JP2007267065A - Signal intensity detection circuit - Google Patents

Signal intensity detection circuit Download PDF

Info

Publication number
JP2007267065A
JP2007267065A JP2006089784A JP2006089784A JP2007267065A JP 2007267065 A JP2007267065 A JP 2007267065A JP 2006089784 A JP2006089784 A JP 2006089784A JP 2006089784 A JP2006089784 A JP 2006089784A JP 2007267065 A JP2007267065 A JP 2007267065A
Authority
JP
Japan
Prior art keywords
voltage
node
current
signal
pmos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006089784A
Other languages
Japanese (ja)
Other versions
JP4610509B2 (en
Inventor
Kazuyuki Tajima
一行 田嶋
Satoshi Yoshida
聡 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Oki Networks Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Oki Networks Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd, Oki Networks Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2006089784A priority Critical patent/JP4610509B2/en
Publication of JP2007267065A publication Critical patent/JP2007267065A/en
Application granted granted Critical
Publication of JP4610509B2 publication Critical patent/JP4610509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a signal intensity detection circuit capable of low power supply voltage operation and of detecting signal intensity with good accuracy but without dependency on temperature. <P>SOLUTION: A current associated with a DC component of a reception differential signal is supplied from a PMOS 34 of a variation correction part 30 to NMOSs 12a to 12n of a DC component extraction part 10, while a current associated with a variation component of the reception differential signals INN, INP is supplied from a PMOS 35 of the variation correction part 30 to NMOSs 22a to 22n of a variation component extraction part 20. Hereby, voltages Vcho, Vsei corrected in influences of temperature and a manufacturing process occur at internal nodes N2, N3 of the variation correction part 30. The potential difference is detected at a signal intensity output part 40 so that a reception signal intensity signal RSSI is yielded with good accuracy but without dependency on temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、受信した信号の強度を検出する信号強度検出回路、特にその温度変動補正に関するものである。   The present invention relates to a signal strength detection circuit for detecting the strength of a received signal, and more particularly to its temperature fluctuation correction.

特開平11−46152号公報JP-A-11-46152 特開2003−163556号公報JP 2003-163556 A

図2は、上記特許文献1に記載された従来の振幅検出回路の構成図である。
この振幅検出回路は、差動アンプ3のトランジスタQ3,Q4のベースに、それぞれ入力信号INP,INNが与えられ、その出力6,7がトランジスタQ7,Q8のベースにそれぞれ接続され、それらのトランジスタQ7,Q8のコレクタが動作電位VCCにそれぞれ接続されると共に、エミッタがトランジスタQ9,Q10と抵抗R1,R2をそれぞれ介して接地されている。また、トランジスタQ3,Q4のエミッタは、それぞれ共通ノード9に接続され、コレクタがそれぞれ負荷抵抗R5,R6を介して動作電位VCCに接続されている。また、共通ノード9は電源トランジスタQ11のコレクタに接続され、この電源トランジスタQ11のエミッタは抵抗R7を介して接地されると共に、ベースにはバイアス電位VREFが印加されている。
FIG. 2 is a configuration diagram of a conventional amplitude detection circuit described in Patent Document 1. In FIG.
In this amplitude detection circuit, input signals INP and INN are respectively applied to the bases of the transistors Q3 and Q4 of the differential amplifier 3, and outputs 6 and 7 thereof are connected to the bases of the transistors Q7 and Q8, respectively. , Q8 are connected to the operating potential VCC, respectively, and the emitters are grounded through transistors Q9, Q10 and resistors R1, R2, respectively. The emitters of the transistors Q3 and Q4 are each connected to the common node 9, and the collectors are connected to the operating potential VCC via load resistors R5 and R6, respectively. The common node 9 is connected to the collector of the power transistor Q11. The emitter of the power transistor Q11 is grounded via the resistor R7, and the bias potential VREF is applied to the base.

更に、この振幅検出回路は、共通ノード9に現れる電位に対応して電流を発生する電流発生回路10を含んでいる。電流発生回路10は、検出用トランジスタQ12を含んでおり、そのエミッタは抵抗R8を介して差動アンプ3の共通ノード9に接続され、ベースには基準電位VRが印加されている。検出用トランジスタQ12のコレクタは、トランジスタQ13,Q14と抵抗R9,R10を含むカレントミラー回路11に接続されており、検出用トランジスタQ12のコレクタ・エミッタ間を流れる電流に対応する電流が、抵抗R11及び平滑コンデンサCを流れるようになっていて、抵抗R11にかかる電位が出力12で得られるようになっている。   Further, the amplitude detection circuit includes a current generation circuit 10 that generates a current corresponding to the potential appearing at the common node 9. The current generation circuit 10 includes a detection transistor Q12, the emitter of which is connected to the common node 9 of the differential amplifier 3 via a resistor R8, and the reference potential VR is applied to the base. The collector of the detection transistor Q12 is connected to a current mirror circuit 11 including transistors Q13 and Q14 and resistors R9 and R10. A current corresponding to the current flowing between the collector and emitter of the detection transistor Q12 is connected to the resistors R11 and R11. The smoothing capacitor C is allowed to flow, and the potential applied to the resistor R11 is obtained at the output 12.

この振幅検出回路において、検出用トランジスタQ12のベースに、絶対温度にほぼ比例して増加する電流を用いて作られた基準電位VRを印加することにより、出力12から入力信号の振幅を温度に依存しない振幅検出電圧Vrssiとして取り出すことができるとされている。   In this amplitude detection circuit, the amplitude of the input signal from the output 12 depends on the temperature by applying a reference potential VR generated by using a current that increases substantially in proportion to the absolute temperature to the base of the detection transistor Q12. It can be taken out as an amplitude detection voltage Vrssi.

図3は、上記特許文献2に記載された従来の信号強度検出回路の一部を示す回路図である。   FIG. 3 is a circuit diagram showing a part of a conventional signal strength detection circuit described in Patent Document 2. In FIG.

この回路は、MOSトランジスタ(以下、単に「MOS」という)で構成された整流部F1と、この整流部F1と同一回路構成の基準電位生成部D1を有し、この整流部F1の出力信号と基準電位生成部D1の出力信号の差分を検出するための演算増幅器OP1と、この演算増幅器OP1の出力信号と基準電位生成部D1の出力信号の差分を受信信号強度信号RSSIとして出力する2段目の演算増幅器OP2を有している。   This circuit has a rectifying unit F1 composed of a MOS transistor (hereinafter simply referred to as “MOS”), and a reference potential generating unit D1 having the same circuit configuration as the rectifying unit F1, and an output signal of the rectifying unit F1 The operational amplifier OP1 for detecting the difference between the output signals of the reference potential generator D1, and the second stage for outputting the difference between the output signal of the operational amplifier OP1 and the output signal of the reference potential generator D1 as the received signal strength signal RSSI. Operational amplifier OP2.

しかしながら、図2の振幅検出回路は、バイポーラトランジスタを用いているため、ベース・エミッタ間電圧には通常0.6V程度が必要である。更に、バイポーラトランジスタを非飽和領域で動作させるためには、コレクタ・エミッタ間電圧として、ベース・エミッタ間電圧以上の電圧が必要である。このため、低電源電圧動作が困難であるという課題がある。仮に、図2をMOSを用いて構成するとしても、バルクMOSの閾値電圧は、通常0.6V程度である。更に、飽和領域動作するドレイン・ソース間電圧は0.4V程度であることを考慮すると、MOS2つと抵抗等の受動素子1つ程度が電圧配分としては限界となる。従って、MOSを用いても、例えば、1.35V程度の低電源電圧動作を実現することは困難である。   However, since the amplitude detection circuit of FIG. 2 uses bipolar transistors, the base-emitter voltage usually requires about 0.6V. Further, in order to operate the bipolar transistor in the non-saturated region, a voltage higher than the base-emitter voltage is required as the collector-emitter voltage. For this reason, there is a problem that low power supply voltage operation is difficult. Even if FIG. 2 is configured using MOS, the threshold voltage of the bulk MOS is usually about 0.6V. Furthermore, considering that the drain-source voltage for operating in the saturation region is about 0.4 V, two MOSs and one passive element such as a resistor are the limits of voltage distribution. Therefore, even if a MOS is used, it is difficult to realize a low power supply voltage operation of about 1.35V, for example.

一方、図3の回路では、例えば入力信号をdB(デシベル)表示するために、変化成分抽出部F1を多段接続して対数変換回路を構成するような場合、回路規模が大きくなるという課題があった。   On the other hand, in the circuit of FIG. 3, for example, when the logarithmic conversion circuit is configured by connecting the change component extraction units F1 in multiple stages to display the input signal in dB (decibel), there is a problem that the circuit scale becomes large. It was.

本発明は、低電源電圧動作が可能で、温度に依存せず精度良く信号強度を検出することができる信号強度検出回路を提供することを目的としている。   An object of the present invention is to provide a signal strength detection circuit that can operate at a low power supply voltage and can accurately detect a signal strength without depending on temperature.

本発明の信号強度検出回路は、受信差動信号の直流成分に応じて第1の電圧を出力する第1の差動増幅器、及び該第1の電圧で導通状態が制御される並列接続されたn個(但し、nは2以上の整数)の第1のMOSを有する直流成分抽出部と、前記受信差動信号の変化成分を抽出して第2の電圧を出力する縦続接続されたn個の第2の差動増幅器、及び該第2の差動増幅器毎に設けられて対応する差動増幅器から出力される第2の電圧で導通状態が制御される並列接続されたn個の第2のMOSを有する変化成分抽出部と、電源電位と第1ノード間に接続されて該第1ノードの電圧で導通状態が制御される第3のMOS、該第1ノードと接地電位間に接続されて前記第1の電圧で導通状態が制御される並列接続されたn+1個の第4のMOS、該電源電位と第2ノード間に接続されて該第1ノードの電圧で導通状態が制御され、前記第1のMOSに電流を供給する第5のMOS、該第2ノードと該接地電位間に接続されて該第2ノードの電圧で導通状態が制御される第6のMOS、該電源電位と第3ノード間に接続されて該第1ノードの電圧で導通状態が制御され、前記第2のMOSに電流を供給する第7のMOS、該第3ノードと該接地電位間に接続されて該第3ノードの電圧で導通状態が制御される第8のMOSを有する変動補正部と、前記第2ノードの電圧に対応する第1の電流と前記第3ノードの電圧に対応する第2の電流を生成し、該第1の電流と該第2の電流の差を電圧に変換して受信信号強度信号として出力する信号強度出力部とを備えたことを特徴としている。   The signal strength detection circuit of the present invention is connected in parallel so that a first differential amplifier that outputs a first voltage in accordance with a DC component of a received differential signal and a conduction state controlled by the first voltage are provided. DC component extraction unit having n (where n is an integer of 2 or more) first MOS, and n cascaded connections that extract a change component of the received differential signal and output a second voltage The second differential amplifiers, and n second transistors connected in parallel whose conduction state is controlled by a second voltage provided for each of the second differential amplifiers and output from the corresponding differential amplifier. A change component extraction unit having a first MOS, a third MOS connected between the power supply potential and the first node and controlled in conduction by the voltage of the first node, connected between the first node and the ground potential. N + 1 fourth MOSs connected in parallel whose conduction state is controlled by the first voltage A fifth MOS that is connected between the power supply potential and the second node and is controlled by the voltage of the first node and supplies current to the first MOS, and between the second node and the ground potential. A sixth MOS connected to control the conduction state by the voltage of the second node; connected between the power supply potential and the third node; and the conduction state controlled by the voltage of the first node; A variation correction unit including a seventh MOS for supplying current to the MOS, an eighth MOS connected between the third node and the ground potential, and the conduction state of which is controlled by the voltage of the third node; A first current corresponding to a voltage at two nodes and a second current corresponding to the voltage at the third node are generated, and a difference between the first current and the second current is converted into a voltage to receive a signal. And a signal intensity output unit that outputs the signal as an intensity signal.

本発明では、変動補正部の第5のMOSから直流成分抽出部の第1のMOSに受信差動信号の直流成分に応じた電流を供給すると共に、この変動補正部の第7のMOSから変化成分抽出部の第2のMOSに受信差動信号の変化成分に応じた電流を供給する。これにより、変動補正部の電流供給ノードである第2及び第3ノードに、温度や製造プロセスの影響が少ない電圧が発生し、信号強度出力部によってこれらの第2及び第3ノードの電位差を検出することにより、温度に依存せず精度の良い受信信号強度信号を出力することができるという効果がある。更に、各部は電源電位と接地電位の間に接続されるトランジスタの数が最大でも2個に制限されているので、低電源電圧でも正常な動作を行うことができるという効果がある。   In the present invention, the current corresponding to the DC component of the received differential signal is supplied from the fifth MOS of the fluctuation correcting unit to the first MOS of the DC component extracting unit, and the current is changed from the seventh MOS of the fluctuation correcting unit. A current corresponding to the change component of the received differential signal is supplied to the second MOS of the component extraction unit. As a result, voltages that are less affected by temperature and manufacturing processes are generated at the second and third nodes, which are current supply nodes of the fluctuation correction unit, and the potential difference between these second and third nodes is detected by the signal strength output unit. By doing so, there is an effect that it is possible to output an accurate received signal strength signal without depending on temperature. Further, since each unit is limited to a maximum of two transistors connected between the power supply potential and the ground potential, there is an effect that a normal operation can be performed even with a low power supply voltage.

この発明の前記並びにその他の目的と新規な特徴は、次の好ましい実施例の説明を添付図面と照らし合わせて読むと、より完全に明らかになるであろう。但し、図面は、もっぱら解説のためのものであって、この発明の範囲を限定するものではない。   The above and other objects and novel features of the present invention will become more fully apparent when the following description of the preferred embodiment is read in conjunction with the accompanying drawings. However, the drawings are for explanation only, and do not limit the scope of the present invention.

図1は、本発明の実施例を示す信号強度検出回路の構成図である。
この信号強度検出回路は、図示しない受信回路から与えられる受信差動信号INN,INPの直流成分を電流に変換する直流成分抽出部10と、この受信差動信号INN,INPの変化成分を抽出して電流に変換する変化成分抽出部20と、これらの直流成分抽出部10と変化成分抽出部20から出力される電流の温度変動を補正するための変動補正部30と、この変動補正部30で補正された2つの電流の差を受信信号強度RSSIとして出力する信号強度出力部40とで構成されている。
FIG. 1 is a configuration diagram of a signal strength detection circuit showing an embodiment of the present invention.
The signal strength detection circuit extracts a direct current component extraction unit 10 that converts a direct current component of the reception differential signals INN and INP given from a reception circuit (not shown) into a current, and a change component of the reception differential signals INN and INP. The change component extraction unit 20 that converts current into current, the DC component extraction unit 10, the fluctuation correction unit 30 for correcting the temperature fluctuation of the current output from the change component extraction unit 20, and the fluctuation correction unit 30 The signal strength output unit 40 outputs a difference between the two corrected currents as a received signal strength RSSI.

直流成分抽出部10は、差動増幅器(AMP)11と、この差動増幅器11の出力端子SOUの電位によって導通状態が制御されるn個のNチャネルMOS(以下、「NMOS」という)12a,12b,・・,12nとで構成されている。差動増幅器11は、この図1の(a)に示すように、電源電位VDDと出力端子SOUの間に設けられた定電流素子I、この出力端子SOUと接地電位GNDの間にそれぞれ直列に接続されたPチャネルMOS(以下、「PMOS」という)MP1及び抵抗R1と、PMOSMP2と抵抗R2とで構成されている。そして、PMOSMP1,MP2のゲートがそれぞれ差動入力端子IN,IPとなり、これらのPMOSMP1,MP2のドレインが差動出力端子OP,ONとなっている。   The DC component extraction unit 10 includes a differential amplifier (AMP) 11 and n N-channel MOS (hereinafter referred to as “NMOS”) 12a whose conduction state is controlled by the potential of the output terminal SOU of the differential amplifier 11. 12b,..., 12n. As shown in FIG. 1A, the differential amplifier 11 includes a constant current element I provided between the power supply potential VDD and the output terminal SOU, and a series connection between the output terminal SOU and the ground potential GND. It is composed of a connected P-channel MOS (hereinafter referred to as “PMOS”) MP1, a resistor R1, a PMOS MP2, and a resistor R2. The gates of the PMOS MP1 and MP2 are the differential input terminals IN and IP, respectively, and the drains of the PMOS MP1 and MP2 are the differential output terminals OP and ON.

差動増幅器11の差動入力端子IN,IPには、受信差動信号が交わる電圧レベル、即ち、受信信号が0のときに受信回路から出力される信号レベルに相当する基準電圧VRが共通に与えられている。また、NMOS12a〜12nは並列接続され、ゲートが差動増幅器11の出力端子SOUに、ソースが接地電位GNDに接続されている。そして、差動増幅器11の出力端子SOUの電圧Vso1が変動補正部30に与えられ、この変動補正部30からNMOS12a〜12nに基準電圧VRに応じた電流nIchoが流れ込むようになっている。 The differential input terminals IN and IP of the differential amplifier 11 share a common reference voltage VR corresponding to the voltage level at which the received differential signals cross, that is, the signal level output from the receiving circuit when the received signal is 0. Is given. The NMOSs 12a to 12n are connected in parallel, the gate is connected to the output terminal SOU of the differential amplifier 11, and the source is connected to the ground potential GND. The voltage Vso1 at the output terminal SOU of the differential amplifier 11 is supplied to the fluctuation correction unit 30, and a current nIcho corresponding to the reference voltage VR flows from the fluctuation correction unit 30 to the NMOSs 12a to 12n.

変化成分抽出部20は、受信差動信号INN,INPをdB表示の信号に変換して、このdB表示に対応する電流を抽出するために、縦続接続されたn段の差動増幅器21a,21b,・・,21nと、これらの差動増幅器21a〜21nに対応するn個のNMOS22a,22b,・・,22nで構成されている。NMOS22a〜22nのドレインは共通接続され、ソースは接地電位GNDに接続されている。また、NMOS22a〜22nのゲートは、それぞれ差動増幅器21a〜21nの出力端子SOUに接続され、変動補正部30から、これらのNMOS22a〜22nに差動入力信号INN,INPの値に応じた電流nIseiが流れ込むようになっている。   The change component extraction unit 20 converts the received differential signals INN and INP into dB display signals, and in order to extract a current corresponding to the dB display, n stages of differential amplifiers 21a and 21b connected in cascade. ,..., 21n and n NMOSs 22a, 22b,..., 22n corresponding to these differential amplifiers 21a to 21n. The drains of the NMOSs 22a to 22n are commonly connected, and the sources are connected to the ground potential GND. The gates of the NMOSs 22a to 22n are connected to the output terminals SOU of the differential amplifiers 21a to 21n, respectively, and the current nIsei corresponding to the values of the differential input signals INN and INP are supplied from the fluctuation correction unit 30 to the NMOSs 22a to 22n. Has come to flow.

変動補正部30は、内部ノードN1と接地電位GNDの間に接続されたNMOS31と、更に、この内部ノードN1と接地電位GNDの間に接続されたn個のNMOS32a〜32nを有している。そして、これらのNMOS31,32a〜32nのゲートは、直流成分抽出部10の差動増幅器11の出力端子SOUに接続されている。   The fluctuation correction unit 30 includes an NMOS 31 connected between the internal node N1 and the ground potential GND, and n NMOSs 32a to 32n connected between the internal node N1 and the ground potential GND. The gates of these NMOS 31 and 32 a to 32 n are connected to the output terminal SOU of the differential amplifier 11 of the DC component extraction unit 10.

内部ノードN1は、PMOS33を介して電源電位VDDに接続され、このPMOS33のゲートは内部ノードN1に接続されている。更に、この内部ノードN1には、PMOS33に対して電流ミラー回路を構成するPMOS34,35のゲートが接続されている。PMOS34,35のソースは電源電位VDDに接続され、ドレインはそれぞれ内部ノードN2,N3に接続されている。   The internal node N1 is connected to the power supply potential VDD via the PMOS 33, and the gate of the PMOS 33 is connected to the internal node N1. Furthermore, the gates of PMOSs 34 and 35 constituting a current mirror circuit with respect to the PMOS 33 are connected to the internal node N1. The sources of the PMOSs 34 and 35 are connected to the power supply potential VDD, and the drains are connected to the internal nodes N2 and N3, respectively.

内部ノードN2には、NMOS36のドレインとゲートが接続され、このNMOS36のソースが接地電位GNDに接続されている。更に、この内部ノードN2には、直流成分抽出部10のNMOS12a〜12nのドレインが接続されている。   The drain and gate of the NMOS 36 are connected to the internal node N2, and the source of the NMOS 36 is connected to the ground potential GND. Further, the drains of the NMOSs 12a to 12n of the DC component extraction unit 10 are connected to the internal node N2.

一方、内部ノードN3には、NMOS37のドレインとゲートが接続され、このNMOS37のソースが接地電位GNDに接続されている。更に、この内部ノードN3には、変化成分検出部20のNMOS22a〜22nのドレインが接続されている。   On the other hand, the drain and gate of the NMOS 37 are connected to the internal node N3, and the source of the NMOS 37 is connected to the ground potential GND. Further, the drains of the NMOSs 22a to 22n of the change component detector 20 are connected to the internal node N3.

信号強度出力部40は、変動補正部30の内部ノードN2の電位に応じた電流を生成するための、演算増幅器(OP)41と、PMOS42と、抵抗43によるフィードバック回路を有している。演算増幅器41の反転入力端子は、内部ノードN2に接続され、出力端子がPMOS42のゲートに接続されている。PMOS42のソースは電源電位VDDに接続され、ドレインは抵抗43を介して接地電位GNDに接続されると共に、演算増幅器41の非反転入力端子に接続されている。   The signal strength output unit 40 includes a feedback circuit including an operational amplifier (OP) 41, a PMOS 42, and a resistor 43 for generating a current corresponding to the potential of the internal node N <b> 2 of the fluctuation correction unit 30. The inverting input terminal of the operational amplifier 41 is connected to the internal node N 2, and the output terminal is connected to the gate of the PMOS 42. The source of the PMOS 42 is connected to the power supply potential VDD, the drain is connected to the ground potential GND through the resistor 43, and is connected to the non-inverting input terminal of the operational amplifier 41.

なお、演算増幅器41は、この図1の(b)に示すように、電源電位VDDと接地電位GNDの間に直列に接続されたPMOSMP3及びNMOSMN1と、PMOSMP4及びNMOSMN2とで構成されている。NMOSMN1,MN2のゲートは、それぞれ非反転入力端子及び反転入力端子となっている。また、PMOSMP3,MP4のゲートは、このPMOSMP3のドレインに接続され、PMOSMP4のドレインが出力端子OTとなっている。 As shown in FIG. 1B, the operational amplifier 41 includes a PMOS MP3 and an NMOS MN1, and a PMOS MP4 and an NMOS MN2 connected in series between the power supply potential VDD and the ground potential GND. The gates of the NMOS MN1 and MN2 are a non-inverting input terminal and an inverting input terminal, respectively. The gates of the PMOS MP3 and MP4 are connected to the drain of the PMOS MP3, and the drain of the PMOS MP4 serves as the output terminal OT.

この信号強度出力部40は、更に、変動補正部30の内部ノードN3の電位に応じた電流を生成するための、演算増幅器44と、PMOS45と、抵抗46によるフィードバック回路を有している。即ち、演算増幅器44の反転入力端子は、内部ノードN3に接続され、出力端子がPMOS45のゲートに接続されている。PMOS45のソースは電源電位VDDに接続され、ドレインは抵抗46を介して接地電位GNDに接続されると共に、演算増幅器44の非反転入力端子に接続されている。 The signal intensity output unit 40 further includes a feedback circuit including an operational amplifier 44, a PMOS 45, and a resistor 46 for generating a current corresponding to the potential of the internal node N 3 of the fluctuation correction unit 30. That is, the inverting input terminal of the operational amplifier 44 is connected to the internal node N3, and the output terminal is connected to the gate of the PMOS 45. The source of the PMOS 45 is connected to the power supply potential VDD, the drain is connected to the ground potential GND through the resistor 46, and is connected to the non-inverting input terminal of the operational amplifier 44.

また、この信号強度出力部40は、PMOS42に対して電流ミラー回路を構成するPMOS47を有しており、このPMOS47のソースは電源電位VDDに接続され、ゲートは演算増幅器41の出力端子に接続されている。また、PMOS47のドレインは、PMOS45のドレインに接続されている。 The signal intensity output unit 40 includes a PMOS 47 that forms a current mirror circuit with respect to the PMOS 42, the source of the PMOS 47 is connected to the power supply potential VDD, and the gate is connected to the output terminal of the operational amplifier 41. ing. The drain of the PMOS 47 is connected to the drain of the PMOS 45.

更に、この信号強度出力部40は、PMOS45に対して電流ミラー回路を構成するPMOS48を有しており、このPMOS48のソースは電源電位VDDに接続され、ゲートは演算増幅器44の出力端子に接続されている。そして、PMOS48のドレインは、抵抗49を介して接地電位GNDに接続され、この抵抗49に生じる電圧が、受信信号強度RSSIとして出力されるようになっている。   Further, the signal intensity output unit 40 includes a PMOS 48 that forms a current mirror circuit with respect to the PMOS 45, the source of the PMOS 48 is connected to the power supply potential VDD, and the gate is connected to the output terminal of the operational amplifier 44. ing. The drain of the PMOS 48 is connected to the ground potential GND through the resistor 49, and the voltage generated in the resistor 49 is output as the received signal strength RSSI.

なお、この信号強度検出回路を構成する各素子の定数とサイズは、次のように設定されている。   The constants and sizes of the elements constituting the signal intensity detection circuit are set as follows.

信号強度出力部40内の抵抗43,46、及び差動増幅器11,21a〜21n内の抵抗R1,R2は、それぞれ同一抵抗値である。直流成分抽出部10内のNMOS12a〜12n、変化成分抽出部20内のNMOS22a〜22n、及び変動補正部30内のNMOS31,32a〜32n、NMOS36,37は、すべて同一サイズである。変動補正部30内のPMOS33,34,35と、信号強度出力部40内のPMOS42,45,47は、それぞれ同一サイズである。また、演算増幅器41,44内のPMOSMP3,MP4と、NMOSMN1、NM2は、それぞれ同一サイズである。   The resistors 43 and 46 in the signal strength output unit 40 and the resistors R1 and R2 in the differential amplifiers 11 and 21a to 21n have the same resistance value. The NMOSs 12a to 12n in the DC component extraction unit 10, the NMOSs 22a to 22n in the change component extraction unit 20, the NMOSs 31, 32a to 32n, and the NMOSs 36 and 37 in the variation correction unit 30 are all the same size. The PMOSs 33, 34, and 35 in the fluctuation correction unit 30 and the PMOSs 42, 45, and 47 in the signal intensity output unit 40 have the same size. Further, the PMOS MP3 and MP4 and the NMOS MN1 and NM2 in the operational amplifiers 41 and 44 have the same size.

次に動作を説明する。
図4は図1の信号強度検出回路の信号波形図である。図4(a)は、図1の信号強度検出回路に与えられる入力信号の波形で、直流成分抽出部10に与えられる基準電圧VRと、変化成分抽出部20に入力される受信差動信号INN,INPの信号波形を示している。このような基準電圧VRと受信差動信号INN,INPが与えられると、差動増幅器11,21aの出力端子SOUには、図4(b)に示すような波形の電圧が出力される。図4(b)に示すように、受信差動信号INN,INPの振幅が小さいときは差動増幅器21aの出力信号の平均レベルは差動増幅器11の出力信号とほぼ同じで、この受信差動信号INN,INPの振幅が大きくなるに従って、差動増幅器21aの平均レベルが低下することがわかる。
Next, the operation will be described.
FIG. 4 is a signal waveform diagram of the signal strength detection circuit of FIG. 4A shows the waveform of the input signal applied to the signal strength detection circuit of FIG. 1, and the reference voltage VR applied to the DC component extraction unit 10 and the received differential signal INN input to the change component extraction unit 20. , INP signal waveforms. When such a reference voltage VR and reception differential signals INN and INP are given, a voltage having a waveform as shown in FIG. 4B is output to the output terminal SOU of the differential amplifiers 11 and 21a. As shown in FIG. 4B, when the amplitudes of the reception differential signals INN and INP are small, the average level of the output signal of the differential amplifier 21a is substantially the same as the output signal of the differential amplifier 11, and this reception differential It can be seen that the average level of the differential amplifier 21a decreases as the amplitude of the signals INN and INP increases.

直流成分抽出部10において、差動増幅器11の出力信号Vso1に従ってNMOS12aに流れる電流をIchoとすると、この電流Ichoは、MOSの一般式から次のように表される。
Icho=k(Vso1−Vs−Vt) ・・(1)
ここで、kはMOSのディメンジョンW/L(Wはゲート幅、Lはゲート長)、Vsはソースの電位、及びVtは閾値電圧である。
If the current flowing through the NMOS 12a in accordance with the output signal Vso1 of the differential amplifier 11 is Icho in the DC component extraction unit 10, this current Icho is expressed as follows from the general formula of MOS.
Icho = k (Vso1-Vs-Vt) 2 (1)
Here, k is a MOS dimension W / L (W is a gate width, L is a gate length), Vs is a source potential, and Vt is a threshold voltage.

直流成分抽出部10内のNMOS12a〜12nは、すべて同一ディメンジョンで、同じゲート電圧が印加されるので、これらの各NMOSに流れる電流は、式(1)で示したIchoである。従って、変動補正部30から流れ込む電流nIchoは、次のようになる。
nIcho=nk(Vso1−Vs−Vt)・・(2)
Since the NMOSs 12a to 12n in the DC component extraction unit 10 have the same dimensions and are applied with the same gate voltage, the currents flowing through these NMOSs are Icho shown in the equation (1). Therefore, the current nIcho flowing from the fluctuation correction unit 30 is as follows.
nIcho = nk (Vso1-Vs-Vt) 2 (2)

また、変動補正部30内のNMOS31,32a〜32n,36は、NMOS12aと同一ディメンジョンで、同じゲート電圧が印加されているので、これらの各NMOSに流れる電流は、式(1)で示したIchoとなる。   Further, since the NMOS 31, 32 a to 32 n, 36 in the fluctuation correction unit 30 have the same dimensions and the same gate voltage as the NMOS 12 a, the current flowing through each of these NMOSs is represented by the Icho shown in Expression (1). It becomes.

これにより、変動補正部30のPMOS33に流れる電流Irefは、(n+1)Ichoとなり、このPMOS33 に対して電流ミラー回路を構成するPMOS34,35にも、同じ電流Iref=(n+1)Ichoが流れる。PMOS34に流れる電流の内、nIchoは内部ノードN2から直流成分抽出部10のNMOS12a〜12nに流れるので、NMOS36に流れる電流は、残りのIchoとなる。このNMOS36に流れる電流は、NMOS31に流れる電流に対応するものと考えることができる。これにより、NMOS36には、常に式(1)の一定電流Ichoが流れることになり、このNMOS36のゲート電位は安定したVso1となる。従って、Vso1の電位に対して、温度や製造プロセスの変動に影響のない電位Vchoを得ることができる。   As a result, the current Iref flowing in the PMOS 33 of the fluctuation correcting unit 30 becomes (n + 1) Icho, and the same current Iref = (n + 1) Icho flows also in the PMOSs 34 and 35 constituting the current mirror circuit. Among the currents flowing through the PMOS 34, nIcho flows from the internal node N2 to the NMOSs 12a to 12n of the DC component extraction unit 10, so that the current flowing through the NMOS 36 becomes the remaining Icho. It can be considered that the current flowing through the NMOS 36 corresponds to the current flowing through the NMOS 31. As a result, the constant current Icho of the equation (1) always flows through the NMOS 36, and the gate potential of the NMOS 36 becomes stable Vso1. Therefore, it is possible to obtain a potential Vcho that does not affect the variation of temperature and manufacturing process with respect to the potential of Vso1.

一方、変化成分抽出部20に変動補正部30から流れ込む電流nIseiは、差動増幅器21aの出力端子SOUの電圧をVso2とすると、式(2)と同様に次のように表される。
nIsei=nk(Vso2−Vs−Vt) ・・(3)
この変化成分抽出部20では、無信号時はINP=INNであるので、差動増幅器22a〜22nの出力端子SOUから出力される信号Vso2は、すべて差動増幅器11の出力信号Vso1と等しくなる。従って、各NMOS22a〜22nに流れる電流は、式(1)で示したIchoとなる。
On the other hand, the current nIsei flowing from the fluctuation correction unit 30 into the change component extraction unit 20 is expressed as follows similarly to Expression (2), where Vso2 is the voltage at the output terminal SOU of the differential amplifier 21a.
nIsei = nk (Vso2-Vs-Vt) 2 (3)
In the change component extraction unit 20, since INP = INN when there is no signal, all the signals Vso2 output from the output terminals SOU of the differential amplifiers 22a to 22n are equal to the output signal Vso1 of the differential amplifier 11. Therefore, the current flowing through each of the NMOSs 22a to 22n is Icho shown in the equation (1).

変動補正部30のPMOS35には,(n+1)Ichoの電流Irefが流れているので、この内のnIchoが内部ノードN3から変化成分抽出部20のNMOS22a〜22nに流れる。そして、変動補正部30のNMOS37には、残りのIchoが流れるので、このNMOS37のゲート電位もVso1である。従って、Vso1の電位に対して、温度や製造プロセスの変動に影響のない電位Vseiを得ることができる。 Since the (n + 1) Icho current Iref flows through the PMOS 35 of the fluctuation correction unit 30, nIcho of the current flows from the internal node N3 to the NMOSs 22a to 22n of the change component extraction unit 20. Since the remaining Icho flows through the NMOS 37 of the fluctuation correction unit 30, the gate potential of the NMOS 37 is also Vso1. Therefore, it is possible to obtain a potential Vsei that does not affect the temperature and the manufacturing process variation with respect to the potential of Vso1.

信号受信時には、INP≠INNとなるので、変化成分抽出部20の差動増幅器22a〜22nの出力端子SOUから出力される信号は、Vso2(≠Vso1)となる。これにより、NMOS37に流れる電流I37は、次のようになる。
I37=Iref−nIsei
=(n+1)Icho−nIsei ・・(4)
ここで、NMOS37のゲートは電位Vseiの内部ノードN3に接続されているので、
電流I37は、次のように表される。
I37=k(Vsei−Vt) ・・(5)
式(4)に、式(2),(3),(5)を代入すると、次のようになる。
k(Vsei−Vt)=nk(Vso1−Vt)+k(Vso1−Vt)
−nk(Vso2−Vt)
これをVseiについて解くと、次式が得られる。
Vsei=√{2n(Vso1−Vt)−n(Vso2−Vt)}+Vt
従って、電位Vseiは、温度や製造プロセスにより変動するkの項がなく、Vtの項のみとなるので、Vso2の電位に対して、温度や製造プロセスの変動の影響が小さい電圧を得ることができる。従って、電位Vcho,Vseiは、共に温度や製造プロセスの変動の影響が小さいことがわかる。
Since INP ≠ INN when receiving the signal, the signal output from the output terminals SOU of the differential amplifiers 22a to 22n of the change component extraction unit 20 is Vso2 (≠ Vso1). As a result, the current I37 flowing through the NMOS 37 is as follows.
I37 = Iref-nIsei
= (N + 1) Icho-nIsei (4)
Here, since the gate of the NMOS 37 is connected to the internal node N3 of the potential Vsei,
The current I37 is expressed as follows.
I37 = k (Vsei−Vt) 2 (5)
Substituting equations (2), (3), and (5) into equation (4) yields the following.
k (Vsei−Vt) 2 = nk (Vso1−Vt) 2 + k (Vso1−Vt) 2
-Nk (Vso2-Vt) 2
Solving this for Vsei yields:
Vsei = √ {2n (Vso1-Vt) 2- n (Vso2-Vt) 2 } + Vt
Therefore, the potential Vsei does not have the k term that varies depending on the temperature and the manufacturing process, but only the Vt term. Therefore, it is possible to obtain a voltage that is less affected by variations in temperature and the manufacturing process with respect to the potential of Vso2. . Therefore, it can be seen that the potentials Vcho and Vsei are both less affected by variations in temperature and manufacturing process.

変動補正部30の内部ノードN2,N3の電位Vcho,Vseiは、信号強度出力部40に与えられてその差電圧が生成される。   The potentials Vcho and Vsei of the internal nodes N2 and N3 of the fluctuation correction unit 30 are given to the signal strength output unit 40, and the difference voltage is generated.

信号強度出力部40において、電位Vchoは演算増幅器41の反転入力端子に与えられる。ここで、反転入力端子の電位Vchoが非反転入力端子の電位よりも高くなると、演算増幅器41の出力電位は下降する。演算増幅器41の出力電位の低下に伴い、PMOS42の電流が増加して抵抗43の電圧降下が大きくなり、この演算増幅器41の非反転入力端子にフィードバックされる電位が上昇する。逆に、反転入力端子の電位Vchoが非反転入力端子の電位よりも低くなると、演算増幅器41の出力電位は上昇する。演算増幅器41の出力電位の上昇に伴い、PMOS42の電流が減少して抵抗43の電圧降下が小さくなり、この演算増幅器41の非反転入力端子にフィードバックされる電位が低下する。このようなフィードバック作用により、抵抗43に印加される電圧は、演算増幅器41の反転入力端子の電位Vchoに一致する。従って、PMOS42に流れる電流Icho1は、抵抗43の抵抗値をR43とすると、次のようになる。
Icho1=Vcho/R43 ・・(6)
In the signal strength output unit 40, the potential Vcho is given to the inverting input terminal of the operational amplifier 41. Here, when the potential Vcho of the inverting input terminal becomes higher than the potential of the non-inverting input terminal, the output potential of the operational amplifier 41 decreases. As the output potential of the operational amplifier 41 decreases, the current of the PMOS 42 increases and the voltage drop of the resistor 43 increases, and the potential fed back to the non-inverting input terminal of the operational amplifier 41 increases. Conversely, when the potential Vcho of the inverting input terminal becomes lower than the potential of the non-inverting input terminal, the output potential of the operational amplifier 41 increases. As the output potential of the operational amplifier 41 increases, the current of the PMOS 42 decreases and the voltage drop of the resistor 43 decreases, and the potential fed back to the non-inverting input terminal of the operational amplifier 41 decreases. Due to such feedback action, the voltage applied to the resistor 43 matches the potential Vcho of the inverting input terminal of the operational amplifier 41. Accordingly, the current Icho1 flowing through the PMOS 42 is as follows, assuming that the resistance value of the resistor 43 is R43.
Icho1 = Vcho / R43 (6)

なお、PMOS42に対して電流ミラー回路を構成するPMOS47にも、このPMOS42と同じ大きさの電流Icho1が流れる。   Note that a current Icho1 having the same magnitude as that of the PMOS 42 also flows in the PMOS 47 constituting the current mirror circuit with respect to the PMOS 42.

また、内部ノードN3の電位Vseiが与えられる演算増幅器44においても同様のフィードバック動作が行われる。このとき、抵抗46にはPMOS45,47に流れる電流の和の電流が流れるので、PMOS45に流れる電流をIsei1とすると、この抵抗46に流れる電流はIsei1+Icho1 となる。従って、抵抗46の抵抗値をR46とすると、次の関係が得られる。
Isei1+Icho1=Vsei/R46 ・・(7)
式(6),(7)より、次式が得られる。
Isei1=Vsei/R46−Vcho/R43 ・・(8)
A similar feedback operation is also performed in the operational amplifier 44 to which the potential Vsei of the internal node N3 is applied. At this time, since the sum of the currents flowing through the PMOSs 45 and 47 flows through the resistor 46, if the current flowing through the PMOS 45 is Isei1, the current flowing through the resistor 46 is Isei1 + Icho1. Therefore, when the resistance value of the resistor 46 is R46, the following relationship is obtained.
Isei1 + Icho1 = Vsei / R46 (7)
From the equations (6) and (7), the following equation is obtained.
Isei1 = Vsei / R46−Vcho / R43 (8)

ここで、PMOS45,48は電流ミラー回路を構成しているので、PMOS48に流れる電流もIsei1となる。従って、抵抗49の抵抗値をR49とすると、この抵抗49に発生する受信信号強度RSSIは、次式のようになる。
RSSI=(Vsei/R46−Vcho/R43)R49 ・・(9)
Here, since the PMOSs 45 and 48 constitute a current mirror circuit, the current flowing through the PMOS 48 is also Isei1. Accordingly, when the resistance value of the resistor 49 is R49, the received signal strength RSSI generated in the resistor 49 is expressed by the following equation.
RSSI = (Vsei / R46−Vcho / R43) R49 (9)

式(9)において、抵抗値R46,R43,R49は、同じ温度係数を有すると共に、同じ製造プロセスの影響を受けるので、抵抗46,43の変動は、抵抗49によって相殺される。また、前述した通り、電位Vsei,Vchoは、温度や製造プロセスの変動による影響が小さいので、受信信号強度RSSIは、温度や製造プロセスの影響を受けない値となる。   In the equation (9), the resistance values R46, R43, and R49 have the same temperature coefficient and are affected by the same manufacturing process. Further, as described above, since the potentials Vsei and Vcho are less affected by variations in temperature and manufacturing process, the received signal strength RSSI is a value that is not affected by temperature and manufacturing process.

以上のように、この実施例の信号強度検出回路は、接地電位GNDから電源電位VDDの間に、MOS2つと抵抗1つ以下の挿入数で全回路を構成すると共に、これらのMOSの温度や製造プロセスの変動に起因する受信信号強度RSSIを補正する変動補正部30を有している。これにより、低電源電圧動作が可能で、温度に依存せず精度良く信号強度を検出することができるという利点がある。   As described above, the signal strength detection circuit of this embodiment is configured with the total number of insertions of two MOSs and one resistor or less between the ground potential GND and the power supply potential VDD, and the temperature and manufacturing of these MOSs. It has a fluctuation correction unit 30 that corrects the received signal strength RSSI resulting from process fluctuations. Thus, there is an advantage that the low power supply voltage operation is possible and the signal intensity can be detected accurately without depending on the temperature.

本発明の実施例を示す信号強度検出回路の構成図である。It is a block diagram of the signal strength detection circuit which shows the Example of this invention. 従来の振幅検出回路の構成図である。It is a block diagram of the conventional amplitude detection circuit. 従来の信号強度検出回路の一部を示す回路図である。It is a circuit diagram which shows a part of conventional signal strength detection circuit. 図1の信号強度検出回路の信号波形図である。FIG. 2 is a signal waveform diagram of the signal strength detection circuit of FIG. 1.

符号の説明Explanation of symbols

10 直流成分抽出部
11,21a〜21n 差動増幅器
12a〜12n,22a〜22n,31,32a〜32n,36,37 NMOS
20 変化成分抽出部
30 変動補正部
33〜35,42,45,47,48 PMOS
40 信号強度出力部
41,44 演算増幅器
43,46,49 抵抗
DESCRIPTION OF SYMBOLS 10 DC component extraction part 11,21a-21n Differential amplifier 12a-12n, 22a-22n, 31, 32a-32n, 36, 37 NMOS
20 change component extraction unit 30 fluctuation correction unit 33 to 35, 42, 45, 47, 48 PMOS
40 Signal strength output unit 41, 44 Operational amplifier 43, 46, 49 Resistance

Claims (2)

受信差動信号の直流成分に応じて第1の電圧を出力する第1の差動増幅器、及び該第1の電圧で導通状態が制御される並列接続されたn個(但し、nは2以上の整数)の第1のMOSトランジスタを有する直流成分抽出部と、
前記受信差動信号の変化成分を抽出して第2の電圧を出力する縦続接続されたn個の第2の差動増幅器、及び該第2の差動増幅器毎に設けられて対応する差動増幅器から出力される第2の電圧で導通状態が制御される並列接続されたn個の第2のMOSトランジスタを有する変化成分抽出部と、
電源電位と第1ノード間に接続されて該第1ノードの電圧で導通状態が制御される第3のMOSトランジスタ、該第1ノードと接地電位間に接続されて前記第1の電圧で導通状態が制御される並列接続されたn+1個の第4のMOSトランジスタ、該電源電位と第2ノード間に接続されて該第1ノードの電圧で導通状態が制御され、前記第1のMOSトランジスタに電流を供給する第5のMOSトランジスタ、該第2ノードと該接地電位間に接続されて該第2ノードの電圧で導通状態が制御される第6のMOSトランジスタ、該電源電位と第3ノード間に接続されて該第1ノードの電圧で導通状態が制御され、前記第2のMOSトランジスタに電流を供給する第7のMOSトランジスタ、該第3ノードと該接地電位間に接続されて該第3ノードの電圧で導通状態が制御される第8のMOSトランジスタを有する変動補正部と、
前記第2ノードの電圧に対応する第1の電流と前記第3ノードの電圧に対応する第2の電流を生成し、該第1の電流と該第2の電流の差を電圧に変換して受信信号強度信号として出力する信号強度出力部とを、
備えたことを特徴とする信号強度検出回路。
A first differential amplifier that outputs a first voltage according to a DC component of a received differential signal, and n connected in parallel whose conduction state is controlled by the first voltage (where n is 2 or more) A direct-current component extraction unit having first MOS transistors,
Cascade-connected n second differential amplifiers that extract a change component of the received differential signal and output a second voltage, and a corresponding differential provided for each of the second differential amplifiers A change component extraction unit having n second MOS transistors connected in parallel whose conduction state is controlled by a second voltage output from the amplifier;
A third MOS transistor connected between the power supply potential and the first node and controlled in conduction state by the voltage at the first node, and connected between the first node and ground potential and connected at the first voltage. N + 1 fourth MOS transistors connected in parallel, connected between the power supply potential and the second node, and the conduction state is controlled by the voltage of the first node, and a current is supplied to the first MOS transistor. A sixth MOS transistor connected between the second node and the ground potential, the conduction state of which is controlled by the voltage of the second node, and between the power supply potential and the third node A seventh MOS transistor connected to control the conduction state by the voltage of the first node and supplying a current to the second MOS transistor; connected between the third node and the ground potential; A fluctuation correction unit state voltage conduction has a eighth MOS transistors controlled,
A first current corresponding to the voltage of the second node and a second current corresponding to the voltage of the third node are generated, and a difference between the first current and the second current is converted into a voltage. A signal strength output unit that outputs as a received signal strength signal,
A signal strength detection circuit comprising:
前記n個の第1のMOSトランジスタ、前記n個の第2のMOSトランジスタ、前記n+1個の第4のMOSトランジスタ、前記第6のMOSトランジスタ、及び前記第8のMOSトランジスタは、すべて同一サイズのNチャネルMOSトランジスタで構成し、
前記第3のMOSトランジスタ、前記第5のMOSトランジスタ、及び前記第7のMOSトランジスタは、同一サイズのPチャネルMOSトランジスタで構成したことを特徴とする請求項1記載の信号強度検出回路。
The n first MOS transistors, the n second MOS transistors, the n + 1 fourth MOS transistors, the sixth MOS transistor, and the eighth MOS transistor are all of the same size. It is composed of N channel MOS transistors,
2. The signal strength detection circuit according to claim 1, wherein the third MOS transistor, the fifth MOS transistor, and the seventh MOS transistor are P-channel MOS transistors having the same size.
JP2006089784A 2006-03-29 2006-03-29 Signal strength detection circuit Active JP4610509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089784A JP4610509B2 (en) 2006-03-29 2006-03-29 Signal strength detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089784A JP4610509B2 (en) 2006-03-29 2006-03-29 Signal strength detection circuit

Publications (2)

Publication Number Publication Date
JP2007267065A true JP2007267065A (en) 2007-10-11
JP4610509B2 JP4610509B2 (en) 2011-01-12

Family

ID=38639605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089784A Active JP4610509B2 (en) 2006-03-29 2006-03-29 Signal strength detection circuit

Country Status (1)

Country Link
JP (1) JP4610509B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046341A (en) * 2001-08-01 2003-02-14 Sony Corp If amplifier circuit and rssi circuit system
JP2005151331A (en) * 2003-11-18 2005-06-09 Toshiba Corp Signal intensity detecting circuit and amplification factor control system using the same
JP2006067246A (en) * 2004-08-26 2006-03-09 Sharp Corp Received signal strength measuring circuit, received signal strength detection circuit, and radio receiving unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046341A (en) * 2001-08-01 2003-02-14 Sony Corp If amplifier circuit and rssi circuit system
JP2005151331A (en) * 2003-11-18 2005-06-09 Toshiba Corp Signal intensity detecting circuit and amplification factor control system using the same
JP2006067246A (en) * 2004-08-26 2006-03-09 Sharp Corp Received signal strength measuring circuit, received signal strength detection circuit, and radio receiving unit

Also Published As

Publication number Publication date
JP4610509B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
KR101939843B1 (en) Voltage regulator
US6583667B1 (en) High frequency CMOS differential amplifiers with fully compensated linear-in-dB variable gain characteristic
US9141124B1 (en) Bandgap reference circuit
JP2005244276A (en) Differential amplification circuit
TW201804278A (en) Bandgap reference circuit
JP2008109635A (en) Circuit for correcting temperature characteristics, and amplifying circuit for sensor
JP2006050633A (en) D/a converter
TW201931045A (en) Current generation circuit
AU2007203544A1 (en) High gain, high speed comparator operable at low current
JP2007233657A (en) Amplifier, step-down regulator using it, and operational amplifier
JP2008048393A (en) Db-linear variable voltage gain amplifier
CN109491429B (en) Band-gap reference voltage generating circuit and band-gap reference voltage generating system
JP4610509B2 (en) Signal strength detection circuit
TWI490678B (en) Voltage generating apparatus
CN108345336B (en) Energy gap reference circuit
JP6132881B2 (en) Voltage variable gain amplification circuit and differential input voltage amplification method
US10720890B1 (en) High-speed high-accuracy amplifier and method thereof
JP2019033386A (en) Differential amplifier circuit
KR100915151B1 (en) Reference Voltage Generating Circuits with Noise Immunity
CN108183704B (en) Source follower
JP5788739B2 (en) Voltage variable gain amplifier circuit
KR100599974B1 (en) Voltage reference generator
KR100746293B1 (en) Cascode-type current mode comparator, receiver and semiconductor device having the same
JP5876807B2 (en) Low dropout voltage regulator circuit
JP4332522B2 (en) Differential amplifier circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080730

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250