JP2007259709A - Freezing method and freezing device - Google Patents

Freezing method and freezing device Download PDF

Info

Publication number
JP2007259709A
JP2007259709A JP2006085443A JP2006085443A JP2007259709A JP 2007259709 A JP2007259709 A JP 2007259709A JP 2006085443 A JP2006085443 A JP 2006085443A JP 2006085443 A JP2006085443 A JP 2006085443A JP 2007259709 A JP2007259709 A JP 2007259709A
Authority
JP
Japan
Prior art keywords
frozen
supercooling
electric field
freezing
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006085443A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hashimoto
裕之 橋本
Hiroshi Mukoyama
洋 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006085443A priority Critical patent/JP2007259709A/en
Publication of JP2007259709A publication Critical patent/JP2007259709A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a freezing method comprising subjecting material to be frozen such as food or a living body to frozen storage without causing cell destruction: and to provide a freezing device where material to be frozen such as food or a living body is subjected to frozen storage. <P>SOLUTION: The freezing device is provided with a cooling means 21 cooling the material to be frozen, a means impressing electric field on the material to be frozen (electrodes 3, 3), and a control means 20 controlling alternating voltage to be applied on the cooling means 21 and the electrodes 3, 3. In the device, a supercooling process where the electric field is impressed on the material to be frozen while cooling the material to be frozen, and a freezing process where the impression of the electric field is stopped after finishing the supercooling process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、食品や生体等の被冷凍物の冷凍方法及び装置に関し、特に、電界及び磁界、若しくは、電界又は磁界を付与して被冷凍物を急速冷凍する方法及びその装置に関するものである。   The present invention relates to a method and apparatus for freezing an object to be frozen such as food or a living body, and particularly to a method and an apparatus for rapidly freezing an object to be frozen by applying an electric field and a magnetic field, or an electric field or a magnetic field.

食品や生体等の被冷却物の鮮度を長期に渡って維持して保存する方法として冷凍保存がある。しかしながら、従来の冷凍保存方法では、被冷凍物の色長の変化、味覚の劣化、解凍時の液汁の流出(ドリップ)などの品質や鮮度の低下を完全に防止することができなかった。その理由として、被冷凍物には、それらを構成する蛋白質等の分子に拘束された結晶水と、これら分子に拘束されずに被冷凍物内を自由に移動することができる自由水から成る多量の水分が含まれている。そして、冷凍時にはこの自由水が凍結し、氷の結晶が粗大化すると、被冷凍物の細胞が破壊されてしまう。このように被冷凍物の細胞が破壊されてしまうと、解凍時に上述したドリップが発生し、元の状態に復元することが困難であった。このような氷結晶の粗大化は、冷凍時に氷結晶生成温度域を通過する時間が緩慢である場合に生じていた。   There is frozen storage as a method for maintaining and preserving the freshness of foods and living bodies such as living bodies over a long period of time. However, the conventional frozen storage method cannot completely prevent deterioration in quality and freshness such as change in color length of the object to be frozen, deterioration in taste, and spill (drip) of the juice during thawing. The reason for this is that the to-be-frozen objects include a large amount of crystal water bound to molecules such as proteins constituting them and free water that can move freely within the to-be-frozen object without being bound by these molecules. Contains moisture. And when this free water freezes at the time of freezing and the crystal | crystallization of ice becomes coarse, the cell of a to-be-frozen object will be destroyed. If the cells of the object to be frozen are destroyed in this way, the above-mentioned drip occurs during thawing, and it is difficult to restore the original state. Such coarsening of ice crystals occurred when the time for passing through the ice crystal formation temperature range was slow during freezing.

そこで、被冷凍物に電界や磁界を付与して過冷却した後、電界や磁界の付与を停止して、凍結させる急速冷凍方法が提案されている。(例えば、特許文献1参照)。
特開2003−88374号公報
Therefore, a quick freezing method has been proposed in which an electric field or a magnetic field is applied to an object to be frozen for supercooling, and then the application of the electric field or magnetic field is stopped and frozen. (For example, refer to Patent Document 1).
JP 2003-88374 A

このように被冷凍物に電界や磁界を付与することで、被冷凍物を過冷却状態とした後、急速に凍結させることで、粒子径の小さい氷を生成することができるが、過冷却に要する顕熱が氷の潜熱に比べて小さいため、電界や磁界の付与を解除したときに生成される氷の質量比は小さかった。従って、当該粒子径の小さい氷を核として未凍結水が凝結するため、やはり氷結晶の粗大化を阻止することができなかった。   In this way, by applying an electric field or magnetic field to the object to be frozen, the object to be frozen is brought into a supercooled state and then rapidly frozen to produce ice with a small particle diameter. Since the sensible heat required is smaller than the latent heat of ice, the mass ratio of ice produced when the application of an electric field or magnetic field is canceled was small. Therefore, since the unfrozen water is condensed with the ice having a small particle diameter as a nucleus, it is still impossible to prevent the ice crystals from becoming coarse.

本発明は、係る従来の技術的課題を解決するために成されたものであり、細胞を破壊すること無く、食品や生体等の被冷凍物を凍結保存する冷凍方法及び冷凍装置を提供することを目的とする。   The present invention has been made to solve the conventional technical problems, and provides a freezing method and a freezing apparatus for freezing and preserving foods and living bodies without destroying cells. With the goal.

即ち、請求項1の発明の冷凍方法は、被冷凍物を冷却しながら当該被冷凍物に電界及び/又は磁界を付与する過冷却工程と、過冷却工程の終了後、電界及び/又は磁界の付与を停止させる凍結工程とを繰り返すことを特徴とする。   That is, the refrigeration method of the invention of claim 1 includes a supercooling step of applying an electric field and / or a magnetic field to the object to be frozen while cooling the object to be frozen, and an electric field and / or a magnetic field after completion of the supercooling step. A freezing step for stopping the application is repeated.

請求項2の発明の冷凍方法は、請求項1に記載の発明において過冷却工程の時間を、当該過冷却工程の繰り返し回数が増えるに応じて短縮することを特徴とする。   A refrigeration method according to a second aspect of the invention is characterized in that, in the invention according to the first aspect, the time of the supercooling step is shortened as the number of repetitions of the supercooling step increases.

請求項3の発明の冷凍装置は、被冷凍物を冷却する手段と、被冷凍物に電界及び/又は磁界を付与する手段と、これら各手段を制御する制御手段とを備え、制御手段は、被冷凍物を冷却しながら当該被冷凍物に電界及び/又は磁界を付与する過冷却工程と、過冷却工程の終了後、電界及び/又は磁界の付与を停止させる凍結工程とを繰り返すことを特徴とする。   The refrigeration apparatus of the invention of claim 3 comprises means for cooling the object to be frozen, means for applying an electric field and / or magnetic field to the object to be frozen, and control means for controlling these means, A supercooling process for applying an electric field and / or a magnetic field to the object to be frozen while cooling the object to be frozen, and a freezing process for stopping the application of the electric field and / or the magnetic field after the supercooling process is repeated. And

請求項4の発明の冷凍装置は、請求項3に記載の発明において制御手段は、各工程の時間と、過冷却工程における到達温度と、電界又は磁界の周波数或いはそれらの強度と、各工程の繰り返し回数のうちの何れか一つ、若しくは、複数が異なる複数の制御パターンを備え、被冷凍物に応じて何れかの制御パターンを選択的に実行することを特徴とする。   The refrigeration apparatus of the invention of claim 4 is the refrigeration apparatus of the invention of claim 3, wherein the control means controls the time of each process, the reached temperature in the subcooling process, the frequency of the electric field or magnetic field or their strength, One of the number of repetitions or a plurality of different control patterns are provided, and any one of the control patterns is selectively executed according to the object to be frozen.

請求項5の発明の冷凍装置は、請求項3又は請求項4に記載の発明において制御手段は、過冷却工程の時間を、この過冷却工程の繰り返し回数が増えるに応じて短縮する制御を実行することを特徴とする。   According to a fifth aspect of the present invention, in the refrigeration apparatus according to the third or fourth aspect of the present invention, the control means executes control to shorten the time of the supercooling step as the number of repetitions of the supercooling step increases. It is characterized by doing.

請求項1の発明の冷凍方法によれば、被冷凍物を冷却しながら当該被冷凍物に電界及び/又は磁界を付与する過冷却工程と、過冷却工程の終了後、電界及び/又は磁界の付与を停止させる凍結工程とを繰り返すので、粒子径の小さい氷を核として未凍結水が凝結することを解消することができる。   According to the refrigeration method of the invention of claim 1, a supercooling step of applying an electric field and / or a magnetic field to the object to be frozen while cooling the object to be frozen, and an electric field and / or a magnetic field after completion of the supercooling step. Since the freezing step for stopping the application is repeated, it is possible to eliminate the condensation of unfrozen water with ice having a small particle diameter as a nucleus.

これにより、粒子径の小さい氷結晶を生成することが可能となるので、細胞の破壊を阻止することができる。   This makes it possible to generate ice crystals with a small particle size, and thus prevent cell destruction.

また、上記発明において請求項2の如く過冷却工程の時間を、当該過冷却工程の繰り返し回数が増えるに応じて短縮することで、効率よく被冷凍物を凍結することができる。   Moreover, in the said invention, a to-be-frozen object can be frozen efficiently by shortening the time of a supercooling process like Claim 2 according to the repetition frequency of the said supercooling process increasing.

請求項3の発明の凍結装置によれば、被冷凍物を冷却する手段と、被冷凍物に電界及び/又は磁界を付与する手段と、これら各手段を制御する制御手段とを備え、制御手段は、被冷凍物を冷却しながら当該被冷凍物に電界及び/又は磁界を付与する過冷却工程と、過冷却工程の終了後、電界及び/又は磁界の付与を停止させる凍結工程とを繰り返すので、粒子径の小さい氷を核として未凍結水が凝結することを解消し、粒子径の小さい氷結晶を生成することが可能となる。これにより、細胞の破壊を阻止することができる。   According to the freezing apparatus of the third aspect of the invention, there is provided a control means comprising means for cooling the object to be frozen, means for applying an electric field and / or magnetic field to the object to be frozen, and control means for controlling these means. Is a process of repeating a supercooling step for applying an electric field and / or a magnetic field to the subject to be frozen while cooling the subject to be frozen, and a freezing step for stopping the application of the electric field and / or magnetic field after the supercooling step. It is possible to eliminate the condensation of unfrozen water using ice with a small particle size as a nucleus, and to generate ice crystals with a small particle size. Thereby, destruction of a cell can be prevented.

特に、請求項4の如く制御手段は、各工程の時間と、過冷却工程における到達温度と、電界又は磁界の周波数或いはそれらの強度と、各工程の繰り返し回数のうちの何れか一つ、若しくは、複数が異なる複数の制御パターンを備え、被冷凍物に応じて何れかの制御パターンを選択的に実行するので、凍結させる品物に応じた最適な凍結が可能となる。これにより、当該冷凍装置の汎用性を向上させることができる。   In particular, as in claim 4, the control means is any one of the time of each process, the temperature reached in the supercooling process, the frequency or intensity of the electric field or magnetic field, and the number of repetitions of each process, or Since a plurality of different control patterns are provided, and any one of the control patterns is selectively executed according to the object to be frozen, optimal freezing according to the item to be frozen is possible. Thereby, the versatility of the refrigeration apparatus can be improved.

また、請求項5の如く制御手段は、過冷却工程の時間を、この過冷却工程の繰り返し回数が増えるに応じて短縮する制御を実行することで、効率よく被冷凍物を凍結することができる。   In addition, the control means can efficiently freeze the object to be frozen by executing the control for shortening the time of the supercooling process as the number of repetitions of the supercooling process increases. .

本発明は、食品や生体等の被冷凍物を凍結する際に、被冷凍物の氷結晶が粗大化して、細胞が破壊される不都合を解消するために成されたものである。被冷凍物の細胞の破損を阻止するという目的を、被冷凍物を冷却しながら当該被冷凍物に電界又は磁界、或いは、電界及び磁界を付与する過冷却工程と、この過冷却工程の終了後、電界又は磁界、或いは、電界及び磁界を付与を停止させる凍結工程とを繰り返すことにより実現した。以下、図面に基づき本発明の実施形態を詳述する。   The present invention is made in order to eliminate the disadvantage that the frozen crystals of the object to be frozen are coarsened and the cells are destroyed when the object to be frozen such as food or a living body is frozen. The purpose of preventing cell damage of the object to be frozen is to provide an electric field or a magnetic field or an electric field and a magnetic field to the object to be frozen while cooling the object to be frozen, and after the completion of this subcooling process This is realized by repeating an electric field or a magnetic field, or a freezing step for stopping the application of the electric field and the magnetic field. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例の冷凍装置を模式的に示した概略図である。本実施例の冷凍装置は、冷蔵庫内に複数形成された室のうち冷凍温度帯にて冷凍される冷凍室1内に設置される。図1において、21は圧縮機10、放熱器12、減圧装置としての膨張弁13、蒸発器14を順次管状に配管接続することにより所定の冷凍サイクルを構成する冷却手段であり、圧縮機10、放熱器12、膨張弁13は、冷蔵庫の下部に設けられた機械室等内に収納され、蒸発器14は冷蔵庫の背面に形成されたダクト15内に配設される。そして、ダクト15内に配設された蒸発器14にて冷媒を蒸発させることにより、当該冷媒と熱交換して冷却された冷気がファン14Fによりダクト15を介して冷凍室1に吐出され、冷凍室1内に収容された食品や生体などの被冷凍物を冷却する。   FIG. 1 is a schematic view schematically showing a refrigeration apparatus according to an embodiment of the present invention. The refrigeration apparatus of the present embodiment is installed in a freezing room 1 that is frozen in a freezing temperature zone among a plurality of rooms formed in the refrigerator. In FIG. 1, reference numeral 21 denotes a cooling means that constitutes a predetermined refrigeration cycle by sequentially connecting a compressor 10, a radiator 12, an expansion valve 13 as a pressure reducing device, and an evaporator 14 in a tubular shape. The radiator 12 and the expansion valve 13 are housed in a machine room or the like provided in the lower part of the refrigerator, and the evaporator 14 is disposed in a duct 15 formed on the back surface of the refrigerator. And by evaporating a refrigerant | coolant with the evaporator 14 arrange | positioned in the duct 15, the cold air cooled by exchanging heat with the said refrigerant | coolant is discharged to the freezer compartment 1 via the duct 15 by the fan 14F, and freezing The object to be frozen such as food or living body accommodated in the chamber 1 is cooled.

また、冷凍室1の両側(図1では左右)には、一対の電極3、3が配置されている。この一対の電極3、3は、被冷凍物に電界を付与するための手段であり、交流電源5に接続されている。実施例の交流電源5は、商用交流電源を一旦整流した後、50Hz〜10MHzの周波数の交流電圧として出力するものである。また、本実施例の電極3、3は平板状を呈しており、冷凍室1の側面全域を覆う寸法を有しているものとする。即ち、一対の電極3、3は、冷凍室1内の領域の全域を挟んで対向している。   A pair of electrodes 3 and 3 are disposed on both sides of the freezer compartment 1 (left and right in FIG. 1). The pair of electrodes 3 and 3 are means for applying an electric field to the object to be frozen, and are connected to an AC power source 5. The AC power supply 5 according to the embodiment rectifies a commercial AC power supply and then outputs the AC voltage as an AC voltage having a frequency of 50 Hz to 10 MHz. Moreover, the electrodes 3 and 3 of the present embodiment are flat and have dimensions that cover the entire side surface of the freezer compartment 1. That is, the pair of electrodes 3 and 3 are opposed to each other across the entire region in the freezer compartment 1.

以上の構成で冷却動作を説明する。圧縮機10が運転されると、圧縮された冷媒は高温高圧の冷媒ガスとなって放熱器12に流入する。冷媒は放熱器12を通過する過程で放熱する。その後、膨張弁13にて圧力が低下され、その状態でダクト15内に配設された蒸発器14内に流入する。そこで冷媒は蒸発し、蒸発器14に通風される。当該蒸発器14にて冷媒の吸熱により空気が冷却され、冷気となる。冷媒はその後圧縮機10に吸い込まれる循環を繰り返す。一方、蒸発器14と熱交換した空気は、ファン14Fによりダクト15を介して、冷凍室1及び図示しない他の冷蔵庫内の室(冷蔵室や野菜室、製氷室等)に送風される。これによって、冷蔵庫内の冷凍室1及びその他の室が所望の温度に冷却されることになる。   The cooling operation will be described with the above configuration. When the compressor 10 is operated, the compressed refrigerant flows into the radiator 12 as high-temperature and high-pressure refrigerant gas. The refrigerant dissipates heat while passing through the radiator 12. Thereafter, the pressure is reduced by the expansion valve 13 and flows into the evaporator 14 disposed in the duct 15 in this state. The refrigerant then evaporates and is passed through the evaporator 14. Air is cooled by the heat absorption of the refrigerant in the evaporator 14, and becomes cold air. The refrigerant then repeats circulation that is sucked into the compressor 10. On the other hand, the air heat-exchanged with the evaporator 14 is blown by the fan 14F through the duct 15 to the freezer compartment 1 and other rooms (not shown) such as a refrigerator compartment, a vegetable compartment, and an ice making compartment. As a result, the freezer compartment 1 and other compartments in the refrigerator are cooled to a desired temperature.

他方、前記冷却手段21の運転及び前記交流電源5は、汎用のマイクロコンピュータ等により構成される制御手段20により制御される。制御手段20は、冷却手段21を前記冷蔵庫内に構成された各室(冷凍室1も含む)が所望の温度となるように圧縮機10及び蒸発器14のファン14Fの運転、膨張弁13の開度を制御している。更に、制御手段20は、後述する冷凍室1内に収容された被冷凍物の冷凍運転時に交流電源5を制御して、電極3、3に交流電圧を印加する。このときの周波数は制御手段20により、前述した50Hz〜10MHzとされ、電場の強さは5kV/m〜300kV/mに制御される、これによって、冷凍室1に当該周波数と強さの交流電場が作用し、当該冷凍室1内に収容された被冷凍物に係る電界が付与されることになる。   On the other hand, the operation of the cooling means 21 and the AC power supply 5 are controlled by a control means 20 constituted by a general-purpose microcomputer or the like. The control means 20 operates the fan 10F of the compressor 10 and the evaporator 14 and operates the expansion valve 13 so that each chamber (including the freezer compartment 1) configured in the refrigerator has the cooling means 21 at a desired temperature. The opening is controlled. Furthermore, the control means 20 controls the AC power source 5 during the freezing operation of the object to be frozen housed in the freezer compartment 1 to be described later, and applies an AC voltage to the electrodes 3 and 3. The frequency at this time is set to 50 Hz to 10 MHz by the control means 20 and the strength of the electric field is controlled to 5 kV / m to 300 kV / m. Acts, and an electric field relating to an object to be frozen housed in the freezer compartment 1 is applied.

本発明では、制御手段20は、冷却手段21を運転して、被冷凍物を冷却しながら前述した電界を付与する過冷却工程と、電界の付与を停止させる凍結工程とを所定回数繰り返す冷凍運転を実行する。制御手段20は、各工程の時間と、過冷却工程における到達温度と、電界の周波数若しくはその強度と、各工程の繰り返し回数のうちの何れか一つ、若しくは、複数が異なる複数の制御パターンを備えており、冷凍運転において、被冷凍物に応じて何れかの制御パターンを選択的に実行する。即ち、被冷凍物の種類や量により、水分量が異なるため、過冷却工程において被冷凍物が所定の到達温度となるのに差違があり、このため、各工程の適した実行時間や電界の周波数或いはその強度、更には、適した繰り返し回数も被冷凍物により相違する。   In the present invention, the control means 20 operates the cooling means 21 so as to cool the object to be frozen, and the freezing operation in which the above-described supercooling process for applying the electric field and the freezing process for stopping the application of the electric field are repeated a predetermined number of times. Execute. The control means 20 can select a plurality of control patterns that are different from one another or a plurality of control patterns, each of the time of each process, the temperature reached in the subcooling process, the frequency or intensity of the electric field, and the number of repetitions of each process. In the freezing operation, one of the control patterns is selectively executed according to the object to be frozen. That is, since the amount of water varies depending on the type and amount of the object to be frozen, there is a difference in that the object to be frozen reaches a predetermined reached temperature in the supercooling process. The frequency or its intensity, and also the appropriate number of repetitions vary depending on the object to be frozen.

この場合、例えば、冷凍室1の外部(図1では前面)に制御手段20に接続された操作パネル30を備えるものとする。操作パネル30には、食品を選択する項目、例えば、野菜、獣肉、魚肉の選択ボタンと、重量を入力する重量ボタン等があり、これらを操作すると、当該入力情報が制御手段20に送信され、当該制御手段20はこれらの入力情報に基づき、前述した何れかの制御パターンのうちのもっとも適した制御パターンで、冷凍運転(過冷却工程及び凍結工程)を実行する。   In this case, for example, the operation panel 30 connected to the control means 20 is provided outside the freezer compartment 1 (front surface in FIG. 1). The operation panel 30 has items for selecting food, for example, a selection button for vegetables, beef meat, fish meat, a weight button for inputting weight, and the like, and when these are operated, the input information is transmitted to the control means 20, The control means 20 executes the refrigeration operation (supercooling step and freezing step) with the most suitable control pattern among any of the control patterns described above based on the input information.

即ち、制御手段20は、過冷却工程を開始し、当該過冷却工程において、被冷凍物が所定の過冷却温度に到達すると、冷凍工程に移行する動作を実行する。本実施例では、前記選択された制御パターンに基づき、制御手段20は、被冷凍物が所定の過冷却温度に到達したことを時間の経過により判断するものとする。   That is, the control means 20 starts a supercooling process, and when the material to be frozen reaches a predetermined supercooling temperature in the supercooling process, the control means 20 performs an operation of shifting to the freezing process. In this embodiment, based on the selected control pattern, the control means 20 determines that the object to be frozen has reached a predetermined supercooling temperature over time.

次に、被冷凍物の冷凍方法を図2に示すタイミングチャートを用いて説明する。図2において、縦軸は被冷凍物の水分温度、即ち、被冷凍物自体の温度、横軸は時間を示している。この場合、被冷凍物として獣肉約100gを冷凍室1内に収容するものとして詳しく説明する。尚、制御手段20は、予め冷凍室1内が所望の温度(例えば、目標温度が−20℃)となるように、前述の如く圧縮機10及び蒸発器14のファン14Fの運転を制御しているものとする。   Next, a method for freezing the object to be frozen will be described with reference to a timing chart shown in FIG. In FIG. 2, the vertical axis indicates the moisture temperature of the object to be frozen, that is, the temperature of the object to be frozen, and the horizontal axis indicates time. In this case, it explains in detail as what about 100g of animal meat is stored in freezer compartment 1 as a thing to be frozen. The control means 20 controls the operation of the compressor 10 and the fan 14F of the evaporator 14 as described above so that the inside of the freezer compartment 1 has a desired temperature (for example, the target temperature is −20 ° C.). It shall be.

先ず、使用者により、冷凍室1内に被冷凍物(100gの獣肉)が収容され、前記操作パネル30が操作されると(具体的には、獣肉の入力ボタンが押され、重量ボタンが操作されて100gが選択された後、決定ボタンが押される)、制御手段20に操作パネル30からの情報が入力される。   First, when an object to be frozen (100 g of beef meat) is stored in the freezer compartment 1 by the user and the operation panel 30 is operated (specifically, the input button of the beef is pressed and the weight button is operated). Then, after 100 g is selected, the determination button is pressed), and information from the operation panel 30 is input to the control means 20.

制御手段20は、当該入力情報に基づき、前述した何れかの制御パターンのうち、最も適した制御パターンを選択して実行する。即ち、この場合、冷凍室1内に収納された被冷凍物は、約100gの獣肉であり、獣肉の水分量は60〜75%であるため、被冷凍物は約60g〜75gの水分を含んでいることとなる。本実施例では、上記制御パターンを選択することで、例えば75gの水分を含む100gの獣肉が過冷却工程において過冷却目標温度(例えば、−10℃)に到達する各回毎の時間と、完全に凍結する回数が決定され、制御手段20は、当該制御パターンに基づいて冷凍運転を実行する。例えば、上記条件の場合には、制御手段20は、過冷却工程とその後の凍結工程を7サイクル繰り返すと共に、1回目(サイクル1)の過冷却工程の時間を60分間、2回目(サイクル2)を30分、3回目(サイクル3)を20分、4回目(サイクル4)を15分、5回目を10分、6回目を7分、7回目を5分間実行する。尚、本実施例では、凍結工程の時間はサイクルの回数に拘わらず、所定の短時間(数秒程度)とする。   Based on the input information, the control means 20 selects and executes the most suitable control pattern from any of the control patterns described above. That is, in this case, the object to be frozen stored in the freezer compartment 1 is about 100 g of animal meat, and the water content of the animal meat is 60 to 75%, so the object to be frozen contains about 60 g to 75 g of water. It will be out. In this embodiment, by selecting the control pattern, for example, 100 g of meat containing 75 g of water reaches the supercooling target temperature (for example, −10 ° C.) in the supercooling process, and each time The number of times of freezing is determined, and the control means 20 performs the freezing operation based on the control pattern. For example, in the case of the above conditions, the control means 20 repeats the supercooling step and the subsequent freezing step for seven cycles and sets the time of the first supercooling step for 60 minutes and the second time (cycle 2). 30 minutes, 3rd time (cycle 3) 20 minutes, 4th time (cycle 4) 15 minutes, 5th time 10 minutes, 6th time 7 minutes, 7th time 5 minutes. In this embodiment, the time for the freezing process is set to a predetermined short time (several seconds) regardless of the number of cycles.

具体的な動作を説明すると、過冷却工程が開始されると(例えば、操作パネル30からの入力情報を制御手段20が受け取り、制御パターンが選択されると)、制御手段20は、交流電源5を制御して、電極3、3に交流電圧を印加する。このときの周波数は、前述した50Hz〜10MHzとされ、電場の強さは5kV/m〜300kV/mに制御される。これによって、冷凍室1に当該周波数と強さの交流電場が作用し、当該冷凍室1内の被冷凍物に係る電界が付与されることになる。   A specific operation will be described. When the supercooling process is started (for example, when the control means 20 receives input information from the operation panel 30 and a control pattern is selected), the control means 20 And an AC voltage is applied to the electrodes 3 and 3. The frequency at this time is 50 Hz to 10 MHz described above, and the strength of the electric field is controlled to 5 kV / m to 300 kV / m. As a result, an alternating electric field having the frequency and strength acts on the freezer compartment 1 and an electric field related to the object to be frozen in the freezer compartment 1 is applied.

ここで、電極3、3からの電界により、冷凍室1内に収容される被冷凍物にはスピンが生じて振動が励起される。これによって、冷凍室1内の被冷凍物は図2に示すように凝固点温度(0℃)以下になっても結晶化できなくなり、被冷凍物中の水分子は液体の状態(過冷却状態)のままとなる。従って、細胞は図3のAに示すように、細胞内に未だ氷結晶は全く生成されていない状態である。   Here, due to the electric field from the electrodes 3 and 3, spin is generated in the object to be frozen housed in the freezer compartment 1 and vibration is excited. As a result, the object to be frozen in the freezer compartment 1 cannot be crystallized even when the freezing point temperature (0 ° C.) or lower, as shown in FIG. 2, and the water molecules in the object to be frozen are in a liquid state (supercooled state). Will remain. Therefore, as shown in FIG. 3A, the cells are in a state where no ice crystals have been generated in the cells.

また、制御手段20は、前記過冷却工程が開始してからその機能として有するタイマのカウントを開始し、60分経過すると交流電源5による交流電圧の印加を停止する。これにより、電界の付与が停止して、凍結工程に移行する。凍結工程に移行すると、上述の如く電界の付与が解除されたことで、前記過冷却工程で貯えられた水分の顕熱で氷結晶が生成される(一部結晶化する)。このとき、過冷却に要する顕熱が氷の潜熱に比べて小さいため、電界の付与を解除したときに生成される氷結晶は、図3のBで示すように僅かであるが、過冷却状態としたことで、細胞は急速に凍結されたので、生成される氷結晶の粒子径の小さいものとなる。また、図2に示す如く被冷凍物の水分温度は凝固点温度まで上昇する。このように電界の付与が解除されると、被冷凍物の水分温度は凝固点温度まで直ぐに上昇するため、当該凍結工程を長時間とすると、未凍結水が上記微細な氷結晶を核として凝結して、氷結晶が粗大化してしまう。従って、当該凍結工程は、短時間(数秒程度)で終了され、直ちに、2回目の過冷却工程に移行される。   Moreover, the control means 20 starts the count of the timer which has the function after the said supercooling process starts, and will stop the application of the alternating voltage by the alternating current power supply 5 if 60 minutes pass. Thereby, application of an electric field stops and it transfers to a freezing process. When the process proceeds to the freezing step, the application of the electric field is canceled as described above, so that ice crystals are generated (partially crystallized) by the sensible heat of the water stored in the supercooling step. At this time, since the sensible heat required for the supercooling is smaller than the latent heat of the ice, the ice crystals generated when the application of the electric field is released are slight as shown in FIG. Thus, since the cells were frozen rapidly, the ice crystals produced had a small particle size. Further, as shown in FIG. 2, the moisture temperature of the object to be frozen rises to the freezing point temperature. When the application of the electric field is released in this way, the moisture temperature of the object to be frozen immediately rises to the freezing point temperature. Therefore, if the freezing process is prolonged, unfrozen water condenses with the fine ice crystals as nuclei. As a result, ice crystals become coarse. Therefore, the freezing process is completed in a short time (about several seconds), and the process immediately proceeds to the second supercooling process.

そして、制御手段20は、交流電源5を制御して、電極3、3に交流電圧を印加する。このとき、凍結工程が、短時間(数秒程度)で終了され、直ちに2回目の過冷却工程に移行したことで、未凍結水が上記微細な氷結晶を核として凝結する不都合を解消することができる。尚、最初の過冷却工程以降(2回目の過冷却工程から)、周波数は、250kHz程度、若しくは、3MHz程度に制御される。また、電場の強さは1回目の過冷却工程と同様に5kV/m〜300kV/mに制御される。これにより、図2に示すように被冷凍物が過冷却状態となり、水分温度が徐々に低下していく。2回目の過冷却工程では、1回目の過冷却工程にて結晶化した部分は既に充分に冷却された状態であるため、1回目と比べて短時間で過冷却目標温度に到達することとなる。   Then, the control means 20 controls the AC power supply 5 and applies an AC voltage to the electrodes 3 and 3. At this time, the freezing process is completed in a short time (several seconds) and immediately proceeds to the second supercooling process, thereby eliminating the inconvenience of unfrozen water condensing with the fine ice crystals as nuclei. it can. In addition, after the first supercooling step (from the second supercooling step), the frequency is controlled to about 250 kHz or about 3 MHz. The strength of the electric field is controlled to 5 kV / m to 300 kV / m, as in the first supercooling step. Thereby, as shown in FIG. 2, a to-be-frozen object will be in a supercooled state, and a water temperature falls gradually. In the second supercooling step, the portion crystallized in the first supercooling step is already in a sufficiently cooled state, so that the supercooling target temperature is reached in a short time compared to the first time. .

即ち、制御手段20は、当該2回目の過冷却工程を開始してからタイマのカウントを開始し、30分経過すると交流電源5による交流電圧の印加を停止する。これにより、電界の付与が停止して、凍結工程に移行する。電界の付与が解除されたことで、2日目の過冷却工程で貯えられた水分の顕熱で細胞内に氷結晶が生成される。このとき、上述の如く過冷却に要する顕熱が氷の潜熱に比べて小さいため、電界の付与を解除したときに生成される氷結晶は、図3のCで示すように僅かであるが、1回目で生成される氷結晶より2回目で生成される氷結晶の方が確実に多くなる。また、過冷却状態としたことで、細胞は急速に凍結されたので、生成される氷結晶の粒子径の小さいものとなる。当該凍結工程は、前述同様に短時間(数秒程度)で終了され、直ぐに3回目の過冷却工程に移行する。   That is, the control means 20 starts counting the timer after starting the second subcooling step, and stops applying the AC voltage from the AC power source 5 after 30 minutes. Thereby, application of an electric field stops and it transfers to a freezing process. When the application of the electric field is canceled, ice crystals are generated in the cells by the sensible heat of the water stored in the supercooling process on the second day. At this time, since the sensible heat required for supercooling is smaller than the latent heat of ice as described above, the ice crystals generated when the application of the electric field is released are slight as shown by C in FIG. The number of ice crystals generated in the second time is surely larger than that in the first time. In addition, since the cells are rapidly frozen by setting the supercooled state, the ice crystals produced have a small particle size. The freezing process is completed in a short time (several seconds) as described above, and the process immediately proceeds to the third supercooling process.

これにより、制御手段20は、交流電源5を制御して、電極3、3に交流電圧を印加する。このとき、前述したように凍結工程が、短時間(数秒程度)で終了され、直ちに2回目の過冷却工程に移行したことで、未凍結水が上記微細な氷結晶を核として凝結する不都合を解消することができる。一方、過冷却工程に入って、被冷凍物に電界が付与されることで、図2に示すように被冷凍物が過冷却されていく。3回目の過冷却工程では、2回目の過冷却工程にて結晶化した部分は既に充分に冷却された状態であるため、2回目と比べて短時間で過冷却目標温度に到達することとなる。   Thereby, the control means 20 controls the AC power source 5 and applies an AC voltage to the electrodes 3 and 3. At this time, as described above, the freezing process was completed in a short time (several seconds) and immediately shifted to the second supercooling process, so that the unfrozen water condensed with the fine ice crystals as the nucleus. Can be resolved. On the other hand, by entering the supercooling step and applying an electric field to the object to be frozen, the object to be frozen is supercooled as shown in FIG. In the third subcooling step, the portion crystallized in the second subcooling step is already in a sufficiently cooled state, so that it reaches the subcooling target temperature in a shorter time than the second time. .

即ち、制御手段20は、当該3回目の過冷却工程を開始してからタイマのカウントを開始し、20分経過すると交流電源5による交流電圧の印加を停止する。これにより、電界の付与が停止して、凍結工程に移行する。電界の付与が解除されたことで、3日目の過冷却工程で貯えられた水分の顕熱で細胞内に氷結晶が生成される(図3のD)。このように、過冷却工程と凍結工程を繰り返すことで、過冷却工程の終了後の凍結工程に生成される氷結晶が徐々に増えて行く。そして、過冷却工程と凍結工程を所定回数(本実施例では、7回)繰り返すことで、最終的に未凍結の水分が殆ど無くなり、図3のEに示すように細胞全体に氷結晶が生成された状態となる。   That is, the control unit 20 starts counting the timer after starting the third subcooling step, and stops applying the AC voltage from the AC power source 5 after 20 minutes. Thereby, application of an electric field stops and it transfers to a freezing process. By releasing the application of the electric field, ice crystals are generated in the cells by the sensible heat of the water stored in the supercooling process on the third day (D in FIG. 3). Thus, by repeating the supercooling step and the freezing step, ice crystals generated in the freezing step after the supercooling step is gradually increased. Then, by repeating the supercooling step and the freezing step a predetermined number of times (in this embodiment, 7 times), finally, there is almost no unfrozen water, and ice crystals are generated in the entire cell as shown in E of FIG. It will be in the state.

制御手段20は、当該7回目の凍結工程が終了すると(冷凍運転が完了すると)、交流電源5を制御して、電極3、3に交流電圧を印加し、所定の温度(−10℃より低い温度)まで電界を付与しながら冷却する。即ち、上述した過冷却工程と同様に所定時間、被冷凍物に電界が付与され、当該時間を経過すると、交流電源5による交流電圧の印加が停止され、その後は成り行きの温度(−10℃以下)で冷凍室1内の被冷凍物が保存される。   When the seventh freezing step is completed (the refrigeration operation is completed), the control unit 20 controls the AC power supply 5 to apply an AC voltage to the electrodes 3 and 3 to be a predetermined temperature (lower than −10 ° C.). Cooling while applying an electric field to (temperature). That is, an electric field is applied to the object to be frozen for a predetermined time as in the above-described supercooling step, and when the time elapses, application of the AC voltage by the AC power supply 5 is stopped, and then the expected temperature (−10 ° C. or less) ), The object to be frozen in the freezer compartment 1 is stored.

このように、過冷却工程と凍結工程とを繰り返すことで、細胞内に微細な氷結晶を生成しながら、当該氷結晶を核として未凍結水が凝結する不都合を解消することができる。従って、従来生じていた氷結晶の粗大化による細胞の破壊を阻止することができる。これにより、品質や鮮度の低下を極力生じさせることなく被冷凍物を凍結することが可能となる。   Thus, by repeating the supercooling step and the freezing step, it is possible to eliminate the inconvenience of unfrozen water condensing with the ice crystals as nuclei while generating fine ice crystals in the cells. Accordingly, it is possible to prevent the destruction of cells due to the coarsening of ice crystals, which has conventionally occurred. Thereby, it becomes possible to freeze a to-be-frozen object, producing the fall of quality or freshness as much as possible.

また、過冷却工程の時間を、当該過冷却工程の繰り返し回数が増えるに応じて短縮することで、効率よく被冷凍物を凍結することができる。   Moreover, a to-be-frozen object can be efficiently frozen by shortening the time of a supercooling process according to the repetition frequency of the said supercooling process increasing.

更に、本実施例の如く、制御手段は、各工程の時間と、過冷却工程における到達温度と、電界の周波数若しくはその強度と、各工程の繰り返し回数のうちの何れか一つ、若しくは、複数が異なる複数の制御パターンを備え、被冷凍物に応じて何れかの制御パターンを選択的に実行しているので、冷凍する被冷凍物に応じた最適な凍結が可能となる。これにより、装置の汎用性の向上を図ることができる。   Further, as in the present embodiment, the control means may include any one or more of the time of each process, the temperature reached in the supercooling process, the frequency or intensity of the electric field, and the number of repetitions of each process. Are provided with a plurality of different control patterns, and any one of the control patterns is selectively executed according to the object to be frozen, so that optimum freezing according to the object to be frozen can be performed. Thereby, the versatility of the apparatus can be improved.

尚、本実施例では、被冷凍物に電界を付与する手段を用いて被冷凍物に電界を付与する過冷却工程と、過冷却工程の終了後、電界の付与を停止させる凍結工程とを繰り返すものとしたが、これに限らず、被冷凍物に磁界を付与する手段、例えば、永久磁石や電磁誘導コイルから成る磁界発生手段を備えて、当該磁界発生手段により、被冷却物に磁界を付与することにより過冷却工程を実行し、当該過冷却工程と、過冷却工程の終了後に磁界の付与を停止させる凍結工程とを繰り返すことで被凍結物を冷凍するものとしても差し支えない。   In this embodiment, the supercooling process for applying an electric field to the object to be frozen using the means for applying an electric field to the object to be frozen and the freezing process for stopping the application of the electric field after the supercooling process is repeated. However, the present invention is not limited to this, and a means for applying a magnetic field to the object to be frozen, for example, a magnetic field generating means including a permanent magnet or an electromagnetic induction coil is provided, and the magnetic field generating means applies the magnetic field to the object to be cooled. Thus, the supercooling process is executed, and the object to be frozen can be frozen by repeating the supercooling process and the freezing process for stopping the application of the magnetic field after the supercooling process is completed.

このように磁界を付与する場合には、制御手段20は、各工程の時間と、過冷却工程における到達温度と、磁界の周波数若しくはその強度と、各工程の繰り返し回数のうちの何れか一つ、若しくは、複数が異なる複数の制御パターンを備えており、冷凍運転において、被冷凍物に応じて何れかの制御パターンを選択的に実行するものとする。   When the magnetic field is applied in this way, the control means 20 selects any one of the time of each process, the reached temperature in the supercooling process, the frequency or intensity of the magnetic field, and the number of repetitions of each process. Alternatively, a plurality of different control patterns are provided, and one of the control patterns is selectively executed according to the object to be frozen in the refrigeration operation.

更に、被冷凍物に電界と磁界の両方を付与する手段を備えも良い。この場合、例えば、電界を付与する手段と、磁界を付与する手段とを直交して設置する。具体的には、図1において電極3、3(電界を付与する手段)を冷凍室1内の左右側壁に設けているが、これに加えて、冷凍室1の上下に当該冷凍室1内の全域を挟んで対向するように一対の永久磁石(磁界を付与する手段)を配置し、図示しない交流電源に接続する。これにより、冷凍室1内の被冷凍物には前記電界に加えて磁界が付与されることとなる。   Furthermore, a means for applying both an electric field and a magnetic field to the object to be frozen may be provided. In this case, for example, the means for applying the electric field and the means for applying the magnetic field are installed orthogonally. Specifically, in FIG. 1, electrodes 3 and 3 (means for applying an electric field) are provided on the left and right side walls in the freezer compartment 1, but in addition to this, in the freezer compartment 1 above and below the freezer compartment 1. A pair of permanent magnets (means for applying a magnetic field) are arranged so as to face each other across the entire area, and connected to an AC power source (not shown). As a result, a magnetic field is applied to the object to be frozen in the freezer compartment 1 in addition to the electric field.

このように被冷凍物に電界及び磁界を付与する場合には、制御手段20は、各工程の時間と、過冷却工程における到達温度と、電界及び磁界の周波数若しくはそれらの強度と、各工程の繰り返し回数のうちの何れか一つ、若しくは、複数が異なる複数の制御パターンを備えており、冷凍運転において、被冷凍物に応じて何れかの制御パターンを選択的に実行するものとする。   In this way, when applying an electric field and a magnetic field to the object to be frozen, the control means 20 determines the time of each process, the temperature reached in the subcooling process, the frequency of the electric field and the magnetic field or their strength, It is assumed that any one of the number of repetitions or a plurality of different control patterns are provided, and any control pattern is selectively executed according to the object to be frozen in the refrigeration operation.

また、本実施例では、被冷凍物の重量を操作パネル30にて入力するものとしたが、これに限らず、例えば、冷凍室1内に収容された被冷凍物を測定可能な重量測定装置を内蔵して、当該重量測定装置からの重量情報が制御手段に入力されるものとしても構わない。この場合には、操作パネルに被冷凍物の種類のみを入力することで、最適な制御が行われる。   In the present embodiment, the weight of the object to be frozen is input through the operation panel 30. However, the present invention is not limited to this. For example, a weight measuring apparatus capable of measuring the object to be frozen housed in the freezer compartment 1 is used. The weight information from the weight measuring device may be input to the control means. In this case, optimal control is performed by inputting only the type of the object to be frozen on the operation panel.

本発明の一実施例の冷凍装置を模式的に示した概略図である。It is the schematic which showed typically the freezing apparatus of one Example of this invention. 本発明の一実施例の冷凍方法のタイミングチャートを示す図である。It is a figure which shows the timing chart of the freezing method of one Example of this invention. 過冷却工程の繰り返し回数の増加に伴う細胞の断面の変化を模式的に示した図である。It is the figure which showed typically the change of the cross section of the cell accompanying the increase in the repetition frequency of a supercooling process.

符号の説明Explanation of symbols

1 冷凍室
3 電極
5 交流電源
10 圧縮機
12 放熱器
13 膨張弁
14 蒸発器
14F ファン
20 制御手段
21 冷却手段
30 操作パネル
DESCRIPTION OF SYMBOLS 1 Freezer 3 Electrode 5 AC power supply 10 Compressor 12 Radiator 13 Expansion valve 14 Evaporator 14F Fan 20 Control means 21 Cooling means 30 Operation panel

Claims (5)

被冷凍物を冷却しながら当該被冷凍物に電界及び/又は磁界を付与する過冷却工程と、該過冷却工程の終了後、前記電界及び/又は磁界の付与を停止させる凍結工程とを繰り返すことを特徴とする冷凍方法。   Repeating a supercooling step for applying an electric field and / or a magnetic field to the subject to be frozen while cooling the subject to be frozen, and a freezing step for stopping the application of the electric field and / or magnetic field after the supercooling step is completed. A freezing method characterized by the above. 前記過冷却工程の時間を、該過冷却工程の繰り返し回数が増えるに応じて短縮することを特徴とする請求項1に記載の冷凍方法。   The refrigeration method according to claim 1, wherein the time of the supercooling step is shortened as the number of repetitions of the supercooling step increases. 被冷凍物を冷却する手段と、前記被冷凍物に電界及び/又は磁界を付与する手段と、これら各手段を制御する制御手段とを備え、
該制御手段は、被冷凍物を冷却しながら当該被冷凍物に電界及び/又は磁界を付与する過冷却工程と、該過冷却工程の終了後、前記電界及び/又は磁界の付与を停止させる凍結工程とを繰り返すことを特徴とする冷凍装置。
Means for cooling the object to be frozen, means for applying an electric field and / or magnetic field to the object to be frozen, and control means for controlling each of these means,
The control means includes a supercooling step for applying an electric field and / or a magnetic field to the object to be frozen while cooling the object to be frozen, and a freezing for stopping the application of the electric field and / or magnetic field after the supercooling step. A refrigeration apparatus characterized by repeating the steps.
前記制御手段は、前記各工程の時間と、前記過冷却工程における到達温度と、前記電界又は磁界の周波数或いはそれらの強度と、前記各工程の繰り返し回数のうちの何れか一つ、若しくは、複数が異なる複数の制御パターンを備え、前記被冷凍物に応じて何れかの前記制御パターンを選択的に実行することを特徴とする請求項3に記載の冷凍装置。   The control means is any one or more of the time of each step, the temperature reached in the supercooling step, the frequency of the electric field or magnetic field or their strength, and the number of repetitions of each step. The refrigeration apparatus according to claim 3, comprising a plurality of control patterns different from each other, and selectively executing any one of the control patterns according to the object to be frozen. 前記制御手段は、前記過冷却工程の時間を、該過冷却工程の繰り返し回数が増えるに応じて短縮する制御を実行することを特徴とする請求項3又は請求項4に記載の冷凍装置。   5. The refrigeration apparatus according to claim 3, wherein the control unit executes control to shorten the time of the supercooling process as the number of repetitions of the supercooling process increases.
JP2006085443A 2006-03-27 2006-03-27 Freezing method and freezing device Pending JP2007259709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085443A JP2007259709A (en) 2006-03-27 2006-03-27 Freezing method and freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085443A JP2007259709A (en) 2006-03-27 2006-03-27 Freezing method and freezing device

Publications (1)

Publication Number Publication Date
JP2007259709A true JP2007259709A (en) 2007-10-11

Family

ID=38633337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085443A Pending JP2007259709A (en) 2006-03-27 2006-03-27 Freezing method and freezing device

Country Status (1)

Country Link
JP (1) JP2007259709A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065326A1 (en) * 2011-11-04 2013-05-10 株式会社ユニットコム Panel for forming electric field, storage vault for generating supercooling having panel for forming electric field attached thereto, and method for forming electric field for generating supercooling
JP2014155443A (en) * 2013-02-14 2014-08-28 Univ Of Tokyo Cell cryopreservation method
JP2018027062A (en) * 2016-08-19 2018-02-22 フリーズ食品開発株式会社 Cooling device, cooling program and method for producing frozen article as cooling object
CN108836619A (en) * 2018-07-17 2018-11-20 北京麦邦光电仪器有限公司 Target temperature treatment probe, treatment pincers and target temperature therapeutic device
CN110671876A (en) * 2019-09-10 2020-01-10 珠海格力电器股份有限公司 Supercooling freezing method, refrigerator and refrigerator control method
WO2023243097A1 (en) * 2022-06-17 2023-12-21 国立研究開発法人医薬基盤・健康・栄養研究所 Live cell freezing method and live cell freezing system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065326A1 (en) * 2011-11-04 2013-05-10 株式会社ユニットコム Panel for forming electric field, storage vault for generating supercooling having panel for forming electric field attached thereto, and method for forming electric field for generating supercooling
JP2013096675A (en) * 2011-11-04 2013-05-20 Unit Com Inc Panel for forming electric field, storage vault equipped therewith for generating supercooling, and method for forming electric field for generating supercooling
CN103518111A (en) * 2011-11-04 2014-01-15 过冷却拉博株式会社 Panel for forming electric field, storage vault for generating supercooling having panel for forming electric field attached thereto, and method for forming electric field for generating supercooling
JP2014155443A (en) * 2013-02-14 2014-08-28 Univ Of Tokyo Cell cryopreservation method
JP2018027062A (en) * 2016-08-19 2018-02-22 フリーズ食品開発株式会社 Cooling device, cooling program and method for producing frozen article as cooling object
CN108836619A (en) * 2018-07-17 2018-11-20 北京麦邦光电仪器有限公司 Target temperature treatment probe, treatment pincers and target temperature therapeutic device
CN110671876A (en) * 2019-09-10 2020-01-10 珠海格力电器股份有限公司 Supercooling freezing method, refrigerator and refrigerator control method
CN110671876B (en) * 2019-09-10 2023-10-27 珠海格力电器股份有限公司 Supercooling freezing method, refrigerator and refrigerator control method
WO2023243097A1 (en) * 2022-06-17 2023-12-21 国立研究開発法人医薬基盤・健康・栄養研究所 Live cell freezing method and live cell freezing system
WO2023243709A1 (en) * 2022-06-17 2023-12-21 国立研究開発法人医薬基盤・健康・栄養研究所 Living cell freezing method and living cell freezing system

Similar Documents

Publication Publication Date Title
JP2007259709A (en) Freezing method and freezing device
KR100756712B1 (en) Refrigerator and determination method on breaking of supercooling status in a refrigerator
CN111043826B (en) Refrigerating and freezing device and control method thereof
JP2008070015A (en) Refrigerator
EP3614079B1 (en) Cooling device
EP1752724A2 (en) Operation control method of refrigerator
CN111043828B (en) Refrigerating and freezing device and control method thereof
JP2005034089A (en) Method for freezing and freezer or refrigerator-freezer
JP2010101618A (en) Control of refrigerating state of cargo
CN109906346A (en) The control method of refrigerator and refrigerator
CN110906646A (en) Food non-freezing storage control method and refrigerator
CN111043829B (en) Refrigerating and freezing device and control method thereof
US20090064689A1 (en) Supercooling apparatus and its method
JP2005291525A (en) Food freezer and food thawing apparatus
RU2011139824A (en) REFRIGERATING UNIT AND METHOD FOR COOLING THE REFRIGERATING UNIT
JP2007278647A (en) Cooling storage cabinet
JP5262259B2 (en) refrigerator
CN110906616B (en) Instantaneous freezing control method of refrigeration equipment and refrigeration equipment
JP2008067643A (en) Device for producing frozen dessert
JP2005300049A (en) Defrosting control device for direct cooling type refrigerator
WO2009061120A2 (en) Control method of refrigerator
JP4737718B2 (en) Combined cooling device
RU2489653C2 (en) Refrigerating and/or freezing device
JP2014128471A (en) Cooling system control method and cooling system
CN113970214B (en) Refrigerator defrosting method and refrigerator