JP2007266032A - Permanent magnet and manufacturing method therefor - Google Patents

Permanent magnet and manufacturing method therefor Download PDF

Info

Publication number
JP2007266032A
JP2007266032A JP2006084991A JP2006084991A JP2007266032A JP 2007266032 A JP2007266032 A JP 2007266032A JP 2006084991 A JP2006084991 A JP 2006084991A JP 2006084991 A JP2006084991 A JP 2006084991A JP 2007266032 A JP2007266032 A JP 2007266032A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
permanent magnet
manufacturing
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006084991A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kataoka
俊之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN MAGNETIC CHEMICAL INST
JAPAN MAGNETIC CHEMICAL INSTITUTE
KAMIYAMA KAZUTERU
Original Assignee
JAPAN MAGNETIC CHEMICAL INST
JAPAN MAGNETIC CHEMICAL INSTITUTE
KAMIYAMA KAZUTERU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN MAGNETIC CHEMICAL INST, JAPAN MAGNETIC CHEMICAL INSTITUTE, KAMIYAMA KAZUTERU filed Critical JAPAN MAGNETIC CHEMICAL INST
Priority to JP2006084991A priority Critical patent/JP2007266032A/en
Publication of JP2007266032A publication Critical patent/JP2007266032A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a permanent magnet that is superior in magnetic characteristics and moldability. <P>SOLUTION: The method of manufacturing a permanent magnet is used to manufacture a permanent magnet M and includes a step of housing a magnet element 2 in a housing body 4, having a specified shape that is mode of a sintered material having a specified shape by molding and sintering a plurality of magnetic material, a step of filling the housing body 4 with a bonding material 6 for bonding the magnetic elements with each other, and a step of forming a molded body 8 with the respective magnet elements and the bonding material integrally molded along the contour of the housing body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気特性及び成形性に優れた永久磁石及びその製造方法に関する。   The present invention relates to a permanent magnet excellent in magnetic properties and formability and a method for producing the same.

永久磁石(以下、単に磁石ともいう)は、一般家庭用の各種電気製品、産業用の各種設備や装置など、広範な分野に用いられている。現在、知られている永久磁石は、その状態や製造方法により、焼結磁石(特許文献1参照)やボンド磁石(特許文献2参照)などに分類することができる。   Permanent magnets (hereinafter also simply referred to as magnets) are used in a wide range of fields such as various household electric appliances and various industrial equipment and devices. Currently known permanent magnets can be classified into sintered magnets (see Patent Document 1), bonded magnets (see Patent Document 2), etc., depending on the state and manufacturing method.

焼結磁石は、例えば、フェライトや希土類元素などの硬磁性を示す磁性材(磁性粉)を基本材とし、これに必要に応じて焼結助剤を添加して成形し、加熱焼結及び時効処理(析出硬化処理)を施した成形体を所定形状に加工した後、着磁させることで製造される。なお、希土類元素のうち、例えば、磁性材(磁性粉)としてネオジウムを適用した場合、ネオジウムは非常に錆び易いという特性を持つため、成形体を所定形状に加工した後、着磁させる前に、当該成形体に表面処理を施して被膜を形成することで防錆効果を高めている。
かかる焼結磁石は、残留磁束密度と保磁力が高いため、言い換えれば、強力な磁場を作り出すとともに減磁し難いため、安定した強い磁力を発生させることが可能であるという特長を有している。
Sintered magnets are made of, for example, a magnetic material (magnetic powder) exhibiting hard magnetism, such as ferrite and rare earth elements, and added with a sintering aid as necessary. It is manufactured by processing a molded body that has been subjected to the treatment (precipitation hardening treatment) into a predetermined shape and then magnetizing it. In addition, among rare earth elements, for example, when neodymium is applied as a magnetic material (magnetic powder), since neodymium has a characteristic that it is very easy to rust, after processing the molded body into a predetermined shape, before magnetizing, A rust prevention effect is enhanced by applying a surface treatment to the molded body to form a film.
Such a sintered magnet has a feature that it can generate a stable strong magnetic force because it has a high residual magnetic flux density and a coercive force, in other words, it creates a strong magnetic field and is difficult to demagnetize. .

ところで、焼結磁石は、その製造工程において焼結処理が施されるため、冷却時に磁性材の収縮により成形体に大きな歪みが発生してしまう。このため、外形寸法精度が0.1〜0.01mm以下であることを要求される精密機器の用途では、切削、研削及び研磨などの機械加工を施して、要求される焼結磁石の寸法精度や形状を維持している。例えば、薄肉のリング形状の磁石は、収縮時の応力歪みで亀裂を生じ、製品化が困難であるため、当該収縮を予め考慮して大きめに形成した2分割や4分割などの扇形磁石の内周、外周及び端面に対して切削、研削及び研磨などの機械加工を施し、当該分割された扇形磁石を所定の位置にリング状に固着させることで寸法精度や形状を維持している。このように焼結磁石は、製造工程、組立工程に手間がかかり、その寸法精度が高度になるに従って、あるいは、その形状が複雑になるに従って、さらに加工時間とコストを要することになってしまう。   By the way, since the sintered magnet is subjected to a sintering process in the manufacturing process, a large distortion is generated in the molded body due to contraction of the magnetic material during cooling. For this reason, in precision instrument applications that require outer dimensional accuracy of 0.1 to 0.01 mm or less, machining such as cutting, grinding, and polishing is performed, and the required dimensional accuracy of sintered magnets. And keep the shape. For example, a thin ring-shaped magnet cracks due to stress strain at the time of contraction, and it is difficult to produce a product. Dimensional accuracy and shape are maintained by performing machining such as cutting, grinding, and polishing on the circumference, outer circumference, and end face, and fixing the divided sector magnets in a ring shape at predetermined positions. As described above, the sintered magnet takes time and effort in the manufacturing process and the assembling process, and further processing time and cost are required as the dimensional accuracy becomes higher or the shape becomes more complicated.

また、磁石が用いられる各種の機器の多様化に伴い、その機器の内部に組み込まれる磁石の大きさや形状へのニーズも多様化し、より細分化されている。例えば、スピンドルモータなどの小型モータに組み込むために焼結磁石の厚さを薄くすることが要求される場合や、大型の発電設備の内部に組み込むために焼結磁石のサイズを大きくすることが要求される場合などがある。
このような場合、焼結磁石の製造工程において、焼結時の磁性材の収縮率の偏りによっては、成形体に割れ、ひび及び欠けなどが生じてしまう場合がある。このような成形体の割れ、ひび及び欠けなどが生じると、結果として、焼結磁石の歩留まりが悪くなるとともに、焼結磁石の大きさや形状に対する細分化されたニーズに充分に応えることができない場合がある。特に、医療機器などに用いられる焼結磁石では、成形体に割れ、ひび及び欠けなどが生じた場合のみならず、成形体に極僅かな歪みや加工誤差などが生じた場合であっても、不良品として使用できないことが多く、この場合には、さらに焼結磁石の歩留まりが悪くなってしまう。また、例えば、希少で高価な資源である希土類元素の焼結磁性材を廃棄物として処分しなければならない場合があり、この場合には、当該処分のためのコストも生じてしまう。
In addition, with the diversification of various devices using magnets, the needs for the size and shape of magnets incorporated in the devices are diversified and further subdivided. For example, when it is required to reduce the thickness of the sintered magnet for incorporation into a small motor such as a spindle motor, or to increase the size of the sintered magnet for incorporation within a large power generation facility There are some cases.
In such a case, in the manufacturing process of the sintered magnet, cracks, cracks, chips, and the like may occur in the molded body depending on the bias of the shrinkage rate of the magnetic material during sintering. When such cracks, cracks, and chippings occur in the molded body, the yield of the sintered magnet deteriorates as a result, and the subdivided needs for the size and shape of the sintered magnet cannot be sufficiently met. There is. In particular, in sintered magnets used for medical devices, etc., not only when cracks, cracks and chips occur in the molded body, but even when a slight distortion or processing error occurs in the molded body, In many cases, it cannot be used as a defective product. In this case, the yield of the sintered magnet is further deteriorated. For example, rare earth element sintered magnetic materials, which are rare and expensive resources, may have to be disposed of as waste, and in this case, costs for the disposal also occur.

これに対し、ボンド磁石は、例えば、上記磁性粉を各種の樹脂と混合し、射出成形、圧縮成形(プレス成形)などの各種の樹脂成形法を利用して、様々な形状に加工した成形体を着磁させることで製造される。なお、磁性粉と混合させる樹脂としては、例えば、ポリエチレン、ポリプロピレン及びポリアミドなどの熱可塑性樹脂や、エポキシ、フェノール及びポリエステルなどの熱硬化性樹脂がそれぞれ用いられている。また、必要に応じて成形体に対して、着磁前に表面処理を施してもよい。
かかるボンド磁石は、焼結磁石と比べ、その成形性が非常に優れており、加工の自由度が高く、様々な複雑形状を成す任意の形状に加工することが可能であるという特長を有している。また、ボンド磁石の製造工程には、焼結磁石の製造工程に含まれる焼結処理がなく、結合材(混合樹脂)の収縮が少ないため、成形体の段階で寸法精度が良く、各種の形状に加工することが可能であるという特長がある。
On the other hand, the bonded magnet is, for example, a molded product obtained by mixing the above magnetic powder with various resins and processing into various shapes using various resin molding methods such as injection molding and compression molding (press molding). It is manufactured by magnetizing. In addition, as resin mixed with magnetic powder, thermoplastic resins, such as polyethylene, a polypropylene, and polyamide, and thermosetting resins, such as an epoxy, phenol, and polyester, are used, respectively. Moreover, you may surface-treat before a magnetization with respect to a molded object as needed.
Compared to sintered magnets, such bonded magnets have excellent moldability, high degree of freedom in processing, and can be processed into any complex shape. ing. The bonded magnet manufacturing process does not include the sintering process included in the sintered magnet manufacturing process, and the shrinkage of the binder (mixed resin) is small. It has the feature that it can be processed into

しかしながら、ボンド磁石は、磁性を有しない樹脂をその材料に含んでいるため、焼結磁石と比べ、その磁気特性が劣る場合が多い。例えば、ボンド磁石を製造するに当たり、磁性粉と樹脂とを重量比で8:2の割合で混合した場合であっても、その体積比は、5:5程度になってしまう。この場合、磁性粉の樹脂に対する体積比を高めれば、その体積中に占める磁性粉の割合が大きくなり、磁石の磁性粉密度が上がるため、磁気特性を高めることができるが、例えば、射出成形する際の磁石材料の流動性が悪くなってしまう。また、例えば、ボンド磁石を圧縮成形(プレス成形)する際、金型に注入される磁石材料には、当該金型内に行き渡るのに充分な流動性を持たせておかなければならないため、ある程度の量の樹脂を当該磁石材料に混合しておく必要があり、磁性粉の樹脂に対する体積比を高めることにも限界がある。なお、ボンド磁石を射出成形する際には、圧縮成形(プレス成形)の場合よりもさらに磁石材料に流動性を持たせる必要があり、当該磁石材料への混合樹脂量をさらに増やさなければならないため、磁性粉の樹脂に対する体積比は低下してしまう。この結果、ボンド磁石の磁気特性を向上させることにも限界が生じてしまう。   However, since the bond magnet contains a non-magnetic resin in its material, its magnetic characteristics are often inferior compared to a sintered magnet. For example, when manufacturing a bonded magnet, even if magnetic powder and resin are mixed at a weight ratio of 8: 2, the volume ratio is about 5: 5. In this case, if the volume ratio of the magnetic powder to the resin is increased, the proportion of the magnetic powder in the volume increases and the magnetic powder density of the magnet increases, so that the magnetic characteristics can be improved. For example, injection molding is performed. The fluidity of the magnet material at the time becomes worse. In addition, for example, when compression molding (press molding) a bonded magnet, the magnet material to be injected into the mold must have sufficient fluidity to spread in the mold. This amount of resin must be mixed with the magnet material, and there is a limit in increasing the volume ratio of magnetic powder to resin. In addition, when injection molding a bonded magnet, it is necessary to make the magnet material more fluid than in the case of compression molding (press molding), and the amount of mixed resin in the magnet material must be further increased. The volume ratio of magnetic powder to resin is reduced. As a result, there is a limit in improving the magnetic characteristics of the bonded magnet.

なお、ボンド磁石であっても、各磁性材(磁性粉)の磁場配向を一定方向に揃えて成形体を形成し、当該成形体を着磁させ、当該ボンド磁石を異方性の磁石とすることで、その磁気特性を向上させることができる。一般的に、このような磁性粉の配向処理は、ボンド磁石の成形時に磁場を印加した状態で行わなければならない。例えば、磁石材料を注入した金型に対して、加圧中に一方向の磁場を外部より印加し、磁性粉の配向処理を行うとともに、成形作業を併せて行う。   Even if it is a bond magnet, the magnetic material orientation (magnetic powder) of each magnetic material (magnetic powder) is aligned in a certain direction to form a molded body, the molded body is magnetized, and the bonded magnet is used as an anisotropic magnet. Thus, the magnetic characteristics can be improved. In general, such a magnetic powder orientation process must be performed in a state where a magnetic field is applied when the bonded magnet is formed. For example, a magnetic field in one direction is applied from the outside during pressurization to a mold into which a magnet material has been injected to perform an orientation treatment of the magnetic powder, and a molding operation is also performed.

しかしながら、ボンド磁石の成形時に磁性粉の配向処理を行うためには、成形作業を制御するとともに金型に対して印加する磁場も併せて制御しなければならず、非常に手間がかかってしまう。なお、このような磁場の印加による磁性粉の配向処理を行ったとしても、その配向が不完全で各磁性粉の磁場配向が完全には一方向に揃わず、想定した磁気特性の向上が達成できない場合がある。また、磁場を印加可能な金型を磁石形状に合わせて個別に調達するためのコストも必要となってしまう。
特開2001−335808号公報 特開2000−100611号公報
However, in order to perform the magnetic powder orientation process at the time of molding the bonded magnet, it is necessary to control the molding operation as well as the magnetic field applied to the mold, which is very troublesome. Even if the magnetic powder is oriented by applying such a magnetic field, the orientation is incomplete and the magnetic orientation of each magnetic powder is not perfectly aligned in one direction, and the assumed improvement in magnetic properties is achieved. There are cases where it is not possible. Moreover, the cost for procuring the metal mold | die which can apply a magnetic field according to a magnet shape separately will also be needed.
JP 2001-335808 A Japanese Patent Laid-Open No. 2000-100611

本発明は、このような課題を解決するためになされており、その目的は、磁気特性及び成形性に優れた永久磁石及びその製造方法を提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide a permanent magnet excellent in magnetic properties and moldability and a method for producing the same.

このような目的を達成するために、本発明の永久磁石製造方法は、複数の磁性材を成形して焼結した所定形状を成す焼結材から成る磁石構成体を所定形状を成す収容体に収容する工程と、当該磁石構成体を相互に接合するための接合材を当該収容体に充填する工程と、各磁石構成体と接合材とを当該収容体の輪郭に沿って一体的に成形した成形体を形成する工程とを有している。
この場合、磁石構成体は、焼結材の各磁性材の磁場を所定の一方向に揃えるための磁場配向処理を施して形成されている。また、磁石構成体の磁性材は、ネオジウム、ボロン、サマリウム、コバルト、鉄及びフェライトのいずれか少なくとも1つを含む硬磁性の磁性素材で構成されている。さらに、接合材は、所定の設定条件で結合特性を有する素材で構成されている。
また、このような目的を達成するために、本発明に係る永久磁石は、上述したいずれかの製造方法で製造されている。この場合、成形体は、磁石構成体、接合材及び収容体が一体を成すように成形してもよい。さらに、永久磁石には、成形体を形成する工程の後、当該成形体に対して着磁処理を施してもよい。
In order to achieve such an object, the method of manufacturing a permanent magnet according to the present invention provides a magnet structure composed of a sintered material having a predetermined shape obtained by molding and sintering a plurality of magnetic materials into a container having a predetermined shape. The step of housing, the step of filling the container with a bonding material for bonding the magnet components to each other, and the magnet components and the bonding material are integrally formed along the outline of the container. Forming a molded body.
In this case, the magnet structure is formed by applying a magnetic field orientation process for aligning the magnetic field of each magnetic material of the sintered material in a predetermined direction. Moreover, the magnetic material of the magnet structure is composed of a hard magnetic material containing at least one of neodymium, boron, samarium, cobalt, iron, and ferrite. Further, the bonding material is made of a material having bonding characteristics under predetermined setting conditions.
In order to achieve such an object, the permanent magnet according to the present invention is manufactured by any one of the manufacturing methods described above. In this case, the molded body may be molded so that the magnet structure, the bonding material, and the container are integrated. Furthermore, the permanent magnet may be magnetized after the step of forming the molded body.

本発明によれば、磁気特性及び成形性に優れた永久磁石を容易に且つ低コストで製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the permanent magnet excellent in the magnetic characteristic and the moldability can be manufactured easily and at low cost.

以下、本発明の一実施形態に係る永久磁石製造方法及び永久磁石について、添付図面(図1(a)〜(h))を参照して説明する。
本実施形態に係る永久磁石M(図1(h))は、複数の磁性材(図示しない)を成形して焼結した所定形状を成す焼結材から成る複数の磁石構成体2(図1(a))を所定形状を成す収容体4(図1(b))に収容する工程(以下、磁石構成体収容工程という)と、当該磁石構成体2を相互に接合するための接合材6(図1(d))を当該収容体4に充填する工程(以下、接合材充填工程という)と、各磁石構成体2と接合材6とを当該収容体4の輪郭に沿って一体的に成形した成形体8(図1(f))を形成する工程(以下、成形体形成工程という)とを有する製造方法により製造されている。なお、収容体4としては、例えば、各種の型、容器及び袋などを任意に選択して適用することができるが、本実施形態においては、一例として、金型(図1(b)参照)が収容体4として適用されている場合を想定する。
Hereinafter, a permanent magnet manufacturing method and a permanent magnet according to an embodiment of the present invention will be described with reference to the accompanying drawings (FIGS. 1A to 1H).
A permanent magnet M (FIG. 1 (h)) according to the present embodiment includes a plurality of magnet components 2 (FIG. 1) made of a sintered material having a predetermined shape formed by sintering a plurality of magnetic materials (not shown). (a)) is accommodated in a container 4 (FIG. 1 (b)) having a predetermined shape (hereinafter referred to as a magnet component housing step), and a bonding material 6 for bonding the magnet component 2 to each other. (FIG. 1 (d)) is filled into the container 4 (hereinafter referred to as a bonding material filling process), and each magnet component 2 and the bonding material 6 are integrally formed along the outline of the container 4. It is manufactured by a manufacturing method including a step of forming a molded body 8 (FIG. 1 (f)) (hereinafter referred to as a molded body forming step). As the container 4, for example, various molds, containers, bags, and the like can be arbitrarily selected and applied. However, in the present embodiment, as an example, a mold (see FIG. 1B) Is applied as the container 4.

この場合、磁石構成体2の磁性材は、ネオジウム、ボロン、サマリウム、コバルト、鉄及びフェライトのいずれか少なくとも1つを含む硬磁性の磁性素材で構成することができる。例えば、Nd-Fe-B系の希土類磁石やSm-Co系の希土類磁石などの硬磁性且つ強磁性の磁石粉を任意に選択し、磁石構成体2の磁性材の素材として適用すればよい。本実施形態において、磁石構成体2は、このような磁石粉を成形した上で焼結した所定形状を成す焼結材で構成されている。なお、焼結時の温度や時間など各種条件については、例えば、磁性材(磁石粉)の種類や材質などによって所定条件に設定されるため、ここでは特に限定しない。また、磁性材(磁石粉)を焼結する際には、所定の焼結助剤を添加してもよい。さらにまた、焼結後の焼結材には、時効処理(析出硬化処理)が施されており、当該時効処理が施された焼結材が所定形状に加工(例えば、切削や研削など)されて、磁石構成体2を構成している。   In this case, the magnetic material of the magnet structure 2 can be made of a hard magnetic material containing at least one of neodymium, boron, samarium, cobalt, iron, and ferrite. For example, hard magnetic and ferromagnetic magnet powders such as Nd—Fe—B rare earth magnets and Sm—Co rare earth magnets may be arbitrarily selected and applied as the magnetic material of the magnet component 2. In this embodiment, the magnet structure 2 is comprised with the sintered material which comprises the predetermined shape which shape | molded and sintered such magnet powder. Various conditions such as temperature and time during sintering are not particularly limited here because they are set to predetermined conditions depending on, for example, the type and material of the magnetic material (magnet powder). Further, when the magnetic material (magnet powder) is sintered, a predetermined sintering aid may be added. Furthermore, the sintered material after sintering is subjected to an aging treatment (precipitation hardening treatment), and the sintered material subjected to the aging treatment is processed into a predetermined shape (for example, cutting or grinding). Thus, the magnet structure 2 is configured.

本実施形態において、磁石構成体2の形状及び大きさは特に限定されず、磁石構成体収容工程で使用される所定形状を成す型4に収容することが可能な、任意の形状及び大きさに設定することができる。また、各磁石構成体2は、全て同一の形状、同一の大きさであってもよいし、それぞれ異なる形状や大きさであってもよい。例えば、磁石構成体2として、立方体、直方体、多角形体、球体及び円形など任意の形状のものを適用でき、板状、棒状、線状及び環状など任意の形態のものを適用することができる。このように、磁石構成体2には、任意の形状及び大きさのものが適用できるため、例えば、焼結磁石の製造工程における焼結及び加工処理において、ひび、割れ及び欠けなどが生じたことによる焼結材(成形体8)の廃材や端材などであっても、磁石構成体2として適用可能となる。このため、希少で高価な資源である希土類元素の焼結磁性材を再利用及び有効活用することが可能となり、廃棄物として処分される廃材や端材の量を大幅に減らすことができる。また、これらの廃材や端材を処分するためのコストも大幅に削減することができる。   In the present embodiment, the shape and size of the magnet structure 2 are not particularly limited, and can have any shape and size that can be accommodated in the mold 4 having a predetermined shape used in the magnet structure accommodation step. Can be set. Moreover, all the magnet structures 2 may have the same shape and the same size, or may have different shapes and sizes. For example, as the magnet structure 2, an arbitrary shape such as a cube, a rectangular parallelepiped, a polygon, a sphere, and a circle can be applied, and an arbitrary shape such as a plate shape, a rod shape, a linear shape, and an annular shape can be applied. As described above, since the magnet structure 2 can be of any shape and size, for example, cracks, cracks, chips, etc. have occurred in the sintering and processing in the manufacturing process of the sintered magnet. Even the waste material or the end material of the sintered material (molded body 8) obtained by the above can be applied as the magnet structure 2. For this reason, it becomes possible to reuse and effectively utilize the rare earth element sintered magnetic material which is a rare and expensive resource, and it is possible to greatly reduce the amount of waste materials and scraps to be disposed of as waste. In addition, the cost for disposing of these waste materials and scraps can be greatly reduced.

本実施形態において、磁石構成体2は、一例として、それぞれ異なる大きさの直方体を成しており、その長辺が10〜12mm、短辺が5〜7mm、厚さが1〜2mm程度の大きさで構成されている場合を想定する(図1(a)参照)。そして、磁石構成体収容工程において、このような磁石構成体2を所定形状を成す型4の中へ所定の個数だけ収容している。なお、型4の中へ収容する磁石構成体2の個数は特に限定されず、1つだけでもよいが、本実施形態においては、複数(多数)の磁石構成体2が型4の中へ収容されている場合を想定する(図1(c),(g)参照)。この場合、各磁石構成体2は、相互の磁石構成体2間に所定の隙間を空けた状態(図1(c),(g)の状態)で型4の中へ収容してもよいし、間隔を空けずに敷き詰めた状態で収容してもよい。また、各磁石構成体2は、任意の方向(縦、横及び斜め方向など)に寝た状態や立ち上がった状態で重なり合っていてもよい。一例として、図1(c),(g)では、各磁石構成体2が寝た状態で縦方向及び横方向に重なり合った構成を示している(図(g)では、一部の磁石構成体2を省略して記載)。   In the present embodiment, as an example, the magnet structure 2 forms rectangular parallelepipeds having different sizes, and the long side is 10 to 12 mm, the short side is 5 to 7 mm, and the thickness is about 1 to 2 mm. The case where it is comprised is assumed (refer Fig.1 (a)). In the magnet structure housing step, a predetermined number of such magnet structures 2 are housed in the mold 4 having a predetermined shape. Note that the number of the magnet structures 2 accommodated in the mold 4 is not particularly limited, and may be only one. In this embodiment, a plurality (many) of the magnet structures 2 are accommodated in the mold 4. This is assumed (see FIGS. 1C and 1G). In this case, each magnet component 2 may be accommodated in the mold 4 with a predetermined gap between the magnet components 2 (the states shown in FIGS. 1C and 1G). , And may be accommodated in a state where they are laid out without a gap. Moreover, each magnet structure 2 may overlap in the state which fell in the arbitrary directions (vertical, horizontal, diagonal direction, etc.) or stood up. As an example, FIGS. 1C and 1G show a configuration in which each magnet component 2 is laid down and overlapped in the vertical and horizontal directions (FIG. 1G shows a part of the magnet components). 2 is omitted).

なお、磁石構成体2には、焼結材の各磁性材の磁場を所定の一方向に揃えるための磁場配向処理を施してもよい。このような磁場配向処理を予め施した場合、当該磁石構成体2は、異方性を有するため、着磁させた際の磁気特性を向上させることができ、当該磁石構成体2を着磁させて成る磁石は、より強力な磁場を作り出すことができるとともに、保磁力が高く(減磁し難く)、安定した強い磁力を発生させることができる。ただし、磁石構成体2に対して予め磁場配向処理を施した場合、磁石構成体収容工程において、当該磁石構成体2は、各磁石構成体の磁場方向を所定方向(例えば、図1(c)の上下方向)に揃えて型4の中へ収容する必要がある。なお、この場合であっても、各磁石構成体2は、相互の磁石構成体2間に所定の隙間を空けた状態で型4の中へ収容してもよいし、間隔を空けずに敷き詰めた状態で収容してもよい。また、各磁石構成体2の磁場方向が所定方向(例えば、図1(c)の上下方向)に揃えられている限り、各磁石構成体2は、重なり合った状態で型4の中へ収容してもよい(図1(c),(g)参照)。   In addition, you may give the magnetic structure 2 the magnetic field orientation process for aligning the magnetic field of each magnetic material of a sintered material to predetermined one direction. When such a magnetic field orientation process is performed in advance, the magnet structure 2 has anisotropy, so that the magnetic characteristics when magnetized can be improved, and the magnet structure 2 is magnetized. In addition to being able to create a stronger magnetic field, the magnet has a high coercive force (hard to demagnetize) and can generate a stable strong magnetic force. However, when a magnetic field orientation process is performed on the magnet structure 2 in advance, in the magnet structure housing step, the magnet structure 2 sets the magnetic field direction of each magnet structure in a predetermined direction (for example, FIG. 1C). Need to be accommodated in the mold 4 in the vertical direction. Even in this case, the respective magnet components 2 may be accommodated in the mold 4 with a predetermined gap between the magnet components 2 or spread without gaps. You may accommodate in the state. Further, as long as the magnetic field direction of each magnet component 2 is aligned in a predetermined direction (for example, the vertical direction in FIG. 1C), each magnet component 2 is accommodated in the mold 4 in an overlapping state. (See FIGS. 1C and 1G).

また、本実施形態において、接合材6は、所定の設定条件で結合特性を有する素材で構成されており、その素材として、例えば、各種の樹脂(ゴム、合成樹脂(プラスチック))や各種の接着剤などを適用することができる。この場合、合成樹脂としては、例えば、ポリエチレン、ポリプロピレン及びポリアミドなどの所定温度に加熱すると軟化する熱可塑性樹脂や、エポキシ、フェノール及びポリエステルなどの所定温度に加熱すると硬化する熱硬化性樹脂を任意に適用することができる。また、接着剤としては、例えば、二液を混合することで固化する反応型の接着剤(エポキシ系接着剤等)などを任意に適用することができる。なお、熱可塑性樹脂と熱硬化性樹脂とは、成形体形成工程における成形方法によって、選択的に適用すればよい。
また、接合材6の形態としては、固形体、流動体、粒状体及び粉状体など所定温度下や所定圧力下において各種の形態を成す素材を適用することができる。例えば、接合材6として、上述した各種樹脂製のコンパウンドやペレットなどを適用してもよい。
In the present embodiment, the bonding material 6 is made of a material having bonding characteristics under predetermined setting conditions. Examples of the material include various resins (rubber, synthetic resin (plastic)) and various adhesives. An agent or the like can be applied. In this case, as the synthetic resin, for example, a thermoplastic resin that softens when heated to a predetermined temperature, such as polyethylene, polypropylene, and polyamide, and a thermosetting resin that cures when heated to a predetermined temperature, such as epoxy, phenol, and polyester, are arbitrarily used. Can be applied. Further, as the adhesive, for example, a reactive adhesive (such as an epoxy adhesive) that is solidified by mixing two liquids can be arbitrarily applied. In addition, what is necessary is just to selectively apply a thermoplastic resin and a thermosetting resin with the shaping | molding method in a molded object formation process.
In addition, as the form of the bonding material 6, materials having various forms such as a solid body, a fluid body, a granular body, and a powder body can be applied at a predetermined temperature or a predetermined pressure. For example, as the bonding material 6, the above-described various resin compounds or pellets may be applied.

接合材充填工程においては、例えば、このような接合材6をシリンダー10内などで加熱し、当該接合材6に流動性を持たせ、型4へ高圧注入(例えば、射出)する(図1(d)参照)。これにより、型4の中へ収容した所定個数の磁石構成体2を相互に接合するために、接合材6を当該型4に充填することができる。その際、各磁石構成体2が相互に所定の隙間を空けて型4の中へ収容されている場合、当該隙間を埋めて接合材6によって相互の磁石構成体2が接合されるとともに、複数の磁石構成体2が全体として一体を成して接合材6によって被覆されるように、接合材6を型4の中へ注入し、充填すればよい(図1(e)参照)。また、各磁石構成体2が間隔を空けずに敷き詰めた状態で型4の中へ収容されている場合、複数の磁石構成体2が全体として一体を成して接合材6によって被覆されるように、接合材6を型4の中へ注入し、充填すればよい。なお、接合材6の充填量(注入量)は、例えば、型4の大きさや型4に収容した磁石構成体2の量(個数や体積等)などによって任意に設定されるため、ここでは特に限定しない。また、接合材6の充填条件(例えば、注入時の圧力や速度など)は、例えば、接合材6の材質などによって任意に設定されるため、ここでは特に限定しない。   In the bonding material filling step, for example, such a bonding material 6 is heated in a cylinder 10 or the like to make the bonding material 6 fluid, and high-pressure injection (for example, injection) into the mold 4 (FIG. 1 ( d)). Accordingly, the bonding material 6 can be filled in the mold 4 in order to bond the predetermined number of magnet components 2 accommodated in the mold 4 to each other. At that time, when each magnet component 2 is accommodated in the mold 4 with a predetermined gap between each other, the magnet component 2 is joined by the bonding material 6 while filling the gap, The bonding material 6 may be poured into the mold 4 and filled so that the magnet structure 2 is integrally formed and covered with the bonding material 6 (see FIG. 1 (e)). Moreover, when each magnet structure 2 is accommodated in the mold 4 in a state where it is laid out without being spaced apart, the plurality of magnet structures 2 are formed as a whole and covered with the bonding material 6. In addition, the bonding material 6 may be poured into the mold 4 and filled. Note that the filling amount (injection amount) of the bonding material 6 is arbitrarily set depending on, for example, the size of the mold 4 and the amount (number, volume, etc.) of the magnet structure 2 accommodated in the mold 4. Not limited. In addition, the filling condition of the bonding material 6 (for example, the pressure and speed at the time of injection) is arbitrarily set depending on, for example, the material of the bonding material 6 and is not particularly limited here.

このような接合材充填工程によれば、型4への充填時(注入時)における接合材6の流動性を確保するために、磁石構成体2に対する接合材6の量を増やす必要は全くない。このため、磁石構成体2の接合材6に対する重量比を低下させることがなく、また、磁石構成体2の接合材6に対する体積比を容易に且つ格段に高めることができる。この結果、磁石構成体2に対する接合材6の体積比が10〜20%であっても、十分に結合強度の確保が可能な成形性に優れた永久磁石Mを製造することができる。また、磁気特性が焼結磁石の80%程度であって、ボンド磁石より50%以上の高磁気特性を有する永久磁石Mを製造することが可能となる。   According to such a bonding material filling step, there is no need to increase the amount of the bonding material 6 with respect to the magnet structure 2 in order to ensure the fluidity of the bonding material 6 when filling the mold 4 (at the time of injection). . For this reason, the weight ratio of the magnet structure 2 to the bonding material 6 is not lowered, and the volume ratio of the magnet structure 2 to the bonding material 6 can be easily and dramatically increased. As a result, even if the volume ratio of the bonding material 6 to the magnet structure 2 is 10 to 20%, it is possible to manufacture the permanent magnet M excellent in formability capable of sufficiently securing the bonding strength. In addition, it is possible to manufacture a permanent magnet M having a magnetic property that is about 80% of that of a sintered magnet and 50% or more higher than that of a bonded magnet.

接合材6の型4への充填後、成形体形成工程において、各磁石構成体2と接合材6とを当該型4の輪郭に沿って一体的に成形した成形体8を形成している(図1(f)参照)。この場合、成形体8の成形方法は、特に限定されず、例えば、射出成形や圧縮成形(プレス成形)などの任意の方法を適用することができる。成形方法として射出成形を適用した場合、上述した接合材充填工程で型4の中へ高圧注入して充填した接合材6を、成形体形成工程において、磁石構成体2とともに所定の温度に冷却して結合(固着)させることで、成形体8を当該型4の輪郭に沿って成形することができる。この場合、一例として、接合材6には、ポリエチレン、ポリプロピレン及びポリアミドなどの熱可塑性樹脂を用いればよい。また、成形方法として圧縮成形(プレス成形)を適用した場合、成形体形成工程において、型4に対して圧力及び熱を加えて、当該型4の中へ高圧注入して充填した接合材6を磁石構成体2とともに圧縮して結合(固着)させることで、成形体8を当該型4の輪郭に沿って成形することができる(図1(f)参照)。この場合、一例として、接合材6には、エポキシ、フェノール及びポリエステルなどの熱硬化性樹脂を用いればよい。なお、成形体形成工程において、型締め処理を行い、当該型4に注入した接合材6を磁石構成体2とともに賦形した後、加圧、加熱及び圧縮することで、成形体8を当該型4の輪郭に沿って成形してもよい。   After the filling of the bonding material 6 into the mold 4, in the molded body forming step, the molded body 8 is formed by integrally molding each magnet component 2 and the bonding material 6 along the contour of the mold 4 ( (See FIG. 1 (f)). In this case, the molding method of the molded body 8 is not particularly limited, and for example, any method such as injection molding or compression molding (press molding) can be applied. When injection molding is applied as the molding method, the bonding material 6 filled by high-pressure injection into the mold 4 in the bonding material filling process described above is cooled to a predetermined temperature together with the magnet structure 2 in the molded body forming process. The molded body 8 can be molded along the contour of the mold 4 by bonding (fixing). In this case, as an example, the bonding material 6 may be a thermoplastic resin such as polyethylene, polypropylene, and polyamide. Further, when compression molding (press molding) is applied as a molding method, in the molded body forming step, pressure and heat are applied to the mold 4, and the bonding material 6 filled by high-pressure injection into the mold 4 is filled. The molded body 8 can be molded along the contour of the mold 4 by being compressed and bonded (fixed) together with the magnet structure 2 (see FIG. 1 (f)). In this case, as an example, the bonding material 6 may be a thermosetting resin such as epoxy, phenol, or polyester. In the molded body forming step, a mold clamping process is performed, and the bonding material 6 injected into the mold 4 is shaped together with the magnet component 2, and then the molded body 8 is molded by pressing, heating and compressing. You may shape | mold along the outline of 4.

このように成形することで、成形体8は、その内部に複数の磁石構成体2を含有し、当該複数の磁石構成体2が全体として1つの成形体8を成すように接合材6によって被覆された構成となる。なお、成形時の圧力の大きさや温度などの条件は、例えば、成形体8の大きさや接合材6の材質などによって任意に設定されるため、ここでは特に限定しない。   By molding in this way, the molded body 8 contains a plurality of magnet constituent bodies 2 therein, and the plurality of magnet constituent bodies 2 are covered with the bonding material 6 so as to form a single molded body 8 as a whole. It becomes the composition which was done. Note that conditions such as the magnitude of pressure and temperature during molding are arbitrarily set depending on the size of the molded body 8 and the material of the bonding material 6, for example, and are not particularly limited here.

このような成形体形成工程によれば、複雑形状(例えば、円板にその上面から下面を貫通する多数の貫通孔を設けたような形状)を成す成形体8であっても容易に精度良く形成することができるとともに、成形体8のサイズも容易に精度良く調整することができる。この結果、型4の形状を変えるだけで、永久磁石Mの形状を複雑化することが容易となり、また永久磁石Mのサイズを小型化若しくは大型化することも容易となる。   According to such a molded body forming step, even a molded body 8 having a complicated shape (for example, a shape in which a large number of through holes penetrating from the upper surface to the lower surface of a circular plate) is formed easily and accurately. While being able to form, the size of the molded object 8 can also be adjusted easily and accurately. As a result, it becomes easy to make the shape of the permanent magnet M complicated only by changing the shape of the mold 4, and the size of the permanent magnet M can be made smaller or larger.

なお、本実施形態においては収容体として型4を適用したが、上述したように、例えば、所定の外形を成す容器や袋などを収容体として適用してもよい。例えば、収容体として容器や袋などを適用した場合、当該容器等を上述した熱可塑性樹脂などで構成し、磁石構成体収容工程において、当該容器等の中に磁石構成体2を収容した後、接合材充填工程において接合材6を注入して充填する。そして、成形体形成工程において、当該容器等を密封して磁石構成体2及び接合材6とともに加熱、加圧し、当該容器等をこれらと一体的に結合(固着)させることで、成形体は、当該容器等の外郭形状が当該成形体の外形を成すように成形されて構成される。   In the present embodiment, the mold 4 is applied as the container. However, as described above, for example, a container or a bag having a predetermined outer shape may be applied as the container. For example, when a container, a bag, or the like is applied as a container, the container or the like is made of the above-described thermoplastic resin, etc., and in the magnet structure housing step, after the magnet structure 2 is housed in the container or the like, In the bonding material filling step, the bonding material 6 is injected and filled. Then, in the molded body forming step, the container and the like are sealed and heated and pressurized together with the magnet component 2 and the bonding material 6, and the container and the like are integrally bonded (fixed) with these, The outer shape of the container or the like is formed so as to form the outer shape of the molded body.

また、成形体形成工程の後、当該成形体8に対して、着磁処理を施す工程(以下、成形体着磁工程という)を加えてもよい。このように、成形体着磁工程において、着磁処理を施すことで当該成形体8を着磁された永久磁石Mとして構成することができる(図1(h)参照)。この場合、成形体8に対する着磁処理は、例えば、永久磁石Mの用途や目的などにより、両面着磁、片面2極着磁、片面多極着磁及び両面2極着磁などの着磁形態を任意に選択し、当該成形体8の所定箇所が所定磁極を成すように、所定の着磁方法により施せばよい。また、成形体8が環状(リング状)を成す場合、例えば、当該成形体8を外周2極着磁、外周多極着磁、内周2極着磁及び内周多極着磁させて、永久磁石Mを構成すればよい。なお、成形体8に対する着磁方法は、特に限定されず、例えば、静磁場着磁やパルス着磁などの任意の方法を適用することができる。また、成形体着磁工程前に、必要に応じて成形体8に対して表面処理を施してもよい。   In addition, after the formed body forming step, a step of applying a magnetizing process to the formed body 8 (hereinafter referred to as a formed body magnetizing step) may be added. In this way, in the molded body magnetization step, the molded body 8 can be configured as a magnetized permanent magnet M by performing a magnetization process (see FIG. 1 (h)). In this case, the magnetizing process for the molded body 8 is, for example, a magnetization mode such as double-sided magnetization, single-sided double-pole magnetization, single-sided multipole magnetization, double-sided double-pole magnetization, depending on the application or purpose of the permanent magnet M. May be arbitrarily selected and applied by a predetermined magnetizing method so that a predetermined portion of the molded body 8 forms a predetermined magnetic pole. Further, when the molded body 8 has an annular shape (ring shape), for example, the molded body 8 is subjected to outer peripheral two-pole magnetization, outer peripheral multi-pole magnetization, inner peripheral two-pole magnetization, and inner peripheral multi-pole magnetization, What is necessary is just to comprise the permanent magnet M. In addition, the magnetization method with respect to the molded object 8 is not specifically limited, For example, arbitrary methods, such as a static magnetic field magnetization and a pulse magnetization, are applicable. Moreover, you may surface-treat with respect to the molded object 8 as needed before a molded object magnetization process.

ここで、本実施形態に係る着磁された永久磁石(以下、本件磁石という)の磁気特性について、試験を行い検証した。以下、当該試験内容及び試験結果について、説明する。
なお、かかる試験においては、試料として、本件磁石、所定の焼結磁石(以下、比較磁石という)の2つの永久磁石を用意し、当該各磁石の磁束をそれぞれ測定して比較した。
Here, the magnetic properties of the magnetized permanent magnet according to the present embodiment (hereinafter referred to as the present magnet) were tested and verified. The test contents and test results will be described below.
In this test, two permanent magnets of the present magnet and a predetermined sintered magnet (hereinafter referred to as a comparative magnet) were prepared as samples, and the magnetic fluxes of the respective magnets were measured and compared.

この場合、本件磁石としては、磁石構成体、接合材及び収容体が一体を成して成形された磁石を用いた。
なお、本件磁石の磁石構成体は、Nd-Fe-B系の焼結磁石(最大エネルギー積:44(MGOe))を焼結材として用いており、当該焼結磁石を直方体(縦:4.0(mm)、横:4.0(mm)、厚さ:1.4(mm)程度)に構成した。また、本件磁石の収容体には、環状(リング状)の収容部(外径:26.9(mm)、内径:12.1(mm)、厚さ:4(mm)、断面積:4.53(mm))を有する樹脂ケース(重量:2.1(g))を用いた。なお、当該樹脂ケースは、全体形状が収容部と同心の環状を成すように構成した。
また、試験の前処理として、複数の上記磁石構成体を樹脂ケースの中へ敷き詰めた状態で収容し、さらに接合材を当該樹脂ケースの中に充填して固着させた後、着磁させた。なお、接合材には、樹脂剤を用いており、当該樹脂剤を0.48(g)充填した。
In this case, as the present magnet, a magnet formed by integrally forming a magnet structure, a bonding material, and a container was used.
The magnet structure of the present magnet uses an Nd—Fe—B sintered magnet (maximum energy product: 44 (MGOe)) as a sintered material, and the sintered magnet is a rectangular parallelepiped (vertical: 4. 0 (mm), width: 4.0 (mm), thickness: about 1.4 (mm)). The magnet housing includes an annular (ring-shaped) housing (outer diameter: 26.9 (mm), inner diameter: 12.1 (mm), thickness: 4 (mm), cross-sectional area: 4 .53 (mm 2 )) resin case (weight: 2.1 (g)) was used. In addition, the said resin case was comprised so that the whole shape might comprise the cyclic | annular form concentric with an accommodating part.
Further, as a pretreatment for the test, a plurality of the above-described magnet structures were accommodated in a resin case, and the bonding material was filled and fixed in the resin case, and then magnetized. Note that a resin agent was used as the bonding material, and 0.48 (g) of the resin agent was filled.

これに対し、比較磁石は、本件磁石の磁石構成体と同様のNd-Fe-B系の焼結磁石(最大エネルギー積:44(MGOe))を用いており、当該焼結磁石を環状(リング状)(外径:26.9(mm)、内径:12.1(mm)、厚さ:0.98(mm)、断面積:4.53(mm))に成形し、これを4つ重ねて構成した。これにより、比較磁石は、その体積が本件磁石の樹脂ケースの収容部の容積とほぼ同一の大きさとなるようにした。なお、比較磁石全体の形態を本件磁石と同様構成にするため、試験の前処理として、比較磁石を本件磁石と同様の樹脂ケースの中へ収容し、さらに本件磁石と同様の樹脂剤を当該樹脂ケースの中に0.38(g)だけ充填して固着させた(以下、前処理後の比較磁石を比較磁石体という)。 On the other hand, the comparative magnet uses an Nd—Fe—B sintered magnet (maximum energy product: 44 (MGOe)) similar to the magnet structure of the present magnet, and the sintered magnet is annular (ring Shape) (outer diameter: 26.9 (mm), inner diameter: 12.1 (mm), thickness: 0.98 (mm), cross-sectional area: 4.53 (mm 2 )). Constructed in layers. Thereby, the volume of the comparative magnet was set to be approximately the same size as the volume of the housing portion of the resin case of the present magnet. In addition, in order to make the configuration of the entire comparative magnet the same as the present magnet, as a pretreatment for the test, the comparative magnet is accommodated in the same resin case as the present magnet, and the resin agent similar to the present magnet is further added to the resin. The case was filled with 0.38 (g) and fixed (hereinafter, the pre-treated comparative magnet is referred to as a comparative magnet body).

試験においては、まず、本件磁石の総重量と比較磁石体の総重量を測定し、当該総重量から樹脂ケースの重量、及び樹脂剤の重量をそれぞれ差し引くことで、本件磁石の磁石構成体の総重量(本件磁石総重量W1)、及び比較磁石の重量(比較磁石重量W2)をそれぞれ算出した。この結果、本件磁石の総重量は、14.4(g)であり、本件磁石総重量W1が、11.82(g)(W1=14.4−2.1−0.48)と算出された。これに対し、比較磁石体の総重量は、15.8(g)であり、比較磁石重量W2が、13.32(g)(W2=15.8−2.1−0.38)と算出された。この場合、本件磁石総重量W1の比較磁石重量W2に対する重量比(体積に対する集合密度)Xは、0.887(X=W1/W2=11.82/13.32)であった。   In the test, first, the total weight of the magnet and the comparative magnet body were measured, and the weight of the resin case and the weight of the resin agent were subtracted from the total weight. The weight (the total magnet weight W1) and the weight of the comparative magnet (comparative magnet weight W2) were calculated. As a result, the total weight of the magnet is 14.4 (g), and the total magnet weight W1 is calculated as 11.82 (g) (W1 = 14.4-2.1-0.48). It was. On the other hand, the total weight of the comparative magnet body is 15.8 (g), and the comparative magnet weight W2 is calculated as 13.32 (g) (W2 = 15.8−2.1−0.38). It was done. In this case, the weight ratio (aggregation density with respect to the volume) X of the magnet total weight W1 to the comparative magnet weight W2 was 0.887 (X = W1 / W2 = 11.82 / 13.32).

次に、本件磁石と比較磁石の磁束量(MaxWell)を測定し、本件磁石の磁束量(本件磁石磁束Φ1)の比較磁石の磁束量(比較磁石磁束Φ2)に対する磁束量の比(磁束比Y)を算出した。この結果、本件磁石磁束Φ1は、6260(MaxWell)であったのに対し、比較磁石磁束Φ2は、7020(MaxWell)であった。これにより、本件磁石磁束Φ1の比較磁石磁束Φ2に対する磁束比Yは、0.891(Y=Φ1/Φ2=6260/7020)と算出された。
なお、本件磁石の磁束密度(本件磁石磁束密度B1)を樹脂ケースの収容部の断面積に対する磁束量(本件磁石磁束Φ1)として算出した場合、本件磁石磁束密度B1は、1.382(G)(B1=6260/4.53)となった。これに対し、比較磁石の磁束密度(比較磁石磁束密度B2)を当該比較磁石の断面積に対する磁束量(比較磁石磁束Φ2)として算出した場合、比較磁石磁束密度B2は、1.550(G)(B2=7020/4.53)となった。
Next, the magnetic flux amount (MaxWell) of the magnet and the comparative magnet is measured, and the ratio of the magnetic flux amount of the magnetic magnet (magnetic flux Φ1 of the magnetic magnet) to the magnetic flux amount of the comparative magnet (comparing magnet magnetic flux Φ2) (magnetic flux ratio Y). ) Was calculated. As a result, the present magnet magnetic flux Φ1 was 6260 (MaxWell), while the comparative magnet magnetic flux Φ2 was 7020 (MaxWell). Thereby, the magnetic flux ratio Y of the present magnet magnetic flux Φ1 to the comparative magnet magnetic flux Φ2 was calculated as 0.891 (Y = Φ1 / Φ2 = 6260/7020).
When the magnetic flux density of the magnet (the magnet magnetic flux density B1) is calculated as the amount of magnetic flux (the magnet magnetic flux Φ1) with respect to the cross-sectional area of the housing portion of the resin case, the magnet magnetic flux density B1 is 1.382 (G). (B1 = 6260 / 4.53). On the other hand, when the magnetic flux density of the comparative magnet (comparative magnet magnetic flux density B2) is calculated as the amount of magnetic flux (comparative magnet magnetic flux Φ2) with respect to the cross-sectional area of the comparative magnet, the comparative magnet magnetic flux density B2 is 1.550 (G). (B2 = 7020 / 4.53).

この結果、本件磁石は、比較磁石に対する磁束比(0.891)が、当該比較磁石に対する重量比(0.887)とほぼ等しいことが検証できた。また、樹脂ケースの収容部の容積と比較磁石の体積とをほぼ同一の大きさとした場合、本件磁石は、比較磁石に対する磁束比が0.89(89%)であることが検証できた。すなわち、本件磁石は、樹脂ケースの収容部と比較磁石の体積比(容積比)がほぼ等しい場合、比較磁石(Nd-Fe-B系の焼結磁石)の89%の磁気特性(磁束)を有することが検証できた。
なお、比較磁石のような環状(リング状)の焼結磁石を製造することは、上述したように、非常に手間がかかるとともにコストも要するのに対し、本件磁石であれば、非常に容易に且つ低コストで、焼結磁石とほぼ同等の磁気特性を有する環状(リング状)の永久磁石を製造することができる。
As a result, it was verified that the magnetic flux ratio (0.891) with respect to the comparative magnet was almost equal to the weight ratio (0.887) with respect to the comparative magnet. Further, when the volume of the housing portion of the resin case and the volume of the comparative magnet are substantially the same size, it was verified that the present magnet had a magnetic flux ratio of 0.89 (89%) with respect to the comparative magnet. That is, this magnet has 89% magnetic characteristics (magnetic flux) of the comparative magnet (Nd—Fe—B based sintered magnet) when the volume ratio (volume ratio) of the housing part of the resin case and the comparative magnet is substantially equal. It was verified that it had.
In addition, as described above, manufacturing a ring-shaped (ring-shaped) sintered magnet such as a comparative magnet is very time-consuming and costly. In addition, an annular (ring-shaped) permanent magnet having substantially the same magnetic properties as a sintered magnet can be manufactured at low cost.

以上のような永久磁石製造方法により永久磁石Mを製造することで、磁気特性に優れた永久磁石Mを容易に且つ確実に製造することができるとともに、成形性に優れた永久磁石Mを容易に且つ確実に製造することができる。これにより、磁気特性及び成形性に優れた永久磁石Mの製造時における歩留まりを格段に向上させることができる。また、磁気特性に優れた永久磁石Mに対する形状や大きさへの細分化されたニーズへ充分に且つ的確に応えることができる。   By manufacturing the permanent magnet M by the above permanent magnet manufacturing method, the permanent magnet M having excellent magnetic properties can be easily and reliably manufactured, and the permanent magnet M having excellent moldability can be easily manufactured. And it can manufacture reliably. Thereby, the yield at the time of manufacture of the permanent magnet M excellent in a magnetic characteristic and a moldability can be improved markedly. In addition, it is possible to sufficiently and accurately meet the needs for the shape and size of the permanent magnet M having excellent magnetic properties.

さらに、上述したように、磁石構成体2には、任意の形状及び大きさの焼結磁性材が適用可能であるため、例えば、各種の焼結磁性材(成形体8)の廃材や端材などであっても、磁石構成体2として適用することができる。このため、希少で高価な資源である希土類元素の焼結磁性材の再利用及び有効活用を図りながら、磁気特性及び成形性に優れた永久磁石Mを製造することができる。この結果、廃棄物として処分される廃材や端材の量を大幅に減らすことができるとともに、これらの廃材や端材を処分するためのコストも大幅に削減することができる。また、高価な希土類元素の焼結磁性材の再利用及び有効活用ができるため、磁気特性及び成形性に優れた永久磁石Mを低コストで製造することが可能となる。   Further, as described above, a sintered magnetic material having an arbitrary shape and size can be applied to the magnet structure 2, and for example, waste materials and end materials of various sintered magnetic materials (molded bodies 8). Even if it is, it can apply as the magnet structure 2. For this reason, the permanent magnet M excellent in magnetic characteristics and moldability can be manufactured while reusing and effectively utilizing the rare earth element sintered magnetic material which is a rare and expensive resource. As a result, it is possible to greatly reduce the amount of waste materials and scraps to be disposed of as waste, and it is possible to greatly reduce the cost for disposing of these waste materials and scrap materials. Further, since the expensive sintered rare earth element magnetic material can be reused and effectively used, the permanent magnet M having excellent magnetic properties and formability can be manufactured at low cost.

なお、上述した本実施形態に係る永久磁石製造方法により製造された永久磁石Mは、必ずしもその内部の磁石構成体2が均等に配置されていないため(図1(h)参照)、その残留磁束密度が厳密には均等にならず、当該永久磁石Mが作り出す磁場にもムラが生じる場合がある。しかしながら、永久磁石Mの全体、特にその磁極面(例えば、図1(h)の上面と下面)から所定の大きさ以上の磁場が作り出されていれば、当該永久磁石Mは、例えば、一般家庭用の各種電気製品、産業用の各種設備や装置など、広範な各種の用途に対してその実用に耐え得ることは経験上明らかである。例えば、水道水の塩素除去やスケール除去などのために永久磁石を用いる場合、水道水に対して所定の大きさの磁力が作用すればよく、当該永久磁石の残留磁束密度が厳密に均等となっていなくとも全く問題はない。このように、上述した本実施形態に係る永久磁石及びその製造方法によれば、容易に強力な磁場を作り出すことが可能な永久磁石Mを低コストで製造することができるため、係るコストメリットにより、永久磁石が必要となる広範な分野のニーズに低コストで応えることが可能となる。   The permanent magnet M manufactured by the above-described permanent magnet manufacturing method according to the above-described embodiment is not necessarily arranged with the magnet structure 2 inside thereof (see FIG. 1 (h)). The density is not strictly uniform, and the magnetic field generated by the permanent magnet M may be uneven. However, if a magnetic field having a predetermined magnitude or more is generated from the entire permanent magnet M, particularly its magnetic pole surfaces (for example, the upper surface and the lower surface in FIG. 1 (h)), the permanent magnet M is, for example, a general household. It is clear from experience that it can withstand practical use for a wide variety of applications such as various electrical appliances for industrial use and various industrial equipment and devices. For example, when a permanent magnet is used for removing chlorine or scale from tap water, it is sufficient that a magnetic force having a predetermined magnitude acts on the tap water, and the residual magnetic flux density of the permanent magnet becomes strictly equal. There is no problem at all. As described above, according to the permanent magnet and the manufacturing method thereof according to the above-described embodiment, the permanent magnet M that can easily generate a strong magnetic field can be manufactured at low cost. It is possible to meet the needs of a wide range of fields that require permanent magnets at low cost.

本発明の一実施形態に係る永久磁石製造方法を説明するための図であって、(a)は、磁石構成体の構成例を示す斜視図、(b)は、収容体の構成例の断面図、(c)は、磁石構成体収容工程において、磁石構成体を収容体の中へ収容した状態の一例を示す断面図、(d)は、接合材充填工程において、接合材を収容体へ注入した状態の一例を示す断面図、(e)は、接合材充填工程において、接合材を収容体へ充填した状態の一例を示す断面図、(f)は、成形体形成工程において、接合材を磁石構成体とともに圧縮した状態の一例を示す断面図、(g)は、磁石構成体収容工程において、磁石構成体を収容体の中へ収容した状態の一例を示す斜視図、(h)は、本実施形態に係る永久磁石製造方法により製造された永久磁石の構成例を示す断面図。It is a figure for demonstrating the permanent magnet manufacturing method which concerns on one Embodiment of this invention, Comprising: (a) is a perspective view which shows the structural example of a magnet structure, (b) is a cross section of the structural example of a container. FIG. 4C is a cross-sectional view showing an example of a state in which the magnet structure is housed in the housing body in the magnet structure housing step, and FIG. Sectional view showing an example of the injected state, (e) is a sectional view showing an example of a state in which the bonding material is filled into the container in the bonding material filling step, and (f) is a bonding material in the molded body forming step. Sectional drawing which shows an example of the state which compressed with the magnet structure, (g) is a perspective view which shows an example of the state which accommodated the magnet structure in the container in the magnet structure accommodation process, (h) Sectional drawing which shows the structural example of the permanent magnet manufactured by the permanent magnet manufacturing method which concerns on this embodiment.

符号の説明Explanation of symbols

2 磁石構成体
4 収容体
6 接合材
8 成形体
10 シリンダー
M 永久磁石
2 Magnet structure 4 Container 6 Bonding material 8 Molded body 10 Cylinder M Permanent magnet

Claims (7)

永久磁石を製造する永久磁石製造方法であって、
複数の磁性材を成形して焼結した所定形状を成す焼結材から成る磁石構成体を所定形状を成す収容体に収容する工程と、当該磁石構成体を相互に接合するための接合材を当該収容体に充填する工程と、各磁石構成体と接合材とを当該収容体の輪郭に沿って一体的に成形した成形体を形成する工程とを有していることを特徴とする永久磁石製造方法。
A permanent magnet manufacturing method for manufacturing a permanent magnet,
A step of accommodating a magnet structure made of a sintered material having a predetermined shape formed by sintering a plurality of magnetic materials in a predetermined shape, and a bonding material for bonding the magnet structures to each other A permanent magnet comprising: a step of filling the container; and a step of forming a molded body in which each magnet component and bonding material are integrally molded along the contour of the container. Production method.
磁石構成体は、焼結材の各磁性材の磁場を所定の一方向に揃えるための磁場配向処理を施して形成されていることを特徴とする請求項1に記載の永久磁石製造方法。   The permanent magnet manufacturing method according to claim 1, wherein the magnet structure is formed by performing a magnetic field orientation process for aligning the magnetic field of each magnetic material of the sintered material in a predetermined direction. 磁石構成体の磁性材は、ネオジウム、ボロン、サマリウム、コバルト、鉄及びフェライトのいずれか少なくとも1つを含む硬磁性の磁性素材で構成されていることを特徴とする請求項1又は2に記載の永久磁石製造方法。   The magnetic material of the magnet structure is made of a hard magnetic material containing at least one of neodymium, boron, samarium, cobalt, iron, and ferrite. Permanent magnet manufacturing method. 接合材は、所定の設定条件で結合特性を有する素材で構成されていることを特徴とする請求項1〜3のいずれかに記載の永久磁石製造方法。   The method for manufacturing a permanent magnet according to any one of claims 1 to 3, wherein the bonding material is made of a material having bonding characteristics under predetermined setting conditions. 請求項1〜4のいずれかに記載の製造方法で製造されていることを特徴とする永久磁石。   The permanent magnet manufactured by the manufacturing method in any one of Claims 1-4. 成形体は、磁石構成体、接合材及び収容体が一体を成して成形されていることを特徴とする請求項5に記載の永久磁石。   The permanent magnet according to claim 5, wherein the molded body is formed by integrally forming a magnet structure, a bonding material, and a container. 成形体を形成する工程の後、当該成形体に対して着磁処理が施されていることを特徴とする請求項5又は6に記載の永久磁石。
The permanent magnet according to claim 5 or 6, wherein after the step of forming the molded body, the molded body is magnetized.
JP2006084991A 2006-03-27 2006-03-27 Permanent magnet and manufacturing method therefor Pending JP2007266032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084991A JP2007266032A (en) 2006-03-27 2006-03-27 Permanent magnet and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084991A JP2007266032A (en) 2006-03-27 2006-03-27 Permanent magnet and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007266032A true JP2007266032A (en) 2007-10-11

Family

ID=38638781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084991A Pending JP2007266032A (en) 2006-03-27 2006-03-27 Permanent magnet and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007266032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330869A (en) * 2006-06-14 2007-12-27 Japan Magnetic Chemical Institute Magnetic treatment apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114555A (en) * 1997-06-11 1999-01-06 Hitachi Ltd Permanent magnet rotating machine
JP2000139046A (en) * 1998-11-02 2000-05-16 Hideo Kawamura Generator and motor using permanent magnet
JP2000184637A (en) * 1998-12-14 2000-06-30 Matsushita Seiko Co Ltd Brushless motor and its manufacture
JP2002141239A (en) * 2000-10-31 2002-05-17 Yoichi Hirose Method for manufacturing recycled magnet and recycled magnet, and electromagnetic adsorption part
JP2002359955A (en) * 2001-05-30 2002-12-13 Toshiba Corp Method for manufacturing rotor of permanent magnet type dynamo-electric machine
JP2004531197A (en) * 2001-06-28 2004-10-07 シーメンス アクチエンゲゼルシヤフト Secondary casting parts for motors
JP2005287271A (en) * 2004-03-31 2005-10-13 Honda Motor Co Ltd Method for manufacturing rotor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114555A (en) * 1997-06-11 1999-01-06 Hitachi Ltd Permanent magnet rotating machine
JP2000139046A (en) * 1998-11-02 2000-05-16 Hideo Kawamura Generator and motor using permanent magnet
JP2000184637A (en) * 1998-12-14 2000-06-30 Matsushita Seiko Co Ltd Brushless motor and its manufacture
JP2002141239A (en) * 2000-10-31 2002-05-17 Yoichi Hirose Method for manufacturing recycled magnet and recycled magnet, and electromagnetic adsorption part
JP2002359955A (en) * 2001-05-30 2002-12-13 Toshiba Corp Method for manufacturing rotor of permanent magnet type dynamo-electric machine
JP2004531197A (en) * 2001-06-28 2004-10-07 シーメンス アクチエンゲゼルシヤフト Secondary casting parts for motors
JP2005287271A (en) * 2004-03-31 2005-10-13 Honda Motor Co Ltd Method for manufacturing rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330869A (en) * 2006-06-14 2007-12-27 Japan Magnetic Chemical Institute Magnetic treatment apparatus

Similar Documents

Publication Publication Date Title
JP2004053410A (en) Magnetic encoder
WO2015087890A1 (en) Compression-bonded magnet with case, and method for producing same
JP2016153766A (en) Magnet structure and rotation angle detector
JP4358743B2 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device including bonded magnet
US10232538B2 (en) Bond magnet and method for manufacturing the same
JP2007266032A (en) Permanent magnet and manufacturing method therefor
JPH11186027A (en) Radially-oriented magnetically anisotroric resin-bonded magnet and its manufacture
JP4605317B2 (en) Rare earth anisotropic bonded magnet manufacturing method, magnet molded body orientation processing method, and magnetic field molding apparatus
US20240145135A1 (en) Method for producing a raw magnet
JPH11176682A (en) Manufacturing bond (trade mark) magnet
CN201069705Y (en) Magnetic field direction device for anisotropical adhesion or agglomeration multi-pole ring magnetic body
JP7356003B2 (en) Method for manufacturing a mold for a polar anisotropic annular bonded magnet body
JP2022056072A (en) Bond magnet molding die and method for producing bond magnet
JP2020053515A (en) Manufacturing method of multipole bonded magnet composite
CN105895360A (en) Preparation method of anisotropic magnet
JP7477745B2 (en) Field element and its manufacturing method
Hasanov et al. Additive Manufacturing of Magnetic Materials
JP5114126B2 (en) Magnetic seal member and manufacturing method thereof
JP7381851B2 (en) Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet
JP2007330869A (en) Magnetic treatment apparatus
WO2024058040A1 (en) Magnetic encoder
JP6878882B2 (en) Molds for forming anisotropic bond magnets and manufacturing methods using them
JPH04112504A (en) Manufacture of pare-earth magnet
JP2017103312A (en) Magnet manufacturing method
JPH0786070A (en) Manufacture of bond magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914