JP2007269034A - Fiber-reinforced composite material - Google Patents

Fiber-reinforced composite material Download PDF

Info

Publication number
JP2007269034A
JP2007269034A JP2007126457A JP2007126457A JP2007269034A JP 2007269034 A JP2007269034 A JP 2007269034A JP 2007126457 A JP2007126457 A JP 2007126457A JP 2007126457 A JP2007126457 A JP 2007126457A JP 2007269034 A JP2007269034 A JP 2007269034A
Authority
JP
Japan
Prior art keywords
fiber
cut
yarn
reinforced composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007126457A
Other languages
Japanese (ja)
Other versions
JP4544266B2 (en
Inventor
Ryuta Kamiya
隆太 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2007126457A priority Critical patent/JP4544266B2/en
Publication of JP2007269034A publication Critical patent/JP2007269034A/en
Application granted granted Critical
Publication of JP4544266B2 publication Critical patent/JP4544266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced composite material which can be manufactured at low cost. <P>SOLUTION: An x thread layer and a y thread layer formed by arranging continuous fibers in one direction are laminated alternately in plural layers to form a laminated fiber group 6 of biaxial orientation. A fiber structure 1 is provided with a non cut-off domain 2 and a cut-off domain 3; wherein the continuous fiber of the laminated fiber group 6, combined by a thickness direction thread 7 and a fall-off preventing thread 8, of the non cut-off domain 2 is not cut off, while the continuous fiber of the cut-off domain 3 is cut off. The cut-off domain 3 is provided in a part where a deformation is required on shaping into product shape. Also, both end parts of the fiber structure 1 serve as the non cut-off domain 2. The cut-off domain 3 is easy to deform due to weak binding since a portion of the threads is cut off. Therefore, deformation on shaping is easy even if the continuous fiber in three dimensional fiber structure is used as a reinforcement. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、繊維強化複合材に関するものである。   The present invention relates to a fiber reinforced composite material.

繊維強化複合材、特に繊維強化プラスチックは軽量・高強度であり、自動車ではスポイラーなどの構造材として広く利用されている。繊維強化複合材に使用される繊維としては、炭素繊維、ガラス繊維、ポリアラミド繊維などがある。   Fiber reinforced composite materials, especially fiber reinforced plastics, are lightweight and high in strength, and are widely used as structural materials for spoilers in automobiles. Examples of the fiber used for the fiber reinforced composite material include carbon fiber, glass fiber, and polyaramid fiber.

最もよく用いられている連続繊維でない短繊維や長繊維を強化材とした繊維強化複合材は、繊維が切れており、その配向もコントロールが困難であるので、用途によっては強度的に不足する場合がある。また、チョップドファイバーを用いた不織布や牽切糸を用いた織物など、あらかじめ切断した繊維を用いた二次元繊維構造体を強化材とした繊維強化複合材は、短繊維や長繊維による繊維強化複合材よりも強度が高い。しかし、切断工程がコストアップとなる。また、最終製品の厚さが厚い場合、不織布や織物を複数枚積層して使用するため、厚さ方向の強度が弱く、曲げ強度も弱い。   The most commonly used fiber reinforced composites with short fibers and long fibers that are not continuous fibers are used as reinforcing materials because the fibers are cut and their orientation is difficult to control. There is. In addition, fiber reinforced composites made from two-dimensional fiber structures using pre-cut fibers, such as non-woven fabrics using chopped fibers and fabrics using check yarns, are fiber reinforced composites made of short or long fibers. Stronger than the material. However, the cutting process increases the cost. Further, when the final product is thick, a plurality of non-woven fabrics and woven fabrics are used, so that the strength in the thickness direction is weak and the bending strength is also weak.

最終製品の厚さが厚く、さらに高強度を要求される場合には、連続繊維を用いた三次元繊維構造体を強化材とした繊維強化複合材が使用される。繊維が連続しており、さらに三次元的に構成されているので、非常に高強度である。   When the final product is thick and requires high strength, a fiber-reinforced composite material using a three-dimensional fiber structure using continuous fibers as a reinforcing material is used. Since the fibers are continuous and are three-dimensionally configured, the strength is very high.

繊維強化複合材は成形の際、部品形状に変形させる必要がある。二次元繊維構造体について従来は、変形をしやすくするため目の粗い織物を部分的に熱可塑性樹脂で融着させる方法がある。また、特許文献1では、補強繊維をたて糸及びよこ糸とする2方向性織物を含む深絞り成形されたプリフォームが開示されている。このプリフォームは前記たて糸及びよこ糸の少なくとも一方に、熱可塑性ポリマーを、線状に、かつ連続または不連続に付着せしめ、かつ、その補強織物の2方向に伸びる織糸の最小交角が20〜40度であることを特徴とする。しかし、強化材として織物を使用する場合は、目を粗くしても拘束が存在するため、変形に限度があるとともに、配列方向が異なる糸(繊維)同士が干渉するため、繊維が真っ直ぐに配列されず、繊維強化複合材を高強度にするのが難しい。
特開平8−337666号公報
The fiber reinforced composite material needs to be deformed into a part shape at the time of molding. Conventionally, a two-dimensional fiber structure has a method in which a coarsely woven fabric is partially fused with a thermoplastic resin in order to facilitate deformation. Patent Document 1 discloses a preform formed by deep drawing including a bi-directional woven fabric using warp yarns and weft yarns as reinforcing fibers. In this preform, a thermoplastic polymer is linearly and continuously or discontinuously attached to at least one of the warp and the weft, and the minimum crossing angle of the weaving yarn extending in two directions of the reinforcing fabric is 20 to 40. It is a degree. However, when using woven fabric as a reinforcing material, there are restrictions even if the eyes are rough, so there is a limit to deformation, and threads (fibers) with different arrangement directions interfere with each other, so the fibers are arranged straight. It is difficult to increase the strength of the fiber reinforced composite material.
JP-A-8-337666

連続繊維を用いた三次元繊維構造体は二次元繊維構造体に比べてさらに部品形状に合わせて変形しにくい。そのため連続繊維を用いた三次元繊維構造体は、変形をする必要がないように、あらかじめ製品形状に合わせた形状で製作する必要があった。ところが、この場合製品形状ごとに繊維構造体の製造装置、治具等が必要となる為コストが高かった。   A three-dimensional fiber structure using continuous fibers is more difficult to deform in accordance with the part shape than a two-dimensional fiber structure. Therefore, it is necessary to manufacture a three-dimensional fiber structure using continuous fibers in a shape that matches the product shape in advance so that it does not need to be deformed. However, in this case, the manufacturing cost, the jig and the like of the fiber structure are required for each product shape, so the cost is high.

本発明は以上の問題に鑑みてなされたものであって、その目的は低コストで製造できる繊維強化複合材を提供する事である。   This invention is made | formed in view of the above problem, The objective is to provide the fiber reinforced composite material which can be manufactured at low cost.

前記の目的を達成するため、請求項1に記載の発明は、連続繊維から成る繊維束が少なくとも2軸配向された積層繊維群の全面に該積層繊維群の厚さ方向に配列された連続繊維から成る結合糸で結合して繊維構造体を形成し、該繊維構造体にマトリックスを含浸させた繊維強化複合材であって、前記繊維構造体を構成する連続繊維のうちの一部の領域の前記連続繊維が切断されており、この連続繊維の切断されている領域で変形している。ここで、「糸」とは、撚りが掛かった糸のみを意味するのではなく、多数本の繊維が束となって撚りが実質掛かっていない繊維束(所謂ロービング)をも含む。   In order to achieve the above object, the invention according to claim 1 is directed to a continuous fiber in which a bundle of continuous fibers is arranged in the thickness direction of the laminated fiber group on the entire surface of the laminated fiber group in which at least biaxial orientation is performed. A fiber reinforced composite material in which a fiber structure is formed by binding with a binding yarn comprising the fiber structure, and the fiber structure is impregnated with a matrix, in a part of the continuous fibers constituting the fiber structure The continuous fiber is cut and is deformed in a region where the continuous fiber is cut. Here, the “yarn” does not mean only a twisted yarn but also includes a fiber bundle (so-called roving) in which a large number of fibers are bundled and are not substantially twisted.

この発明では、結合糸によって結合された積層繊維群の全面のうち、変更の必要な部分の領域の連続繊維の一部を切断することで、前記領域で拘束力が低下する。従って、連続繊維の切断されている領域で拘束力が低下し変形が容易であり、製品形状に合わせた形状の繊維構造体を製作する必要がなく繊維強化複合材の製造コストを抑えることができる。   In the present invention, by cutting a part of continuous fibers in the area of the part of the laminated fiber group bonded by the binding yarn, the binding force is reduced in the area. Therefore, the restraining force is reduced in the region where the continuous fibers are cut and deformation is easy, and it is not necessary to manufacture a fiber structure having a shape matched to the product shape, and the manufacturing cost of the fiber reinforced composite material can be suppressed. .

請求項2に記載の発明は、請求項1に記載の発明において、前記積層繊維群の全面に前記結合糸が均一に配列されている。従って、前記繊維強化複合材の製作が容易である。
請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記結合糸は前記積層繊維群の一方の面で折り返されてU字状のループを形成し、該ループ内を通過するように連続繊維から成る抜け止め糸が挿入されている。したがって、結合糸が抜けることを抑制できる。
The invention according to claim 2 is the invention according to claim 1, wherein the binding yarns are uniformly arranged on the entire surface of the laminated fiber group. Therefore, it is easy to manufacture the fiber reinforced composite material.
According to a third aspect of the present invention, in the first or second aspect of the present invention, the binding yarn is folded back on one surface of the laminated fiber group to form a U-shaped loop. A retaining thread made of continuous fibers is inserted so as to pass through the thread. Therefore, it is possible to suppress the binding yarn from coming off.

請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記繊維構造体の長さ方向及び幅方向のうち少なくとも一方の両端部の領域で連続繊維が切断されていない。   The invention according to claim 4 is the continuous fiber according to any one of claims 1 to 3 in the region of at least one of both ends in the length direction and width direction of the fiber structure. Is not disconnected.

以上詳述したように、各請求項に記載の発明は、低コストで製造することのできる繊維強化複合材である。   As described in detail above, the invention described in each claim is a fiber-reinforced composite material that can be manufactured at low cost.

(第1の実施の形態)
以下、本発明を熱可塑性樹脂をマトリックス樹脂とした繊維強化複合材に具体化した一実施の形態を図1〜図3に従って説明する。
(First embodiment)
Hereinafter, an embodiment in which the present invention is embodied in a fiber reinforced composite material using a thermoplastic resin as a matrix resin will be described with reference to FIGS.

はじめに繊維構造体について説明する。図1(b)に示すように、連続繊維から成る繊維束としてのx糸4aは一方向(図1(b)において紙面に垂直な方向)に配列されてx糸層4を形成している。同様に連続繊維から成る繊維束としてのy糸5aも一方向(図1(b)において左右方向)に配列されてy糸層5を形成している。x糸層4とy糸層5は交互に複数層積層されて2軸配向の積層繊維群6を形成している。2軸は互いに直交している。厚さ方向糸7は積層繊維群6の全面に、積層繊維群6の厚さ方向に均一に挿入され、配列されている。厚さ方向糸7は積層繊維群6の一方の面(図1(b)では下面)でU字に折り返されており、他方の面(図1(b)では上面)では厚さ方向糸7の配列ピッチだけ離れた挿入位置で再び積層繊維群6に挿入された状態で連続している。抜け止め糸8は厚さ方向糸7がU字に折り返されている部分に挿通されている。厚さ方向糸7と抜け止め糸8が締め付けられることにより、x糸層4とy糸層5が結合されている。厚さ方向糸7と抜け止め糸8によって結合された積層繊維群6のうち、一部の領域でx糸4a、y糸5a、厚さ方向糸7、抜け止め糸8の一部が切断されて切断領域3が形成されている。   First, the fiber structure will be described. As shown in FIG. 1B, the x yarns 4a as a fiber bundle composed of continuous fibers are arranged in one direction (a direction perpendicular to the paper surface in FIG. 1B) to form an x yarn layer 4. . Similarly, the y yarn 5a as a fiber bundle made of continuous fibers is also arranged in one direction (left and right in FIG. 1B) to form the y yarn layer 5. A plurality of x yarn layers 4 and y yarn layers 5 are alternately laminated to form a biaxially oriented laminated fiber group 6. The two axes are orthogonal to each other. The thickness direction yarns 7 are uniformly inserted and arranged on the entire surface of the laminated fiber group 6 in the thickness direction of the laminated fiber group 6. The thickness direction yarn 7 is folded back into a U-shape on one surface (lower surface in FIG. 1B) of the laminated fiber group 6, and the thickness direction yarn 7 is formed on the other surface (upper surface in FIG. 1B). Are continuously inserted in the laminated fiber group 6 at the insertion position separated by the arrangement pitch of. The retaining thread 8 is inserted through a portion where the thickness direction thread 7 is folded back into a U shape. By tightening the thickness direction thread 7 and the retaining thread 8, the x thread layer 4 and the y thread layer 5 are joined. Among the laminated fiber group 6 joined by the thickness direction thread 7 and the retaining thread 8, a part of the x thread 4a, the y thread 5a, the thickness direction thread 7, and the retaining thread 8 is cut in a part of the region. Thus, the cut region 3 is formed.

図1(a)に示すように繊維構造体1は、厚さ方向糸7と抜け止め糸8によって結合された積層繊維群6のx糸4a,y糸5a等が切断されていない非切断領域2と、x糸4a,y糸5a等が切断されている切断領域3とを備えている。切断領域3は製品形状に成形する際に変形が必要な部分に設けられている。また、繊維構造体1の両端部は非切断領域2となっている。切断領域3は、前記各糸の一部が切断されている為、非切断領域2に比べて拘束力が弱く変形しやすい。   As shown in FIG. 1 (a), the fiber structure 1 includes an uncut region in which the x yarn 4a, the y yarn 5a, etc. of the laminated fiber group 6 joined by the thickness direction yarn 7 and the retaining yarn 8 are not cut. 2 and a cutting region 3 where x yarn 4a, y yarn 5a and the like are cut. The cutting region 3 is provided in a portion that needs to be deformed when forming into a product shape. Further, both end portions of the fiber structure 1 are non-cut regions 2. Since a part of each thread | yarn is cut | disconnected in the cutting | disconnection area | region 3, compared with the non-cut | disconnecting area | region 2, restraint force is weak and it is easy to deform | transform.

x糸4aとy糸5aと厚さ方向糸7と抜け止め糸8として連続繊維が使用されている。この実施の形態では連続繊維として炭素繊維が使用されている。炭素繊維はフィラメント数が3000〜24000本程度である。厚さ方向糸7の配列ピッチは3〜5mm程度である。繊維構造体1の厚さは5mm程度である。   Continuous fibers are used as the x yarn 4a, the y yarn 5a, the thickness direction yarn 7 and the retaining yarn 8. In this embodiment, carbon fibers are used as continuous fibers. Carbon fiber has about 3000 to 24000 filaments. The arrangement pitch of the thickness direction yarns 7 is about 3 to 5 mm. The thickness of the fiber structure 1 is about 5 mm.

次に熱可塑性樹脂をマトリックス樹脂とした繊維強化複合材を製造する方法について説明する。
図2(a)、(b)に示すように、矩形状の枠体9にはその孔9aを囲むように多数のピン9bが設置されている。ピン9bのピッチはx糸4a及びy糸5aのピッチに合わせてある。
Next, a method for producing a fiber reinforced composite material using a thermoplastic resin as a matrix resin will be described.
As shown in FIGS. 2A and 2B, the rectangular frame body 9 is provided with a large number of pins 9b so as to surround the hole 9a. The pitch of the pins 9b is adjusted to the pitch of the x yarn 4a and the y yarn 5a.

図2(a)に示すように、x糸4aはピン9bと係合する状態で折り返されて一方向に配向されたx糸層4が形成される。次に図2(b)に示すように、y糸5aも同様にしてピン9bと係合する状態で折り返されてx糸4aと直交する一方向に配向されてy糸層5が形成される。これを所定の回数繰り返して積層繊維群6が形成される。図2(a),(b)では、x糸4a及びy糸5aの配列間隔が広く図示されているが、実際は隣接して配列されたx糸4a同士あるいはy糸5a同士が接触する状態で配列される。   As shown in FIG. 2 (a), the x yarn 4a is folded in a state of engaging with the pin 9b to form the x yarn layer 4 oriented in one direction. Next, as shown in FIG. 2 (b), the y yarn 5a is similarly folded in a state of engaging with the pin 9b and oriented in one direction perpendicular to the x yarn 4a to form the y yarn layer 5. . By repeating this a predetermined number of times, the laminated fiber group 6 is formed. 2 (a) and 2 (b), the arrangement interval of the x yarn 4a and the y yarn 5a is widely illustrated. However, in actuality, the adjacent x yarns 4a or the y yarns 5a are in contact with each other. Arranged.

次に積層繊維群6に、例えば特開平8−218249号公報に開示されている方法により厚さ方向糸7が挿入される。詳述すれば、積層繊維群6の厚さ方向に、先端に孔を備え前記孔に厚さ方向糸7を掛止した図示しない挿入針を挿入する。挿入針は厚さ方向糸7が掛止された挿入針の孔が積層繊維群6を貫通するまで前進し挿入される。その後、挿入針はわずかに引き戻される。その結果、厚さ方向糸7はU字状のループを形成した状態となる。   Next, the thickness direction yarn 7 is inserted into the laminated fiber group 6 by a method disclosed in, for example, Japanese Patent Laid-Open No. 8-218249. More specifically, in the thickness direction of the laminated fiber group 6, an insertion needle (not shown) having a hole at the tip and hooking the thickness direction thread 7 into the hole is inserted. The insertion needle is advanced and inserted until the hole of the insertion needle to which the thickness direction thread 7 is hooked penetrates the laminated fiber group 6. Thereafter, the insertion needle is pulled back slightly. As a result, the thickness direction thread 7 is in a state where a U-shaped loop is formed.

次に図示しない抜け止め糸針が前記U字状のループ内を通過し、積層繊維群6の端部まで到達した時点で停止する。この時抜け止め糸8が抜け止め糸針の先端に掛止される。そして、抜け止め糸針が引き戻され、抜け止め糸8が厚さ方向糸7のU字状ループ内に挿通された状態になる。その状態で挿入針が引き戻され、厚さ方向糸7により抜け止め糸8が締め付けられて各糸層が結合される。この工程が積層繊維群6の全面に均一に行われ、積層繊維群6の各糸層が厚さ方向糸7で結合された繊維構造体が製作される。   Next, the stopper thread needle (not shown) stops when it passes through the U-shaped loop and reaches the end of the laminated fiber group 6. At this time, the retaining thread 8 is hooked to the tip of the retaining thread needle. Then, the retaining thread needle is pulled back, and the retaining thread 8 is inserted into the U-shaped loop of the thickness direction thread 7. In this state, the insertion needle is pulled back, and the retaining thread 8 is tightened by the thickness direction thread 7 to join the thread layers. This process is performed uniformly on the entire surface of the laminated fiber group 6, and a fiber structure in which each thread layer of the laminated fiber group 6 is bonded with the thickness direction thread 7 is manufactured.

次に、前記繊維構造体のうち、所望の製品形状に成形する際に変形が必要な部分となる領域に、前記挿入針に代えて取り付けられた切断針が複数回挿入・引戻しされる。切断針が挿入・引戻しされた回数に応じて前記領域のx糸4a、y糸5a、厚さ方向糸7、抜け止め糸8が切断されて、切断領域3が形成される。こうして非切断領域2と切断領域3から構成された繊維構造体1が製作される。ただし繊維構造体1の全ての領域が切断領域3となることは無い。   Next, a cutting needle attached in place of the insertion needle is inserted / retracted a plurality of times into an area of the fiber structure that needs to be deformed when it is formed into a desired product shape. According to the number of times the cutting needle is inserted / retracted, the x yarn 4a, the y yarn 5a, the thickness direction yarn 7, and the retaining yarn 8 in the region are cut to form the cutting region 3. Thus, the fiber structure 1 composed of the non-cut region 2 and the cut region 3 is manufactured. However, the entire region of the fiber structure 1 does not become the cutting region 3.

前述のようにして得られた繊維構造体1に溶融含浸成形法など一般の含浸法で熱可塑性樹脂が含浸され、冷却されて成形用の板状の素材が形成される。次に前記素材は成形前に加熱され軟化された後、プレス成形機でプレス成形され、冷却されて、図3に示すように製品形状の繊維強化複合材10を得る。   The fiber structure 1 obtained as described above is impregnated with a thermoplastic resin by a general impregnation method such as a melt impregnation molding method, and cooled to form a plate-shaped material for molding. Next, the material is heated and softened before molding, then press-molded with a press-molding machine and cooled to obtain a product-shaped fiber-reinforced composite material 10 as shown in FIG.

この実施の形態では以下の効果を有する。
(1) 積層繊維群6の各糸層が厚さ方向糸7で結合された繊維構造体の、変形が必要な部分の領域の連続繊維の一部が切断された繊維構造体1を強化材とした繊維強化複合材が製造される。従って、製品形状に合わせた形状の三次元繊維構造体を製作する必要がなくコストを抑えることができる。
This embodiment has the following effects.
(1) Reinforcement of fiber structure 1 in which a part of continuous fibers in a region of a portion of the fiber structure in which the respective yarn layers of the laminated fiber group 6 are joined by the thickness direction yarns 7 are cut. A fiber reinforced composite material is produced. Therefore, it is not necessary to manufacture a three-dimensional fiber structure having a shape that matches the product shape, and costs can be reduced.

(2) 連続繊維は、切断針が積層繊維群6の各糸層が厚さ方向糸7で結合された繊維構造体に挿入・引戻しされることで切断される。従って、繊維構造体1の製造が容易である。   (2) The continuous fiber is cut when the cutting needle is inserted into and pulled back from the fiber structure in which each thread layer of the laminated fiber group 6 is joined by the thickness direction thread 7. Therefore, the production of the fiber structure 1 is easy.

(3) 切断領域3は切断針が挿入・引戻しされることで形成される。従って挿入・引戻しする回数によって切断領域3の拘束力を容易に調整できる。
(4) 切断領域3は挿入針に代えて取り付けられる切断針が挿入・引戻しされることで形成される。従って既存の設備が利用でき、製造が容易である。
(3) The cutting region 3 is formed by inserting and retracting the cutting needle. Therefore, the restraining force of the cutting region 3 can be easily adjusted by the number of insertions / retractions.
(4) The cutting region 3 is formed by inserting / retracting a cutting needle attached instead of the insertion needle. Therefore, existing equipment can be used and manufacturing is easy.

(5) 切断領域3のみ拘束力が低下しており、非切断領域2は連続繊維で構成され拘束力が保たれている。従って、繊維構造体1に樹脂が含浸されない状態においても繊維構造体1のハンドリング性がよい。   (5) The restraining force is reduced only in the cutting region 3, and the non-cutting region 2 is composed of continuous fibers and the restraining force is maintained. Therefore, the handleability of the fiber structure 1 is good even when the fiber structure 1 is not impregnated with resin.

(6) 繊維構造体1の両端部に非切断領域2が設けられている。従って、繊維構造体1に樹脂が含浸されない状態においても繊維構造体1のハンドリング性がよい。
(7) 変形が必要な部分である切断領域3は拘束力が低下している。従って、プレス加工により部品形状に合わせて繊維構造体1が変形し、皺が発生しない。
(6) Non-cutting regions 2 are provided at both ends of the fiber structure 1. Therefore, the handleability of the fiber structure 1 is good even when the fiber structure 1 is not impregnated with resin.
(7) The constraining force is reduced in the cutting region 3, which is a portion that needs to be deformed. Therefore, the fiber structure 1 is deformed according to the shape of the part by press working, and wrinkles are not generated.

(8) 変形が必要な部分である切断領域3のみ拘束力が低下しており、非切断領域2は連続繊維で構成されている。従って、製品形状で連続繊維の三次元繊維構造体を強化材とした繊維強化複合材としての強度が保たれる。   (8) The binding force is reduced only in the cutting region 3 which is a portion that needs to be deformed, and the non-cutting region 2 is composed of continuous fibers. Therefore, the strength as a fiber reinforced composite material using a three-dimensional fiber structure of continuous fibers as a reinforcing material in the product shape is maintained.

(第2の実施の形態)
次に第2の実施の形態を説明する。この実施の形態においては、繊維構造体1の構成・製造方法は前記実施の形態と同一で、成形の工程が大きく異なっている。前記の実施の形態と同様な部分は同一符号を付して詳しい説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described. In this embodiment, the structure / manufacturing method of the fiber structure 1 is the same as that of the above embodiment, and the molding process is greatly different. The same parts as those in the above embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

前記実施の形態により得られた繊維構造体1が成形型に投入され型閉めされる。この時変形が必要な部分の領域は切断領域3となっている為、繊維構造体1は型に合わせて変形し製品形状となる。次に熱硬化性樹脂が注入されて含浸された後、加熱硬化され、図3に示すように製品形状の繊維強化複合材10を得る。(RTM法:レジン・トランスファー・モールディング法)
この実施の形態では前記実施の形態の(1)〜(8)と同様な効果を有する他に、以下の効果を有する。
The fiber structure 1 obtained by the above embodiment is put into a mold and closed. At this time, since the region of the portion that needs to be deformed is the cut region 3, the fiber structure 1 is deformed according to the mold and becomes a product shape. Next, after a thermosetting resin is injected and impregnated, it is cured by heating to obtain a product-shaped fiber-reinforced composite material 10 as shown in FIG. (RTM method: Resin transfer molding method)
In addition to the same effects as (1) to (8) of the above embodiment, this embodiment has the following effects.

(9) 熱硬化性樹脂を使用して成形できる。従って熱可塑性樹脂を使用した場合よりも高強度な繊維強化複合材を製造できる。
実施の形態は前記に限らず、例えば次のように構成してもよい。
(9) It can be molded using a thermosetting resin. Therefore, it is possible to produce a fiber-reinforced composite material having a higher strength than when a thermoplastic resin is used.
The embodiment is not limited to the above, and may be configured as follows, for example.

○ 強化繊維は炭素繊維でなくてもよい。例えば、ガラス繊維、ポリアラミド繊維、セラミック繊維等でもよい。
○ x糸4a、y糸5a、厚さ方向糸7及び抜け止め糸8として全て同じ繊維を使用するのではなく、糸によって異なる繊維を使用してもよい。例えば、繊維強化複合材10に要求される物性に対応して、x糸4aの繊維をy糸5aの繊維より強度の低いものとしてもよい。この場合、繊維強化複合材10を過剰品質とせずに製造コストを低減できる。
○ Reinforcing fiber may not be carbon fiber. For example, glass fiber, polyaramid fiber, ceramic fiber, etc. may be used.
Not all the same fibers are used as the x yarn 4a, the y yarn 5a, the thickness direction yarn 7 and the retaining yarn 8, but different fibers may be used depending on the yarn. For example, the fibers of the x yarn 4a may be lower in strength than the fibers of the y yarn 5a in accordance with the physical properties required for the fiber reinforced composite material 10. In this case, the manufacturing cost can be reduced without making the fiber reinforced composite material 10 excessive quality.

○ 厚さ方向糸7は積層繊維群6の全面に均一に配列されなくてもよい。例えば、厚さ方向糸7を密にした領域は拘束力が強く、厚さ方向糸7を疎にした領域は拘束力が弱くなる。従って拘束力の調整ができる。   The thickness direction yarns 7 do not have to be uniformly arranged on the entire surface of the laminated fiber group 6. For example, a region where the thickness direction yarns 7 are dense has a strong binding force, and a region where the thickness direction yarns 7 are sparse has a low binding force. Therefore, the restraining force can be adjusted.

○ 積層繊維群6は少なくとも2軸配向されていればよく、互いに直交するように配列されたx糸4aからなるx糸層4と、y糸5aからなるy糸層5の2種類の糸層で形成される必要はない。例えば、配列糸が互いに直交しない状態に配列された糸層で積層繊維群6を形成してもよい。   The laminated fiber group 6 only needs to be at least biaxially oriented, and two types of yarn layers, that is, an x yarn layer 4 made of x yarns 4a and a y yarn layer 5 made of y yarns 5a arranged so as to be orthogonal to each other. Need not be formed. For example, the laminated fiber group 6 may be formed of yarn layers arranged so that the arranged yarns are not orthogonal to each other.

○ 積層繊維群6を3軸以上の配向としてもよい。例えば、製品に必要とされる強度に応じてバイアス糸層を入れてもよい。
○ 繊維構造体は平板でなくてもよい。曲率が小さな曲面状に形成されたものでもよい。
O The laminated fiber group 6 may have a triaxial or more orientation. For example, a bias yarn layer may be included depending on the strength required for the product.
○ The fiber structure may not be a flat plate. A curved surface having a small curvature may be used.

○ 抜け止め糸8を使用せずに、厚さ方向糸7のみで各糸層を一般的な縫合によって結合してもよい。
○ 厚さ方向糸7は、繊維構造体1の一端から他端まで連続した状態で配列されていなくてもよい。不連続であっても、各糸層を貫通して結合していればよい。
O Instead of using the retaining thread 8, the thread layers may be joined by general stitching using only the thickness direction thread 7.
The thickness direction yarns 7 may not be arranged in a continuous state from one end to the other end of the fiber structure 1. Even if it is discontinuous, it is only necessary to penetrate through each thread layer.

○ 繊維強化複合材10を製造する場合、1枚の繊維構造体1で1個の繊維強化複合材10(製品)を形成することに限らない。製品形状あるいは要求性能に応じて、繊維構造体1を複数枚並べたり、重ねたりして成形してもよい。   O When manufacturing the fiber reinforced composite material 10, it is not restricted to forming the one fiber reinforced composite material 10 (product) with the one fiber structure 1. FIG. Depending on the product shape or required performance, a plurality of fiber structures 1 may be arranged or stacked.

○ 切断領域3を形成するには、挿入針に代えて取り付けられた切断針でなくてもよい。例えば別工程でニードルパンチを施してもよい。また、針でなくても繊維構造体を破壊しない程度の小型刃物でもよい。   In order to form the cutting region 3, the cutting needle need not be attached instead of the insertion needle. For example, needle punching may be performed in a separate process. In addition, a small blade that does not break the fiber structure even if it is not a needle may be used.

○ 第1の実施の形態はプレス成形に限らない。例えば真空成形でもよい。シート状の繊維構造体1に熱可塑性樹脂を含浸させた後、成形する方法であればよい。
○ 第2の実施の形態はRTM法に限らない。シート状の繊維構造体1に熱硬化性樹脂を含浸成形する方法であればよい。
(Circle) 1st Embodiment is not restricted to press molding. For example, vacuum forming may be used. Any method may be used as long as the sheet-like fiber structure 1 is impregnated with a thermoplastic resin and then molded.
The second embodiment is not limited to the RTM method. Any method may be used as long as the sheet-like fiber structure 1 is impregnated with a thermosetting resin.

○ 第2の実施の形態の繊維強化複合材10を構成するマトリックス樹脂は熱硬化性樹脂に限らず、熱可塑性樹脂であってもよい。この場合、樹脂を含浸した後の加熱が不要となり、自然冷却させればよい。   (Circle) the matrix resin which comprises the fiber reinforced composite material 10 of 2nd Embodiment is not restricted to a thermosetting resin, A thermoplastic resin may be sufficient. In this case, heating after impregnating the resin becomes unnecessary, and natural cooling may be performed.

○ 繊維強化複合材10としてマトリックスを樹脂以外のもの、例えば金属としてもよい。この場合、繊維構造体1を構成する繊維は、マトリックス金属の溶融温度で損傷しない炭素繊維やセラミック繊維等が使用される。   The fiber reinforced composite material 10 may have a matrix other than resin, for example, metal. In this case, as the fiber constituting the fiber structure 1, carbon fiber, ceramic fiber, or the like that is not damaged at the melting temperature of the matrix metal is used.

(a)は樹脂を含浸する前の繊維構造体の模式図、(b)は連続繊維が切断されていない領域の繊維構造体の模式断面図。(A) is a schematic diagram of the fiber structure before impregnating resin, (b) is a schematic cross section of the fiber structure of the area | region where the continuous fiber is not cut | disconnected. (a)はx糸層の配列状態を示す模式図、(b)はy糸層の配列状態を示す模式図。(A) is a schematic diagram which shows the arrangement state of x thread layer, (b) is a schematic diagram which shows the arrangement state of y thread layer. 繊維強化複合材の模式図。The schematic diagram of a fiber reinforced composite material.

符号の説明Explanation of symbols

1…繊維構造体、4…糸層としてのx糸層、4a…連続繊維から成る繊維束としてのx糸、5…糸層としてのy糸層、5a…連続繊維から成る繊維束としてのy糸、6…積層繊維群、7…結合糸としての厚さ方向糸、10…繊維強化複合材。   DESCRIPTION OF SYMBOLS 1 ... Fiber structure, 4 ... x yarn layer as a yarn layer, 4a ... x yarn as a fiber bundle which consists of continuous fibers, 5 ... y yarn layer as a yarn layer, 5a ... y as fiber bundles which consist of continuous fibers Yarn, 6 ... laminated fiber group, 7 ... thickness direction yarn as binding yarn, 10 ... fiber reinforced composite material.

Claims (4)

連続繊維から成る繊維束が少なくとも2軸配向された積層繊維群の全面に該積層繊維群の厚さ方向に配列された連続繊維から成る結合糸で結合して繊維構造体を形成し、該繊維構造体にマトリックスを含浸させた繊維強化複合材であって、前記繊維構造体を構成する連続繊維のうちの一部の領域の前記連続繊維が切断されており、この連続繊維の切断されている領域で変形している繊維強化複合材。 A fiber bundle composed of continuous fibers is bonded to the entire surface of a laminated fiber group in which at least biaxial orientation is performed with a binding yarn composed of continuous fibers arranged in the thickness direction of the laminated fiber group, thereby forming a fiber structure. A fiber-reinforced composite material in which a structure is impregnated with a matrix, wherein the continuous fibers in a part of the continuous fibers constituting the fiber structure are cut, and the continuous fibers are cut A fiber-reinforced composite that is deformed in the region. 前記積層繊維群の全面に前記結合糸が均一に配列されている請求項1に記載の繊維強化複合材。 The fiber-reinforced composite material according to claim 1, wherein the binding yarns are uniformly arranged on the entire surface of the laminated fiber group. 前記結合糸は前記積層繊維群の一方の面で折り返されてU字状のループを形成し、該ループ内を通過するように連続繊維から成る抜け止め糸が挿入されている請求項1又は請求項2に記載の繊維強化複合材。 The binding yarn is folded at one surface of the laminated fiber group to form a U-shaped loop, and a retaining yarn made of continuous fibers is inserted so as to pass through the loop. Item 3. A fiber-reinforced composite material according to Item 2. 前記繊維構造体の長さ方向及び幅方向のうち少なくとも一方の両端部の領域で連続繊維が切断されていない請求項1〜請求項3のいずれか一項に記載の繊維強化複合材。 The fiber reinforced composite material according to any one of claims 1 to 3, wherein continuous fibers are not cut in a region of at least one of both ends of the length direction and the width direction of the fiber structure.
JP2007126457A 2007-05-11 2007-05-11 Fiber reinforced composite Expired - Lifetime JP4544266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126457A JP4544266B2 (en) 2007-05-11 2007-05-11 Fiber reinforced composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126457A JP4544266B2 (en) 2007-05-11 2007-05-11 Fiber reinforced composite

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002197201A Division JP4019822B2 (en) 2002-07-05 2002-07-05 Manufacturing method of fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2007269034A true JP2007269034A (en) 2007-10-18
JP4544266B2 JP4544266B2 (en) 2010-09-15

Family

ID=38672284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126457A Expired - Lifetime JP4544266B2 (en) 2007-05-11 2007-05-11 Fiber reinforced composite

Country Status (1)

Country Link
JP (1) JP4544266B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046956A (en) * 2008-08-22 2010-03-04 Toyota Industries Corp Fiber structure, fiber reinforced composite material, production process of fiber structure, and production process of fiber reinforced composite material
JP2011512267A (en) * 2008-01-09 2011-04-21 ザ・ボーイング・カンパニー Composite parts with curved outer shape
WO2014030631A1 (en) * 2012-08-21 2014-02-27 株式会社 豊田自動織機 Three-dimensional fiber-reinforced composite material
WO2014030632A1 (en) * 2012-08-21 2014-02-27 株式会社 豊田自動織機 Three-dimensional fiber-reinforced composite and method for producing three-dimensional fiber-reinforced composite
WO2014030633A1 (en) * 2012-08-21 2014-02-27 株式会社 豊田自動織機 Three-dimensional fiber-reinforced composite
JP2016533437A (en) * 2013-10-01 2016-10-27 サフラン エアークラフト エンジンズ Fiber structure with float assembly

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878745A (en) * 1981-11-05 1983-05-12 東レ株式会社 Fiber material for fiber reinforced resin
JPS58201614A (en) * 1982-05-20 1983-11-24 Mitsubishi Rayon Co Ltd Prepreg sheet
JPS649725A (en) * 1987-07-03 1989-01-13 Nissan Motor Manufacture of curved surface preform for composite material
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
JPH02229265A (en) * 1989-02-25 1990-09-12 Toyota Autom Loom Works Ltd Knit or woven fabric having open hole and tool for opening hole on knit or woven fabric
JPH07278319A (en) * 1994-04-11 1995-10-24 Three D Compo Res:Kk Production of three-dimensional multiaxial woven fabric composite material
JPH08218249A (en) * 1995-02-08 1996-08-27 Toyota Autom Loom Works Ltd Production of three-dimensional fiber texture and production device therefor
JPH09157993A (en) * 1995-12-01 1997-06-17 Nippon Oil Co Ltd Three-dimensional woven fabric having tapered part
JP2000328392A (en) * 1999-05-20 2000-11-28 Toyota Autom Loom Works Ltd Three-dimensional fiber structure
JP2004526875A (en) * 2000-12-27 2004-09-02 アルバニー インターナショナル テクニウエィブ インコーポレイテッド REINFORCED ARTICLE AND PROCESS FOR PRODUCING THE SAME

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878745A (en) * 1981-11-05 1983-05-12 東レ株式会社 Fiber material for fiber reinforced resin
JPS58201614A (en) * 1982-05-20 1983-11-24 Mitsubishi Rayon Co Ltd Prepreg sheet
JPS649725A (en) * 1987-07-03 1989-01-13 Nissan Motor Manufacture of curved surface preform for composite material
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
JPH02229265A (en) * 1989-02-25 1990-09-12 Toyota Autom Loom Works Ltd Knit or woven fabric having open hole and tool for opening hole on knit or woven fabric
JPH07278319A (en) * 1994-04-11 1995-10-24 Three D Compo Res:Kk Production of three-dimensional multiaxial woven fabric composite material
JPH08218249A (en) * 1995-02-08 1996-08-27 Toyota Autom Loom Works Ltd Production of three-dimensional fiber texture and production device therefor
JPH09157993A (en) * 1995-12-01 1997-06-17 Nippon Oil Co Ltd Three-dimensional woven fabric having tapered part
JP2000328392A (en) * 1999-05-20 2000-11-28 Toyota Autom Loom Works Ltd Three-dimensional fiber structure
JP2004526875A (en) * 2000-12-27 2004-09-02 アルバニー インターナショナル テクニウエィブ インコーポレイテッド REINFORCED ARTICLE AND PROCESS FOR PRODUCING THE SAME

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512267A (en) * 2008-01-09 2011-04-21 ザ・ボーイング・カンパニー Composite parts with curved outer shape
EP2227376B1 (en) * 2008-01-09 2019-03-20 The Boeing Company Contoured composite parts
JP2010046956A (en) * 2008-08-22 2010-03-04 Toyota Industries Corp Fiber structure, fiber reinforced composite material, production process of fiber structure, and production process of fiber reinforced composite material
CN104583283A (en) * 2012-08-21 2015-04-29 株式会社丰田自动织机 Three-dimensional fiber-reinforced composite and method for producing three-dimensional fiber-reinforced composite
WO2014030633A1 (en) * 2012-08-21 2014-02-27 株式会社 豊田自動織機 Three-dimensional fiber-reinforced composite
CN104540882A (en) * 2012-08-21 2015-04-22 株式会社丰田自动织机 Three-dimensional fiber-reinforced composite material
WO2014030632A1 (en) * 2012-08-21 2014-02-27 株式会社 豊田自動織機 Three-dimensional fiber-reinforced composite and method for producing three-dimensional fiber-reinforced composite
JP5900624B2 (en) * 2012-08-21 2016-04-06 株式会社豊田自動織機 3D fiber reinforced composite
JP5920471B2 (en) * 2012-08-21 2016-05-18 株式会社豊田自動織機 Three-dimensional fiber reinforced composite material and method for producing three-dimensional fiber reinforced composite material
US9415566B2 (en) 2012-08-21 2016-08-16 Kabushiki Kaisha Toyota Jidoshokki Three-dimensional fiber-reinforced composite material
US9539789B2 (en) 2012-08-21 2017-01-10 Kabushiki Kaisha Toyota Jidoshokki Three-dimensional fiber-reinforced composite and method for producing three-dimensional fiber-reinforced composite
CN104583283B (en) * 2012-08-21 2017-11-14 株式会社丰田自动织机 The manufacture method of fabric reinforced composite and fabric reinforced composite
WO2014030631A1 (en) * 2012-08-21 2014-02-27 株式会社 豊田自動織機 Three-dimensional fiber-reinforced composite material
JP2016533437A (en) * 2013-10-01 2016-10-27 サフラン エアークラフト エンジンズ Fiber structure with float assembly

Also Published As

Publication number Publication date
JP4544266B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
EP1842656B1 (en) Three-dimensional fiber structure and method for manufacturing three-dimensional fiber structure
JP5872471B2 (en) Woven preform, composite and method for producing the same
JP4544266B2 (en) Fiber reinforced composite
JP5852542B2 (en) Carbon fiber reinforced composite fabric and method for producing the same
US11173687B2 (en) Reinforced substrate for composite material, composite material, and method for manufacturing reinforced substrate for composite material
US10208826B2 (en) Impact-absorbing material and method for producing impact-absorbing material
JP5552655B2 (en) Preform of fiber reinforced composite material and method for producing the same
WO2017212835A1 (en) Reinforced base material for composite material component, composite material component, and method for manufacturing same
JP4019822B2 (en) Manufacturing method of fiber reinforced composite material
JP6625354B2 (en) FIBER FABRIC USED FOR MANUFACTURING COMPOSITE MATERIAL AND METHOD OF PRODUCING COMPOSITE MATERIAL USING THE FIBER FABRIC
JP3915614B2 (en) Fiber structure and composite material having deformed portion
JP5990030B2 (en) Method for molding fiber reinforced plastic structure and method for producing reinforced fiber sheet for VaRTM
JP2010202824A (en) Sheet composite
JP6650296B2 (en) Substrate for fiber reinforced plastic, multilayer substrate for fiber reinforced plastic, preform for fiber reinforced plastic, and method for producing the same
WO2012014613A1 (en) Fiber substrate and fiber-reinforced composite material
CN110191788B (en) Method for producing fiber-reinforced plastic
JP3061235B2 (en) Fiber reinforced thermoplastic resin stampable sheet
WO2014034606A1 (en) Three-dimensional fiber structure, prepreg using same and process for manufacturing three-dimensional fiber structure
JP2010046956A (en) Fiber structure, fiber reinforced composite material, production process of fiber structure, and production process of fiber reinforced composite material
JP2018001718A (en) Preform, method for producing preform, and fiber-reinforced plastic using the preform
JP6729712B2 (en) Reinforcement base material for composite material, composite material, and method for manufacturing reinforcement base material for composite material
JP6675231B2 (en) Preform for fiber reinforced plastic and method for producing the same
JP2015100930A (en) Preform
JP2018145539A (en) Reinforced fiber fabric and method for manufacturing preform from the reinforced fiber fabric
JP2005290204A (en) Fiber reinforced resin and method for producing the same and sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4544266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

EXPY Cancellation because of completion of term