JP2007264211A - Color display method for color-sequential display liquid crystal display apparatus - Google Patents

Color display method for color-sequential display liquid crystal display apparatus Download PDF

Info

Publication number
JP2007264211A
JP2007264211A JP2006087880A JP2006087880A JP2007264211A JP 2007264211 A JP2007264211 A JP 2007264211A JP 2006087880 A JP2006087880 A JP 2006087880A JP 2006087880 A JP2006087880 A JP 2006087880A JP 2007264211 A JP2007264211 A JP 2007264211A
Authority
JP
Japan
Prior art keywords
color
liquid crystal
display
target
primary colors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006087880A
Other languages
Japanese (ja)
Inventor
Kazuo Sekiya
一雄 関家
Tetsuya Miyashita
哲哉 宮下
Tatsuo Uchida
龍男 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
21 AOMORI SANGYO SOGO SHIEN CT
Tohoku University NUC
Aomori Support Center for Industrial Promotion
Original Assignee
21 AOMORI SANGYO SOGO SHIEN CT
Tohoku University NUC
Aomori Support Center for Industrial Promotion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 21 AOMORI SANGYO SOGO SHIEN CT, Tohoku University NUC, Aomori Support Center for Industrial Promotion filed Critical 21 AOMORI SANGYO SOGO SHIEN CT
Priority to JP2006087880A priority Critical patent/JP2007264211A/en
Publication of JP2007264211A publication Critical patent/JP2007264211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a color display method for a color-sequential display type liquid crystal display apparatus capable of reducing color breakup in a color-sequential display system to the best. <P>SOLUTION: In the color display method for the color-sequential display type liquid crystal display apparatus for sequentially displaying a group of three primary colors represented by R, G and B, black for one or more fields is added to the front and/or back of the group of the three primary colors, and the colors of the added group are displayed sequentially. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、色順次表示方式液晶表示装置用の色表示方法に関する。   The present invention relates to a color display method for a color sequential display type liquid crystal display device.

フィールドシーケンシャルカラー(FSC;色順次表示方式)薄膜トランジスタ(TFT)液晶(LC)は、原色である赤(R),緑(G),青(B)をLCDの同じ画素上に1フレーム内に順次表示し、その画素は、通常のカラーフィルタ(CF)型LCD内の画素に普通に用いられている色サブ画素を使用しないというタイプのディスプレイである。周知のように、FSCディスプレイが抱える最大の難点は「色割れ(カラーブレイクアップ)」が生ずることである。すなわち、ある表示物体がFSCスクリーン上で動いていると、その前端と後端が虹色に見える。この色割れが実用上問題ない程度に抑えられれば、FSC LCDはきわめて有望なディスプレイとなる。   Field Sequential Color (FSC; Color Sequential Display Method) Thin Film Transistor (TFT) Liquid Crystal (LC) is the primary color of red (R), green (G), and blue (B) sequentially on the same pixel of LCD within one frame. The display is of a type that does not use the color sub-pixels normally used for pixels in a normal color filter (CF) LCD. As is well known, the biggest difficulty with FSC displays is the occurrence of “color breakup”. That is, when a certain display object is moving on the FSC screen, the front end and the rear end appear to be iridescent. If this color breakup is suppressed to a practical level, the FSC LCD will be a very promising display.

本発明は、この色割れの軽減を目指すものである。なお、参考とした文献を以下に掲げる。これらは発明の開示の項で引用される。
H.Yamakita,et al.,“Field-Sequential Color LCD driven by Optimized Method for Color Breakup Reduction,”IDW'05,no.LCT6-2,2005. K.Sekiya,et al.,“Spatio-Temporal Scanning LED Backlight for Large Size Field Sequential Color LCD,”IDW'05,no.FMC7-2,2005. K.Sekiya,et al.,“Eye-trace Integration Effect on The Perception of Moving Pictures and A New Possibility for Reducing Blur on Hold-Type Displays,”SID'02,no.29.3,2002. K.Kalantar,et al.,“Spatio-temporal scanning backlight for field-sequential-color optically-compensated-bebd-mode liquid-crystal display,”J.SID,Vol.14,pp.151-159,Feb.2006. K.Sekiya,et al.,“On The Effect of Motion Interpolation and Blancking on Color-Field Sequential LCDs,”IDW2003,no.VHF2-4,Dec.2003. P.C.Baron,et al.,“Can Motion Compensation Eliminate Color Breakup of Moving Objects in Field-Sequential Color Displays?,”SID1996,no.36.4,1996.
The present invention aims to reduce this color breakup. Referenced documents are listed below. These are cited in the disclosure section of the invention.
H. Yamakita, et al., “Field-Sequential Color LCD driven by Optimized Method for Color Breakup Reduction,” IDW'05, no.LCT6-2, 2005. K. Sekiya, et al., “Spatio-Temporal Scanning LED Backlight for Large Size Field Sequential Color LCD,” IDW'05, no. FMC7-2, 2005. K. Sekiya, et al., “Eye-trace Integration Effect on The Perception of Moving Pictures and A New Possibility for Reducing Blur on Hold-Type Displays,” SID'02, no.29.3, 2002. K. Kalantar, et al., “Spatio-temporal scanning backlight for field-sequential-color optically-compensated-bebd-mode liquid-crystal display,” J. SID, Vol. 14, pp. 151-159, Feb. 2006 . K. Sekiya, et al., “On The Effect of Motion Interpolation and Blancking on Color-Field Sequential LCDs,” IDW2003, no. VHF2-4, Dec. 2003. PCBaron, et al., “Can Motion Compensation Eliminate Color Breakup of Moving Objects in Field-Sequential Color Displays ?,” SID1996, no.36.4, 1996.

色割れの軽減を目指して、これまでにいくつもの提案がなされている。純FSC(すなわちCFなし)LCDにおける通念は、RGBフレーム体系に違う色のサブフィールドを付加することである。それらの提案は、主観的評価のみに基づいて検討されていた(非特許文献1)。そのため、色割れの客観的、定量的評価ができず、色割れ軽減のための最善の方法は不明であった。   A number of proposals have been made with the aim of reducing color breakup. The convention in pure FSC (ie, no CF) LCD is to add different color subfields to the RGB frame system. Those proposals have been studied based only on subjective evaluation (Non-Patent Document 1). Therefore, objective and quantitative evaluation of color breakup was not possible, and the best method for reducing color breakup was unknown.

そこで、本発明は、純FSC LCDにおける色割れを最善に軽減しうる色順次表示方式液晶表示装置用の色表示方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a color display method for a color sequential display type liquid crystal display device which can best reduce the color breakup in a pure FSC LCD.

LCD上の動きぼけ(モーションブラー)は、スクリーン輝度の視線追随積分(アイトレースインテグレーション)によって模擬できること(非特許文献3)が知られている。視線追随積分は、横軸にスクリーン面内の1方向(例えば水平方向)座標、縦軸に時間をとった座標系上で、移動する標的の輝度を該標的の移動方向に沿って1フレームの範囲で積分したものである。ここで標的には視線が正しく追随するものとしている。これによれば、標的に視線を追随させた眼の網膜座標上の像すなわち視認像の輝度分布を計算できる。   It is known that motion blur on an LCD can be simulated by eye tracking integration of screen luminance (Non-patent Document 3). The line-of-sight tracking integration is based on a coordinate system in which the horizontal axis represents one direction (for example, horizontal direction) in the screen plane, and the vertical axis represents time. It is integrated over the range. Here, it is assumed that the line of sight follows the target correctly. According to this, it is possible to calculate the luminance distribution of the image on the retina coordinates of the eye whose visual line is made to follow the target, that is, the visual recognition image.

そこで、発明者らは、視線追随積分の理論計算方法をFSC LCDに適用して、視認像の輝度分布のみならず色分布をも理論計算することにより、種々の色表示方法における色割れの発現を定量的に比較評価し、その結果に基づいて本発明をなした。
すなわち、本発明は、以下のとおりである。
1.R,G,Bに代表される3原色を順次表示する色順次表示方式液晶表示装置用の色表示方法において、前記3原色の組の前および/または後に1または2以上のフィールド分の黒色を付加し、該付加した組内の色を順次表示することを特徴とする色順次表示方式液晶表示装置用の色表示方法。
Therefore, the inventors apply a theoretical calculation method of line-of-sight tracking integration to FSC LCD, and theoretically calculate not only the luminance distribution of the visual image but also the color distribution, thereby generating color breakup in various color display methods. Were quantitatively compared and evaluated, and the present invention was made based on the results.
That is, the present invention is as follows.
1. In a color display method for a liquid crystal display device that sequentially displays three primary colors represented by R, G, and B, black for one or more fields is displayed before and / or after the set of the three primary colors. A color display method for a color sequential display type liquid crystal display device, characterized by adding and sequentially displaying colors in the added set.

2.前記黒色の表示は、液晶を黒状態に駆動すること、または、液晶表示装置内のバックライトを消すことにより行うことを特徴とする前項1に記載の色順次表示方式液晶表示装置用の色表示方法。
3.黒をKで表すものとして、前記黒色を付加した組内の表示順が、RGBKKK,KRGBKK,KKRGBK,KKKRGBのいずれかであることを特徴とする前項1または2に記載の色順次表示方式液晶表示装置用の色表示方法。
2. 2. The color display for a color sequential display type liquid crystal display device according to item 1, wherein the black display is performed by driving the liquid crystal to a black state or by turning off the backlight in the liquid crystal display device. Method.
3. 3. The color sequential display type liquid crystal display according to item 1 or 2 above, wherein the display order in the set to which black is added is any one of RGBKKK, KRGBKK, KKRGBK, KKKRGB Color display method for equipment.

4.前記R,G,Bに代表される3原色に代えて、R,G,B以外の3原色とした前項1〜3のいずれかに記載の色順次表示方式液晶表示装置用の色表示方法。
5.前記R,G,Bに代表される3原色に代えて、4以上の多原色とした請求項1〜3のいずれかに記載の色順次表示方式液晶表示装置用の色表示方法。
6.前項1〜5のいずれかに記載の色表示方法の実行機能を有する色順次表示方式液晶表示装置。
4). 4. The color display method for a color sequential display type liquid crystal display device according to any one of items 1 to 3, wherein the three primary colors other than R, G and B are used instead of the three primary colors represented by R, G and B.
5). The color display method for a color sequential display type liquid crystal display device according to any one of claims 1 to 3, wherein four or more primary colors are used instead of the three primary colors represented by R, G and B.
6). 6. A color sequential display type liquid crystal display device having an execution function of the color display method according to any one of items 1 to 5.

本発明によれば、表示色の種類にかかわらず色割れを最善に低減できるとともに、動きボケ(モーションブラー)の小さい(すなわち視認像の幅が小さい)擬似インパルス駆動の実現が可能になる。   According to the present invention, it is possible to optimally reduce color breakage regardless of the type of display color, and to realize pseudo impulse driving with small motion blur (ie, a small visual image width).

本発明では、3原色の組の前および/または後に1または2以上のフィールド分の黒色を付加し、該付加した組内の色を順次表示する。例えば、3原色がR,G,B(赤,緑,青)でこの順に表示され、黒色をKで表すとして、RGBK,KRGB,KRGBKなどのいずれかの表示順とする。RGBの組の内部にKを挿入する(すなわち、RKGB,RGKBなどとする)のは、色割れおよび動きボケの軽減効果に乏しい。   In the present invention, black for one or more fields is added before and / or after the set of three primary colors, and the colors in the added set are sequentially displayed. For example, the three primary colors are displayed in this order as R, G, and B (red, green, and blue), and black is expressed as K, and the display order is any one of RGBK, KRGB, and KRGBK. Inserting K inside the RGB set (that is, RKGB, RGKB, etc.) is poor in reducing color breakup and motion blur.

ところで、既存の2倍速FSC LCDでは、通常1フレームでRGBRGBと表示(各色フィールドが2巡回)するから、これの例えば後半のRGBをKKKに変更してRGBKKKと表示するようにすれば、色表示制御系の大幅な設計変更の必要がなくて好ましい。なお、KRGBKK,KKRGBK,KKKRGBとしても同様である。
本発明において、3原色は、通常用いられる代表的なR,G,Bのほか、C(シアン)、M(マゼンタ)、Y(イエロー)でもよく、またこれ以外の3原色であってもよい。また、3原色の表示順は、その計6種の順列のいずれであってもよい。さらに、3原色に代えて、4以上の多原色としてもよい。
By the way, in the existing double-speed FSC LCD, normally RGBRGB is displayed in one frame (each color field is rotated twice). For example, if RGB in the latter half is changed to KKK and displayed as RGBKKK, color display is performed. This is preferable because there is no need to change the design of the control system. The same applies to KRGBKK, KKRGBK, and KKKRGB.
In the present invention, the three primary colors may be C (cyan), M (magenta), and Y (yellow) in addition to typical R, G, and B that are usually used, or may be other three primary colors. . The display order of the three primary colors may be any of the six permutations. Further, four or more primary colors may be used instead of the three primary colors.

色順次表示方式液晶表示装置(FSC LCD)におけるLCDとしては、液晶の応答が速いものが好ましく、例えば、OCB(光学補償ベンド)モードLCD(セルギャップ≒5μm)、強誘電性液晶モードLCD(セルギャップ≒1〜2μm)、TNモードLCD(セルギャップ≒2μm)などが挙げられる。これらのうち、製造容易性の観点からすれば、セルギャップを比較的大きくしうる、OCBモードLCDが、より好ましく用いうる。製造容易性の観点からすれば、液晶はTFT駆動型でアモルファスシリコンTFTが好ましい。   As the LCD in the color sequential display type liquid crystal display device (FSC LCD), one having a quick liquid crystal response is preferable. For example, an OCB (optical compensation bend) mode LCD (cell gap≈5 μm), a ferroelectric liquid crystal mode LCD (cell Gap≈1-2 μm), TN mode LCD (cell gap≈2 μm), and the like. Among these, from the viewpoint of ease of manufacture, an OCB mode LCD that can make the cell gap relatively large can be more preferably used. From the viewpoint of ease of manufacture, the liquid crystal is preferably a TFT drive type and an amorphous silicon TFT.

FSC LCDに装備されるバックライトとしては、LED(発光ダイオード)で構成される3原色走査バックライト(これの明滅タイミングについては非特許文献2,4参照)が、制御性の点で好ましい。ただし、これに限定されず、例えば色分けした回転円盤で構成したバックライト、あるいは反射型液晶に対するフロントライトでもよい。
以下、種々の色表示方法について、視線追随積分により視認像の特性評価を行った結果を述べる。なお、3原色はR,G,Bとし、色表示順はこの順(RGB)とした。
As a backlight provided in the FSC LCD, a three-primary-color scanning backlight composed of LEDs (light emitting diodes) (refer to Non-Patent Documents 2 and 4 for the blinking timing thereof) is preferable in terms of controllability. However, the present invention is not limited to this. For example, a backlight composed of a color-coded rotating disk or a front light for a reflective liquid crystal may be used.
Hereinafter, the results of evaluating the characteristics of the visible image by the line-of-sight tracking integration for various color display methods will be described. The three primary colors were R, G, and B, and the color display order was this order (RGB).

(比較例1)
比較例1は、LEDからなる走査バックライトを備えた最も単純なFSC LCDの場合である。色表示方法は1倍速(シングルレート)単純FSCである。黒色背景内で幅W画素(すなわち、幅方向の画素数がWになる幅)の白色(輝度V)矩形標的がスクリーンの左から右へ、速さS画素/フレーム(すなわち、1フレーム毎の移動画素数がSになる速さ)で動き、眼はこの標的に正しく追随するものとする。動きの遅い標的(遅動標的)に眼が正しく追随する場合の視線追随積分計算方法とその結果を図2に示す。図2の上部のグラフに示すように、1フレームは一組のR,G,B色フィールドからなる。ビデオ入力は60フレーム/秒の映像(イメージストリーム)をもつと仮定されるから、1倍速FSCでは180フィールド/秒の書替え速度になる。1色フィールドあたりの1LEDのTOD(ターンオンデューティ=点灯時間/1フィールド)をA’とする。0<A’<1である。積分計算は1フレーム内で矢印の方向に行う。
(Comparative Example 1)
Comparative example 1 is the simplest FSC LCD with a scanning backlight consisting of LEDs. The color display method is 1 × (single rate) simple FSC. A white (brightness V) rectangular target of width W pixels (ie, the width in which the number of pixels in the width direction is W) within a black background moves from the left to the right of the screen at a speed of S pixels / frame (ie, every frame) It is assumed that the eye moves correctly at the speed at which the number of moving pixels reaches S), and the eye follows this target correctly. FIG. 2 shows the line-of-sight tracking integration calculation method and the result when the eye correctly follows a slowly moving target (slow target). As shown in the upper graph of FIG. 2, one frame consists of a set of R, G, B color fields. Since the video input is assumed to have a video (image stream) of 60 frames / second, the rewriting speed is 180 fields / second in the 1 × speed FSC. It is assumed that TOD (turn-on duty = lighting time / 1 field) of one LED per one color field is A ′. 0 <A ′ <1. Integration calculation is performed in the direction of the arrow within one frame.

計算結果は、図2の下部のグラフに示すように、網膜座標上の輝度分布で表される。この分布の全幅が視認像の幅になり、この場合、W+S(2+A’)/3 になる。また、分布には極大輝度のプラトーが1つだけ存在し、その幅は、W−S(2+A’)/3 になる。このプラトー域内は輝度VA’の正しい白色(コレクトホワイト)になる。プラトー域の両側は色割れが起こっている領域である。   The calculation result is represented by a luminance distribution on the retina coordinates as shown in the lower graph of FIG. The total width of this distribution is the width of the visible image, and in this case, W + S (2 + A ′) / 3. In addition, there is only one maximum luminance plateau in the distribution, and its width is W−S (2 + A ′) / 3. Within this plateau region, the brightness VA 'is correct white (collect white). Both sides of the plateau area are areas where color breakup occurs.

遅い動きというのは、このように標的の色が視認像の単一極大輝度プラトー域で再現することに対応する。この遅い動きにおけるプラトー域の幅(遅動プラトー幅と呼ぶ)が大きいほど視認像の標的色再現能が高いので、遅動プラトー幅は大きいほど良い。
この例において遅動プラトー幅が正しい値になる条件は、W/S>(2+A’)/3 である。この不等式の右辺の値が「遅」と「速」の境界になる。これを「W/Sの閾値」(あるいは単に「閾値」)と呼ぶ。ただし、閾値の計算式は色表示方法により異なる。なお、一般に、遅動プラトー幅=W−閾値×S、視認像の幅=W+閾値×S である。
The slow movement corresponds to the reproduction of the target color in the single maximum brightness plateau region of the visual image. The larger the width of the plateau area in this slow motion (referred to as the slow plateau width), the higher the target color reproducibility of the visible image, so the larger the slow plateau width, the better.
In this example, the condition that the slow plateau width becomes a correct value is W / S> (2 + A ′) / 3. The value on the right side of this inequality is the boundary between “slow” and “fast”. This is referred to as “W / S threshold” (or simply “threshold”). However, the calculation formula of the threshold varies depending on the color display method. In general, the slow plateau width = W−threshold × S, and the width of the visible image = W + threshold × S.

比較例1の1倍速単純FSCでは、Sが大きくなり(標的の動きが速くなり)、W/Sが閾値を下回る(遅動標的から速動標的に変わる)と、視認像に標的色が再現されず、視認像全域が色割れ領域になる(図3参照)。W/Sの閾値が小さいほど視認像全域にわたる色割れは生じにくいといえるから、この閾値は小さいほど良い。
また、視認像の幅が大きいとそれだけ動きボケが大きいことになるから、視認像の幅は小さいほど良い。
In the 1x simple FSC of Comparative Example 1, when S increases (target movement becomes faster) and W / S falls below the threshold (changes from slow target to fast target), the target color is reproduced in the visual image. In other words, the entire visible image becomes a color breakup area (see FIG. 3). As the W / S threshold value is smaller, it can be said that color breakup over the entire visible image is less likely to occur.
Also, if the width of the visual image is large, the motion blur is large accordingly, so the smaller the width of the visual image, the better.

上述のように、視線追随積分により、視認像の幅、W/Sの閾値および遅動プラトー幅を定量的に評価することができる。これら3つの量は、異なる色表示方法による動画の画質評価(すなわち色表示方法の相対比較)の重要な指標となる。
(比較例2)
比較例2は、1倍速単純FSC LCDにおいて動き補間(モーションインターポレーション)の機能(非特許文献5,6参照)を付加した場合である。動き補間を付加して色表示を行う場合の視線追随積分計算方法とその結果を図4に示す。動き補間で表示される映像は、3倍速(180Hzビデオ)の入力映像と同一であるが、単色データのみ抽出されてそれぞれの色フィールドに表示される。眼が標的動体に正しく追随する限りは、この動き補間の色表示方法により最善の動画質が得られ、色割れは生じない。視認像の幅は、W+SA’/3であり、A’が通常は0.5未満なので、CRTと同等の非常にくっきりした端部が得られる。ここでのW/Sの閾値はA’/3であり、これはあらゆる平面パネルディスプレイを通じて最小である。
As described above, the visual image width, the W / S threshold value, and the slow plateau width can be quantitatively evaluated by the line-of-sight tracking integration. These three quantities are important indicators for image quality evaluation of moving images by different color display methods (that is, relative comparison of color display methods).
(Comparative Example 2)
Comparative Example 2 is a case where a motion interpolation function (see Non-Patent Documents 5 and 6) is added to a 1 × speed simple FSC LCD. FIG. 4 shows a line-of-sight tracking integration calculation method and its result when color display is performed by adding motion interpolation. The video displayed by motion interpolation is the same as the input video at 3 × speed (180 Hz video), but only single color data is extracted and displayed in each color field. As long as the eye correctly follows the target moving object, the best moving image quality can be obtained by this motion interpolation color display method, and color breakup does not occur. The width of the visible image is W + SA ′ / 3, and A ′ is usually less than 0.5, so that a very sharp edge equivalent to CRT is obtained. The W / S threshold here is A ′ / 3, which is the smallest across all flat panel displays.

しかしながら、比較例2の動き補間に限らずFSCでは一般に、実用上避け難い問題がある。この問題は、例えば図5の上部のグラフに示すように、標的が右から左へ速さMで動き、一方、標的に対向する物体が左から右に速さSで動き、ある瞬間に標的と交差する機会に発生する。このような機会は動画において頻繁に起こるものである。このような交差の瞬間に観測者の眼は標的物体の動きを追い、視線が速さMで標的物体に追随するため、積分は標的物体に対する視線追随方向に沿って行われ、その結果、対向物体交差時の視認像の幅は、図5の下部のグラフに示すように、W+M(2+A’)/3+2S/3 になる。この対向物体の視認像は色割れを起こし、標的と対向物体の相対速度が大きいと、3つの分離した純色斑となる。   However, not only the motion interpolation of Comparative Example 2 but FSC generally has problems that are practically unavoidable. The problem is that, for example, as shown in the upper graph of FIG. 5, the target moves at a speed M from right to left, while an object facing the target moves at a speed S from left to right. Occurs at the opportunity to intersect. Such opportunities often occur in moving images. At the moment of such an intersection, the observer's eye follows the movement of the target object, and the line of sight follows the target object at a speed M. Therefore, the integration is performed along the line-of-sight tracking direction with respect to the target object. As shown in the lower graph of FIG. 5, the width of the visual image when the object intersects is W + M (2 + A ′) / 3 + 2S / 3. The visible image of the opposing object causes color breakup, and when the relative speed between the target and the opposing object is high, three separated pure color spots are formed.

動き補間のない比較例1で同様の計算を行うと、対向物体交差時の視認像の幅は、W+M(2+A’)/3となる。すなわち、動き補間を付加すると、対向物体交差時の視認像の幅が2S/3だけ広くなる。
上述の、対向物体交差時の視認像の幅は、これが小さいほど、色割れ軽減および動きボケ軽減の両面で、画質が良いといえるから、前記3つの量(視認像の幅、W/Sの閾値および遅動プラトー幅)とともに、色表示方法の相対比較のための重要な指標となる。
(比較例3)
比較例3は、RGBの組にY(黄)フィールドまたはW(白)フィールドを付加する方法(すなわち四色単純FSC、略して四色法)である。この四色法には、RGB列へのYまたはWの付加後順列(列への挿入位置)と、RGB像データからのYまたはWの決定の仕方に多様性がある。
When the same calculation is performed in Comparative Example 1 in which no motion interpolation is performed, the width of the visible image at the time of crossing the opposing object is W + M (2 + A ′) / 3. In other words, when motion interpolation is added, the width of the visual image when the opposite object intersects increases by 2S / 3.
As the width of the visual image at the crossing of the above-described object is smaller, it can be said that the image quality is better in terms of both color breakage reduction and motion blur reduction. Therefore, the three amounts (the width of the visual image, W / S Along with the threshold and slow plateau width, it is an important indicator for relative comparison of color display methods.
(Comparative Example 3)
Comparative Example 3 is a method of adding a Y (yellow) field or a W (white) field to a set of RGB (that is, four-color simple FSC, abbreviated four-color method). In this four-color method, there are diversity in the permutation after adding Y or W to the RGB column (insertion position in the column) and how to determine Y or W from the RGB image data.

付加後順列に関して、例えばYBGRの場合でいうと、フィールドの1番目と2番目の2色であるYとBの合成で白ができるから、標的色が白の場合、他の付加後順列(RYGB,YRGB等)に比べて色割れ軽減面の改善になるが、標的色が、例えば白っぽいマゼンタのような、Y‐B線上にない色の場合、改善にならない。
RGB像データからの、WまたはYの決定の仕方に関して、例えばWの場合でいうと、色割れ低減の最善策はWフィールドに最大値を割り当てることである。すなわち、R,G,B,Wの中間調(グレイレベル)をr、g、b、wとすると、wの可能な最大値はMin.(r,g,b)で与えられる。これによると、標的色が白すなわちr=g=bならば、Wフィールドだけが輝度を与え、WRGB系に色割れは生じないが、例えば白っぽいマゼンタ色の速動標的の場合は、改善効果に乏しい。
Regarding the post-addition permutation, for example, in the case of YBGR, white is formed by combining Y and B, which are the first and second two colors of the field. , YRGB, etc.), the color breakage reduction surface is improved. However, when the target color is a color not on the YB line, such as whitish magenta, it is not improved.
Regarding the method of determining W or Y from the RGB image data, for example in the case of W, the best measure for reducing color breakup is to assign a maximum value to the W field. That is, if the halftones (gray levels) of R, G, B, and W are r, g, b, and w, the maximum possible value of w is given by Min. (R, g, b). According to this, if the target color is white, that is, r = g = b, only the W field gives brightness and no color breakup occurs in the WRGB system. poor.

なお、四色法は、OCBモードLCDに適用しにくいという難点を有する。OCBモードは光透過率制御にリタデーションを用いるので、可視波長全域にわたる一様な透過率をもたず、透過率は中間調により非線形に変化する。それゆえ、OCBモードに四色法を適用してr、g、bからwを算出するためには、上記のような単純な最小値抽出や、この他に必要な減算などの、線形計算機能では対応不可能であり、複雑な非線形計算機能をもつ計算回路が必要になるからである。
(比較例4)
比較例4は、RGB色フィールドの組を1フレーム中で2回繰り返す方法(すなわち2倍速(ダブルレート)単純FSC)である。この方法は、通常、FSC DMDプロジェクタに用いられる。この方法において速動標的に眼が正しく追随する場合の視線追随積分計算方法とその計算結果を図6に示す。2倍速では1倍速(比較例1)に比べ、強い色割れ領域はほぼ半分になるが、強い純色割れ領域の隣に白みがかった虹色領域が生じる。
(本発明例)
本発明例は、2倍速単純FSCにおいて、RGBRGBの2順目のRGBを黒(Kで表す)に変更し、RGBKKKとした方法である。この方法において速動標的に眼が正しく追随する場合の視線追随積分計算方法とその計算結果を図1に示す。図より、視認像の幅はW+S(2+A’)/6、W/Sの閾値は、(2+A’)/6である。
The four-color method has a drawback that it is difficult to apply to the OCB mode LCD. Since the OCB mode uses retardation for light transmittance control, the OCB mode does not have a uniform transmittance over the entire visible wavelength range, and the transmittance changes nonlinearly depending on the halftone. Therefore, in order to calculate w from r, g, and b by applying the four-color method to the OCB mode, linear calculation functions such as simple minimum value extraction as described above, and other necessary subtraction, etc. This is because it is impossible to cope with this, and a calculation circuit having a complicated nonlinear calculation function is required.
(Comparative Example 4)
The comparative example 4 is a method of repeating a set of RGB color fields twice in one frame (that is, a double rate (double rate) simple FSC). This method is typically used for FSC DMD projectors. FIG. 6 shows the line-of-sight tracking integration calculation method and the calculation result when the eye correctly follows the fast-moving target in this method. At double speed, compared to the single speed (Comparative Example 1), the strong color break-up area is almost halved, but a whitish iridescent area appears next to the strong pure color break-up area.
(Example of the present invention)
The example of the present invention is a method in which RGB in the second order of RGBRGB is changed to black (represented by K) to be RGBKKK in the double speed simple FSC. FIG. 1 shows the line-of-sight tracking integration calculation method and the calculation result when the eye correctly follows the fast-moving target in this method. From the figure, the width of the visible image is W + S (2 + A ′) / 6, and the threshold of W / S is (2 + A ′) / 6.

上述の比較例1〜4および本発明例について、視線追随積分により求めた、前述の4つの指標(視認像の幅、W/Sの閾値、遅動プラトー幅、対向物体交差時の視認像の幅)をまとめて表1に示す。   About the above-mentioned comparative examples 1-4 and the example of the present invention, the above-mentioned four indices (viewing image width, W / S threshold, slow plateau width, and viewing image at the crossing of the opposing objects, which were obtained by line-of-sight integration. The width is summarized in Table 1.

表1より、比較例2(動き補間)は、視認像の幅、W/Sの閾値、遅動プラトー幅の3指標には全例中最善の値を示すものの、もう1つの重要な指標である対向物体交差時の視認像の幅には全例中最悪の値を示す。すなわち、動き補間法は、標的動体に眼が正しく追随している状態での色割れおよび動きボケの低減には最善の方法であるが、動画表示中に頻繁に起こる標的と対向物体との交差状態にあっては、色割れおよび動きボケをむしろ助長してしまう。   From Table 1, Comparative Example 2 (motion interpolation) is another important index, although the three values of the visual image width, the W / S threshold, and the slow plateau width show the best values in all cases. The width of the visual image at the time of crossing a certain object is the worst value among all examples. In other words, the motion interpolation method is the best method for reducing color breakup and motion blur while the eye is following the target moving object correctly, but it frequently intersects the target and the opposing object during video display. In the state, color breakup and motion blur are rather promoted.

一方、本発明例(RGBKKK)は、視認像の幅、W/Sの閾値、遅動プラトー幅の3指標には全例中比較例2に次ぐ良い値を示し、しかも対向物体交差時の視認像の幅には全例中最善の値を示す。この例からわかるように、本発明の色表示方法は、標的動体に眼が正しく追随している状態での色割れおよび動きボケの低減に有効であるばかりか、動画表示中に頻繁に起こる標的と対向物体との交差状態における色割れおよび動きボケを最も有効に軽減するものである。   On the other hand, in the present invention example (RGBKKK), the three indexes of the visual image width, the W / S threshold value, and the slow plateau width are the second best values after the comparative example 2 and the visual recognition when the opposing object intersects is shown. The best image width is shown in all cases. As can be seen from this example, the color display method of the present invention is effective not only in reducing color breakup and motion blur while the eye is following the target moving object correctly, but also frequently occurring during video display. Color breakage and motion blur in the state of intersection of the object and the opposite object are most effectively reduced.

前記した比較例1(1倍速単純FSC)、比較例3(四色法)、比較例4(2倍速単純FSC)、本発明例(RGBKKK)について、標的色を白、白っぽいマゼンタの2条件とし、各条件で標的の幅W画素と速さS画素/フレームを(W,S)=(12,6(遅))、(6,12(速))の2通り変えて、視線追随積分(この場合は交差物体なし)を行った。なお、比較例3(四色法)は、RYGB,YBGR,WRGBの3ケースについて計算した。計算は、これらの表示条件下の視認像の最大幅である18画素について行った。この計算から得られた視認像の幅方向の色分布パターンを表2に示す。   For the above-mentioned Comparative Example 1 (1 × speed simple FSC), Comparative Example 3 (four-color method), Comparative Example 4 (2 × speed simple FSC), and Example of the present invention (RGBKKK), the target color is set to two conditions of white and whitish magenta. In each condition, the target width W pixel and the speed S pixel / frame are changed in two ways (W, S) = (12, 6 (slow)) and (6, 12 (speed)), and the line-of-sight tracking integration ( In this case, there was no crossing object). In Comparative Example 3 (four-color method), calculation was performed for three cases of RYGB, YBGR, and WRGB. The calculation was performed for 18 pixels, which is the maximum width of the visible image under these display conditions. Table 2 shows the color distribution pattern in the width direction of the visual image obtained from this calculation.

表2より、本発明例(RGBKKK)では、標的色、標的速さの如何にかかわらず、視認像に標的色が再現する(ただし、再現域の幅は速動標的の場合狭い)。これに対し、比較例では、速い動きの白っぽいマゼンタ標的に対し、全ての例の視認像に標的色が再現しない。また、比較例1(1倍速単純FSC)、比較例3(四色法)のRYGB、比較例4(2倍速単純FSC)では、速い動きの白標的に対しても、視認像に標的色が再現しない。   From Table 2, in the example of the present invention (RGBKKK), the target color is reproduced in the visually recognized image regardless of the target color and the target speed (however, the width of the reproduction area is narrow in the case of the fast moving target). On the other hand, in the comparative example, the target color is not reproduced in the visual images of all examples with respect to the fast-moving whitish magenta target. In addition, in Comparative Example 1 (1 × speed simple FSC), Comparative Example 3 (four-color method) RYGB, and Comparative Example 4 (2 × speed simple FSC), the target image has a target color in a visually recognized white target. Does not reproduce.

このように、本発明の色表示方法によれば、色種と標的の動きの速さによらず標的の色を視認像に再現することができる。なお、これらの例では、背景色は黒であるから、表2の色分布パターン中の黒は無視して参照し、黒領域が広いほど動きボケが小さいので良いといえる。本発明例は、白っぽいマゼンタ標的に対し、表2の全例中最も広い黒領域を示しており、動きボケが最も小さくなっている。   As described above, according to the color display method of the present invention, the target color can be reproduced as a visual image regardless of the color type and the speed of movement of the target. In these examples, since the background color is black, black in the color distribution pattern in Table 2 is ignored and referred to, and it can be said that the larger the black area, the smaller the motion blur. The example of the present invention shows the widest black region in all examples in Table 2 with respect to the whitish magenta target, and the motion blur is the smallest.

本発明例(RGBKKK)で速動標的に眼が正しく追随する場合の視線追随積分計算方法とその計算結果を示すグラフである。It is a graph which shows the gaze-following integration calculation method and its calculation result when an eye correctly follows a fast-moving target in the present invention example (RGBKKK). 比較例1(1倍速単純FSC)で遅動標的に眼が正しく追随する場合の視線追随積分計算方法とその計算結果を示すグラフである。It is a graph which shows the gaze-following integration calculation method and its calculation result in case the eye follows a slow target correctly in comparative example 1 (1 time speed simple FSC). 比較例1(1倍速単純FSC)で速動標的に眼が正しく追随する場合の視線追随積分計算方法とその計算結果を示すグラフである。It is a graph which shows the gaze-following integration calculation method and its calculation result in case the eye follows a fast-moving target correctly in Comparative Example 1 (single speed simple FSC). 比較例2(動き補間)で速動標的に眼が正しく追随する場合の視線追随積分計算方法とその計算結果を示すグラフである。It is a graph which shows the gaze-following integration calculation method and the calculation result in case the eye follows a fast-moving target correctly in Comparative Example 2 (motion interpolation). 比較例2(動き補間)で対向物体交差の場合の視線追随積分計算方法とその計算結果を示すグラフである。It is a graph which shows the gaze-following integration calculation method in the case of an opposing object intersection in the comparative example 2 (motion interpolation), and its calculation result. 比較例4(2倍速単純FSC)で速動標的に眼が正しく追随する場合の視線追随積分計算方法とその計算結果を示すグラフである。It is a graph which shows the line-of-sight tracking integration calculation method and the calculation result in case the eye follows a fast-moving target correctly in Comparative Example 4 (double speed simple FSC).

Claims (6)

R,G,Bに代表される3原色を順次表示する色順次表示方式液晶表示装置用の色表示方法において、前記3原色の組の前および/または後に1または2以上のフィールド分の黒色を付加し、該付加した組内の色を順次表示することを特徴とする色順次表示方式液晶表示装置用の色表示方法。   In a color display method for a liquid crystal display device that sequentially displays three primary colors represented by R, G, and B, black for one or more fields is displayed before and / or after the set of the three primary colors. A color display method for a color sequential display type liquid crystal display device, characterized by adding and sequentially displaying colors in the added set. 前記黒色の表示は、液晶を黒状態に駆動すること、または、液晶表示装置内のバックライトを消すことにより行うことを特徴とする請求項1に記載の色順次表示方式液晶表示装置用の色表示方法。   2. The color for a color sequential display type liquid crystal display device according to claim 1, wherein the black display is performed by driving the liquid crystal to a black state or turning off the backlight in the liquid crystal display device. Display method. 黒をKで表すものとして、前記黒色を付加した組内の表示順が、RGBKKK,KRGBKK,KKRGBK,KKKRGBのいずれかであることを特徴とする請求項1または2に記載の色順次表示方式液晶表示装置用の色表示方法。   The color sequential display type liquid crystal according to claim 1 or 2, wherein the display order in the set to which black is added is one of RGBKKK, KRGBKK, KKRGBK, and KKKRGB, where black is represented by K. Color display method for a display device. 前記R,G,Bに代表される3原色に代えて、R,G,B以外の3原色とした請求項1〜3のいずれかに記載の色順次表示方式液晶表示装置用の色表示方法。   4. A color display method for a color sequential display type liquid crystal display device according to claim 1, wherein three primary colors other than R, G and B are used instead of the three primary colors represented by R, G and B. . 前記R,G,Bに代表される3原色に代えて、4以上の多原色とした請求項1〜3のいずれかに記載の色順次表示方式液晶表示装置用の色表示方法。   The color display method for a color sequential display type liquid crystal display device according to any one of claims 1 to 3, wherein four or more primary colors are used instead of the three primary colors represented by R, G and B. 請求項1〜5のいずれかに記載の色表示方法の実行機能を有する色順次表示方式液晶表示装置。   A color sequential display type liquid crystal display device having an execution function of the color display method according to claim 1.
JP2006087880A 2006-03-28 2006-03-28 Color display method for color-sequential display liquid crystal display apparatus Pending JP2007264211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087880A JP2007264211A (en) 2006-03-28 2006-03-28 Color display method for color-sequential display liquid crystal display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087880A JP2007264211A (en) 2006-03-28 2006-03-28 Color display method for color-sequential display liquid crystal display apparatus

Publications (1)

Publication Number Publication Date
JP2007264211A true JP2007264211A (en) 2007-10-11

Family

ID=38637272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087880A Pending JP2007264211A (en) 2006-03-28 2006-03-28 Color display method for color-sequential display liquid crystal display apparatus

Country Status (1)

Country Link
JP (1) JP2007264211A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109639A (en) * 2007-10-29 2009-05-21 Tohoku Univ Color display method for field-sequential color liquid crystal display device
WO2010073562A1 (en) * 2008-12-26 2010-07-01 パナソニック株式会社 Image processing apparatus and image display apparatus
JP2010145645A (en) * 2008-12-17 2010-07-01 Stanley Electric Co Ltd Liquid crystal display device
WO2010106905A1 (en) 2009-03-19 2010-09-23 財団法人21あおもり産業総合支援センター Field-sequential color type liquid crystal display apparatus and color display method therefor
CN101866624A (en) * 2009-04-15 2010-10-20 索尼公司 Image display device
WO2010143330A1 (en) * 2009-06-10 2010-12-16 シャープ株式会社 Driving device, driving method, image display device, television receiver, display monitor device, program and record medium
KR20120070196A (en) * 2010-12-21 2012-06-29 엘지디스플레이 주식회사 Liquid crystal display device and driving method for thereof
JP2012129988A (en) * 2010-11-23 2012-07-05 Semiconductor Energy Lab Co Ltd Method of driving stereoscopic image display device
US8537086B2 (en) 2010-06-16 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
US8564629B2 (en) 2010-05-25 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and driving method thereof
US8564529B2 (en) 2010-06-21 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device
US8797371B2 (en) 2010-12-22 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Method for driving field sequential liquid crystal display device
US8823754B2 (en) 2010-04-09 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving the same
US8830278B2 (en) 2010-04-09 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving the same
US8907881B2 (en) 2010-04-09 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving the same
US8988337B2 (en) 2010-07-02 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
US9047840B2 (en) 2010-06-25 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
US9064469B2 (en) 2010-07-02 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device
US9109286B2 (en) 2010-06-18 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing power storage device
WO2015129102A1 (en) * 2014-02-26 2015-09-03 シャープ株式会社 Field-sequential image display device and image display method
US9165521B2 (en) 2010-07-26 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Field sequential liquid crystal display device and driving method thereof
US9172946B2 (en) 2010-07-27 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device displaying stereoscopic images
US9177510B2 (en) 2010-08-05 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Driving method for irradiating colors of a liquid crystal display device
US9224339B2 (en) 2010-07-02 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9230489B2 (en) 2010-07-02 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving liquid crystal display device
US9293104B2 (en) 2010-07-02 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9336739B2 (en) 2010-07-02 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9336727B2 (en) 2010-11-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Driving method of display device
US9507220B2 (en) 2010-08-06 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and driving method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341503A (en) * 1998-05-28 1999-12-10 Fuji Photo Film Co Ltd Video camera
JP2000200063A (en) * 1998-11-06 2000-07-18 Canon Inc Display device
JP2001133746A (en) * 1999-11-08 2001-05-18 Fujitsu Ltd Liquid crystal display device
JP2002149134A (en) * 2000-11-13 2002-05-24 Nippon Hoso Kyokai <Nhk> Color image display method and device
JP2002318564A (en) * 2001-04-20 2002-10-31 Fujitsu Ltd Display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341503A (en) * 1998-05-28 1999-12-10 Fuji Photo Film Co Ltd Video camera
JP2000200063A (en) * 1998-11-06 2000-07-18 Canon Inc Display device
JP2001133746A (en) * 1999-11-08 2001-05-18 Fujitsu Ltd Liquid crystal display device
JP2002149134A (en) * 2000-11-13 2002-05-24 Nippon Hoso Kyokai <Nhk> Color image display method and device
JP2002318564A (en) * 2001-04-20 2002-10-31 Fujitsu Ltd Display device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109639A (en) * 2007-10-29 2009-05-21 Tohoku Univ Color display method for field-sequential color liquid crystal display device
JP2010145645A (en) * 2008-12-17 2010-07-01 Stanley Electric Co Ltd Liquid crystal display device
WO2010073562A1 (en) * 2008-12-26 2010-07-01 パナソニック株式会社 Image processing apparatus and image display apparatus
EP2410509A4 (en) * 2009-03-19 2013-01-02 Aomori Support Ct For Ind Promotion Field-sequential color type liquid crystal display apparatus and color display method therefor
WO2010106905A1 (en) 2009-03-19 2010-09-23 財団法人21あおもり産業総合支援センター Field-sequential color type liquid crystal display apparatus and color display method therefor
JP2010224065A (en) * 2009-03-19 2010-10-07 21 Aomori Sangyo Sogo Shien Center Field-sequential color type liquid crystal display apparatus and color display method therefor
EP2410509A1 (en) * 2009-03-19 2012-01-25 Aomori Support Center for Industrial Promotion Field-sequential color type liquid crystal display apparatus and color display method therefor
CN101866624A (en) * 2009-04-15 2010-10-20 索尼公司 Image display device
US8730277B2 (en) 2009-06-10 2014-05-20 Sharp Kabushiki Kaisha Driving device, driving method, image display device, television receiver, display monitor device, program and record medium
WO2010143330A1 (en) * 2009-06-10 2010-12-16 シャープ株式会社 Driving device, driving method, image display device, television receiver, display monitor device, program and record medium
US9135877B2 (en) 2010-04-09 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving the same
US9368090B2 (en) 2010-04-09 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving the same
US8823754B2 (en) 2010-04-09 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving the same
US8830278B2 (en) 2010-04-09 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving the same
US8907881B2 (en) 2010-04-09 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving the same
US8564629B2 (en) 2010-05-25 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and driving method thereof
US8537086B2 (en) 2010-06-16 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
US9109286B2 (en) 2010-06-18 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing power storage device
US8564529B2 (en) 2010-06-21 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device
US9047840B2 (en) 2010-06-25 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
US9293104B2 (en) 2010-07-02 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9064469B2 (en) 2010-07-02 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device
US8988337B2 (en) 2010-07-02 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
US9336739B2 (en) 2010-07-02 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10943547B2 (en) 2010-07-02 2021-03-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US11289031B2 (en) 2010-07-02 2022-03-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9224339B2 (en) 2010-07-02 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9230489B2 (en) 2010-07-02 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving liquid crystal display device
US9165521B2 (en) 2010-07-26 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Field sequential liquid crystal display device and driving method thereof
US9172946B2 (en) 2010-07-27 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device displaying stereoscopic images
US9177510B2 (en) 2010-08-05 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Driving method for irradiating colors of a liquid crystal display device
US9507220B2 (en) 2010-08-06 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and driving method thereof
US9792844B2 (en) 2010-11-23 2017-10-17 Seminconductor Energy Laboratory Co., Ltd. Driving method of image display device in which the increase in luminance and the decrease in luminance compensate for each other
JP2012129988A (en) * 2010-11-23 2012-07-05 Semiconductor Energy Lab Co Ltd Method of driving stereoscopic image display device
US9336727B2 (en) 2010-11-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Driving method of display device
KR101718382B1 (en) 2010-12-21 2017-03-21 엘지디스플레이 주식회사 Liquid crystal display device and driving method for thereof
KR20120070196A (en) * 2010-12-21 2012-06-29 엘지디스플레이 주식회사 Liquid crystal display device and driving method for thereof
US8797371B2 (en) 2010-12-22 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Method for driving field sequential liquid crystal display device
WO2015129102A1 (en) * 2014-02-26 2015-09-03 シャープ株式会社 Field-sequential image display device and image display method

Similar Documents

Publication Publication Date Title
JP2007264211A (en) Color display method for color-sequential display liquid crystal display apparatus
US6970148B2 (en) Image display method
US10546543B2 (en) Liquid crystal display device and method for driving the same
WO2018120608A1 (en) Liquid crystal display device and driving method therefor
JP3766274B2 (en) Time-division color display device and display method
Lin et al. Color breakup reduction by 180 Hz stencil-FSC method in large-sized color filter-less LCDs
US10573251B2 (en) Liquid crystal display device and method for driving the same
US20060202945A1 (en) Image display device with reduced flickering and blur
TWI524321B (en) Color display device and method
WO2012099039A1 (en) Image display device and image display method
WO2009060372A2 (en) Driving pixels of a display
KR20110043453A (en) Display device, display method and computer program
Zhang et al. A field‐sequential‐color display with a local‐primary‐desaturation backlight scheme
US20110221788A1 (en) Liquid crystal display and picture display system
Sekiya et al. L‐4: Late‐News Paper: A Simple and Practical Way to Cope With Color Breakup on Field Sequential Color LCDs
JP2006293095A (en) Liquid crystal display device and display method of liquid crystal display device
KR101981530B1 (en) Stereoscopic image display device and method for driving the same
JP2011039194A (en) Liquid crystal shutter glass and picture display system
US8629821B2 (en) Display device with faster changing side image
US20090102867A1 (en) Display method
JP5879844B2 (en) Image display device, image processing device
US20100045707A1 (en) Color sequential method for displaying images
TWI394127B (en) Method of generating control signal for compression response time
WO2012043408A1 (en) Liquid crystal display device, drive method, and display apparatus
JP2017053963A (en) Liquid crystal driving device, image display device, and liquid crystal driving program

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090220

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403