・ダウンカンターを加算し、閾値以下である場合、アップ・ダウンカンターを減算する機能、アップ・ダウンカンターに所定の上限値を設け、この上限値以上にカウントアップしない機能、上限値に達した情報生成する機能、一度上限値に達し、その後減算処理を行った次の処理で再度受信レベルが閾値以上である場合、アップ・ダウンカンターを上限値に設定する機能、アップ・ダウンカンターに所定の下限値を設け、下限値に達した情報を生成する機能、タイマーカウンターは最初に受信レベルが閾値以上である事を検出した時点で計数を開始し、アップ・ダウンカンターが下限に達した時点で計数を停止する機能とタイマーカウンターの計数値でパルスの有効性を判断する機能を有する事を特徴とするレーダ干渉波検出回路。
In a pulse width counting circuit consisting of an up / down counter and timer counter that operate with a constant clock,
When it is first detected that the reception level is above the threshold, the function to set the initial value to the up / down counter, when the reception level is above the threshold, the up / down counter is added, and if it is below the threshold, A function to subtract up / down counters, a function that sets a predetermined upper limit value for up / down counters, a function that does not count above this upper limit value, a function that generates information that has reached the upper limit value, and once the upper limit value has been reached, a subtraction process When the reception level is equal to or higher than the threshold value again in the next processing, the function to set the up / down counter to the upper limit value, a predetermined lower limit value is provided for the up / down counter, and information that has reached the lower limit value is generated. Function, timer counter starts counting when it first detects that the reception level is above the threshold, and the up / down counter reaches the lower limit Radar interference wave detection circuit, characterized in that has a function of determining the validity of the pulse in the count value of the function and the timer counter stops counting at point.
請求項1のレーダ干渉波検出回路は更に、ディジタル低域通過帯域フィルタ回路、この回路の前後に置かれる電力演算回路と累積電力積算回路とこの2つの累積電力演算結果を比較判定する回路で構成し、前置の累積電力積算回路は最初に受信レベル検出回路の出力が受信レベル閾値を越えた時点から所定の時間の電力和を求め、後置の累積電力積算回路は最初に受信レベル検出回路の出力が受信レベル閾値を越えた時点より更にディジタル低域通過帯域フィルタ回路の有する遅延時間に相当する遅い時点より所定の時間の電力和を求めパルスが受信帯域内であるかの判断をする機能を有する事を特徴とするレーダ干渉波検出回路。  The radar interference wave detection circuit according to claim 1 further comprises a digital low-pass band filter circuit, a power calculation circuit placed before and after the circuit, a cumulative power integration circuit, and a circuit for comparing and determining the two cumulative power calculation results. The first cumulative power integration circuit calculates the power sum for a predetermined time from when the output of the reception level detection circuit first exceeds the reception level threshold, and the rear cumulative power integration circuit first receives the reception level detection circuit. A function for determining whether the pulse is within the reception band by obtaining the power sum of a predetermined time from a later time corresponding to the delay time of the digital low-pass filter circuit than when the output of the signal exceeds the reception level threshold A radar interference wave detection circuit characterized by comprising:
JP2006122649A 2006-03-31 2006-03-31 Radar interference detection circuit Expired - Fee Related JP4344736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122649A JP4344736B2 (en) 2006-03-31 2006-03-31 Radar interference detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122649A JP4344736B2 (en) 2006-03-31 2006-03-31 Radar interference detection circuit

Publications (2)

Publication Number Publication Date
JP2007274659A true JP2007274659A (en) 2007-10-18
JP4344736B2 JP4344736B2 (en) 2009-10-14

Family

ID=38676922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122649A Expired - Fee Related JP4344736B2 (en) 2006-03-31 2006-03-31 Radar interference detection circuit

Country Status (1)

Country Link
JP (1) JP4344736B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005115A (en) * 2006-06-21 2008-01-10 Renesas Technology Corp Lsi for communication and radio access system
US8284095B2 (en) 2009-09-18 2012-10-09 Kabushiki Kaisha Toshiba Radar detection device used in wireless communication device
JP2018179608A (en) * 2017-04-06 2018-11-15 沖電気工業株式会社 Wireless communication device, method, and wireless communication system
CN109765427A (en) * 2019-03-01 2019-05-17 山东交通学院 High-precision phase position difference measurements method and circuit based on phase detection discriminator and RMS conversion device
CN111766452A (en) * 2020-07-28 2020-10-13 哈尔滨工业大学 Transient high-frequency pulse waveform capturing system and method
US11320525B2 (en) 2017-01-26 2022-05-03 Kabushiki Kaisha Toshiba Radar apparatus and method for avoiding radio interference
JP2022539438A (en) * 2019-09-12 2022-09-08 サイプレス セミコンダクター コーポレーション Radar detection in wireless LAN

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443203B (en) * 2016-11-15 2019-04-09 中国电子科技集团公司第四十一研究所 A kind of pulse signal detection system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005115A (en) * 2006-06-21 2008-01-10 Renesas Technology Corp Lsi for communication and radio access system
US8284095B2 (en) 2009-09-18 2012-10-09 Kabushiki Kaisha Toshiba Radar detection device used in wireless communication device
US11320525B2 (en) 2017-01-26 2022-05-03 Kabushiki Kaisha Toshiba Radar apparatus and method for avoiding radio interference
JP2018179608A (en) * 2017-04-06 2018-11-15 沖電気工業株式会社 Wireless communication device, method, and wireless communication system
CN109765427A (en) * 2019-03-01 2019-05-17 山东交通学院 High-precision phase position difference measurements method and circuit based on phase detection discriminator and RMS conversion device
JP2022539438A (en) * 2019-09-12 2022-09-08 サイプレス セミコンダクター コーポレーション Radar detection in wireless LAN
JP7204996B2 (en) 2019-09-12 2023-01-16 サイプレス セミコンダクター コーポレーション Radar detection in wireless LAN
US11796627B2 (en) 2019-09-12 2023-10-24 Cypress Semiconductor Corporation Radar detection in a wireless LAN
CN111766452A (en) * 2020-07-28 2020-10-13 哈尔滨工业大学 Transient high-frequency pulse waveform capturing system and method

Also Published As

Publication number Publication date
JP4344736B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP4344736B2 (en) Radar interference detection circuit
US7643810B2 (en) Method and system for noise floor calibration and receive signal strength detection
US8159932B1 (en) Initial timing estimation in a wireless network receiver
US6721547B2 (en) In-band and out-of-band signal detection for automatic gain calibration systems
US7916815B2 (en) Method and apparatus for a multicarrier receiver circuit with guard interval size detection
US7158769B2 (en) Device and method for alerting user to interference
TW200421732A (en) Method and apparatus for selective disregard of co-channel transmissions on a medium
US20050130687A1 (en) Dynamic noise floors in a wireless device
KR101512414B1 (en) Adaptive rf saturation detection in a wireless device implementing multiple wireless protocols
US6785523B2 (en) Self-correlation detection in automatic gain calibration
US20060199587A1 (en) Radar detection circuit for a WLAN transceiver
JP6225041B2 (en) Receiver
WO2010047998A2 (en) Method and device for detecting presence of a carrier in a received signal
JP2009065312A (en) Radio receiver
EP2721740B1 (en) Method and radio receiver enabling harmonic distortion estimation
JP2000151546A (en) Ofdm communication apparatus and method
CN110719117B (en) Radio frequency receiver apparatus with interference detection and related methods
US9369217B1 (en) Cellular up-link harmonic spurs mitigation in Wi-Fi and bluetooth receivers
US9124467B2 (en) Receiver gain adjustment to reducing an influence of a DC offset
CN109286407B (en) Interference signal suppression device and method for suppressing strong interference signal
JP2001024619A (en) Ofdm signal receiver
US8913697B2 (en) Wireless LAN communication device, relevant signal processing circuit, and method thereof
KR20150116067A (en) Signal receiving device for measuring characteristics of wireless communication channel and measurement method of characteristics of wireless communication channel
JP4845819B2 (en) Signal detection apparatus, receiver, and threshold calculation method
JP4779523B2 (en) Received electric field strength detection circuit and method, and receiver using the same

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees