JP2007260489A - Filter cloth for inorganic powder wet molding and its manufacturing method - Google Patents

Filter cloth for inorganic powder wet molding and its manufacturing method Download PDF

Info

Publication number
JP2007260489A
JP2007260489A JP2006085485A JP2006085485A JP2007260489A JP 2007260489 A JP2007260489 A JP 2007260489A JP 2006085485 A JP2006085485 A JP 2006085485A JP 2006085485 A JP2006085485 A JP 2006085485A JP 2007260489 A JP2007260489 A JP 2007260489A
Authority
JP
Japan
Prior art keywords
fiber layer
filter cloth
inorganic powder
layer
base fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006085485A
Other languages
Japanese (ja)
Other versions
JP4611921B2 (en
Inventor
Hitoshi Nanba
均 難波
Masakazu Matsushima
政和 松島
Kazutaka Ikeda
和孝 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAO FILTER KOGYO KK
Original Assignee
NAKAO FILTER KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAO FILTER KOGYO KK filed Critical NAKAO FILTER KOGYO KK
Priority to JP2006085485A priority Critical patent/JP4611921B2/en
Publication of JP2007260489A publication Critical patent/JP2007260489A/en
Application granted granted Critical
Publication of JP4611921B2 publication Critical patent/JP4611921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Multi-Layer Textile Fabrics (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)
  • Laminated Bodies (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter cloth for inorganic powder wet molding, which does not fluff much and does not leave a base fabric pattern on an obtained molded body when wet-molding a prescribed shape from slurry containing inorganic powder. <P>SOLUTION: The filter cloth for inorganic powder wet molding is composed of felt having: a fiber layer (A) wherein short fibers comprising thermoplastic resin are entangled; a base fabric layer (B) comprising nonwoven fabric having long fibers thermally fused; and a fiber layer (C) wherein the short fibers are entangled, laminated in the order. The surface of the fiber layer (A) in contact with a molding material is smoothed by thermal calender treatment, the thickness of the filter cloth when the pressure of 10 MPa is applied is 0.1-1.0 mm, and at least the surface of the fiber layer (A) is hydrophilic. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、無機粉体を含有するスラリーから所定の形状に湿式成形する際に用いる無機粉体湿式成形用濾過布及びその製造方法に関する。   The present invention relates to a filter cloth for wet forming an inorganic powder used when wet forming a slurry containing an inorganic powder into a predetermined shape, and a method for producing the filter cloth.

無機粉体を含有するスラリーから所定の形状に湿式成形する際に用いる濾過布として、フェルトが使用されている。フェルトはスラリーから微細粒子と液体とを分離する際に微細粒子をトラップする優れた捕集性を有するが、目詰まりを起こしやすい構造を有しているため、繰り返し使用する点で困難な場合があった。   A felt is used as a filter cloth used when wet-molding a slurry containing inorganic powder into a predetermined shape. Felt has excellent trapping ability to trap fine particles when separating fine particles and liquid from the slurry, but has a structure that easily causes clogging, so it may be difficult to use repeatedly. there were.

例えば、特開平6−246115号公報(特許文献1)には、第1層である熱可塑性合成繊維層と第2層である合成繊維弾性層の間に粗目絡み織基布を配したことを特徴とする磁性粉末材料の湿式濾過成型用フェルト濾材について記載されている。マルチフィラメントの平織りからなる基布層を有するフェルトを濾布として使用した場合、目詰まりを生じることがあるが、基布層に粗目の絡み織を配置することによりこの問題が解決できるとされている。しかしながら、このような濾過布は加圧成形時に濾過布と接触した成形体表面に粗目の絡み織基布層由来の基布目が付いてしまうことから、成形体の表面を削る等の再加工が必要である場合もあり改善が望まれていた。   For example, in Japanese Patent Laid-Open No. 6-246115 (Patent Document 1), a coarsely woven base fabric is arranged between a thermoplastic synthetic fiber layer as a first layer and a synthetic fiber elastic layer as a second layer. A felt filter medium for wet filtration molding of magnetic powder material is described. When a felt having a base fabric layer made of multifilament plain weave is used as a filter cloth, clogging may occur, but this problem can be solved by arranging a coarse woven fabric in the base fabric layer. Yes. However, since such a filter cloth has a base fabric derived from a coarse woven base fabric layer on the surface of the molded body that is in contact with the filter cloth during pressure molding, rework such as scraping the surface of the molded body is required. Improvement was desired because it may be necessary.

また、特開平7−124427号公報(特許文献2)には、補強用基布の上下両面にメルトブローン不織布を配置し、さらにその両面に繊維層を配置してニードルパンチング後に表面を鏡面化処理したニードルパンチングフェルトが、濾過布として使用した場合に清澄な濾液を得ることができると記載されている。   In JP-A-7-124427 (Patent Document 2), a melt-blown nonwoven fabric is disposed on both upper and lower surfaces of a reinforcing base fabric, and a fiber layer is disposed on both surfaces, and the surface is mirror-finished after needle punching. It is described that a needle punching felt can provide a clear filtrate when used as a filter cloth.

特開平6−246115号公報JP-A-6-246115 特開平7−124427号公報JP-A-7-124427

本発明は上記課題を解決するためになされたものであり、毛羽立ちが少なく、無機粉体を含有するスラリーから所定の形状に湿式成形する際に、得られる成形体に基布目が付かない無機粉体湿式成形用濾過布を提供することを目的とするものである。また、そのような無機粉体湿式成形用濾過布の好適な製造方法を提供することを目的とするものである。   The present invention has been made in order to solve the above-mentioned problems, and has a small amount of fuzz and an inorganic powder having a base fabric not attached to a molded product obtained when wet-molding a slurry containing an inorganic powder into a predetermined shape. It aims at providing the filter cloth for body wet shaping | molding. Moreover, it aims at providing the suitable manufacturing method of such a filter cloth for wet forming of inorganic powder.

上記課題は、熱可塑性樹脂からなる短繊維が交絡した繊維層(A)、長繊維が熱融着された不織布からなる基布層(B)、及び短繊維が交絡した繊維層(C)をこの順番に積層したフェルトからなる無機粉体湿式成形用濾過布であって、成形材料と接触する繊維層(A)の表面が熱カレンダー処理により平滑化され、10MPaの圧力を印加したときの濾過布の厚さが0.1〜1.0mmであり、かつ少なくとも繊維層(A)の表面が親水性を有することを特徴とする無機粉体湿式成形用濾過布を提供することによって解決される。   The above problems include a fiber layer (A) in which short fibers made of a thermoplastic resin are entangled, a base fabric layer (B) made of a nonwoven fabric in which long fibers are thermally fused, and a fiber layer (C) in which short fibers are entangled. Filtration cloth for wet forming inorganic powder made of felt laminated in this order, the surface of the fiber layer (A) in contact with the molding material is smoothed by thermal calendering and filtered when a pressure of 10 MPa is applied The problem is solved by providing a filter cloth for wet forming an inorganic powder, wherein the cloth has a thickness of 0.1 to 1.0 mm and at least the surface of the fiber layer (A) has hydrophilicity. .

このとき、基布層(B)がスパンボンド不織布からなることが好適である。繊維層(A)を構成する短繊維の繊度が、繊維層(C)を構成する短繊維の繊度よりも小さいことが好適である。また、繊維層(A)が熱接着性繊維を含有することも好適である。   At this time, the base fabric layer (B) is preferably made of a spunbonded nonwoven fabric. The fineness of the short fibers constituting the fiber layer (A) is preferably smaller than the fineness of the short fibers constituting the fiber layer (C). Moreover, it is also suitable that a fiber layer (A) contains a heat bondable fiber.

上記無機粉体湿式成形用濾過布の好適な製造方法は、基布層(B)と繊維層(C)を重ねて配置して、繊維層(C)側からニードルパンチを行い、得られた基布層(B)と繊維層(C)とからなる積層体の基布層(B)側に繊維層(A)を重ねて配置して、繊維層(A)側からさらにニードルパンチを行う方法であり、上記無機粉体湿式成形用濾過布の他の好適な製造方法は、繊維層(A)、基布層(B)及び繊維層(C)を重ねて配置してから、繊維層(A)側からニードルパンチを行うとともに、繊維層(C)側からもニードルパンチを行い、その際、繊維層(C)側から挿入されたニードルのバーブが繊維層(A)の表面に出ない方法である。また、上記無機粉体湿式成形用濾過布の他の好適な製造方法は、繊維層(A)、基布層(B)及び繊維層(C)を重ねて配置してから、繊維層(A)側からのみニードルパンチを行う方法である。   A suitable method for producing the above-mentioned inorganic powder wet-molding filter cloth was obtained by placing the base fabric layer (B) and the fiber layer (C) in an overlapping manner, and performing needle punching from the fiber layer (C) side. The fiber layer (A) is placed on the base fabric layer (B) side of the laminate composed of the base fabric layer (B) and the fiber layer (C), and needle punching is further performed from the fiber layer (A) side. Another preferred method for manufacturing the inorganic powder wet forming filter cloth is to place the fiber layer (A), the base fabric layer (B) and the fiber layer (C) on top of each other, and then the fiber layer. (A) Needle punching is performed from the side and needle punching is also performed from the fiber layer (C) side. At this time, the needle barbs inserted from the fiber layer (C) side are exposed to the surface of the fiber layer (A). There is no way. Moreover, the other suitable manufacturing method of the said inorganic powder wet-forming filter cloth arrange | positions a fiber layer (A), after arranging a fiber layer (A), a base fabric layer (B), and a fiber layer (C) in piles. ) Needle punch only from the side.

本発明の無機粉体湿式成形用濾過布は、毛羽立ちが少なく、無機粉体を含有するスラリーから所定の形状に湿式成形する際に、得られる成形体に基布目が付かない。   The filter cloth for wet forming of an inorganic powder according to the present invention has less fuzz and does not have a base cloth on the resulting molded body when wet-molded into a predetermined shape from a slurry containing inorganic powder.

本発明の無機粉体湿式成形用濾過布は、熱可塑性樹脂からなる短繊維が交絡した繊維層(A)、長繊維が熱融着された不織布からなる基布層(B)、及び短繊維が交絡した繊維層(C)をこの順番に積層したフェルトからなるものである。   The filter cloth for wet forming of the inorganic powder of the present invention includes a fiber layer (A) in which short fibers made of a thermoplastic resin are entangled, a base fabric layer (B) made of a nonwoven fabric in which long fibers are thermally fused, and short fibers. Is made of felt obtained by laminating fiber layers (C) entangled in this order.

本発明の繊維層(A)で用いられる短繊維は熱可塑性樹脂からなるものである。このことにより後で述べられる熱カレンダー処理において繊維層(A)の表面を平滑化して毛羽立ちを少なくすることができる。ここで用いられる熱可塑性樹脂としては、好適にはポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂等を用いることができるが、焼却廃棄時に有害なガスの発生が少なく経済的である観点から、より好適にはポリエステル樹脂、特にポリエチレンテレフタレート(PET)が用いられる。   The short fibers used in the fiber layer (A) of the present invention are made of a thermoplastic resin. As a result, the surface of the fiber layer (A) can be smoothed to reduce fuzzing in the thermal calendar process described later. As the thermoplastic resin used here, a polyester resin, a polyolefin resin, a polyamide resin, or the like can be preferably used. However, from the viewpoint of economically generating less harmful gas at the time of incineration disposal, it is more preferable. A polyester resin, particularly polyethylene terephthalate (PET) is used.

また、上記繊維層(A)は熱接着性繊維を含有することが好ましい。繊維層(A)が熱接着性繊維を含有することにより、熱カレンダー処理において繊維層(A)の表面を平滑化することが容易になるとともに毛羽立ちが一段と少なくなり、繊維層(A)の表面をより平滑化することができる。熱接着性繊維としては、好適には高融点の樹脂と低融点の樹脂とから構成される複合繊維が用いられる。複合形態は特に限定されないが、芯に高融点の樹脂、鞘に低融点の樹脂を用いた芯鞘型の複合繊維が好適である。高融点樹脂と低融点樹脂の組み合わせ(高融点樹脂/低融点樹脂)としては、ポリエチレンテレフタレート(PET)/ポリエチレン、PET/共重合PET、ポリプロピレン/ポリエチレンなどを用いることができる。   Moreover, it is preferable that the said fiber layer (A) contains a heat bondable fiber. When the fiber layer (A) contains heat-adhesive fibers, it becomes easy to smooth the surface of the fiber layer (A) in the thermal calendering process, and the fluffing is further reduced, and the surface of the fiber layer (A). Can be further smoothed. As the heat-bonding fiber, a composite fiber composed of a high melting point resin and a low melting point resin is preferably used. The composite form is not particularly limited, but a core-sheath type composite fiber using a high melting point resin for the core and a low melting point resin for the sheath is suitable. As a combination of the high melting point resin and the low melting point resin (high melting point resin / low melting point resin), polyethylene terephthalate (PET) / polyethylene, PET / copolymerized PET, polypropylene / polyethylene, and the like can be used.

上記繊維層(A)において、繊維層(A)を構成する繊維全体に対し、熱接着性繊維を3〜30重量%含有することが好ましい。熱接着性繊維の含有量が3重量%未満である場合、繊維層(A)の表面の平滑化を十分に行うことができず、添加効果がほとんど認められられないおそれがあり、より好適には5重量%以上である。一方、熱接着性繊維の含有量が30重量%を超える場合、製造コストが上昇するとともに濾過布の風合いが硬くなるおそれがあり、より好適には20重量%以下である。   In the said fiber layer (A), it is preferable to contain 3-30 weight% of thermoadhesive fibers with respect to the whole fiber which comprises a fiber layer (A). When the content of the heat-adhesive fiber is less than 3% by weight, the surface of the fiber layer (A) cannot be sufficiently smoothed, and the addition effect may be hardly recognized, and more preferably. Is 5% by weight or more. On the other hand, when the content of the heat-adhesive fiber exceeds 30% by weight, the production cost increases and the texture of the filter cloth may become hard, and more preferably 20% by weight or less.

本発明で用いられる繊維層(C)を構成する短繊維は特に限定されず、天然繊維や再生繊維を用いることもできるが、熱可塑性樹脂を用いることが好ましい。熱可塑性樹脂としては、繊維層(A)と同様の樹脂を使用することができる。   The short fiber which comprises the fiber layer (C) used by this invention is not specifically limited, Although natural fiber and a reproduction | regeneration fiber can also be used, it is preferable to use a thermoplastic resin. As the thermoplastic resin, the same resin as that of the fiber layer (A) can be used.

前記繊維層(A)の繊度は、0.1〜10dtexの範囲にあることが好ましい。繊度が0.1dtex未満の場合、繊維が細すぎるため目詰まりが生じるおそれがあり、より好適には1dtex以上である。一方、繊度が10dtexを超える場合、成形品表面の平滑性が損なわれるおそれがあり、より好適には5dtex以下である。前記繊維層(C)の繊度は、1〜20dtexの範囲にあることが好ましい。繊度が1dtex未満の場合、繊維が細すぎるため濾過の際に水が抜ける速度が低下するおそれがあり、より好適には3dtex以上である。一方、繊度が20dtexを超える場合、繊維層を構成する繊維の本数が少なくなりニードルパンチによる交絡性が低下するおそれがあり、より好適には10dtex以下である。このとき、繊維層(C)の繊度より繊維層(A)の繊度が小さいことが好適である。このことにより、表面の平滑な成形品を生産性良く製造することができる。より好適には繊維層(C)の繊度は繊維層(A)の繊度の1.5倍以上である。また、通常、繊維層(C)の繊度は繊維層(A)の繊度の10倍以下である。   The fineness of the fiber layer (A) is preferably in the range of 0.1 to 10 dtex. When the fineness is less than 0.1 dtex, there is a possibility that clogging occurs because the fiber is too thin, and more preferably 1 dtex or more. On the other hand, when the fineness exceeds 10 dtex, the smoothness of the surface of the molded product may be impaired, and more preferably 5 dtex or less. The fineness of the fiber layer (C) is preferably in the range of 1 to 20 dtex. When the fineness is less than 1 dtex, the fiber is too thin, and the rate of water removal during filtration may decrease, and more preferably 3 dtex or more. On the other hand, when the fineness exceeds 20 dtex, the number of fibers constituting the fiber layer is decreased, and the confounding property by the needle punch may be lowered, and more preferably 10 dtex or less. At this time, it is preferable that the fineness of the fiber layer (A) is smaller than the fineness of the fiber layer (C). As a result, a molded product having a smooth surface can be produced with high productivity. More preferably, the fineness of the fiber layer (C) is 1.5 times or more of the fineness of the fiber layer (A). Moreover, the fineness of a fiber layer (C) is usually 10 times or less of the fineness of a fiber layer (A).

上記繊維層(A)及び上記繊維層(C)はいずれも短繊維が交絡して層状に形成されてなるものである。このときの交絡の形態は特に限定されないが、短繊維同士が相互に三次元的に絡み合っていればよい。   Each of the fiber layer (A) and the fiber layer (C) is formed by layering short fibers into layers. Although the form of the entanglement at this time is not particularly limited, it is only necessary that the short fibers are entangled three-dimensionally.

本発明で用いられる基布層(B)は長繊維が熱融着された不織布からなるものである。このような不織布を基布層(B)に用いることによって、寸法安定性に優れ、しかも成形品の表面に基布目が付かない濾過布を提供することができる。ここで、長繊維が熱融着されたとは、連続したフィラメントである長繊維同士が、接触した箇所で熱融着により接合された状態を表すものである。長繊維が熱融着された不織布として、スパンボンド不織布、メルトブローン不織布等が挙げられるが、不織布基布としての形態安定性の観点から好適にはスパンボンド不織布が用いられる。スパンボンド不織布の素材として用いられる熱可塑性樹脂としてポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂等を用いることが好ましいが、ポリエステル樹脂、特にポリエチレンテレフタレート(PET)を用いることがより好ましい。   The base fabric layer (B) used in the present invention is made of a nonwoven fabric in which long fibers are heat-sealed. By using such a nonwoven fabric for the base fabric layer (B), it is possible to provide a filter cloth that is excellent in dimensional stability and that does not have a base fabric on the surface of the molded product. Here, the term “long-sealed long fibers” refers to a state in which long fibers, which are continuous filaments, are joined by heat-sealing at the contact points. Examples of the nonwoven fabric in which the long fibers are heat-sealed include a spunbond nonwoven fabric and a melt blown nonwoven fabric. A spunbond nonwoven fabric is preferably used from the viewpoint of form stability as a nonwoven fabric base fabric. A polyolefin resin, a polyester resin, a polyamide resin, or the like is preferably used as the thermoplastic resin used as the material of the spunbond nonwoven fabric, but a polyester resin, particularly polyethylene terephthalate (PET) is more preferably used.

基布層(B)に用いられる長繊維の繊度は特に限定されない。また基布層(B)の目付(単位面積あたりの質量を表す)は、10〜200g/mであることが好適である。目付が10g/m未満の場合、フェルトの寸法安定性が低下するおそれがあり、より好適には30g/mである。一方、目付が200g/mを超える場合、フェルトが厚くなるおそれがあり、より好適には100g/m以下である。 The fineness of the long fibers used for the base fabric layer (B) is not particularly limited. The basis weight of the base fabric layer (B) (representing the mass per unit area) is preferably 10 to 200 g / m 2 . When the basis weight is less than 10 g / m 2 , the dimensional stability of the felt may be lowered, and more preferably 30 g / m 2 . On the other hand, when the basis weight exceeds 200 g / m 2 , the felt may be thick, and more preferably 100 g / m 2 or less.

繊維層(A)、基布層(B)、繊維層(C)を積層する方法は特に限定されず、ニードルパンチにより交絡させて積層する方法、水流交絡により交絡させて積層する方法、熱融着により積層する方法、溶剤接着により積層する方法等を用いることができる。なかでも、コスト面からニードルパンチにより積層することが好ましい。ニードルパンチにより積層する場合の好適な3通りの積層方法を以下に説明する。   The method of laminating the fiber layer (A), the base fabric layer (B), and the fiber layer (C) is not particularly limited. The method of entanglement by needle punching, the method of entanglement by hydroentanglement, the method of laminating by thermal entanglement, thermal fusion A method of laminating by adhesion, a method of laminating by solvent adhesion, etc. can be used. Especially, it is preferable to laminate | stack by a needle punch from a cost surface. Three preferred laminating methods for laminating with a needle punch will be described below.

第1の好適な方法は、基布層(B)と繊維層(C)を重ねて配置して繊維層(C)側からニードルパンチを行い、得られた基布層(B)と繊維層(C)とからなる積層体の基布層(B)側に繊維層(A)を重ねて配置して、繊維層(A)側からさらにニードルパンチを行う方法である。この方法によれば、基布層(B)と繊維層(C)を重ねて配置して繊維層(C)側からニードルパンチを行うことにより、繊維層(C)の繊維が基布層(B)内に絡まって固定化されるとともに基布層(B)の表面に出る。続いて、得られた基布層(B)と繊維層(C)とからなる積層体の基布層(B)側に繊維層(A)を重ねて配置して、繊維層(A)側からさらにニードルパンチを行うことにより、繊維層(A)の繊維が基布層(B)内及び繊維層(C)内に絡まって固定化されるとともに繊維層(C)の裏面に出る。このように上記2工程により成形体と接触する繊維層(A)の表面に繊維が出ないため、毛羽立ちの少ない本発明の無機粉体湿式成形用濾過布を得ることができる。   The first preferred method is to place the base fabric layer (B) and the fiber layer (C) in an overlapping manner and perform needle punching from the fiber layer (C) side, and to obtain the base fabric layer (B) and the fiber layer. (C) is a method in which the fiber layer (A) is placed on the base fabric layer (B) side of the laminate comprising (C) and needle punching is further performed from the fiber layer (A) side. According to this method, by arranging the base fabric layer (B) and the fiber layer (C) so as to be needle punched from the fiber layer (C) side, the fibers of the fiber layer (C) are converted into the base fabric layer ( B) It is entangled inside and fixed, and comes out on the surface of the base fabric layer (B). Subsequently, the fiber layer (A) is placed on the base fabric layer (B) side of the laminate composed of the obtained base fabric layer (B) and the fiber layer (C), and the fiber layer (A) side is arranged. Further, by performing needle punching, the fibers of the fiber layer (A) are entangled and fixed in the base fabric layer (B) and the fiber layer (C) and come out on the back surface of the fiber layer (C). Thus, since a fiber does not come out on the surface of the fiber layer (A) which contacts a molded object by the said 2 process, the filter cloth for inorganic powder wet forming of this invention with few fuzzing can be obtained.

第2の好適な方法は、繊維層(A)、基布層(B)、繊維層(C)を重ねて配置してから繊維層(A)側からニードルパンチを行うとともに、繊維層(C)側からもニードルパンチを行い、その際、繊維層(C)側から挿入されたニードルのバーブが繊維層(A)の表面に出ないようにする方法である。この方法によれば、繊維層(C)側から挿入されたニードルのバーブが繊維層(A)の表面に出ないことにより、成形体と接触する繊維層(A)の表面に繊維が出ないため毛羽立ちの少ない本発明の無機粉体湿式成形用濾過布を得ることができる。また、繊維層(A)、基布層(B)、繊維層(C)を重ねて配置してから繊維層(A)側と繊維層(C)側から同時にニードルパンチを行うことで製造工程を簡略化することができる。ここで、バーブとは、ニードルの先端近傍に形成された突起(逆トゲ)のことをいい、ニードルを押し込む際に繊維を引っ掛けることのできるものである。   In a second preferred method, the fiber layer (A), the base fabric layer (B), and the fiber layer (C) are stacked and then needle punched from the fiber layer (A) side, and the fiber layer (C ) Needle punching is also performed from the side, and at this time, the needle barb inserted from the fiber layer (C) side is prevented from coming out on the surface of the fiber layer (A). According to this method, since the barb of the needle inserted from the fiber layer (C) side does not come out on the surface of the fiber layer (A), no fiber comes out on the surface of the fiber layer (A) in contact with the molded body. Therefore, the filter cloth for inorganic powder wet molding according to the present invention with less fluff can be obtained. In addition, the fiber layer (A), the base fabric layer (B), and the fiber layer (C) are stacked and then needle punched simultaneously from the fiber layer (A) side and the fiber layer (C) side. Can be simplified. Here, the barb refers to a protrusion (reverse thorn) formed in the vicinity of the tip of the needle, and is capable of hooking a fiber when the needle is pushed in.

さらに、第3の好適な方法は、繊維層(A)、基布層(B)、繊維層(C)を重ねて配置してから繊維層(A)側からのみニードルパンチを行う方法である。この方法によれば、繊維層(A)側からのみニードルパンチを行うことにより成形体と接触する繊維層(A)の表面に繊維が出ないため毛羽立ちの少ない本発明の無機粉体湿式成形用濾過布を得ることができる。また、製造工程を簡略化することができる。   Furthermore, a third preferred method is a method in which needle punching is performed only from the fiber layer (A) side after arranging the fiber layer (A), the base fabric layer (B), and the fiber layer (C) in an overlapping manner. . According to this method, by performing needle punching only from the fiber layer (A) side, the fibers do not come out on the surface of the fiber layer (A) that comes into contact with the molded body, and therefore the inorganic powder wet molding of the present invention with less fluff A filter cloth can be obtained. In addition, the manufacturing process can be simplified.

繊維層(A)の表面を熱カレンダー処理するのに先立って、予め繊維層(A)の表面を毛焼きしておくことが好ましい。このことにより繊維層(A)の表面の毛羽立ちを一段と少なくすることができる。   Prior to heat calendering the surface of the fiber layer (A), the surface of the fiber layer (A) is preferably baked in advance. This can further reduce the fuzz on the surface of the fiber layer (A).

本発明の無機粉体湿式成形用濾過布は、成形材料と接触する繊維層(A)の表面が熱カレンダー処理により平滑化されてなるものである。繊維層(A)の表面を熱カレンダー処理により平滑化する方法は特に限定されず、熱ロール、平板プレス等を用いることができる。このとき、好適には熱ロールを用いて熱ロール表面と前記繊維層(A)の表面が接するようにして熱カレンダー処理することにより、繊維層(A)の表面が平滑化される。繊維層(A)の表面が平滑化されることにより、繊維層(A)の表面と接する成形体に基布目が付きにくく、毛羽の発生が少なくなるので安定して成形体を得られる利点がある。このとき、予め繊維層(A)の表面を熱カレンダー処理により平滑化してから、基布層(B)及び繊維層(C)と積層して本発明の無機粉体湿式成形用濾過布を得ることもできるが、成形材料と接触する繊維層(A)の表面をできるだけ平滑にする観点からは、繊維層(A)、基布層(B)及び繊維層(C)を積層してからその後に熱カレンダー処理を行うことが好ましい。   The inorganic powder wet-molding filter cloth of the present invention is obtained by smoothing the surface of the fiber layer (A) in contact with the molding material by thermal calendering. The method for smoothing the surface of the fiber layer (A) by thermal calendering is not particularly limited, and a hot roll, a flat plate press or the like can be used. At this time, the surface of the fiber layer (A) is smoothed by a heat calender treatment, preferably using a heat roll so that the surface of the heat roll and the surface of the fiber layer (A) are in contact with each other. Since the surface of the fiber layer (A) is smoothed, the molded body in contact with the surface of the fiber layer (A) is less likely to have a base fabric, and the generation of fluff is reduced, so that the molded body can be obtained stably. is there. At this time, the surface of the fiber layer (A) is previously smoothed by thermal calendering, and then laminated with the base fabric layer (B) and the fiber layer (C) to obtain the filter cloth for wet forming of the inorganic powder of the present invention. However, from the viewpoint of making the surface of the fiber layer (A) in contact with the molding material as smooth as possible, the fiber layer (A), the base fabric layer (B) and the fiber layer (C) are laminated and then It is preferable to perform a heat calendar process.

本発明の無機粉体湿式成形用濾過布は、少なくとも繊維層(A)の表面が親水性を有するものである。繊維層(A)の表面が親水性を有することにより、水抜け性が良好となりケーキ形成が早くなる利点がある。本発明の無機粉体湿式成形用濾過布を親水化する方法は特に限定されず、繊維層(A)の表面のみを親水化してもよいし、繊維層(A)全体を親水化してもよいし、繊維層(A)を構成する熱可塑性樹脂からなる短繊維を予め親水化してもよい。また、基布層(B)又は繊維層(C)が親水性を有していてもよい。また、繊維層(A)を親水化した後に基布層(B)及び繊維層(C)を積層して本発明の無機粉体湿式成形用濾過布を得ることもできるが、(製造の容易さから)予め繊維層(A)、基布層(B)及び繊維層(C)からなる積層体を得た後に積層体全体を親水化することが好ましい。   The filter cloth for wet forming of an inorganic powder according to the present invention is one in which at least the surface of the fiber layer (A) has hydrophilicity. Since the surface of the fiber layer (A) has hydrophilicity, there is an advantage that water drainage is good and cake formation is accelerated. The method for hydrophilizing the filter cloth for wet forming an inorganic powder of the present invention is not particularly limited, and only the surface of the fiber layer (A) may be hydrophilized or the entire fiber layer (A) may be hydrophilized. Then, the short fibers made of the thermoplastic resin constituting the fiber layer (A) may be hydrophilized in advance. Moreover, the base fabric layer (B) or the fiber layer (C) may have hydrophilicity. Further, after the fiber layer (A) is hydrophilized, the base fabric layer (B) and the fiber layer (C) can be laminated to obtain the filter cloth for inorganic powder wet molding of the present invention. From the above, it is preferable to hydrophilize the entire laminate after obtaining a laminate comprising the fiber layer (A), the base fabric layer (B) and the fiber layer (C) in advance.

親水化処理の具体的方法は特に限定されず、親水性物質を繊維形成ポリマーにブレンドしたものや一般に市販されている親水化処理剤を用いることができ、好適にはポリエチレングリコール系の親水化処理剤を用いることができる。   The specific method of the hydrophilization treatment is not particularly limited, and a hydrophilic substance blended with a fiber-forming polymer or a commercially available hydrophilization treatment agent can be used, and preferably a polyethylene glycol-based hydrophilization treatment. An agent can be used.

本発明の無機粉体湿式成形用濾過布は、10MPaの圧力を印加したときの厚さが0.1〜1.0mmである。濾過布の厚さが0.1mm未満の場合、(成形体を製造する際の濾過布の耐久性が低下する)おそれがあるとともに成形用金型のシール部分から成形材料が流出したり得られた成形体の表面にバリが発生するおそれもあり、好適には0.2mm以上であり、より好適には0.3mm以上である。一方、濾過布の厚さが1.0mm以上の場合、成形用金型の噛合い不良となるおそれがあり、好適には0.8mm以下であり、より好適には0.6mm以下である。   The inorganic powder wet forming filter cloth of the present invention has a thickness of 0.1 to 1.0 mm when a pressure of 10 MPa is applied. If the thickness of the filter cloth is less than 0.1 mm, there is a risk that the durability of the filter cloth when the molded body is produced may decrease, and the molding material may flow out from the sealing portion of the molding die. Further, there is a possibility that burrs may be generated on the surface of the molded body, which is preferably 0.2 mm or more, and more preferably 0.3 mm or more. On the other hand, when the thickness of the filter cloth is 1.0 mm or more, there is a possibility that the molding die may become incompletely engaged, preferably 0.8 mm or less, and more preferably 0.6 mm or less.

こうして得られた本発明の無機粉体湿式成形用濾過布は、毛羽立ちが少なく、得られる成形体表面に基布目が付かないため、無機粉体を含有するスラリーから所定の形状に湿式成形する際に好適に用いられる。特に磁性粉末材料を湿式成形する際などに用いることができる。   The filter powder for inorganic powder wet molding of the present invention thus obtained has less fuzz and the surface of the resulting molded body does not have a base fabric, so when wet-molding from a slurry containing inorganic powder into a predetermined shape Is preferably used. In particular, it can be used when a magnetic powder material is wet-formed.

以下、実施例を用いて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
(1)無機粉体湿式成形用濾過布の作製
ポリエステル短繊維(2.2dtex×64mm)と、熱接着性繊維(ユニチカ株式会社製「メルティ」、芯鞘型複合繊維(芯:PET、鞘:共重合PET、4.4dtex×51mm)とを、その質量比(ポリエステル短繊維/熱接着性繊維)が90/10となるように配合し、カード機により繊維層(A)(目付160g/m)を形成した。基布層(B)としてポリエステル製スパンボンド不織布(東洋紡績株式会社製、厚さ0.24mm、目付40g/m)を用いた。さらに、ポリエステル短繊維(6.6dtex×51mm)を用いて、カード機により繊維層(C)(目付200g/m)を形成した。
Example 1
(1) Production of filter cloth for wet forming of inorganic powder Polyester short fiber (2.2 dtex × 64 mm) and heat-adhesive fiber (“Melty” manufactured by Unitika Ltd.), core-sheath type composite fiber (core: PET, sheath: Copolymerized PET, 4.4 dtex × 51 mm) was blended so that the mass ratio (polyester short fiber / thermal adhesive fiber) was 90/10, and the fiber layer (A) (160 g / m) 2 ) Polyester spunbonded nonwoven fabric (manufactured by Toyobo Co., Ltd., thickness 0.24 mm, basis weight 40 g / m 2 ) was used as the base fabric layer (B), and polyester short fibers (6.6 dtex) were used. × 51 mm) was used to form a fiber layer (C) (weight per unit area: 200 g / m 2 ) using a card machine.

得られた繊維層(A)、基布層(B)、繊維層(C)をこの順番で重ねて配置してから繊維層(A)側からのみニードルパンチを行った。さらに繊維層(A)の表面を毛羽焼き機により毛焼き処理した後、170℃の熱ロール表面と繊維層(A)の表面が接するようにして熱カレンダー処理を2回行い、積層体全体を親水化処理剤(高松油脂株式会社製「SR1000」、SR加工剤)に浸漬し、脱水・乾燥して本発明の無機粉体湿式成形用濾過布を得た。   After the obtained fiber layer (A), base fabric layer (B), and fiber layer (C) were arranged in this order, needle punching was performed only from the fiber layer (A) side. Further, after the surface of the fiber layer (A) is fried by a fluffing machine, heat calendering is performed twice so that the surface of the heat roll at 170 ° C. and the surface of the fiber layer (A) are in contact with each other, and the entire laminate is obtained. It was immersed in a hydrophilizing agent (“SR1000” manufactured by Takamatsu Yushi Co., Ltd., SR processing agent), dehydrated and dried to obtain a filter cloth for wet forming of inorganic powder of the present invention.

(2)JIS L1096による濾過布の厚さの測定
上記で得られた無機粉体湿式成形用濾過布の厚さをJIS L1096(一般織物試験方法:厚さ)に準じた方法で測定した。厚さ測定器を用い、一定圧力23.5kPaの下で異なる5箇所について濾過布の厚さを測定して平均値を算出した。実施例1では、濾過布の厚さは1.30mmであった。
(2) Measurement of filter cloth thickness according to JIS L1096 The thickness of the filter cloth for inorganic powder wet molding obtained above was measured by a method according to JIS L1096 (general fabric test method: thickness). Using a thickness measuring device, the thickness of the filter cloth was measured at five different locations under a constant pressure of 23.5 kPa, and an average value was calculated. In Example 1, the thickness of the filter cloth was 1.30 mm.

(3)JIS L1096による引張強さの測定
上記で得られた無機粉体湿式成形用濾過布の引張強さをJIS L1096(一般織物試験方法:引張強さ)に準じた方法で測定した。幅5cm、長さ20cmの濾過布を引張試験機につかみ間隔10cmでセットし、10cm/minの引張速度で縦方向及び横方向の引張強さをそれぞれ3回測定して平均値を算出した。実施例1では、濾過布の引張強さは縦28daN/5cm、横21daN/5cmであった。
(3) Measurement of tensile strength according to JIS L1096 The tensile strength of the filter cloth for inorganic powder wet molding obtained above was measured by a method according to JIS L1096 (general fabric test method: tensile strength). A filter cloth having a width of 5 cm and a length of 20 cm was gripped on a tensile tester and set at a spacing of 10 cm, and the tensile strength in the longitudinal direction and the transverse direction was measured three times at a tensile speed of 10 cm / min to calculate an average value. In Example 1, the tensile strength of the filter cloth was 28 daN / 5 cm in length and 21 daN / 5 cm in width.

(4)JIS L1096による伸び率の測定
上記で得られた無機粉体湿式成形用濾過布の伸び率をJIS L1096(一般織物試験方法:伸び率)に準じた方法で測定した。幅5cm、長さ20cmの濾過布を引張試験機につかみ間隔10cmでセットし、10cm/minの引張速度で縦方向及び横方向の伸び率をそれぞれ3回測定して平均値を算出した。実施例1では、濾過布の伸び率は縦51%、横80%であった。
(4) Measurement of elongation rate according to JIS L1096 The elongation rate of the filter cloth for wet forming an inorganic powder obtained above was measured by a method according to JIS L1096 (general fabric test method: elongation rate). A filter cloth having a width of 5 cm and a length of 20 cm was gripped on a tensile tester and set at an interval of 10 cm, and the average value was calculated by measuring the elongation in the machine direction and the transverse direction three times at a tensile speed of 10 cm / min. In Example 1, the elongation percentage of the filter cloth was 51% length and 80% width.

(5)JIS L1096による通気性測定
上記で得られた無機粉体湿式成形用濾過布の通気性をJIS L1096(一般織物試験方法:通気性)に準じた方法で測定した。幅20cm、長さ20cmの濾過布をフラジール形試験機にセットし、傾斜形気圧計の圧力が125Paの下で濾過布を通過する空気量(cm/cm・s)を5回測定して平均値を算出した。実施例1では、濾過布の通気性は28.4cm/cm・sであった。
(5) Breathability measurement according to JIS L1096 The breathability of the filter cloth for wet forming an inorganic powder obtained above was measured by a method according to JIS L1096 (general fabric test method: breathability). A filter cloth having a width of 20 cm and a length of 20 cm is set in a Frazier type tester, and the amount of air (cm 3 / cm 2 · s) passing through the filter cloth is measured 5 times under the pressure of the inclined barometer at 125 Pa. The average value was calculated. In Example 1, the air permeability of the filter cloth was 28.4 cm 3 / cm 2 · s.

(6)10MPaの圧力印加時の圧縮特性評価
上記で得られた無機粉体湿式成形用濾過布の10MPaの圧力印加時の厚さを測定した。実施例1では、濾過布の厚さは1回目で0.41mm、10回目で0.33mmであった。
(6) Compression characteristic evaluation at the time of 10 MPa pressure application The thickness at the time of 10 MPa pressure application of the filter cloth for inorganic powder wet forming obtained above was measured. In Example 1, the thickness of the filter cloth was 0.41 mm at the first time and 0.33 mm at the tenth time.

(7)毛羽立ち評価
上記で得られた無機粉体湿式成形用濾過布の毛羽立ち評価を行った。幅7cm、長さ15cmの濾過布上の端部に幅6cm、長さ5cmの紙片を重ね、さらに幅5cm、長さ10cmの粘着テープ(ガムテープ)を粘着面が下になるようにして紙片と濾過布の両方に重なるように配置した。濾過布上の紙片と重なっていない部分にゴム板を置き、さらに2kgの重りを載せて1分間加圧することにより濾過布に粘着テープを粘着させた。その後、ゴム板と重りを除き、引張試験機を用いて一方の掴み具に濾過布の一端を、もう一方の掴み具に紙片と粘着テープの両方をつかみ間隔5cmでセットした。続いて、10cm/minの引張速度で濾過布に粘着されている粘着テープを剥がし、このときの濾過布の毛羽立ちについて目視にて評価を行った。評価は下記の3段階判定基準により判定した。実施例1では、毛羽立ちはほとんどなし(判定:◎)であった。
(評価基準) :(判定)
毛羽立ちほとんどなし :◎
毛羽立ちなし :○
毛羽立ちあり :×
(7) Fluff evaluation The fluff evaluation of the filter cloth for inorganic powder wet molding obtained above was performed. A piece of paper with a width of 6 cm and a length of 5 cm is stacked on the end of a filter cloth with a width of 7 cm and a length of 15 cm, and an adhesive tape (gum tape) with a width of 5 cm and a length of 10 cm is placed on the paper piece so that the adhesive surface faces down. It arranged so that it might overlap with both of the filter cloths. A rubber plate was placed on a portion of the filter cloth that did not overlap the paper piece, and a 2 kg weight was placed on the filter cloth and pressed for 1 minute to adhere the adhesive tape to the filter cloth. Thereafter, the rubber plate and the weight were removed, and using a tensile tester, one end of the filter cloth was set on one gripping tool, and both a piece of paper and an adhesive tape were set on the other gripping tool with a spacing of 5 cm. Subsequently, the pressure-sensitive adhesive tape adhered to the filter cloth was peeled off at a tensile speed of 10 cm / min, and the fluffing of the filter cloth at this time was visually evaluated. Evaluation was made according to the following three-step criteria. In Example 1, there was almost no fuzz (judgment: A).
(Evaluation criteria): (Judgment)
Almost no fuzz: ◎
No fuzz: ○
There is fuzz: ×

(8)成形体の作製
平均粒径1.5μmの重質炭酸カルシウム(備北粉化工業株式会社製「ソフトン1500」)を用いて固形分濃度が60重量%であるスラリーを調製した。本発明の無機粉体湿式成形用濾過布を内径50mmφの円筒形状の成形用金型内に配置し、その上に上記で得られたスラリー20gを入れた。続いてスラリーの上からさらに上記濾過布を配置することにより成形用金型内でスラリーを濾過布で挟むようにした。水抜き穴を有する金具で蓋をし、単位面積あたり10MPaの圧力で1分間加圧して円盤状の成形体を得た。その際、加圧により濾過された濾液を回収した。成形体を3点作製し、乾燥前の成形体の重量をそれぞれ測定して平均値を算出したところ、14.09gであった。また、一晩自然乾燥させた後に105℃の熱風乾燥器中で3時間乾燥後の重量をそれぞれ測定して平均値を算出したところ、11.83gであった。乾燥前と乾燥後の重量から算出された含水率は、16.0重量%であった。
(8) Production of molded body A slurry having a solid content concentration of 60% by weight was prepared using heavy calcium carbonate having an average particle diameter of 1.5 μm (“Softon 1500” manufactured by Bihoku Flour Industry Co., Ltd.). The filter cloth for wet forming of an inorganic powder according to the present invention was placed in a cylindrical forming mold having an inner diameter of 50 mmφ, and 20 g of the slurry obtained above was placed thereon. Subsequently, the above-mentioned filter cloth was further disposed on the slurry, so that the slurry was sandwiched between the filter cloths in the molding die. The lid was covered with a metal fitting having a drain hole, and pressed for 1 minute at a pressure of 10 MPa per unit area to obtain a disk-shaped molded body. At that time, the filtrate filtered under pressure was recovered. It was 14.09g when 3 points | pieces were produced and the average value was computed by measuring the weight of the molded object before drying, respectively. Further, after naturally drying overnight, the weight after drying for 3 hours in a hot air dryer at 105 ° C. was measured to calculate an average value, which was 11.83 g. The water content calculated from the weight before drying and after drying was 16.0% by weight.

(9)成形体表面の基布目深さの測定
上記で得られた乾燥後の成形体を用い、濾過布と接触していた成形体表面において基布目深さの測定を行った。測定は、成形体表面を水平方向から実体顕微鏡を用いて観察することにより行った。実施例1では、基布目深さは0.08mmであった。
(9) Measurement of depth of base fabric on the surface of the molded body Using the molded body after drying obtained above, the depth of the base fabric was measured on the surface of the molded body in contact with the filter cloth. The measurement was performed by observing the surface of the compact from the horizontal direction using a stereomicroscope. In Example 1, the base fabric depth was 0.08 mm.

実施例2
実施例1において、熱接着性繊維を含有しないこと以外は実施例1と同様にして無機粉体湿式成形用濾過布を作製した。フェルト構成を表1に、得られた結果を表3にまとめて示す。
Example 2
In Example 1, a filter cloth for wet forming an inorganic powder was produced in the same manner as in Example 1 except that no heat-adhesive fiber was contained. The felt configuration is summarized in Table 1, and the results obtained are summarized in Table 3.

実施例3
実施例1において、熱接着性繊維を含有せず、繊維層(A)、基布層(B)、繊維層(C)をこの順番で重ねて配置してから繊維層(A)側からだけではなく、繊維層(C)側からもニードルパンチを行い、その際、繊維層(C)側から挿入されたニードルのバーブが繊維層(A)の表面に出ないようにしてニードルパンチを行ったこと以外は実施例1と同様にして無機粉体湿式成形用濾過布を作製した。フェルト構成を表1に、得られた結果を表3にまとめて示す。
Example 3
In Example 1, the fiber layer (A), the base fabric layer (B), and the fiber layer (C) are stacked in this order without containing the heat-adhesive fiber, and only from the fiber layer (A) side. Instead, needle punching is also performed from the fiber layer (C) side, and the needle barb inserted from the fiber layer (C) side is not punched on the surface of the fiber layer (A). Except that, an inorganic powder wet forming filter cloth was produced in the same manner as in Example 1. The felt configuration is summarized in Table 1, and the results obtained are summarized in Table 3.

実施例4
実施例1において、熱接着性繊維を含有せず、基布層(B)と繊維層(C)を重ねて配置して繊維層(C)側からニードルパンチを行い、得られた基布層(B)と繊維層(C)とからなる積層体の基布層(B)側に繊維層(A)を重ねて配置して、繊維層(A)側からさらにニードルパンチを行うこと以外は実施例1と同様にして無機粉体湿式成形用濾過布を作製した。フェルト構成を表1に、得られた結果を表3にまとめて示す。
Example 4
In Example 1, the base fabric layer obtained without needle-punching from the fiber layer (C) side by placing the base fabric layer (B) and the fiber layer (C) in an overlapping manner without containing the heat-adhesive fiber Except for arranging the fiber layer (A) on the base fabric layer (B) side of the laminate composed of (B) and the fiber layer (C) and further performing needle punching from the fiber layer (A) side. In the same manner as in Example 1, a filter cloth for wet forming an inorganic powder was produced. The felt configuration is summarized in Table 1, and the results obtained are summarized in Table 3.

比較例1
親水化処理されたポリエステル(PET)短繊維(2.2dtex×51mm)を用いて、目付100g/mの繊維層(A)を形成した。経糸が466dtexの糸を2本撚ったものからなり、緯糸が932dtexの糸からなるナイロン6製マルチフィラメントを用いて、密度12×13本/2.54cm、目付100g/mの絡み織布を基布層として用いた。また、ナイロン66繊維(6.6dtex×76mm)を用いて、目付250g/mの繊維層(C)を形成した。
Comparative Example 1
A fiber layer (A) having a basis weight of 100 g / m 2 was formed using polyester (PET) short fibers (2.2 dtex × 51 mm) subjected to hydrophilic treatment. A woven fabric with a density of 12 × 13 / 2.54 cm and a basis weight of 100 g / m 2 using a nylon 6 multifilament made of two twisted 466 dtex yarns and a weft yarn of 932 dtex. Was used as the base fabric layer. Further, a fiber layer (C) having a basis weight of 250 g / m 2 was formed using nylon 66 fibers (6.6 dtex × 76 mm).

得られた繊維層(A)、基布層、繊維層(C)をこの順番で重ねて配置してから繊維層(A)側と繊維層(C)側の両方からニードルパンチを行った。さらに繊維層(A)の表面を毛焼き処理した後、熱カレンダー処理を行って絡み織基布層を有する濾過布を得た。   After the obtained fiber layer (A), base fabric layer, and fiber layer (C) were arranged in this order, needle punching was performed from both the fiber layer (A) side and the fiber layer (C) side. Further, after the surface of the fiber layer (A) was subjected to a hair baking treatment, a heat calendering treatment was performed to obtain a filter cloth having an entangled woven base fabric layer.

比較例2
ポリエステル(PET)短繊維(2.2dtex×64mm)を用いて、目付160g/mの繊維層(A)を形成した。経糸が275dtexの糸からなり、緯糸が550dtexの糸からなるポリエステル製マルチフィラメントを用いて、密度27×22本/2.54cm、目付80g/mの平織り織布を基布層として用いた。また、ポリエステル(PET)短繊維(2.2dtex×64mm)を用いて、目付160g/mの繊維層(C)を形成した。
Comparative Example 2
A fiber layer (A) having a basis weight of 160 g / m 2 was formed using polyester (PET) short fibers (2.2 dtex × 64 mm). A plain woven fabric having a density of 27 × 22 yarns / 2.54 cm and a basis weight of 80 g / m 2 was used as a base fabric layer by using a polyester multifilament comprising warp yarns of 275 dtex and weft yarns of 550 dtex. Further, a fiber layer (C) having a basis weight of 160 g / m 2 was formed using polyester (PET) short fibers (2.2 dtex × 64 mm).

得られた繊維層(A)、基布層、繊維層(C)をこの順番で重ねて配置してから繊維層(A)側と繊維層(C)側の両方からニードルパンチを行った。さらに繊維層(A)の表面を毛焼き処理した後、熱カレンダー処理を行って平織り基布層を有する濾過布を得た。   After the obtained fiber layer (A), base fabric layer, and fiber layer (C) were arranged in this order, needle punching was performed from both the fiber layer (A) side and the fiber layer (C) side. Further, after the surface of the fiber layer (A) was subjected to a hair baking treatment, a heat calendering treatment was performed to obtain a filter cloth having a plain weave base fabric layer.

Figure 2007260489
Figure 2007260489

Figure 2007260489
Figure 2007260489

Figure 2007260489
Figure 2007260489

表3からわかるように、基布層(B)がスパンボンド不織布層である実施例1〜4では、濾過布表面の毛羽立ちが少なく、この濾過布を用いて作製された成形体の基布目深さが小さいことがわかった。これに対し、マルチフィラメントの絡み織りからなる基布層を有する比較例1では、濾過布表面の毛羽立ちが多く、この濾過布を用いて作製された成形体の基布目深さが大きいことがわかった。比較例1では、乾燥前の成形体の含水率(%)はほとんど変わらないが乾燥前の成形体の重量が若干少ない。これは成形体を成形する際に濾過布から成形体の一部が漏れてしまったためである。また、マルチフィラメントの平織りからなる基布層を有する比較例2では、濾過布表面の毛羽立ちが少ないが、この濾過布を用いて作製された成形体の基布目深さが若干大きいことがわかった。   As can be seen from Table 3, in Examples 1 to 4 in which the base fabric layer (B) is a spunbond nonwoven fabric layer, the surface of the filter cloth has less fuzz, and the base fabric mesh depth of the molded body produced using this filter cloth is small. I found out that it was small. On the other hand, in Comparative Example 1 having a base fabric layer composed of a multifilament entangled weave, the surface of the filter cloth has a lot of fluffing, and it is found that the base fabric has a large depth of fabric formed using this filter cloth. It was. In Comparative Example 1, the moisture content (%) of the molded body before drying hardly changes, but the weight of the molded body before drying is slightly smaller. This is because a part of the molded body leaked from the filter cloth when the molded body was molded. Further, in Comparative Example 2 having a base fabric layer composed of a multifilament plain weave, although the surface of the filter cloth was less fuzzed, it was found that the base fabric mesh depth of the molded body produced using this filter cloth was slightly large. .

熱接着性繊維を含有していない実施例2では、実施例1と比べて毛羽立ち性が若干劣ったが、成形体の基布目深さがほぼ同等であった。これに対し、熱接着性繊維を含有せず、繊維層(A)、基布層(B)、繊維層(C)をこの順番で重ねて配置してから繊維層(A)側からだけではなく、繊維層(C)側からもニードルパンチを行い、その際、繊維層(C)側から挿入されたニードルのバーブが繊維層(A)の表面に出ないようにしてニードルパンチを行った実施例3では、実施例1と比べて毛羽立ち性が若干劣ったが、成形体の基布目深さがほぼ同等であった。また、熱接着性繊維を含有せず、基布層(B)と繊維層(C)を重ねて配置して繊維層(C)側からニードルパンチを行い、得られた基布層(B)と繊維層(C)とからなる積層体の基布層(B)側に繊維層(A)を重ねて配置して、繊維層(A)側からさらにニードルパンチを行った実施例4では、実施例1と比べて毛羽立ち性が若干劣ったが、成形体の基布目深さがほぼ同等であった。   In Example 2, which did not contain a heat-adhesive fiber, the fluffiness was slightly inferior to that in Example 1, but the base fabric depth of the molded body was almost the same. On the other hand, the fiber layer (A), the base fabric layer (B), and the fiber layer (C) are not overlapped in this order and do not contain the heat-bonding fibers, and only from the fiber layer (A) side In addition, needle punching was performed from the fiber layer (C) side, and needle punching was performed so that the barb of the needle inserted from the fiber layer (C) side did not come out on the surface of the fiber layer (A). In Example 3, the fluffiness was slightly inferior to that in Example 1, but the base fabric depth of the molded body was almost the same. In addition, the base fabric layer (B) obtained without needle-punching from the side of the fiber layer (C) by arranging the base fabric layer (B) and the fiber layer (C) so as not to contain thermal adhesive fibers. In Example 4 where the fiber layer (A) was placed on the base fabric layer (B) side of the laminate composed of the fiber layer (C) and further needle punched from the fiber layer (A) side, Although the fluffiness was slightly inferior to that of Example 1, the base fabric depth of the molded product was almost the same.

Claims (7)

熱可塑性樹脂からなる短繊維が交絡した繊維層(A)、長繊維が熱融着された不織布からなる基布層(B)、及び短繊維が交絡した繊維層(C)をこの順番に積層したフェルトからなる無機粉体湿式成形用濾過布であって、成形材料と接触する繊維層(A)の表面が熱カレンダー処理により平滑化され、10MPaの圧力を印加したときの濾過布の厚さが0.1〜1.0mmであり、かつ少なくとも繊維層(A)の表面が親水性を有することを特徴とする無機粉体湿式成形用濾過布。   A fiber layer (A) in which short fibers made of thermoplastic resin are entangled, a base fabric layer (B) made of non-woven fabric in which long fibers are thermally fused, and a fiber layer (C) in which short fibers are entangled are laminated in this order. The thickness of the filter cloth when the surface of the fiber layer (A) in contact with the molding material is smoothed by thermal calendering and a pressure of 10 MPa is applied. Is a filter cloth for wet forming of inorganic powder, characterized in that 0.1 to 1.0 mm and at least the surface of the fiber layer (A) has hydrophilicity. 基布層(B)がスパンボンド不織布からなる請求項1記載の無機粉体湿式成形用濾過布。   The filter cloth for inorganic powder wet molding according to claim 1, wherein the base fabric layer (B) is made of a spunbonded nonwoven fabric. 繊維層(A)を構成する短繊維の繊度が、繊維層(C)を構成する短繊維の繊度よりも小さい請求項1又は2記載の無機粉体湿式成形用濾過布。   The filter cloth for wet forming of inorganic powder according to claim 1 or 2, wherein the fineness of the short fibers constituting the fiber layer (A) is smaller than the fineness of the short fibers constituting the fiber layer (C). 繊維層(A)が熱接着性繊維を含有する請求項1〜3のいずれか記載の無機粉体湿式成形用濾過布。   The filter cloth for inorganic powder wet-molding according to any one of claims 1 to 3, wherein the fiber layer (A) contains a heat-adhesive fiber. 請求項1〜4のいずれか記載の無機粉体湿式成形用濾過布の製造方法であって、基布層(B)と繊維層(C)を重ねて配置して、繊維層(C)側からニードルパンチを行い、得られた基布層(B)と繊維層(C)とからなる積層体の基布層(B)側に繊維層(A)を重ねて配置して、繊維層(A)側からさらにニードルパンチを行うことを特徴とする無機粉体湿式成形用濾過布の製造方法。   It is a manufacturing method of the filter cloth for inorganic powder wet-molding in any one of Claims 1-4, Comprising: A base fabric layer (B) and a fiber layer (C) are piled up, and the fiber layer (C) side is arrange | positioned. Needle punching is performed, and the fiber layer (A) is disposed on the base fabric layer (B) side of the laminate composed of the obtained base fabric layer (B) and the fiber layer (C). A) A method for producing a filter cloth for wet forming an inorganic powder, wherein needle punching is further performed from the side. 請求項1〜4のいずれか記載の無機粉体湿式成形用濾過布の製造方法であって、繊維層(A)、基布層(B)及び繊維層(C)を重ねて配置してから、繊維層(A)側からニードルパンチを行うとともに、繊維層(C)側からもニードルパンチを行い、その際、繊維層(C)側から挿入されたニードルのバーブが繊維層(A)の表面に出ないことを特徴とする無機粉体湿式成形用濾過布の製造方法。   It is a manufacturing method of the filter cloth for inorganic powder wet forming in any one of Claims 1-4, Comprising: After arrange | positioning a fiber layer (A), a base fabric layer (B), and a fiber layer (C) in piles, In addition to performing needle punching from the fiber layer (A) side, needle punching is also performed from the fiber layer (C) side. At this time, the barbs of the needles inserted from the fiber layer (C) side of the fiber layer (A) A method for producing a filter cloth for wet forming an inorganic powder, wherein the filter cloth does not come out on the surface. 請求項1〜4のいずれか記載の無機粉体湿式成形用濾過布の製造方法であって、繊維層(A)、基布層(B)及び繊維層(C)を重ねて配置してから、繊維層(A)側からのみニードルパンチを行うことを特徴とする無機粉体湿式成形用濾過布の製造方法。   It is a manufacturing method of the filter cloth for inorganic powder wet forming in any one of Claims 1-4, Comprising: After arrange | positioning a fiber layer (A), a base fabric layer (B), and a fiber layer (C) in piles, A method for producing a filter cloth for wet forming inorganic powder, wherein needle punching is performed only from the fiber layer (A) side.
JP2006085485A 2006-03-27 2006-03-27 Filter cloth for wet forming of inorganic powder and method for producing the same Active JP4611921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085485A JP4611921B2 (en) 2006-03-27 2006-03-27 Filter cloth for wet forming of inorganic powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085485A JP4611921B2 (en) 2006-03-27 2006-03-27 Filter cloth for wet forming of inorganic powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007260489A true JP2007260489A (en) 2007-10-11
JP4611921B2 JP4611921B2 (en) 2011-01-12

Family

ID=38634015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085485A Active JP4611921B2 (en) 2006-03-27 2006-03-27 Filter cloth for wet forming of inorganic powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4611921B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167566A (en) * 2008-01-18 2009-07-30 Kurashiki Seni Kako Kk Airbag cover, method for producing the same and airbag holding member
JP2009287826A (en) * 2008-05-29 2009-12-10 Fuji Koki Corp Receiver drier
JP2015161049A (en) * 2014-02-28 2015-09-07 アンビック株式会社 Non-woven thermal insulating material
JP2016203124A (en) * 2015-04-27 2016-12-08 日本フエルト株式会社 Filter medium for bag filter and production method of the same
CN110252031A (en) * 2019-06-26 2019-09-20 中材科技股份有限公司 Primary grade water filter element filter material and preparation method thereof
GB2599642A (en) * 2020-10-02 2022-04-13 Teknoweb Mat S P A Spunlace composite web comprising staple fibers, short absorbent fibers and binder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144922U (en) * 1984-03-06 1985-09-26 日本バイリ−ン株式会社 Filter media for liquids
JPS60155920U (en) * 1984-03-28 1985-10-17 芦森工業株式会社 filter
JPS61283320A (en) * 1985-05-01 1986-12-13 Nippon Denso Co Ltd Filter material for air purifier
JPS63166410A (en) * 1986-12-27 1988-07-09 Sumitomo Special Metals Co Ltd Filter cloth for wet molding
JPH0220910U (en) * 1988-07-28 1990-02-13
JPH0498412U (en) * 1991-01-31 1992-08-26
JPH06246115A (en) * 1993-02-24 1994-09-06 Hitachi Metals Ltd Felt filter medium for wet-filtering and compacting magnetic powdery material
JPH0770605A (en) * 1993-09-02 1995-03-14 Hitachi Metals Ltd Wet-compacting filter cloth of magnetic powder and wet-compacting method using the cloth

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144922U (en) * 1984-03-06 1985-09-26 日本バイリ−ン株式会社 Filter media for liquids
JPS60155920U (en) * 1984-03-28 1985-10-17 芦森工業株式会社 filter
JPS61283320A (en) * 1985-05-01 1986-12-13 Nippon Denso Co Ltd Filter material for air purifier
JPS63166410A (en) * 1986-12-27 1988-07-09 Sumitomo Special Metals Co Ltd Filter cloth for wet molding
JPH0220910U (en) * 1988-07-28 1990-02-13
JPH0498412U (en) * 1991-01-31 1992-08-26
JPH06246115A (en) * 1993-02-24 1994-09-06 Hitachi Metals Ltd Felt filter medium for wet-filtering and compacting magnetic powdery material
JPH0770605A (en) * 1993-09-02 1995-03-14 Hitachi Metals Ltd Wet-compacting filter cloth of magnetic powder and wet-compacting method using the cloth

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167566A (en) * 2008-01-18 2009-07-30 Kurashiki Seni Kako Kk Airbag cover, method for producing the same and airbag holding member
JP2009287826A (en) * 2008-05-29 2009-12-10 Fuji Koki Corp Receiver drier
JP2015161049A (en) * 2014-02-28 2015-09-07 アンビック株式会社 Non-woven thermal insulating material
JP2016203124A (en) * 2015-04-27 2016-12-08 日本フエルト株式会社 Filter medium for bag filter and production method of the same
CN110252031A (en) * 2019-06-26 2019-09-20 中材科技股份有限公司 Primary grade water filter element filter material and preparation method thereof
CN110252031B (en) * 2019-06-26 2020-09-22 南京玻璃纤维研究设计院有限公司 Nuclear grade water filter element filter material and preparation method thereof
GB2599642A (en) * 2020-10-02 2022-04-13 Teknoweb Mat S P A Spunlace composite web comprising staple fibers, short absorbent fibers and binder

Also Published As

Publication number Publication date
JP4611921B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4894977B2 (en) Non-woven fabric having surface uneven structure and product using the same
JP4880934B2 (en) Laminate and filter media
KR100250893B1 (en) Hydroentangled flash spun webs having controllable bulk and permeability
KR101431346B1 (en) Filtration cloth for dust collection machine
JP4611921B2 (en) Filter cloth for wet forming of inorganic powder and method for producing the same
JP5389784B2 (en) Needle punched nanoweb structure
JPH09193277A (en) Multilayer felt, member made of the same, and manufacture thereof multilayer felt
KR19990087272A (en) Electrostatic fibrous filter web
KR20090068320A (en) Improved nanowebs
US11117725B2 (en) Packaging material for sterilization
US20080166938A1 (en) Microfiber split film filter felt and method of making same
JP2006283272A (en) Dehydration cloth
JP3710278B2 (en) Oil adsorbent
US20170137981A1 (en) Non-woven fabric
JP3233988B2 (en) Filter cloth and method for producing the same
JPWO2006011453A1 (en) Solid knitted fabric, core material and laminate
JP2007105685A (en) Filter for biodegradable air cleaner
JP2010125432A (en) Filter cloth for slurry separation
JP2007098259A (en) Filter base material and filter unit
CN210009730U (en) Filter material for filter bag
JP4047848B2 (en) Nonwoven manufacturing method
KR20070031414A (en) Three-Dimensional Knit Fabric, Interlining Material and Complex Fabric
JPH0841762A (en) Laminated nonwoven fabric and production of the same
JP2000080590A (en) Paper for dust-collecting bag in vacuum cleaner
JPH0931857A (en) Laminated nonwoven fabric and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4611921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250