JP2007255802A - Cryogenic gas separation system - Google Patents

Cryogenic gas separation system Download PDF

Info

Publication number
JP2007255802A
JP2007255802A JP2006081849A JP2006081849A JP2007255802A JP 2007255802 A JP2007255802 A JP 2007255802A JP 2006081849 A JP2006081849 A JP 2006081849A JP 2006081849 A JP2006081849 A JP 2006081849A JP 2007255802 A JP2007255802 A JP 2007255802A
Authority
JP
Japan
Prior art keywords
heat exchanger
raw material
total heat
air
separation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006081849A
Other languages
Japanese (ja)
Inventor
Taku Nasu
卓 那須
Hitoshi Ishizuka
仁司 石塚
Kanetoshi Hayashi
謙年 林
Kenjiro Hamada
謙二郎 浜田
Toshihiko Kukutsu
寿彦 久々津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
JFE Steel Corp
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Engineering Corp filed Critical JFE Steel Corp
Priority to JP2006081849A priority Critical patent/JP2007255802A/en
Publication of JP2007255802A publication Critical patent/JP2007255802A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cryogenic gas separation system capable of efficiently recovering low-temperature exhaust heat from excess waste nitrogen to further reduce power of a compressor compressing a raw material gas, in the cryogenic gas separation system for compressing, refining and cooling the air, and introducing the air into a rectifying tower, to manufacture oxygen or nitrogen by performing liquefaction, rectification and separation. <P>SOLUTION: A rotary total heat exchanger 21 for exchanging heat between the raw material gas and waste nitrogen, is disposed on an inlet of the raw material air compressor 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気を圧縮、精製、冷却して精留塔に導入し、液化精留分離を行って酸素または窒素を製造する深冷ガス分離システムに関するものである。   The present invention relates to a cryogenic gas separation system in which air is compressed, purified, cooled, introduced into a rectification column, and liquefied rectification separation is performed to produce oxygen or nitrogen.

従来、空気の液化分離技術(深冷ガス分離システム)では、フィルタを通過した原料空気を圧縮機により圧縮した後、予冷器を通過させ、液化分離装置(精留塔)に供して、酸素と窒素を製造している。   Conventionally, in the air liquefaction separation technology (deep cold gas separation system), after the raw material air that has passed through the filter is compressed by a compressor, it is passed through a precooler and is supplied to a liquefaction separation device (rectification tower), where oxygen and Nitrogen is produced.

その際に、製鉄所における酸素製造プラントで用いられる深冷ガス分離システムでは、製鉄所の酸素ニーズに即して運転しているため、併産される窒素については、予冷器の冷熱源として利用する量と製鉄所内の需要を賄う量を合わせた量を超えた部分については放散され、その保有していた冷熱・除湿能は利用されていなかった。   At that time, since the cryogenic gas separation system used in the oxygen production plant at the steel works operates in accordance with the oxygen needs of the steel works, the co-produced nitrogen is used as a cold heat source for the precooler. The portion exceeding the combined amount to meet the demand in the steelworks was dissipated, and the cold heat and dehumidification capacity that was held was not used.

そこで、特許文献1に記載された技術では、圧縮機の前段において、積層式の全熱交換器を配置し、廃窒素の冷熱および除湿能により原料空気を予冷することで、圧縮機の動力を低減するようにしている。   Therefore, in the technique described in Patent Document 1, a stacked total heat exchanger is disposed in the front stage of the compressor, and the raw material air is pre-cooled by the cooling and dehumidifying ability of the waste nitrogen, so that the power of the compressor is increased. I try to reduce it.

すなわち、図3を用いて詳しく説明すると、原料空気は、フィルタ11を通過して吸い込まれ、原料空気圧縮機(コンプレッサ)12で約0.5MPaまで昇圧された後、水洗塔13で冷却され、分子篩吸着器(モレキュラー・シーブ吸着器、以下MS吸着器)14で二酸化炭素と水分を除去される。そして、熱交換器15で製品酸素および製品窒素と熱交換され、その一部は膨張タービン16で温度を下げてから精留塔17の低圧部17aに送られ、他の部分は直接精留塔17の高圧部17bに送られる。そして、精留塔低圧部17aの上部から製品窒素が、下部から製品酸素がそれぞれ抽出され、熱交換器15での原料空気との熱交換を経て製鉄所へ供給される。   That is, when described in detail with reference to FIG. 3, the raw air is sucked through the filter 11, boosted to about 0.5 MPa by the raw air compressor (compressor) 12, cooled by the washing tower 13, Carbon dioxide and moisture are removed by a molecular sieve adsorber (molecular sieve adsorber, hereinafter referred to as MS adsorber) 14. Then, heat is exchanged with product oxygen and product nitrogen in the heat exchanger 15, a part of which is sent to the low pressure part 17 a of the rectification column 17 after the temperature is lowered by the expansion turbine 16, and the other part is directly in the rectification column. 17 to the high-pressure part 17b. And product nitrogen is extracted from the upper part of the rectification tower low-pressure part 17a, and product oxygen is extracted from the lower part, respectively, and is supplied to the ironworks through heat exchange with the raw material air in the heat exchanger 15.

その際に、酸素製造プラントから生産される窒素は、熱交換器15での原料空気との熱交換後に概略10℃程度の温度となるが、その一部は、MS吸着器14に吸着した二酸化炭素や水分を取り外してMS吸着器14を再生する際に必要な再生用ガスや、水洗塔13への冷却水の冷却用ガスとして用いられる。また、他の部分は、製鉄所内の需要に応じて、流量調整装置18で流量を調整されて製鉄所内へ供給されるとともに、余った窒素(廃窒素)は放散される。   At that time, the nitrogen produced from the oxygen production plant has a temperature of about 10 ° C. after heat exchange with the raw air in the heat exchanger 15, and a part of the nitrogen dioxide adsorbed on the MS adsorber 14. It is used as a regeneration gas necessary for regenerating the MS adsorber 14 by removing carbon or moisture, or as a cooling gas for cooling water to the washing tower 13. In addition, the flow rate of the other part is adjusted by the flow rate adjusting device 18 according to the demand in the steelworks, and the remaining nitrogen (waste nitrogen) is released.

そして、特許文献1に記載の技術では、圧縮機12の前段に積層式の全熱交換器19を配置し、廃窒素の放散ラインから分岐をとって、廃窒素(低温乾燥窒素ガス)を積層式全熱交換器19に導き、廃窒素の冷熱と除湿能により原料空気を予冷・除湿するようにしており、このような窒素からの低温排熱回収を行うことにより、圧縮機12の動力の低減を図るようにしている。   In the technique described in Patent Document 1, a laminated total heat exchanger 19 is arranged in front of the compressor 12, and a waste nitrogen (low temperature dry nitrogen gas) is laminated by branching from a waste nitrogen diffusion line. The raw air is precooled and dehumidified by the cooling and dehumidifying ability of the waste nitrogen, and is led to the total heat exchanger 19, and by recovering the low-temperature exhaust heat from the nitrogen, the power of the compressor 12 can be reduced. We try to reduce it.

図4は、上記の技術で用いられる積層式全熱交換器19を示すものである。クラフト紙等からなる波板19aが交互に直交して積層され、それぞれの層間にアスベスト紙等の透湿性の材料からなる隔壁19bが配置されている。そして、高温高湿の原料空気と低温低湿の廃窒素が各層を交互に流れ、隔壁19bを隔てて、原料空気と廃窒素の間で熱交換と湿分移動が行われる。
特開平10−267527号公報
FIG. 4 shows a laminated total heat exchanger 19 used in the above technique. Corrugated sheets 19a made of kraft paper or the like are alternately stacked at right angles, and a partition wall 19b made of a moisture-permeable material such as asbestos paper is disposed between the layers. Then, high-temperature, high-humidity raw air and low-temperature, low-humidity waste nitrogen flow alternately in each layer, and heat exchange and moisture transfer are performed between the raw air and waste nitrogen across the partition wall 19b.
JP-A-10-267527

しかし、本発明者らが検討したところ、前記特許文献1に記載の技術では、必ずしも廃窒素からの低温排熱回収が効率良く行われているとはいえないことが分かった。   However, as a result of investigations by the present inventors, it has been found that the technique described in Patent Document 1 cannot always efficiently recover low-temperature exhaust heat from waste nitrogen.

本発明は、上記のような事情に鑑みてなされたものであり、空気を圧縮、精製、冷却して精留塔に導入し、液化精留分離を行って酸素または窒素を製造する深冷ガス分離システムにおいて、余剰の廃窒素からの低温排熱回収を効率良く行うことができ、それによって、原料空気を圧縮する圧縮機の動力を一層低減することができる深冷ガス分離システムを提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and is a cryogenic gas for producing oxygen or nitrogen by compressing, purifying and cooling air, introducing it into a rectifying column, and performing liquefaction rectification separation. To provide a cryogenic gas separation system capable of efficiently recovering low-temperature exhaust heat from excess waste nitrogen in a separation system, thereby further reducing the power of a compressor for compressing raw material air. It is intended.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]空気を圧縮、精製、冷却して精留塔に導入し、液化精留分離を行って酸素または窒素を製造する深冷ガス分離システムにおいて、原料空気圧縮機の入口に原料空気と精留分離で発生した低温乾燥窒素ガスとを熱交換させる回転式全熱交換器を設けたことを特徴とする深冷ガス分離システム。   [1] In a cryogenic gas separation system in which air is compressed, purified, cooled, introduced into a rectification column, and liquefied rectification separation is performed to produce oxygen or nitrogen. A cryogenic gas separation system comprising a rotary total heat exchanger for exchanging heat with low-temperature dry nitrogen gas generated by distillation separation.

[2]回転式全熱交換器の窒素ガス出口に送風機を設けたことを特徴とする前記[1]記載の深冷ガス分離システム。   [2] The cryogenic gas separation system according to [1], wherein a blower is provided at a nitrogen gas outlet of the rotary total heat exchanger.

[3]原料空気の一部が回転式全熱交換器を迂回するようにするためのバイパス回路と、該バイパス回路の起点または回路上に設けられた流量調整弁と、回転式全熱交換器を通過する原料空気の流量を測定するための原料空気流量計と、回転式全熱交換器を通過する低温乾燥窒素ガスの流量を測定するための窒素ガス流量計と、前記原料空気流量計と前記窒素ガス流量計の測定値に基づいて、回転式全熱交換器を通過する原料空気と低温乾燥窒素ガスとの流量比が所定の値になるように、前記流量調整弁の開度を制御する制御手段とを備えていることを特徴とする前記[1]または[2]に記載の深冷ガス分離システム。   [3] A bypass circuit for allowing a part of the raw material air to bypass the rotary total heat exchanger, a flow rate adjusting valve provided on the starting point of the bypass circuit or on the circuit, and the rotary total heat exchanger A raw material air flow meter for measuring the flow rate of the raw material air passing through, a nitrogen gas flow meter for measuring the flow rate of the low-temperature dry nitrogen gas passing through the rotary total heat exchanger, and the raw material air flow meter, Based on the measured value of the nitrogen gas flow meter, the opening degree of the flow rate adjusting valve is controlled so that the flow rate ratio between the raw air passing through the rotary total heat exchanger and the low temperature dry nitrogen gas becomes a predetermined value. The cryogenic gas separation system according to [1] or [2], further comprising:

本発明においては、空気を圧縮、精製、冷却して精留塔に導入し、液化精留分離を行って酸素または窒素を製造する深冷ガス分離システムにおいて、余剰の廃窒素からの低温排熱回収を効率良く行うことができ、それにより、原料空気を圧縮する圧縮機の動力を一層低減することができる。   In the present invention, in a cryogenic gas separation system in which air is compressed, purified, cooled, introduced into a rectification column, and liquefied rectification separation is performed to produce oxygen or nitrogen, low-temperature exhaust heat from excess waste nitrogen The recovery can be performed efficiently, whereby the power of the compressor that compresses the raw material air can be further reduced.

本発明の一実施形態を図面に基づいて述べる。   An embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る深冷ガス分離システムの説明図である。この実施形態に係る深冷ガス分離システムは、酸素製造プラントで用いられるものであり、前述の図3に示した深冷ガス分離システムとほぼ同様の構成であるが、図3に示した深冷ガス分離システムにおける積層式全熱交換器19に替えて、回転式全熱交換器21を用いている点と、その回転式全熱交換器21の廃窒素出口に送風機(混合防止用ファン)22を設置している点が特徴である。   FIG. 1 is an explanatory diagram of a cryogenic gas separation system according to an embodiment of the present invention. The cryogenic gas separation system according to this embodiment is used in an oxygen production plant and has substantially the same configuration as the above-described cryogenic gas separation system shown in FIG. 3, but the cryogenic gas separation system shown in FIG. A rotary total heat exchanger 21 is used instead of the laminated total heat exchanger 19 in the gas separation system, and a blower (mixing prevention fan) 22 is provided at the waste nitrogen outlet of the rotary total heat exchanger 21. The feature is that it is installed.

すなわち、図1に示すように、原料空気は、フィルタ11を通過して吸い込まれ、原料空気圧縮機(コンプレッサ)12で約0.5MPaまで昇圧された後、水洗塔13で冷却され、分子篩吸着器(MS吸着器)14で二酸化炭素と水分を除去される。そして、熱交換器15で製品酸素および製品窒素と熱交換され、その一部は膨張タービン16で温度を下げてから精留塔17の低圧部17aに送られ、他の部分は直接精留塔17の高圧部17bに送られる。そして、精留塔低圧部17aの上部から製品窒素が、下部から製品酸素がそれぞれ抽出され、熱交換器15での原料空気との熱交換を経て製鉄所へ供給される。   That is, as shown in FIG. 1, the raw air is sucked through the filter 11, boosted to about 0.5 MPa by the raw air compressor (compressor) 12, cooled by the washing tower 13, and adsorbed by the molecular sieve. Carbon dioxide and moisture are removed by a vessel (MS adsorber) 14. Then, heat is exchanged with product oxygen and product nitrogen in the heat exchanger 15, a part of which is sent to the low pressure part 17 a of the rectification column 17 after the temperature is lowered by the expansion turbine 16, and the other part is directly in the rectification column. 17 to the high-pressure part 17b. And product nitrogen is extracted from the upper part of the rectification tower low-pressure part 17a, and product oxygen is extracted from the lower part, respectively, and is supplied to the ironworks through heat exchange with the raw material air in the heat exchanger 15.

その際に、酸素製造プラントから生産される窒素は、熱交換器15での原料空気との熱交換後に概略10℃程度の温度となるが、その一部は、MS吸着器14に吸着した二酸化炭素や水分を取り外してMS吸着器14を再生する際に必要な再生用ガスや、水洗塔13への冷却水の冷却用ガスとして用いられる。そして、他の部分は、製鉄所内の需要に応じて、流量調整装置18で流量を調整されて製鉄所内へ供給されるとともに、余った窒素(廃窒素)は、圧縮機12の前段に配置された回転式全熱交換器21に導かれて、廃窒素(低温乾燥窒素ガス)の冷熱と除湿能により原料空気の予冷・除湿を行う。なお、ここでは、深冷ガス分離システムの点検時や緊急停止時に廃窒素を放散するために、廃窒素放散用回路が設けられている。   At that time, the nitrogen produced from the oxygen production plant has a temperature of about 10 ° C. after heat exchange with the raw air in the heat exchanger 15, and a part of the nitrogen dioxide adsorbed on the MS adsorber 14. It is used as a regeneration gas necessary for regenerating the MS adsorber 14 by removing carbon or moisture, or as a cooling gas for cooling water to the washing tower 13. The other part is supplied to the steelworks after the flow rate is adjusted by the flow rate adjusting device 18 according to the demand in the steelworks, and the surplus nitrogen (waste nitrogen) is disposed in the front stage of the compressor 12. Then, the raw air is precooled and dehumidified by cooling and dehumidifying ability of waste nitrogen (low temperature dry nitrogen gas). Here, in order to dissipate waste nitrogen at the time of inspection of the cryogenic gas separation system or at an emergency stop, a circuit for disposing of waste nitrogen is provided.

図2は、この実施形態で用いる回転式全熱交換器21を示すものである。回転式全熱交換器21は、円板状の熱交換素子(ローター)21aと、ローター21aを回転させる駆動装置(図示せず)と、ケーシング21bと、仕切り板21cを備えている。ローター21aは、特殊セルロースを段ボール状に成形したものを所定の直径にまで螺旋状に巻き、接着したものである。また、天然やし繊維、無機質系難燃性紙等を使用したものや、アルミニューム、ステンレス鋼製の繊維または板にシリカ系の吸湿剤を塗布したものでもよい。そして、ローター21aはケーシング21bに納められ、仕切り板21cにより上部と下部に仕切られて、それぞれダクト(図示せず)に接続されている。   FIG. 2 shows a rotary total heat exchanger 21 used in this embodiment. The rotary total heat exchanger 21 includes a disk-shaped heat exchange element (rotor) 21a, a driving device (not shown) that rotates the rotor 21a, a casing 21b, and a partition plate 21c. The rotor 21a is obtained by spirally winding a special cellulose molded into a corrugated cardboard shape to a predetermined diameter. Further, natural palm fiber, inorganic flame-retardant paper or the like may be used, or aluminum or stainless steel fiber or plate coated with a silica-based moisture absorbent. The rotor 21a is housed in a casing 21b, divided into an upper part and a lower part by a partition plate 21c, and connected to ducts (not shown).

このような回転式全熱交換器21では、まず、低温の廃窒素が通過したローター部分が廃窒素により冷却される。次に、ローター21aの回転により、この冷却されたローター部分を高温の原料空気が通過し、原料空気と当該ローター部分との間での熱交換により原料空気の温度は低下し、当該ローター部分の温度は上昇する。温度の上昇した当該ローター部分は回転して再び廃窒素が通過し、廃窒素により冷却される。このようにして、ローター21aの回転によって高温の原料空気から低温の廃窒素へ熱が移動し、原料空気が冷却される。同様にして、高湿の原料空気から低湿の廃窒素(絶対湿度0mmg)へ湿分が移動し、原料空気が除湿される。   In such a rotary total heat exchanger 21, first, the rotor portion through which the low temperature waste nitrogen has passed is cooled by the waste nitrogen. Next, due to the rotation of the rotor 21a, the high-temperature raw material air passes through the cooled rotor portion, and the temperature of the raw material air decreases due to the heat exchange between the raw material air and the rotor portion. The temperature rises. The rotor portion where the temperature has risen rotates and waste nitrogen passes again, and is cooled by the waste nitrogen. In this manner, heat is transferred from the high temperature raw material air to the low temperature waste nitrogen by the rotation of the rotor 21a, and the raw material air is cooled. Similarly, moisture moves from high-humidity raw air to low-humidity waste nitrogen (absolute humidity 0 mmg), and the raw air is dehumidified.

このようにして、回転式全熱交換器21では、原料空気と廃窒素との全熱交換がローター21aを介して連続的に行われ、特に、湿分の移動は、前述の積層式全熱交換器19のような隔壁19bを透過する必要が無いため高効率である。また、廃窒素と原料空気が交互に逆方向に通過するため、隔壁19bの目詰まり防止等のメンテナンスも不要である。   Thus, in the rotary total heat exchanger 21, the total heat exchange between the raw air and the waste nitrogen is continuously performed via the rotor 21a. In particular, the movement of moisture is performed by the above-described stacked total heat. Since it is not necessary to permeate the partition wall 19b like the exchanger 19, it is highly efficient. Further, since waste nitrogen and raw material air alternately pass in the opposite direction, maintenance such as prevention of clogging of the partition walls 19b is unnecessary.

なお、回転式全熱交換器21では、ローター21aの回転により若干量の排窒素が原料空気側へ移動することが見込まれるが、廃窒素が原料空気側へ混入すると酸素製造プラント全体の酸素生産量が低下するため、回転式全熱交換器21の廃窒素出口に設置した混合防止用ファン22によって廃窒素側の静圧を原料空気側の静圧より低くすることで、リーク方向を空気側から廃窒素側とし、廃窒素の原料空気側への混入を防止するようにしている。   In the rotary total heat exchanger 21, it is expected that a small amount of exhaust nitrogen moves to the raw material air side due to the rotation of the rotor 21 a, but if waste nitrogen enters the raw material air side, oxygen production of the entire oxygen production plant Since the amount decreases, the static pressure on the waste nitrogen side is made lower than the static pressure on the raw material air side by the mixing prevention fan 22 installed at the waste nitrogen outlet of the rotary total heat exchanger 21, so that the leakage direction is set to the air side. In order to prevent the waste nitrogen from entering the raw material air side.

ここで、通常、回転式全熱交換器21に供給できる廃窒素の量は、製鉄所内の需要量の変動に伴って変動する。一方、回転式全熱交換器21の全熱交換効率は、通過する原料空気と廃窒素の流量比(原料空気流量/廃窒素流量)によって変化する。そこで、この実施形態においては、廃窒素の供給量の変動に応じて、回転式全熱交換器21を通過させる原料空気の量を調整することによって、回転式全熱交換器21における原料空気と廃窒素の流量比を適切な値に保つことで、良好な全熱交換効率が得られるようにし、廃窒素からの低温排熱を可及的に回収できるようにしている。   Here, usually, the amount of waste nitrogen that can be supplied to the rotary total heat exchanger 21 varies as the demand in the steel works varies. On the other hand, the total heat exchange efficiency of the rotary total heat exchanger 21 varies depending on the flow rate ratio of the raw material air and waste nitrogen that passes therethrough (raw material air flow rate / waste nitrogen flow rate). Therefore, in this embodiment, by adjusting the amount of raw material air that passes through the rotary total heat exchanger 21 according to the fluctuation of the supply amount of waste nitrogen, the raw material air in the rotary total heat exchanger 21 and By maintaining the flow rate ratio of waste nitrogen at an appropriate value, good total heat exchange efficiency can be obtained, and low-temperature exhaust heat from waste nitrogen can be recovered as much as possible.

すなわち、この実施形態においては、図1に示すように、原料空気の一部が回転式全熱交換器21を迂回するようにするためのバイパス回路と、そのバイパス回路上に設けられた流量調整弁(二方弁)31と、回転式全熱交換器21を通過する原料空気の流量を測定するために回転式全熱交換器21の原料空気出口に設けられた原料空気流量計32と、回転式全熱交換器21を通過する廃窒素の流量を測定するために回転式全熱交換器21の廃窒素入口に設けられた廃窒素流量計33と、流量調整弁31の開度を制御する制御装置(図示せず)とを備えている。そして、制御装置は、原料空気流量計32と廃窒素流量計33の測定値に基づいて、回転式全熱交換器21を通過する原料空気と廃窒素の流量比が、予め実験的に求めておいた良好な全熱交換効率が得られる適切な流量比となるように、流量調整弁31の開度を制御する。   That is, in this embodiment, as shown in FIG. 1, a bypass circuit for allowing a part of the raw air to bypass the rotary total heat exchanger 21, and a flow rate adjustment provided on the bypass circuit A valve (two-way valve) 31, a raw material air flow meter 32 provided at the raw air outlet of the rotary total heat exchanger 21 to measure the flow rate of the raw air passing through the rotary total heat exchanger 21, In order to measure the flow rate of waste nitrogen passing through the rotary total heat exchanger 21, the opening degree of the waste nitrogen flow meter 33 provided at the waste nitrogen inlet of the rotary total heat exchanger 21 and the flow rate adjustment valve 31 is controlled. And a control device (not shown). Then, based on the measured values of the raw material air flow meter 32 and the waste nitrogen flow meter 33, the control device experimentally obtains in advance a flow rate ratio between the raw air passing through the rotary total heat exchanger 21 and the waste nitrogen. The opening degree of the flow rate adjusting valve 31 is controlled so as to obtain an appropriate flow rate ratio at which good total heat exchange efficiency is obtained.

なお、ここでは、バイパス回路上に流量調整弁(二方弁)31を設けているが、バイパス回路の起点に流量調整弁(三方弁)を設けるようにしてもよい。また、原料空気流量計32を回転式全熱交換器21の原料空気入口に設けるようにしてもよいし、廃窒素流量計33を回転式全熱交換器21の廃窒素出口に設けるようにしてもよい。   Here, the flow rate adjustment valve (two-way valve) 31 is provided on the bypass circuit, but a flow rate adjustment valve (three-way valve) may be provided at the starting point of the bypass circuit. Further, the raw material air flow meter 32 may be provided at the raw material air inlet of the rotary total heat exchanger 21, or the waste nitrogen flow meter 33 may be provided at the waste nitrogen outlet of the rotary total heat exchanger 21. Also good.

上記のようにして、この実施形態に係る深冷ガス分離システムにおいては、全熱交換効率の優れた回転式全熱交換器21を用いて原料空気と廃窒素の全熱交換を行うようにしているので、廃窒素からの低温排熱回収を効率良く行うことができる。また、廃窒素出口に送風機22を設けたことにより、廃窒素の原料空気側への混入を防止できる。さらに、回転式全熱交換器21における原料空気と廃窒素の流量比を適切な値となるように、回転式全熱交換器21を通過させる原料空気の量を調整しているので、より良好な全熱交換効率が得られる。その結果、原料空気圧縮機12の動力を大幅に低減することができる。   As described above, in the cryogenic gas separation system according to this embodiment, total heat exchange between the raw air and waste nitrogen is performed using the rotary total heat exchanger 21 having excellent total heat exchange efficiency. Therefore, low-temperature exhaust heat recovery from waste nitrogen can be performed efficiently. Moreover, by providing the blower 22 at the waste nitrogen outlet, it is possible to prevent waste nitrogen from being mixed into the raw material air side. Furthermore, since the amount of the raw material air that passes through the rotary total heat exchanger 21 is adjusted so that the flow rate ratio between the raw air and the waste nitrogen in the rotary total heat exchanger 21 becomes an appropriate value, it is better. High total heat exchange efficiency. As a result, the power of the raw material air compressor 12 can be significantly reduced.

例えば、この実施形態に係る深冷ガス分離システムにおいては、廃窒素流量50000Nm/h程度の場合、12℃の廃窒素により原料空気を予冷・除湿することで、廃窒素による原料空気の予冷・除湿を行わない場合に対する圧縮機動力の低減割合を、図3に示した従来の深冷ガス分離システムに比べて、約30%向上させることができる。 For example, in the cryogenic gas separation system according to this embodiment, when the waste nitrogen flow rate is about 50,000 Nm 3 / h, the raw air is precooled and dehumidified with waste nitrogen at 12 ° C. Compared with the conventional cryogenic gas separation system shown in FIG. 3, the reduction rate of the compressor power with respect to the case where dehumidification is not performed can be improved by about 30%.

本発明の一実施形態の説明図である。It is explanatory drawing of one Embodiment of this invention. 本発明の一実施形態において用いる回転式全熱交換器の説明図である。It is explanatory drawing of the rotary total heat exchanger used in one Embodiment of this invention. 従来技術の説明図である。It is explanatory drawing of a prior art. 従来技術において用いられる積層式全熱交換器の説明図である。It is explanatory drawing of the laminated | stacked total heat exchanger used in a prior art.

符号の説明Explanation of symbols

11 フィルタ
12 原料空気圧縮機
13 水洗塔
14 分子篩吸着器(MS吸着器)
15 熱交換器
16 膨張タービン
17 精留塔
17a 精留塔の低圧部
17b 精留塔の高圧部
18 流量調整装置
19 積層式全熱交換器
19a 波板
19b 隔壁
21 回転式全熱交換器
21a ローター
21c ケーシング
21b 仕切り板
22 送風機(混合防止ファン)
31 流量調整弁
32 原料空気流量計
33 廃窒素流量計
11 Filter 12 Raw material air compressor 13 Flushing tower 14 Molecular sieve adsorber (MS adsorber)
DESCRIPTION OF SYMBOLS 15 Heat exchanger 16 Expansion turbine 17 Rectification tower 17a Low pressure part of a rectification tower 17b High pressure part of a rectification tower 18 Flow control device 19 Laminated total heat exchanger 19a Corrugated plate 19b Bulkhead 21 Rotary total heat exchanger 21a Rotor 21c Casing 21b Partition plate 22 Blower (mixing prevention fan)
31 Flow control valve 32 Raw material air flow meter 33 Waste nitrogen flow meter

Claims (3)

空気を圧縮、精製、冷却して精留塔に導入し、液化精留分離を行って酸素または窒素を製造する深冷ガス分離システムにおいて、原料空気圧縮機の入口に原料空気と精留分離で発生した低温乾燥窒素ガスとを熱交換させる回転式全熱交換器を設けたことを特徴とする深冷ガス分離システム。   In a cryogenic gas separation system that compresses, purifies and cools air, introduces it into the rectification column, and produces oxygen or nitrogen by performing liquefied rectification separation, the raw air and rectification separation at the inlet of the raw material air compressor A cryogenic gas separation system comprising a rotary total heat exchanger for exchanging heat with generated low-temperature dry nitrogen gas. 回転式全熱交換器の窒素ガス出口に送風機を設けたことを特徴とする請求項1記載の深冷ガス分離システム。   The cryogenic gas separation system according to claim 1, wherein a blower is provided at a nitrogen gas outlet of the rotary total heat exchanger. 原料空気の一部が回転式全熱交換器を迂回するようにするためのバイパス回路と、該バイパス回路の起点または回路上に設けられた流量調整弁と、回転式全熱交換器を通過する原料空気の流量を測定するための原料空気流量計と、回転式全熱交換器を通過する低温乾燥窒素ガスの流量を測定するための窒素ガス流量計と、前記原料空気流量計と前記窒素ガス流量計の測定値に基づいて、回転式全熱交換器を通過する原料空気と低温乾燥窒素ガスとの流量比が所定の値になるように、前記流量調整弁の開度を制御する制御手段とを備えていることを特徴とする請求項1または2に記載の深冷ガス分離システム。   A bypass circuit for allowing a part of the raw air to bypass the rotary total heat exchanger, a flow regulating valve provided on the bypass circuit or on the circuit, and the rotary total heat exchanger. A raw material air flow meter for measuring the flow rate of raw material air, a nitrogen gas flow meter for measuring the flow rate of low-temperature dry nitrogen gas passing through the rotary total heat exchanger, the raw material air flow meter and the nitrogen gas Control means for controlling the opening degree of the flow rate adjusting valve so that the flow rate ratio of the raw material air passing through the rotary total heat exchanger and the low-temperature dry nitrogen gas becomes a predetermined value based on the measured value of the flow meter The cryogenic gas separation system according to claim 1 or 2, characterized by comprising:
JP2006081849A 2006-03-24 2006-03-24 Cryogenic gas separation system Pending JP2007255802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081849A JP2007255802A (en) 2006-03-24 2006-03-24 Cryogenic gas separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081849A JP2007255802A (en) 2006-03-24 2006-03-24 Cryogenic gas separation system

Publications (1)

Publication Number Publication Date
JP2007255802A true JP2007255802A (en) 2007-10-04

Family

ID=38630220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081849A Pending JP2007255802A (en) 2006-03-24 2006-03-24 Cryogenic gas separation system

Country Status (1)

Country Link
JP (1) JP2007255802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123203A (en) * 2013-02-22 2013-05-29 河南开元空分集团有限公司 Method of preparing pure nitrogen by using exhaust gas with nitrogen to carry out once-more cryogenic distillation

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105841A (en) * 1978-02-07 1979-08-20 Sumitomo Metal Ind Ltd Regenerative heat control method of dry blown air dehumidifier
JPS62180271U (en) * 1986-04-24 1987-11-16
JPH03178368A (en) * 1989-12-07 1991-08-02 Trinity Ind Corp Controlling method for airing of coating booth with air supply means
JPH07144114A (en) * 1993-11-26 1995-06-06 Kawasaki Steel Corp Device for shortening regeneration time of pretreatment adsorber for feed air used for air liquefying separator
JPH07163828A (en) * 1993-12-14 1995-06-27 Matsui Mfg Co Dehumidification drying device
JPH09133461A (en) * 1995-11-09 1997-05-20 Nippon Sanso Kk Method and apparatus for removing water and carbon dioxide
JPH09159254A (en) * 1995-12-06 1997-06-20 Hitachi Ltd Operation control for air conditioner
JPH10267527A (en) * 1997-03-25 1998-10-09 Nkk Corp Material air dehumidifying and cooling system for material air muiltistage compressor
JPH10267526A (en) * 1997-03-25 1998-10-09 Nkk Corp Material air dehumidifying and cooling system for material air multistage compressor and its method
JP2000237524A (en) * 1999-02-23 2000-09-05 Takasago Thermal Eng Co Ltd Wet dehumidifying system
JP2001179034A (en) * 1999-12-22 2001-07-03 Flair Japan Inc Drying equipment for air or gas
JP2003207267A (en) * 2002-01-16 2003-07-25 Jfe Steel Kk Air separator
JP2003210929A (en) * 2002-01-22 2003-07-29 Hitachi Plant Eng & Constr Co Ltd Dehumidifier

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105841A (en) * 1978-02-07 1979-08-20 Sumitomo Metal Ind Ltd Regenerative heat control method of dry blown air dehumidifier
JPS62180271U (en) * 1986-04-24 1987-11-16
JPH03178368A (en) * 1989-12-07 1991-08-02 Trinity Ind Corp Controlling method for airing of coating booth with air supply means
JPH07144114A (en) * 1993-11-26 1995-06-06 Kawasaki Steel Corp Device for shortening regeneration time of pretreatment adsorber for feed air used for air liquefying separator
JPH07163828A (en) * 1993-12-14 1995-06-27 Matsui Mfg Co Dehumidification drying device
JPH09133461A (en) * 1995-11-09 1997-05-20 Nippon Sanso Kk Method and apparatus for removing water and carbon dioxide
JPH09159254A (en) * 1995-12-06 1997-06-20 Hitachi Ltd Operation control for air conditioner
JPH10267527A (en) * 1997-03-25 1998-10-09 Nkk Corp Material air dehumidifying and cooling system for material air muiltistage compressor
JPH10267526A (en) * 1997-03-25 1998-10-09 Nkk Corp Material air dehumidifying and cooling system for material air multistage compressor and its method
JP2000237524A (en) * 1999-02-23 2000-09-05 Takasago Thermal Eng Co Ltd Wet dehumidifying system
JP2001179034A (en) * 1999-12-22 2001-07-03 Flair Japan Inc Drying equipment for air or gas
JP2003207267A (en) * 2002-01-16 2003-07-25 Jfe Steel Kk Air separator
JP2003210929A (en) * 2002-01-22 2003-07-29 Hitachi Plant Eng & Constr Co Ltd Dehumidifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123203A (en) * 2013-02-22 2013-05-29 河南开元空分集团有限公司 Method of preparing pure nitrogen by using exhaust gas with nitrogen to carry out once-more cryogenic distillation
CN103123203B (en) * 2013-02-22 2015-03-04 河南开元空分集团有限公司 Method of preparing pure nitrogen by using exhaust gas with nitrogen to carry out once-more cryogenic distillation

Similar Documents

Publication Publication Date Title
KR101939416B1 (en) Systems and methods for air dehumidification and sensible cooling using a multiple stage pump
EP1722881B1 (en) Process for producing purified compressed gas and adsorbent wheel system
KR101939417B1 (en) System and method for efficient air dehumidification and liquid recovery with evaporative cooling
Allam Improved oxygen production technologies
US7449054B2 (en) Air purification system with regenerative purification units
WO2018233274A1 (en) Aircraft environmental control and fuel tank inerting coupling system based on membrane separation method
EP0362436A1 (en) Improved membrane separation system and process
CA2931300C (en) A rtsa method using adsorbent structure for co2 capture from low pressure and low concentration sources
JP2023535134A (en) Equipment and membrane processes for the separation of methane and carbon dioxide from gas streams
JP4782380B2 (en) Air separation device
US20220065530A1 (en) System and method for separating air gases at low pressure
US20220196326A1 (en) Plant and process for aerial gas separation using a parallelepipedal adsorber
JP5303143B2 (en) How to prepare clean room exhaust to ultra high purity air
JP2011041921A (en) Air dehumidifier, gas dehumidifier, and method of dehumidifying gas
JP2007255802A (en) Cryogenic gas separation system
CN102826509A (en) Equipment for purifying general hydrogen gas into high-purity hydrogen gas
JP5570717B2 (en) Operation method of dry dehumidifier
JP6415972B2 (en) Mixed gas purifier
JP2022029786A (en) Air separation device and production method of oxygen and/or nitrogen
JP3304810B2 (en) Feed air dehumidification and cooling system in feed air multistage compressor
JP3841792B2 (en) Pretreatment method in air separation apparatus and apparatus used therefor
JPH0584418A (en) Pretreatment of air separator and equipment therefor
JPH01143626A (en) Method for dehumidifying gas
JPH10170145A (en) Nitrogen gas production method
JPH03194381A (en) Method and apparatus for manufacturing nitrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090203

A977 Report on retrieval

Effective date: 20100521

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Effective date: 20101019

Free format text: JAPANESE INTERMEDIATE CODE: A02