JP2007270074A - Processing resistant polyamide-imide resin vanish and electrical insulating wire - Google Patents

Processing resistant polyamide-imide resin vanish and electrical insulating wire Download PDF

Info

Publication number
JP2007270074A
JP2007270074A JP2006100577A JP2006100577A JP2007270074A JP 2007270074 A JP2007270074 A JP 2007270074A JP 2006100577 A JP2006100577 A JP 2006100577A JP 2006100577 A JP2006100577 A JP 2006100577A JP 2007270074 A JP2007270074 A JP 2007270074A
Authority
JP
Japan
Prior art keywords
mol
insulating film
imide resin
diisocyanate
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006100577A
Other languages
Japanese (ja)
Inventor
Masaya Kakimoto
正也 柿本
Masaaki Yamauchi
雅晃 山内
Akira Mizoguchi
晃 溝口
Toru Shimizu
亨 清水
Katsufumi Matsui
克文 松井
Masahiro Koyano
正宏 小谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Wintec Inc filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006100577A priority Critical patent/JP2007270074A/en
Publication of JP2007270074A publication Critical patent/JP2007270074A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide processing resistant polyamide-imide resin vanish capable of forming an electrical insulating film having excellent breaking elongation and tensile strength, namely excellent rigidity by coating it on an electrical wire, followed by calcinations, and to provide an electrical insulating wire having an electrical insulating film excellent in rigidity, which is formed by using this processing resistant polyamide-imide resin vanish. <P>SOLUTION: A processing resistant polyamide-imide resin vanish comprises polyamide-imide having an average weight molecular weight of 20,000-200,000, which is obtained by polymerization of a diisocyanate component containing 5-60 mole% of an aromatic diisocyanate compound having a biphenol skeleton and an acid component containing trimellitic acid anhydride and 5-40 mole% of an aromatic tetracarboxylic acid dianhydride at 150°C or lower. An electrical insulating film is formed by using the processing resistant polyamide-imide resin varnish. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導体に塗布、焼付けして絶縁皮膜を形成することができる耐加工性ポリアミドイミド樹脂ワニス、及びこの耐加工性ポリアミドイミド樹脂ワニスを用いて形成された絶縁皮膜を有する耐加工性絶縁電線に関する。   The present invention relates to a work-resistant polyamide-imide resin varnish that can be coated and baked on a conductor to form an insulating film, and a work-resistant insulation having an insulating film formed using this work-resistant polyamide-imide resin varnish. Regarding electric wires.

発電機やモーター等の回転電機を大型化することなく高出力を得るためには、ステータのコア間に形成される空間(スロット)の断面積に対する、コイルを形成する絶縁電線の導体の断面積の総和の割合、すなわち占積率の向上が望まれる。近年、自動車用発電機、モーターや冷凍機のコンプレッサーモーター等について、より小型化かつ高出力化が求められており、占積率の向上によりこの要請に対応するため、スロット中にコイルを形成する絶縁電線を強引に挿入する、又圧縮変形させて占積率を向上させる等の方法が行われている。   In order to obtain high output without increasing the size of a rotating electrical machine such as a generator or motor, the cross-sectional area of the conductor of the insulated wire forming the coil with respect to the cross-sectional area of the space (slot) formed between the stator cores It is desirable to improve the ratio of the total sum, that is, the space factor. In recent years, there has been a demand for smaller generators and higher outputs for automotive generators, motors and compressor motors for refrigerators, etc. In order to meet this demand by improving the space factor, coils are formed in the slots. Methods such as forcibly inserting an insulated wire or compressing and deforming to improve the space factor have been performed.

このときは、コイルを形成する絶縁電線の断面形状が大きく変形する程の加工(例えば、断面形状を、円形状から六角形状や矩形状等にするような加工)が絶縁電線に加えられる。しかし、従来汎用の絶縁電線ではこの加工により絶縁皮膜が損傷を受けやすく、絶縁皮膜の割れの発生、レアー不良やアース不良の発生、モーターの電気特性不良等の問題が発生しやすかった。   At this time, a process (for example, a process in which the cross-sectional shape is changed from a circular shape to a hexagonal shape, a rectangular shape, or the like) is applied to the insulated wire so that the cross-sectional shape of the insulated wire forming the coil is greatly deformed. However, in the conventional general-purpose insulated wires, the insulation film is easily damaged by this processing, and problems such as cracking of the insulation film, occurrence of a defective layer and poor grounding, and poor electrical characteristics of the motor are likely to occur.

そこで、ポリアミドイミド系の塗料の塗布、焼付けにより形成され、機械的強度に優れた絶縁皮膜が提案されている。例えば特公昭45−27611号公報には、トリメリット酸無水物とジフェニルメタン−4,4’−ジイソシアネートとの反応生成物であるポリアミドイミドからなる絶縁皮膜が開示されている。さらに、使用時の発熱によりスロット内で絶縁皮膜が軟化し、導体間が接触するレアーショートの発生を防ぐため、3,3’−ジメチルビフェニル−4,4’−ジイソシアネート(TODI)等と共重合したポリアミドイミド系の塗料も提案されている(特開平7−21849号公報)。
特公昭45−27611号公報 特開平7−21849号公報
Therefore, an insulating film excellent in mechanical strength has been proposed which is formed by application and baking of a polyamide-imide paint. For example, Japanese Examined Patent Publication No. 45-27611 discloses an insulating film made of polyamideimide, which is a reaction product of trimellitic anhydride and diphenylmethane-4,4′-diisocyanate. Furthermore, in order to prevent the occurrence of a layer short circuit in which the insulation film softens in the slot due to heat generation during use and the conductors contact, copolymerization with 3,3′-dimethylbiphenyl-4,4′-diisocyanate (TODI), etc. There has also been proposed a polyamideimide-based paint (Japanese Patent Laid-Open No. 7-21849).
Japanese Patent Publication No. 45-27611 JP 7-21849 A

しかし、近年の要請を鑑みると、これらの絶縁皮膜は未だに充分な機械的強度を有するとは言えず、さらに優れた破断伸びや引張抗張力、すなわち靭性を有する絶縁皮膜の形成が望まれている。   However, in view of recent demands, these insulating coatings still cannot be said to have sufficient mechanical strength, and it is desired to form insulating coatings having superior elongation at break and tensile strength, that is, toughness.

本発明は、優れた破断伸びや引張抗張力、すなわち優れた靱性を有する絶縁皮膜を形成することができる耐加工性ポリアミドイミド樹脂ワニス、及びこの耐加工性ポリアミドイミド樹脂ワニスを用いて形成され、靱性に優れた絶縁皮膜を有する絶縁電線を提供することをその課題とする。   The present invention is a process-resistant polyamideimide resin varnish capable of forming an insulating film having excellent breaking elongation and tensile tensile strength, that is, excellent toughness, and toughness formed using this process-resistant polyamideimide resin varnish. An object of the present invention is to provide an insulated wire having an excellent insulating film.

本発明者は、鋭意研究を行った結果、ポリアミドイミド樹脂を合成するための原料である酸成分として、芳香族テトラカルボン酸二無水物を含有させたものを用いて得られる、分子中のイミド基数を増大させたポリアミドイミド樹脂であって、所定の分子量を有し、分子量分布の分散が比較的小さい樹脂を、絶縁皮膜形成用のワニスの主成分として用い、このワニスを、塗布、焼付けすることにより、優れた靱性を有する絶縁皮膜を形成することができることを見出した。   As a result of diligent research, the present inventor has obtained an imide in a molecule obtained by using an aromatic tetracarboxylic dianhydride as an acid component as a raw material for synthesizing a polyamideimide resin. A polyamide-imide resin having an increased number of bases, a resin having a predetermined molecular weight and a relatively small distribution of molecular weight distribution is used as a main component of a varnish for forming an insulating film, and this varnish is applied and baked. It has been found that an insulating film having excellent toughness can be formed.

本発明者は、さらに、前記の酸成分とジイソシアネート成分を共重合させてポリアミドイミド樹脂を合成する際に、反応温度を所定温度以下に保つことにより、さらに優れた靱性を有する絶縁皮膜を形成することができることを見出した。反応を低温で行うことにより、分子中の分岐成分が減少し、分子量分布の分散が比較的小さい樹脂が得られ、靭性等が向上したものと思われる。本発明は、これらの知見に基づき完成されたものである。   The present inventor further forms an insulating film having further excellent toughness by maintaining the reaction temperature at a predetermined temperature or lower when synthesizing the polyamideimide resin by copolymerizing the acid component and the diisocyanate component. I found that I can do it. By performing the reaction at a low temperature, it is considered that a branched component in the molecule is reduced, a resin having a relatively small molecular weight distribution dispersion is obtained, and toughness is improved. The present invention has been completed based on these findings.

本発明は、その請求項1として、下記一般式(1)   The present invention provides the following general formula (1).

Figure 2007270074

〔式中R、Rは同一又は異なって、水素原子、アルキル基、アルコキシ基又はハロゲン原子を示す。m、nは同一又は異なって1〜4の数を示す。〕で表される芳香族ジイソシアネート化合物を5〜60モル%含有するジイソシアネート成分と、
トリメリット酸無水物及び芳香族テトラカルボン酸二無水物を含有し、芳香族テトラカルボン酸二無水物の含有量が5〜40モル%である酸成分を、
150℃以下の反応温度で共重合反応して得られ、
GPC法により測定した重量平均分子量が、20,000〜200,000であるポリアミドイミドを含有することを特徴とする耐加工性ポリアミドイミド樹脂ワニスを提供する。
Figure 2007270074

[Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom. m and n are the same or different and represent a number of 1 to 4. A diisocyanate component containing 5 to 60 mol% of an aromatic diisocyanate compound represented by the formula:
An acid component containing trimellitic anhydride and aromatic tetracarboxylic dianhydride, wherein the content of aromatic tetracarboxylic dianhydride is 5 to 40 mol%,
Obtained by a copolymerization reaction at a reaction temperature of 150 ° C. or lower,
A process-resistant polyamide-imide resin varnish characterized by containing a polyamide-imide having a weight average molecular weight measured by GPC method of 20,000 to 200,000.

一般式(1)で表される芳香族ジイソシアネート化合物としては、ビフェニル−4,4′−ジイソシアネート、ビフェニル−3,3′−ジイソシアネート、ビフェニル−3,4′−ジイソシアネート、3,3′−ジクロロビフェニル−4,4′−ジイソシアネート、2,2′−ジクロロビフェニル−4,4′−ジイソシアネート、3,3′−ジブロモビフェニル−4,4′−ジイソシアネート、2,2′−ジブロモビフェニル−4,4′−ジイソシアネート、3,3′−ジメチルビフェニル−4,4′−ジイソシアネート、2,2′−ジメチルビフェニル−4,4′−ジイソシアネート、2,3′−ジメチルビフェニル−4,4′−ジイソシアネート、3,3′−ジエチルビフェニル−4,4′−ジイソシアネート、2,2′−ジエチルビフェニル−4,4′−ジイソシアネート、3,3′−ジメトキシビフェニル−4,4′−ジイソシアネート、2,2′−ジメトキシビフェニル−4,4′−ジイソシアネート、2,3′−ジメトキシビフェニル−4,4′−ジイソシアネート、3,3′−ジエトキシビフェニル−4,4′−ジイソシアネート、2,2′−ジエトキシビフェニル−4,4′−ジイソシアネート、2,3′−ジエトキシビフェニル−4,4′−ジイソシアネート等が挙げられる。これらはそれぞれ単独で、又は2種以上を混合して用いることができる。   Examples of the aromatic diisocyanate compound represented by the general formula (1) include biphenyl-4,4′-diisocyanate, biphenyl-3,3′-diisocyanate, biphenyl-3,4′-diisocyanate, and 3,3′-dichlorobiphenyl. -4,4'-diisocyanate, 2,2'-dichlorobiphenyl-4,4'-diisocyanate, 3,3'-dibromobiphenyl-4,4'-diisocyanate, 2,2'-dibromobiphenyl-4,4 ' -Diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate, 2,2'-dimethylbiphenyl-4,4'-diisocyanate, 2,3'-dimethylbiphenyl-4,4'-diisocyanate, 3, 3'-diethylbiphenyl-4,4'-diisocyanate, 2,2'-diethylbifu Nyl-4,4'-diisocyanate, 3,3'-dimethoxybiphenyl-4,4'-diisocyanate, 2,2'-dimethoxybiphenyl-4,4'-diisocyanate, 2,3'-dimethoxybiphenyl-4,4 '-Diisocyanate, 3,3'-diethoxybiphenyl-4,4'-diisocyanate, 2,2'-diethoxybiphenyl-4,4'-diisocyanate, 2,3'-diethoxybiphenyl-4,4'- Diisocyanate etc. are mentioned. These can be used alone or in admixture of two or more.

本発明において、ポリアミドイミド樹脂の合成に用いられるジイソシアネート成分は、その全量に対し、一般式(1)で表される芳香族ジイソシアネート化合物を、5〜60モル%含有する。含有量が、ジイソシアネート成分の全量に対し、5モル%未満の場合は、得られる絶縁皮膜の靱性が不十分となり、一方、60モル%を超える場合は、絶縁皮膜が脆くなり、加工時の絶縁皮膜の割れの発生が多くなる。   In this invention, the diisocyanate component used for the synthesis | combination of a polyamideimide resin contains 5-60 mol% of aromatic diisocyanate compounds represented by General formula (1) with respect to the whole quantity. When the content is less than 5 mol% with respect to the total amount of the diisocyanate component, the toughness of the resulting insulating film becomes insufficient. On the other hand, when the content exceeds 60 mol%, the insulating film becomes brittle and insulation during processing The occurrence of cracks in the film increases.

ジイソシアネート成分中に含まれる、一般式(1)で表される芳香族ジイソシアネート化合物以外のジイソシアネート化合物としては、芳香環を有する芳香族ジイソシアネートが好適に使用され、この芳香族ジイソシアネートとしては、ジフェニルメタン−4,4′−ジイソシアネート(MDI)、ジフェニルメタン−3,3′−ジイソシアネート、ジフェニルメタン−3,4′−ジイソシアネート、ジフェニルエーテル−4,4′−ジイソシアネート、ベンゾフェノン−4,4′−ジイソシアネート、ジフェニルスルホン−4,4′−ジイソシアネート、トリレン−2,4−ジイソシアネート、トリレン−2,6−ジイソシアネート、ナフチレン−1,5−ジイソシアネート、m−キシリレンジイソシアネート、p−キシリレンジイソシアネート等が例示される。これらはそれぞれ単独で、又は2種以上を混合して用いることができる。中でも、安価であるMDIが好ましく用いられる。   As the diisocyanate compound other than the aromatic diisocyanate compound represented by the general formula (1) contained in the diisocyanate component, an aromatic diisocyanate having an aromatic ring is preferably used. As the aromatic diisocyanate, diphenylmethane-4 , 4'-diisocyanate (MDI), diphenylmethane-3,3'-diisocyanate, diphenylmethane-3,4'-diisocyanate, diphenylether-4,4'-diisocyanate, benzophenone-4,4'-diisocyanate, diphenylsulfone-4, 4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, naphthylene-1,5-diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate Over preparative like. These can be used alone or in admixture of two or more. Of these, inexpensive MDI is preferably used.

本発明において、ポリアミドイミドの合成に用いられる酸成分は、トリメリット酸無水物及び芳香族テトラカルボン酸二無水物を含有する。芳香族テトラカルボン酸二無水物の含有量は、酸成分の全量に対し、5〜40モル%である。含有量が、5モル%未満の場合は、得られる絶縁皮膜の破断伸びが小さくなり、その結果靱性が不十分となる。一方、40モル%を超える場合は、絶縁皮膜が脆くなり、加工時の絶縁皮膜の割れの発生が多くなる。   In the present invention, the acid component used in the synthesis of polyamideimide contains trimellitic anhydride and aromatic tetracarboxylic dianhydride. Content of aromatic tetracarboxylic dianhydride is 5-40 mol% with respect to the total amount of an acid component. When the content is less than 5 mol%, the elongation at break of the resulting insulating film becomes small, and as a result, the toughness becomes insufficient. On the other hand, if it exceeds 40 mol%, the insulating film becomes brittle, and cracking of the insulating film during processing increases.

前記芳香族テトラカルボン酸二無水物としては、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、オキシジフタル酸二無水物(OPDA)、ピロメリット酸二無水物(PMDA)、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、エチレングリコールビス(アンヒドロトリメリテート)等が挙げられる。中でも、ベンゾフェノンテトラカルボン酸二無水物が、靭性を向上させる効果が大きく、かつ安価であるため好ましい。請求項2は、前記の耐加工性ポリアミドイミド樹脂ワニスであって、この好ましい態様に該当するものである。   Examples of the aromatic tetracarboxylic dianhydride include biphenyl tetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, diphenyl sulfone tetracarboxylic dianhydride, oxydiphthalic dianhydride (OPDA), pyromellitic acid dianhydride. Anhydrides (PMDA), 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic dianhydride (6FDA), ethylene glycol bis (anhydrotrimellitate) and the like can be mentioned. Among them, benzophenone tetracarboxylic dianhydride is preferable because it has a large effect of improving toughness and is inexpensive. A second aspect of the present invention is the work-resistant polyamide-imide resin varnish, which corresponds to this preferred embodiment.

前記酸成分は、トリメリット酸無水物及び芳香族テトラカルボン酸二無水物に加えて、ピロメリット酸、ブタンテトラカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ジフェニルスルホンテトラカルボン酸等の芳香族テトラカルボン酸、もしくはこれらの芳香族テトラカルボン酸の一無水物、又は(無水でない)トリメリット酸を含有することができる。特に、芳香族テトラカルボン酸一無水物を少量含有することにより、靭性をさらに高めることができるので好ましい。   In addition to trimellitic anhydride and aromatic tetracarboxylic dianhydride, the acid component includes aromatics such as pyromellitic acid, butanetetracarboxylic acid, biphenyltetracarboxylic acid, benzophenonetetracarboxylic acid, and diphenylsulfonetetracarboxylic acid. A tetracarboxylic acid, or a monoanhydride of these aromatic tetracarboxylic acids, or (not anhydrous) trimellitic acid can be contained. In particular, it is preferable to contain a small amount of aromatic tetracarboxylic acid monoanhydride since the toughness can be further increased.

ここで、トリメリット酸及び/又は芳香族テトラカルボン酸一無水物の含有量は、酸成分の全量に対し、合計で0.1〜5モル%の範囲が好ましい。0.1モル%未満では靭性向上の効果が小さい。一方5モル%を超えると、得られるポリアミドイミド樹脂がワニスの溶媒に対し不溶性になる傾向があるので好ましくない。請求項3は、この好ましい態様に該当し、前記の耐加工性ポリアミドイミド樹脂ワニスであって、酸成分が、さらに、トリメリット酸及び/又は芳香族テトラカルボン酸一無水物を、合計で0.1〜5モル%含有することを特徴とする耐加工性ポリアミドイミド樹脂ワニスを提供するものである。   Here, the content of trimellitic acid and / or aromatic tetracarboxylic acid monoanhydride is preferably in the range of 0.1 to 5 mol% in total with respect to the total amount of the acid component. If it is less than 0.1 mol%, the effect of improving toughness is small. On the other hand, if it exceeds 5 mol%, the resulting polyamideimide resin tends to be insoluble in the varnish solvent, such being undesirable. Claim 3 corresponds to this preferred embodiment, and is the process-resistant polyamideimide resin varnish, wherein the acid component further contains trimellitic acid and / or aromatic tetracarboxylic acid monoanhydride in a total of 0. The present invention provides a process-resistant polyamide-imide resin varnish characterized by containing .1-5 mol%.

本発明の耐加工性ポリアミドイミド樹脂ワニスに含まれるポリアミドイミド樹脂は、20,000〜200,000の範囲の重量平均分子量を有する。この重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値である。この平均分子量が20,000未満の場合、絶縁皮膜の伸びが不十分になる。一方この平均分子量が200,000を超える場合、ワニスの粘度が上昇し、一方粘度上昇を抑えるためには樹脂固形分を小さくせざるを得ず、導体への塗布作業が難しくなり、またワニスのコストも高くなる。   The polyamideimide resin contained in the process-resistant polyamideimide resin varnish of the present invention has a weight average molecular weight in the range of 20,000 to 200,000. This weight average molecular weight is a value measured by a gel permeation chromatography (GPC) method. When this average molecular weight is less than 20,000, the elongation of the insulating film becomes insufficient. On the other hand, when the average molecular weight exceeds 200,000, the viscosity of the varnish increases. On the other hand, in order to suppress the increase in the viscosity, the resin solid content must be reduced, and the application work to the conductor becomes difficult. Costs also increase.

本発明の耐加工性ポリアミドイミド樹脂ワニスは、さらに必要に応じて、顔料、染料、無機又は有機のフィラー、潤滑剤等の各種添加剤を添加してもよい。   The process-resistant polyamide-imide resin varnish of the present invention may further contain various additives such as pigments, dyes, inorganic or organic fillers, and lubricants as necessary.

本発明の耐加工性ポリアミドイミド樹脂ワニスは、前記のジイソシアネート成分と酸成分を用い、従来のポリアミドイミド系塗料と同様の製造方法により製造することができる。すなわち、このワニスに含有されるポリアミドイミド樹脂は、例えば、略化学量論量の前記イソシアネート成分と酸成分を適当な有機溶媒に溶解し、加熱して、重合反応させることにより得られる。用いられる有機溶媒としては、N−メチル−2−ピロリドン等が挙げられる。また有機溶媒は脱水して用いることが好ましい。   The process-resistant polyamide-imide resin varnish of the present invention can be produced by the same production method as that of a conventional polyamide-imide paint using the diisocyanate component and the acid component. That is, the polyamideimide resin contained in the varnish can be obtained, for example, by dissolving a substantially stoichiometric amount of the isocyanate component and the acid component in an appropriate organic solvent, heating, and causing a polymerization reaction. Examples of the organic solvent used include N-methyl-2-pyrrolidone. The organic solvent is preferably used after dehydration.

重合反応は、有機溶媒に前記原料成分を混合した後、徐々に昇温して、一定の温度に達した後、同温度を保つことにより行うことができるが、前記ポリアミドイミドを合成するための反応温度の上限は150℃以下である。反応温度の上限を150℃以下とすることにより、高い伸びを有する樹脂、ひいては優れた靭性を有する樹脂が得られる。反応温度を150℃以下と低くすることにより、生成する樹脂が分岐の少ないポリマーからなるものとなり、分子量分布の分散が比較的小さい樹脂が得られ、高い伸びが得られるものと考えられる。   The polymerization reaction can be carried out by mixing the raw material components in an organic solvent, gradually increasing the temperature, reaching a certain temperature, and then maintaining the same temperature. The upper limit of the reaction temperature is 150 ° C. or less. By setting the upper limit of the reaction temperature to 150 ° C. or less, a resin having a high elongation, and thus a resin having excellent toughness can be obtained. By lowering the reaction temperature to 150 ° C. or lower, it is considered that the resin to be produced is made of a polymer having few branches, a resin having a relatively small molecular weight distribution dispersion is obtained, and high elongation is obtained.

ポリアミドイミド樹脂の合成反応は、十分に脱水した溶媒中で行うことが好ましい。脱水溶媒中で150℃以下で重合することにより、樹脂の分子量分布の分散が小さくなり、伸びが大きくなるという効果がある。   The synthesis reaction of the polyamideimide resin is preferably performed in a sufficiently dehydrated solvent. Polymerization in a dehydrated solvent at 150 ° C. or lower has the effect of reducing the dispersion of the molecular weight distribution of the resin and increasing the elongation.

本発明の耐加工性ポリアミドイミド樹脂ワニスは、銅等の導体の表面に直接に、又は他の絶縁材料からなる下地層を介して塗布され、焼付けにより絶縁皮膜を形成する。塗布、焼付けは、従来の絶縁電線の絶縁皮膜の形成と同様な方法、条件により行うことができる。塗布、焼付け処理を2回以上繰り返してもよい。また、本発明の耐加工性ポリアミドイミド樹脂ワニスは、本発明の趣旨を損なわない範囲で、他の樹脂ワニスとブレンドして用いることも可能である。   The work-resistant polyamide-imide resin varnish of the present invention is applied directly to the surface of a conductor such as copper or through an underlayer made of another insulating material, and forms an insulating film by baking. Application | coating and baking can be performed by the method and conditions similar to formation of the insulation film of the conventional insulated wire. The coating and baking process may be repeated twice or more. Moreover, the work-resistant polyamide-imide resin varnish of the present invention can be used by blending with other resin varnishes as long as the gist of the present invention is not impaired.

本発明は、さらに、この耐加工性ポリアミドイミド樹脂ワニスを用い前記のようにして形成された絶縁電線も提供する。すなわち、導体の外側に絶縁皮膜を有する絶縁電線であって、絶縁皮膜の全部又は一部が、前記の耐加工性ポリアミドイミド樹脂ワニスを塗布、焼付けして形成された絶縁層であることを特徴とする絶縁電線である(請求項4)。この絶縁電線は、前記耐加工性ポリアミドイミド樹脂ワニスを、直接又は他の層(下地層)を介して導体上に塗布し、焼付け処理を施して形成した絶縁層を、少なくとも1層有することを特徴とする。前記耐加工性樹脂ワニスによる硬化物は、優れた強度と伸び、すなわち高い靱性を有しているので、このワニスの硬化物からなる絶縁層を含む絶縁皮膜を有する絶縁電線も、その加工において、皮膜の破損等の発生が抑制されて好適であり、例えば、占積率向上のために電線の断面を六角形状や矩形形状に加工するような圧縮を行う場合においても皮膜の破損などが発生しにくく、優れた効果を発揮する。   The present invention further provides an insulated wire formed as described above using this work-resistant polyamide-imide resin varnish. That is, an insulated wire having an insulating film on the outside of the conductor, wherein all or a part of the insulating film is an insulating layer formed by applying and baking the above-mentioned process-resistant polyamideimide resin varnish. Insulated electric wires (claim 4). The insulated wire has at least one insulating layer formed by applying the baking-resistant polyamide-imide resin varnish directly or through another layer (underlying layer) onto a conductor and baking it. Features. Since the cured product of the process-resistant resin varnish has excellent strength and elongation, that is, high toughness, an insulated wire having an insulating film including an insulating layer made of a cured product of this varnish is also used in the processing. It is suitable because the occurrence of damage to the film is suppressed, and for example, damage to the film occurs even when compression is performed to process the cross section of the wire into a hexagonal shape or a rectangular shape in order to improve the space factor. It is difficult and exhibits an excellent effect.

本発明の絶縁電線は、前記絶縁皮膜の下層、すなわち絶縁皮膜と導体間に、さらに下地層を有してもよいが、好ましくは、この下地層は、導体との密着性のよい材料からなる。請求項5は、この好ましい態様に該当する。導体との密着性の良い材料からなる下地層を設けることにより、絶縁皮膜の剥離等の損傷を低減することができる。   The insulated wire of the present invention may further have a base layer below the insulating film, that is, between the insulating film and the conductor. Preferably, the base layer is made of a material having good adhesion to the conductor. . Claim 5 corresponds to this preferable mode. By providing the base layer made of a material having good adhesion to the conductor, damage such as peeling of the insulating film can be reduced.

下地層としては、たとえばポリウレタン系、ポリエステル系、ポリエステルイミド系、ポリエステルアミドイミド系、ポリアミドイミド系、ポリイミド系等、従来公知の種々の絶縁塗料の塗布、焼付けにより形成される絶縁膜が挙げられる。中でも、ポリアミドイミド系塗料、ポリエステルイミド系塗料又はポリエステル系塗料の塗布、焼付けにより形成される下地層が好ましく、特にポリアミドイミド系塗料は、前記絶縁皮膜との密着性に優れ好ましい。下地層の膜厚は特に限定されないが、皮膜の機械的強度等を考慮すれば、絶縁皮膜と下地層との膜厚の比が1/10〜10/1の範囲内であることが好ましい。   Examples of the underlayer include insulating films formed by applying and baking various conventionally known insulating paints such as polyurethane, polyester, polyesterimide, polyesteramideimide, polyamideimide, polyimide, and the like. Among them, a base layer formed by applying or baking a polyamideimide-based paint, a polyesterimide-based paint or a polyester-based paint is preferable, and a polyamideimide-based paint is particularly preferable because of its excellent adhesion to the insulating film. The film thickness of the underlayer is not particularly limited, but it is preferable that the film thickness ratio between the insulating film and the underlayer is in the range of 1/10 to 10/1 in consideration of the mechanical strength of the film.

本発明の絶縁電線は、前記絶縁皮膜の上層に上塗層を設けてもよい。特に、絶縁電線の外表面に、潤滑性を付与するための表面潤滑層を設けることにより、コイル巻や占積率を上げるための圧縮加工時に電線間の摩擦により生じる応力、ひいてはこの応力により生じる絶縁皮膜の損傷を低減することができるので好ましい。請求項6は、この好ましい態様に該当する絶縁電線を提供するものである。   In the insulated wire of the present invention, an overcoat layer may be provided on the insulating film. In particular, by providing a surface lubrication layer for imparting lubricity to the outer surface of an insulated wire, the stress generated by the friction between the wires during coil winding and compression processing to increase the space factor, and by this stress It is preferable because damage to the insulating film can be reduced. The sixth aspect provides an insulated wire corresponding to this preferred mode.

この表面潤滑層は、潤滑性の高い材料から構成される層であり、前記絶縁皮膜上のこの材料又はその原材料を塗布して形成することができる。潤滑性の高い材料としては、流動パラフィン、固形パラフィンといったパラフィン類も挙げることができるが、耐久性等を考慮すると、各種ワックス、ポリエチレン、フッ素樹脂、シリコーン樹脂等の潤滑剤をバインダー樹脂で結着した表面潤滑層がより好ましい。   This surface lubricating layer is a layer composed of a material having high lubricity, and can be formed by applying this material on the insulating film or its raw material. Examples of materials with high lubricity include paraffins such as liquid paraffin and solid paraffin, but considering durability, binders of various types of wax, polyethylene, fluororesin, silicone resin and other lubricants are bound with a binder resin. A surface lubricating layer is more preferable.

本発明の耐加工性ポリアミドイミド樹脂ワニスは、絶縁電線の絶縁皮膜材料として好適であり、このワニスを電線に塗布、焼付けすることにより、優れた破断伸びや引張抗張力、すなわち優れた靱性を有する絶縁皮膜を形成することができる。そして、このワニスの硬化物からなる絶縁層を含む絶縁皮膜を有する本発明の絶縁電線は、靭性の優れた絶縁皮膜を有するので、例えば、占積率向上のために、電線の断面を六角形状や矩形形状に加工するような圧縮を行う場合や、モーターコアのスロット内に絶縁電線を強引に詰め込む場合においても、皮膜の破損などが発生しにくく、モーターやオルタネーターのコイル用電線として好適なものである。このように耐加工性に優れた絶縁電線をモーターの捲線に使用することにより、より小型、軽量で性能の良いモーターに対応することができる。   The process-resistant polyamide-imide resin varnish of the present invention is suitable as an insulating film material for an insulated wire. By coating and baking this varnish on an electric wire, an insulating material having excellent elongation at break and tensile strength, that is, excellent toughness. A film can be formed. And since the insulated wire of the present invention having an insulating film including an insulating layer made of a cured product of this varnish has an insulating film with excellent toughness, for example, in order to improve the space factor, the cross section of the wire is hexagonal Even when compression is performed such as processing into a rectangular shape, or when an insulated wire is forcibly packed into the slot of the motor core, damage to the film is unlikely to occur and it is suitable as a coil wire for motors and alternators It is. Thus, by using the insulated wire excellent in process resistance for the winding of the motor, it is possible to correspond to a motor that is smaller, lighter and has better performance.

次に、本発明を実施するための最良の形態を、以下に実施例により説明するが、本発明は、この実施例のみに限定されるものではない。   Next, the best mode for carrying out the present invention will be described below with reference to examples. However, the present invention is not limited to these examples.

(ポリアミドイミド樹脂ワニスの作製)
実施例1
昇温制御機能付きのマントルヒーターに、セパラブルフラスコ(三口)および冷却管をセットし、NMP(N−メチル−2−ピロリドン溶媒、三菱化学製、窒素下で脱水減圧蒸留済み)350.0gを仕込んだ。さらに、窒素雰囲気下で、TMA(トリメリット酸無水物、三菱瓦斯化学製)の82.8g(0.431mol)、ETM(トリメリット酸)の2.8g(0.013mol)、MDI(メチレンジイソシネート)の93.8g(0.375mol)、TODI(トルエンジイソシアネート)の33.0g(0.125mol)、及びBTDA(ベンゾフェノンテトラカルボン酸二無水物、デグサ製)の17.9g(0.056mol)を仕込み、撹拌しながら室温で反応を開始した。(酸成分とジイソシアネート成分はほぼ等量であり、酸成分中のBTDAの混合比率は約11モル%、ジイソシアネート成分中のTODIの混合比率は25モル%である。)約4時間かけて徐々に系の温度を140℃まで昇温した。その後、140℃を保ってさらに4時間反応させた後、室温まで冷却して、キシレン130.0gを加えて、全体を23%の固形分濃度のポリアミドイミド樹脂ワニスとした。
(Preparation of polyamideimide resin varnish)
Example 1
Set a separable flask (three necks) and a condenser tube on a mantle heater with a temperature rise control function, and 350.0 g of NMP (N-methyl-2-pyrrolidone solvent, Mitsubishi Chemical, dehydrated and distilled under nitrogen) Prepared. Further, under a nitrogen atmosphere, 82.8 g (0.431 mol) of TMA (trimellitic anhydride, manufactured by Mitsubishi Gas Chemical), 2.8 g (0.013 mol) of ETM (trimellitic acid), MDI (methylene diethylene) Sonate) 93.8 g (0.375 mol), TODI (toluene diisocyanate) 33.0 g (0.125 mol), and BTDA (benzophenone tetracarboxylic dianhydride, Degussa) 17.9 g (0.056 mol) The reaction was started at room temperature with stirring. (The acid component and the diisocyanate component are approximately equal, the mixing ratio of BTDA in the acid component is about 11 mol%, and the mixing ratio of TODI in the diisocyanate component is 25 mol%.) Gradually over about 4 hours The temperature of the system was raised to 140 ° C. Thereafter, the mixture was further reacted for 4 hours while maintaining 140 ° C., and then cooled to room temperature, and 130.0 g of xylene was added to obtain a polyamideimide resin varnish having a solid content concentration of 23%.

実施例2
実施例1と同様の反応装置により、窒素雰囲気下で、NMP350.0gを溶媒に用い、TMAの82.8g、ETMの2.8g、MDIの62.6g(0.250mol)、TODIの66.1g(0.250mol)、及びBTDAの17.9g(0.056mol)を仕込んで重合反応を開始、約4時間かけて徐々に系の温度を140℃まで昇温した。(酸成分とジイソシアネート成分はほぼ等量であり、酸成分中のBTDAの混合比率は約11モル%、ジイソシアネート成分中のTODIの混合比率は50モル%である。)その後、140℃を保ってさらに4時間反応させた後、室温まで冷却して、キシレンを140.0g加えて、全体を23%の固形分濃度のポリアミドイミド樹脂ワニスとした。
Example 2
In the same reactor as in Example 1, 350.0 g of NMP was used as a solvent under a nitrogen atmosphere, 82.8 g of TMA, 2.8 g of ETM, 62.6 g (0.250 mol) of MDI, and 66. 1 g (0.250 mol) and 17.9 g (0.056 mol) of BTDA were charged to start the polymerization reaction, and the temperature of the system was gradually raised to 140 ° C. over about 4 hours. (The acid component and the diisocyanate component are approximately equal in amount, the mixing ratio of BTDA in the acid component is about 11 mol%, and the mixing ratio of TODI in the diisocyanate component is 50 mol%.) After further reacting for 4 hours, the mixture was cooled to room temperature, and 140.0 g of xylene was added to obtain a polyamideimide resin varnish having a solid content concentration of 23%.

実施例3
実施例1と同様の装置により、窒素雰囲気下で、DMI(1,3−ジメチル−2−イミダゾリジンオン溶媒、三井化学製)350.0gに、TMAの82.8g(0.431mol)、ETMの2.8g(0.013mol)、MDIの93.8g(0.375mol)、TODIの33.0g(0.125mol)、及びBTDAの17.9g(0.056mol)を仕込み、撹拌しながら室温で反応を開始した。(酸成分とジイソシアネート成分はほぼ等量であり、酸成分中のBTDAの混合比率は約11モル%、ジイソシアネート成分中のTODIの混合比率は25モル%である。)約4時間かけて徐々に系の温度を140℃まで昇温した。その後、粘度が上昇してきたので徐々にDMIを加えつつ(最終的に加えたDMIは300.0g)、140℃を保ってさらに10時間反応させた後、室温まで冷却して、全体を18%の固形分濃度のポリアミドイミド樹脂ワニスとした。
Example 3
In the same apparatus as in Example 1, 352.8 g of DMI (1,3-dimethyl-2-imidazolidineone solvent, Mitsui Chemicals) was added to 82.8 g (0.431 mol) of TMA, ETM under a nitrogen atmosphere. 2.8 g (0.013 mol) of MDI, 93.8 g (0.375 mol) of MDI, 33.0 g (0.125 mol) of TODI, and 17.9 g (0.056 mol) of BTDA were stirred at room temperature. The reaction was started. (The acid component and the diisocyanate component are approximately equal, the mixing ratio of BTDA in the acid component is about 11 mol%, and the mixing ratio of TODI in the diisocyanate component is 25 mol%.) Gradually over about 4 hours The temperature of the system was raised to 140 ° C. Thereafter, as the viscosity increased, DMI was gradually added (finally added DMI was 300.0 g), and the mixture was reacted at 140 ° C. for another 10 hours, then cooled to room temperature, and the total was 18%. A polyamideimide resin varnish with a solid content concentration of

比較例1
実施例1と同様の反応装置により、窒素雰囲気下で、NMP340.0gを溶媒に用いて、TMAの93.2g(0.485mol)、ETMの3.2g(0.015mol)、MDIの125.2g(0.500mol)を仕込んで重合反応を開始、約4時間かけて徐々に系の温度を150℃にまで昇温して反応させた(酸成分とジイソシアネート成分はほぼ等量であるが、酸成分中のBTDAの混合比率は0モル%、ジイソシアネート成分中のTODIの混合比率は0モル%である。)。その後、160℃を保ってさらに1時間反応させた後、室温まで冷却して、キシレンを120.0g加えて全体を27%の固形分濃度のポリアミドイミド樹脂ワニスとした。
Comparative Example 1
In a reactor similar to that of Example 1, in a nitrogen atmosphere, 340.0 g of NMP was used as a solvent, 93.2 g (0.485 mol) of TMA, 3.2 g (0.015 mol) of ETM, and 125. 2 g (0.500 mol) was charged to initiate the polymerization reaction, and the reaction was carried out by gradually raising the temperature of the system to 150 ° C. over about 4 hours (although the acid component and the diisocyanate component are approximately the same amount, (The mixing ratio of BTDA in the acid component is 0 mol%, and the mixing ratio of TODI in the diisocyanate component is 0 mol%.) Thereafter, the reaction was further continued for 1 hour while maintaining the temperature at 160 ° C., followed by cooling to room temperature and adding 120.0 g of xylene to obtain a polyamideimide resin varnish having a solid content concentration of 27%.

比較例2
実施例1と同様の反応装置により、窒素雰囲気下で、NMP340.0gを溶媒に用いて、TMAの93.2g(0.485mol)、ETMの3.2g(0.015mol)、MDIの62.6g(0.250mol)、TODIの66.1g(0.250mol)を仕込んで重合反応を開始、約4時間かけて徐々に系の温度を135℃にまで昇温した(酸成分とジイソシアネート成分はほぼ等量であるが、酸成分中のBTDAの混合比率は0モル%、ジイソシアネート成分中のTODIの混合比率は50モル%である。)。その後、135℃を保ってさらに1時間反応させた後、室温まで冷却して、キシレンを120.0g加えて全体を23%の固形分濃度のポリアミドイミド樹脂ワニスとした。
Comparative Example 2
In a reactor similar to Example 1, in a nitrogen atmosphere, 340.0 g of NMP was used as a solvent, 93.2 g (0.485 mol) of TMA, 3.2 g (0.015 mol) of ETM, 62. 6 g (0.250 mol) and 66.1 g (0.250 mol) of TODI were charged to initiate the polymerization reaction, and the temperature of the system was gradually raised to 135 ° C. over about 4 hours (the acid component and diisocyanate component were (Although it is almost equal, the mixing ratio of BTDA in the acid component is 0 mol%, and the mixing ratio of TODI in the diisocyanate component is 50 mol%.) Thereafter, the reaction was further continued for 1 hour while maintaining 135 ° C., and then cooled to room temperature, and 120.0 g of xylene was added to obtain a polyamideimide resin varnish having a solid content concentration of 23%.

比較例3
実施例1と同様の反応装置により、窒素雰囲気下で、NMP350.0gを溶媒に用いて、TMAの82.8g(0.431mol)、ETMの2.8g(0.013mol)、MDIの83.4g(0.333mol)、TODIの44.0g(0.167mol)、及びBTDAの17.9g(0.056mol)を仕込んで重合反応を開始、約4時間かけて徐々に系の温度を140℃にまで昇温した。(酸成分とジイソシアネート成分はほぼ等量であり、酸成分中のBTDAの混合比率は約11モル%、ジイソシアネート成分中のTODIの混合比率は33モル%である。)その後、140℃を保ってさらに10時間反応させた後、さらに温度を徐々に上げると増粘し始めたので、徐々にNMPを加えて(最終的に加えたNMPは300.0g)、最終的に160℃で1時間反応させた。その後、室温まで冷却して、18%の固形分濃度のポリアミドイミド樹脂ワニスを得た。
Comparative Example 3
In the same reactor as in Example 1, in a nitrogen atmosphere, 350.0 g of NMP was used as a solvent, 82.8 g (0.431 mol) of TMA, 2.8 g (0.013 mol) of ETM, 83. 4 g (0.333 mol), 44.0 g (0.167 mol) of TODI, and 17.9 g (0.056 mol) of BTDA were charged to start the polymerization reaction, and the temperature of the system was gradually increased to 140 ° C. over about 4 hours. The temperature was raised to. (The acid component and the diisocyanate component are approximately the same amount, the mixing ratio of BTDA in the acid component is about 11 mol%, and the mixing ratio of TODI in the diisocyanate component is 33 mol%.) After further reaction for 10 hours, when the temperature was further increased, the viscosity started to increase, so NMP was gradually added (finally added NMP was 300.0 g), and finally the reaction was performed at 160 ° C. for 1 hour. I let you. Then, it cooled to room temperature and obtained the polyamideimide resin varnish of 18% of solid content concentration.

比較例4
実施例1と同様の反応装置により、窒素雰囲気下で、NMP350.0gを溶媒に用いて、TMAの82.8g(0.431mol)、ETMの2.8g(0.013mol)、MDIの111.2g(0.444mol)、TODIの14.7g(0.056mol)、及びBTDAの17.9g(0.056mol)を仕込んで重合反応を開始、約4時間かけて徐々に系の温度を140℃にまで昇温した。(酸成分とジイソシアネート成分はほぼ等量であり、酸成分中のBTDAの混合比率は約11モル%、ジイソシアネート成分中のTODIの混合比率は11モル%である。)その後、140℃を保ってさらに10時間反応させた後、さらに温度を徐々に上げると増粘し始めたので、徐々にNMPを加えて(最終的に加えたNMPは300.0g)、最終的に160℃で1時間反応させた。その後、室温まで冷却して、18%の固形分濃度のポリアミドイミド樹脂ワニスを得た。
Comparative Example 4
In the same reactor as in Example 1, in a nitrogen atmosphere, 350.0 g of NMP was used as a solvent, 82.8 g (0.431 mol) of TMA, 2.8 g (0.013 mol) of ETM, and 111. 2 g (0.444 mol), 14.7 g (0.056 mol) of TODI, and 17.9 g (0.056 mol) of BTDA were charged to start the polymerization reaction, and the temperature of the system was gradually increased to 140 ° C. over about 4 hours. The temperature was raised to. (The acid component and the diisocyanate component are approximately the same amount, the mixing ratio of BTDA in the acid component is about 11 mol%, and the mixing ratio of TODI in the diisocyanate component is 11 mol%.) After further reaction for 10 hours, when the temperature was further increased, the viscosity started to increase, so NMP was gradually added (finally added NMP was 300.0 g), and finally the reaction was performed at 160 ° C. for 1 hour. I let you. Then, it cooled to room temperature and obtained the polyamideimide resin varnish of 18% of solid content concentration.

(ポリアミドイミド樹脂ワニスの分子量測定)
各実施例及び比較例で得られたポリアミドイミド樹脂の重量平均分子量を、GPC(東ソー製、HLC−8220GPC)により測定した。キャリア溶媒としては、NMPにLiBrを0.1Nの濃度で溶解したものを使用し、分子量は、標準ポリスチレン(TSK標準ポリスチレン)を用いて計算により求めた。測定値を表1〜2に示す(表中では分子量と表す。)。また、分子量分布の分散(表中では分散と表す。)を併せて示す。
(Molecular weight measurement of polyamide-imide resin varnish)
The weight average molecular weight of the polyamideimide resin obtained in each Example and Comparative Example was measured by GPC (manufactured by Tosoh Corporation, HLC-8220 GPC). As the carrier solvent, a solution obtained by dissolving LiBr at a concentration of 0.1 N in NMP was used, and the molecular weight was obtained by calculation using standard polystyrene (TSK standard polystyrene). The measured values are shown in Tables 1 and 2 (in the table, expressed as molecular weight). In addition, the dispersion of molecular weight distribution (shown as dispersion in the table) is also shown.

(絶縁電線の作製)
各実施例及び比較例で得られたポリアミドイミド樹脂ワニスを、直径約1.0mmの銅線表面に、常法に従って塗布、焼付けして、膜厚40μmの絶縁皮膜を有する絶縁電線を作製した。なお、焼付けは、標準線速(3.5m/分)にて行った。
(Production of insulated wires)
The polyamideimide resin varnish obtained in each example and comparative example was applied and baked on the surface of a copper wire having a diameter of about 1.0 mm in accordance with a conventional method to produce an insulated wire having an insulating film with a thickness of 40 μm. Baking was performed at a standard linear velocity (3.5 m / min).

(絶縁皮膜の物性評価)
作製した絶縁電線を用いて、以下の項目につき、物性評価を行った。結果を表1〜2に示す。
(Insulation film physical property evaluation)
Using the manufactured insulated wire, the physical properties of the following items were evaluated. The results are shown in Tables 1-2.

1.引張弾性率、破断強度、破断伸び、破断エネルギー測定
作製した絶縁電線から、銅線をエッチング除去し、残った絶縁皮膜(鞘抜け試料、長さ6cm)を、引張試験機を用いて、チャック間隔20mm、引張速度10mm/分で引張試験を行い、得られたS−Sカーブから、引張弾性率(kg/mm)、破断強度(kg/mm)、破断伸び(%)、および破断エネルギー(kg・mm)を求めた。
1. Measurement of tensile modulus, strength at break, elongation at break, energy at break The copper wire was etched away from the prepared insulated wire, and the remaining insulation film (sheathed sample, length 6 cm) was measured using a tensile tester. A tensile test was performed at 20 mm and a tensile speed of 10 mm / min. From the obtained SS curve, the tensile elastic modulus (kg / mm 2 ), breaking strength (kg / mm 2 ), breaking elongation (%), and breaking energy (Kg · mm) was determined.

2.密着力測定
作製した絶縁電線の絶縁皮膜に、その長手方向に沿って長さ2cmほどの2本の切れ込みを0.5mm間隔で入れ、2本の切れ込みの間の絶縁皮膜の一端をピンセットでめくって、熱機械試験機(TMA:サーマルメカニカルアナルシス、セイコー電子製)を用いて絶縁皮膜と銅線の180°剥離試験を行い、皮膜の密着力(g/mm)を測定した。
2. Adhesion measurement In the insulation film of the manufactured insulated wire, two cuts of about 2 cm in length are inserted along the longitudinal direction at intervals of 0.5 mm, and one end of the insulation film between the two cuts is turned with tweezers. Then, a 180 ° peel test between the insulating film and the copper wire was performed using a thermomechanical tester (TMA: Thermal Mechanical Analyss, manufactured by Seiko Electronics), and the adhesion force (g / mm) of the film was measured.

3.一方向摩耗性試験
JIS C3003−1999に記載の耐摩耗試験に準拠し、測定した。
3. Unidirectional abrasion test Measured according to the abrasion resistance test described in JIS C3003-1999.

4.可とう性試験
作製した絶縁電線を10%伸張し、直径1mmの丸棒をあてがって、電線を丸棒の外形に対応させて曲げた際の、絶縁皮膜の割れや剥離を観察し、異常が見られなかったものを良、異常が見られたものを不良とした。試験は、30個のサンプルについて行い、不良の数が、0は「◎」、1〜2は「○」、3〜9は「△」、10以上は「×」と判定した。
4). Flexibility test 10% of the manufactured insulated wire is applied, and a 1mm diameter round bar is applied. When the wire is bent to correspond to the outer shape of the round bar, the insulation film is cracked or peeled off. Those that were not seen were considered good, and those that showed abnormalities were judged as bad. The test was performed on 30 samples, and the number of defects was determined as “◎” for 0, “◯” for 1-2, “Δ” for 3-9, and “x” for 10 or more.

5.損傷荷重測定
作製した絶縁電線に直交させてピアノ線を重ね合わせ、ピアノ線に種々の重さの加重をかけた状態でピアノ線を引き、絶縁皮膜が損傷する荷重を記録した。
5). Damage load measurement Piano wires were superimposed perpendicular to the manufactured insulated wires, and the piano wires were drawn with various weights applied to the piano wires, and the load at which the insulation film was damaged was recorded.

6.プレス加工後のBDV評価
作製した絶縁電線により二個撚り線を作製し、これをプレス機にて元の厚みの60%になるまでプレス加工した。作製したサンプルを電解液中に浸して絶縁破壊電圧(BDV)を測定し、10個のサンプルの数値を平均して平均絶縁破壊電圧を求めた。平均絶縁破壊電圧が、プレス加工前の絶縁破壊電圧の20%以上のものを○、10%以上20%未満のものを△、10%未満のものを×と判定した。
6). BDV evaluation after press working Two stranded wires were produced from the produced insulated wire, and this was pressed with a press machine until it reached 60% of the original thickness. The produced samples were immersed in an electrolytic solution, and the breakdown voltage (BDV) was measured. The numerical values of ten samples were averaged to obtain an average breakdown voltage. An average dielectric breakdown voltage of 20% or more of the dielectric breakdown voltage before press working was evaluated as ◯, 10% or more and less than 20%, and Δ or less than 10% as x.

Figure 2007270074
Figure 2007270074

Figure 2007270074
Figure 2007270074

表1、2に示すように、酸成分にBTDAを用いかつ共重合反応を150℃以下の反応温度で行った実施例1〜3で得られた絶縁皮膜は、BTDAを用いない比較例1〜2や反応温度が150℃以上となった比較例3〜4で得られた絶縁皮膜と比べて、分子量分布の分散が小さく、又、破断強度、破断伸び、及び破断エネルギーにおいて優れている。すなわち表1、2の結果より、実施例1〜3で得られた絶縁皮膜は靭性に優れていることがわかる。さらに、実施例1〜3で得られた絶縁皮膜は、摩耗性及びプレス加工後のBDV特性にも優れており、耐加工性が良いことがわかる。   As shown in Tables 1 and 2, the insulating films obtained in Examples 1 to 3 in which BTDA was used as the acid component and the copolymerization reaction was performed at a reaction temperature of 150 ° C. or lower were used in Comparative Examples 1 to 3 in which BTDA was not used. 2 and the insulating film obtained in Comparative Examples 3 and 4 having a reaction temperature of 150 ° C. or higher, the dispersion of the molecular weight distribution is small, and the breaking strength, breaking elongation, and breaking energy are excellent. That is, the results of Tables 1 and 2 show that the insulating films obtained in Examples 1 to 3 are excellent in toughness. Furthermore, it can be seen that the insulating films obtained in Examples 1 to 3 are excellent in wearability and BDV characteristics after press working, and have good workability.

実施例4
径約1.0mmの銅線に、高密着性アミドイミド樹脂ワニス(日立化成製、HI−400A−25)を塗布し、焼付炉を用いて焼付けして、厚み11μmの下地層を形成した。その後、この下地層上に、実施例1で得られたポリアミドイミド樹脂ワニスを、常法によって塗布し、焼付炉を用いて焼付けして、膜厚約21μmの絶縁皮膜を下地層上に形成した。さらにその後、この絶縁皮膜上に高潤滑性アミドイミドを塗布し、焼付けして、厚み2μmの表面潤滑層を形成した。図1は、このようにして得られた絶縁電線の断面図である。
Example 4
A high adhesion amidoimide resin varnish (manufactured by Hitachi Chemical Co., Ltd., HI-400A-25) was applied to a copper wire having a diameter of about 1.0 mm and baked using a baking furnace to form an underlayer having a thickness of 11 μm. Thereafter, the polyamide-imide resin varnish obtained in Example 1 was applied on the underlayer by a conventional method and baked using a baking furnace to form an insulating film having a thickness of about 21 μm on the underlayer. . Thereafter, a highly lubricating amide imide was applied onto this insulating film and baked to form a surface lubricating layer having a thickness of 2 μm. FIG. 1 is a cross-sectional view of the insulated wire thus obtained.

実施例5
下地層の形成に、高密着性エステルイミドワニスを用いた以外は、実施例4と同様にして、絶縁電線を形成した。
Example 5
An insulated wire was formed in the same manner as in Example 4 except that a high adhesion ester imide varnish was used to form the underlayer.

実施例4で得られた絶縁電線の断面図である。It is sectional drawing of the insulated wire obtained in Example 4. FIG.

Claims (6)

下記一般式(1)
Figure 2007270074

〔式中R、Rは同一又は異なって、水素原子、アルキル基、アルコキシ基又はハロゲン原子を示す。m、nは同一又は異なって1〜4の数を示す。〕で表される芳香族ジイソシアネート化合物を5〜60モル%含有するジイソシアネート成分と、
トリメリット酸無水物及び芳香族テトラカルボン酸二無水物を含有し、芳香族テトラカルボン酸二無水物の含有量が5〜40モル%である酸成分を、
150℃以下の反応温度で共重合反応して得られ、
GPC法により測定した重量平均分子量が、20,000〜200,000であるポリアミドイミドを含有することを特徴とする耐加工性ポリアミドイミド樹脂ワニス。
The following general formula (1)
Figure 2007270074

[Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom. m and n are the same or different and represent a number of 1 to 4. A diisocyanate component containing 5 to 60 mol% of an aromatic diisocyanate compound represented by the formula:
An acid component containing trimellitic anhydride and aromatic tetracarboxylic dianhydride, wherein the content of aromatic tetracarboxylic dianhydride is 5 to 40 mol%,
Obtained by a copolymerization reaction at a reaction temperature of 150 ° C. or lower,
A process-resistant polyamide-imide resin varnish comprising a polyamide-imide having a weight average molecular weight measured by GPC method of 20,000 to 200,000.
前記芳香族テトラカルボン酸二無水物が、ベンゾフェノンテトラカルボン酸二無水物であることを特徴とする請求項1に記載の耐加工性ポリアミドイミド樹脂ワニス。   The work-resistant polyamide-imide resin varnish according to claim 1, wherein the aromatic tetracarboxylic dianhydride is benzophenone tetracarboxylic dianhydride. 前記酸成分が、さらに、トリメリット酸及び/又は芳香族テトラカルボン酸一無水物を、合計で0.1〜5モル%含有することを特徴とする請求項1又は請求項2に記載の耐加工性ポリアミドイミド樹脂ワニス。   3. The acid resistance according to claim 1, wherein the acid component further contains trimellitic acid and / or aromatic tetracarboxylic acid monoanhydride in a total amount of 0.1 to 5 mol%. Processable polyamide-imide resin varnish. 導体の外側に絶縁皮膜を有する絶縁電線であって、絶縁皮膜の全部又は一部が請求項1ないし請求項3のいずれかに記載の耐加工性ポリアミドイミド樹脂ワニスを塗布、焼き付けして形成された絶縁層であることを特徴とする絶縁電線。   An insulated wire having an insulating film on the outside of the conductor, wherein all or a part of the insulating film is formed by applying and baking the work-resistant polyamide-imide resin varnish according to any one of claims 1 to 3. An insulated wire characterized by being an insulating layer. 前記絶縁皮膜と導体間に、導体との密着性の良い材料からなる下地層をさらに有することを特徴とする請求項4に記載の絶縁電線。   The insulated wire according to claim 4, further comprising a ground layer made of a material having good adhesion to the conductor between the insulating film and the conductor. 外表面に、表面潤滑層をさらに有することを特徴とする請求項4又は請求項5に記載の絶縁電線。
The insulated wire according to claim 4 or 5, further comprising a surface lubricating layer on the outer surface.
JP2006100577A 2006-03-31 2006-03-31 Processing resistant polyamide-imide resin vanish and electrical insulating wire Pending JP2007270074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100577A JP2007270074A (en) 2006-03-31 2006-03-31 Processing resistant polyamide-imide resin vanish and electrical insulating wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100577A JP2007270074A (en) 2006-03-31 2006-03-31 Processing resistant polyamide-imide resin vanish and electrical insulating wire

Publications (1)

Publication Number Publication Date
JP2007270074A true JP2007270074A (en) 2007-10-18

Family

ID=38673190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100577A Pending JP2007270074A (en) 2006-03-31 2006-03-31 Processing resistant polyamide-imide resin vanish and electrical insulating wire

Country Status (1)

Country Link
JP (1) JP2007270074A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242490A (en) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The Insulated electric wire
JP2010013546A (en) * 2008-07-03 2010-01-21 Furukawa Electric Co Ltd:The Insulating coating material and insulated electric cable
JP2012166809A (en) * 2011-02-14 2012-09-06 Toyo Ink Sc Holdings Co Ltd Varnish for lid material
CN103310884A (en) * 2012-03-13 2013-09-18 日立电线株式会社 Insulated wire and coil formed by using the same
US9145505B2 (en) 2009-08-31 2015-09-29 Hitachi Metals, Ltd. Polyamide-imide resin based insulating varnish and insulated wire covered with same
JP2018120185A (en) * 2017-01-27 2018-08-02 富士ゼロックス株式会社 Transfer roller, image forming apparatus, transfer device, and transfer unit
WO2018199211A1 (en) * 2017-04-28 2018-11-01 住友電気工業株式会社 Insulated wire
CN116194513A (en) * 2020-09-22 2023-05-30 艾伦塔斯欧洲有限公司 Wire enamel composition comprising polyamideimide

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242490A (en) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The Insulated electric wire
JP2010013546A (en) * 2008-07-03 2010-01-21 Furukawa Electric Co Ltd:The Insulating coating material and insulated electric cable
US9145505B2 (en) 2009-08-31 2015-09-29 Hitachi Metals, Ltd. Polyamide-imide resin based insulating varnish and insulated wire covered with same
JP2012166809A (en) * 2011-02-14 2012-09-06 Toyo Ink Sc Holdings Co Ltd Varnish for lid material
CN103310884A (en) * 2012-03-13 2013-09-18 日立电线株式会社 Insulated wire and coil formed by using the same
JP2018120185A (en) * 2017-01-27 2018-08-02 富士ゼロックス株式会社 Transfer roller, image forming apparatus, transfer device, and transfer unit
WO2018199211A1 (en) * 2017-04-28 2018-11-01 住友電気工業株式会社 Insulated wire
CN110574128A (en) * 2017-04-28 2019-12-13 住友电气工业株式会社 Insulated wire
JPWO2018199211A1 (en) * 2017-04-28 2020-03-12 住友電気工業株式会社 Insulated wire
US10991477B2 (en) 2017-04-28 2021-04-27 Sumitomo Electric Industries, Ltd. Insulated electrical cable
JP7214628B2 (en) 2017-04-28 2023-01-30 住友電気工業株式会社 insulated wire
CN116194513A (en) * 2020-09-22 2023-05-30 艾伦塔斯欧洲有限公司 Wire enamel composition comprising polyamideimide

Similar Documents

Publication Publication Date Title
JP5626530B2 (en) Insulating paint, method for producing the same, insulated wire using the same, and method for producing the same
JP2007270074A (en) Processing resistant polyamide-imide resin vanish and electrical insulating wire
US3652471A (en) Polyester amide-imide wire enamels
US4004063A (en) Aqueous enamel for coating magnet wire
CN102081997B (en) Insulated wire
US6734361B2 (en) Insulated wire
JP5561589B2 (en) Insulating paint, insulated wire, and coil using the same
JP2012184416A (en) Polyamideimide resin insulation coating and insulated electric wire formed by using the same
JP2010070698A (en) Method for producing polyesterimide varnish
KR100679369B1 (en) Enamel Vanish Composition for enamel wire and enamel wire using the same
JP4190589B2 (en) Insulated wire
CN109293920B (en) Resin composition and insulated wire using same
JP2012046619A (en) Insulated wire, electric appliance coil using the same, and motor
JP5316857B2 (en) Electrical insulating coating composition and insulated wire
JP5407059B2 (en) Insulated wire
JP3287025B2 (en) Insulated wire
WO2012026438A1 (en) Polyester imide resin based varnish for low-permittivity coating
JP5342277B2 (en) Multi-layer insulated wire
KR100879002B1 (en) Insulating varnish composition containing polyamideimide and Insulated wire containing insulated layer coated thereof
JP2010031101A (en) Polyamideimide resin coating and insulated electric wire using it
JP4934624B2 (en) Insulated wire
JP2011159578A (en) Insulation wire, and electric coil and motor using the same
JP2010013546A (en) Insulating coating material and insulated electric cable
JPH05225830A (en) Insulated wire
JP5770986B2 (en) Polyesterimide resin varnish for low dielectric constant coating