JP2007255787A - Heating and cooling furnace and heating and cooling furnace of clad material manufacturing equipment - Google Patents

Heating and cooling furnace and heating and cooling furnace of clad material manufacturing equipment Download PDF

Info

Publication number
JP2007255787A
JP2007255787A JP2006080457A JP2006080457A JP2007255787A JP 2007255787 A JP2007255787 A JP 2007255787A JP 2006080457 A JP2006080457 A JP 2006080457A JP 2006080457 A JP2006080457 A JP 2006080457A JP 2007255787 A JP2007255787 A JP 2007255787A
Authority
JP
Japan
Prior art keywords
cooling
heating
furnace
cooling gas
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006080457A
Other languages
Japanese (ja)
Inventor
Hiromoto Ono
博基 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2006080457A priority Critical patent/JP2007255787A/en
Publication of JP2007255787A publication Critical patent/JP2007255787A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating and cooling furnace, restraining the total length of the furnace from getting longer and longer. <P>SOLUTION: This heating and cooling furnace 6 includes a furnace body, which is sequentially disposing a heating part 13 having a heating means 12 and a cooling part 15 having a cooling means 14 in order from an inlet 36 to the inside of the furnace for clad material 5 as a processing object toward an outlet 38 to the outside of the furnace, wherein the furnace further includes a reducing gas circulating device 39 as a cooling gas circulating means for cooling the cooling gas of the cooling part 15 while it is forcibly circulated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、加熱冷却炉及びクラッド材製造設備の加熱冷却炉に関するものである。   The present invention relates to a heating / cooling furnace and a heating / cooling furnace of a clad material manufacturing facility.

近年、例えば、母材であるステンレス或は耐熱合金等の金属板の両面又は片面に、ニッケル等を主成分とする金属粉末を圧着してロウ材層を形成したクラッド材を製造することが行なわれるようになっており、このようなクラッド材を製造する際には、図2に示されるような設備を使用することが提案されている。   In recent years, for example, a clad material in which a brazing material layer is formed by pressing a metal powder mainly composed of nickel or the like on both surfaces or one surface of a metal plate such as stainless steel or a heat-resistant alloy as a base material has been performed. When manufacturing such a clad material, it has been proposed to use equipment as shown in FIG.

図2に示されるクラッド材製造設備は、母材1が巻き取られた母材コイル2を巻き戻す母材巻戻機3と、該母材巻戻機3によって母材コイル2から巻き戻された母材1の表面に金属粉末を圧着する粉末圧着機4と、該粉末圧着機4で母材1に金属粉末が圧着されたクラッド材5を加熱して金属粉末を熱処理させた後、冷却する加熱冷却炉6´と、該加熱冷却炉6´で金属粉末を熱処理させたクラッド材5を圧延する圧延機7と、該圧延機7で圧延されたクラッド材5をクラッド材コイル8として巻き取るクラッド材巻取機9とを備えてなる構成を有している。   The clad material manufacturing facility shown in FIG. 2 is rewound from the base material coil 2 by the base material unwinding machine 3 for rewinding the base material coil 2 on which the base material 1 is wound up. The powder pressure bonding machine 4 for pressure bonding the metal powder to the surface of the base material 1 and the clad material 5 with the metal powder pressure bonded to the base material 1 by the powder pressure bonding machine 4 are heated to heat-treat the metal powder, and then cooled. A heating / cooling furnace 6 ′, a rolling machine 7 for rolling the clad material 5 obtained by heat-treating the metal powder in the heating / cooling furnace 6 ′, and a clad material 5 rolled by the rolling machine 7 as a clad material coil 8. The clad material winder 9 is provided.

前記粉末圧着機4は、回転自在となるよう水平配置された二本のロール10と、該各ロール10上に金属粉末を供給する粉末供給装置11とを備え、前記二本のロール10間に上方から下方へ向け母材1を導入しつつ、前記粉末供給装置11から各ロール10上に金属粉末を供給して、該各ロール10を回転させることにより、前記母材1の両面に金属粉末を圧着させるようになっている。   The powder crimping machine 4 includes two rolls 10 that are horizontally arranged so as to be rotatable, and a powder supply device 11 that supplies metal powder onto the rolls 10, and between the two rolls 10. While introducing the base material 1 from the upper side to the lower side, the metal powder is supplied onto the rolls 10 from the powder supply device 11, and the rolls 10 are rotated so that the metal powder is applied to both surfaces of the base material 1. Is to be crimped.

前記加熱冷却炉6´においては、金属粉末を溶かさずに焼結させる固相焼結や、金属粉末を溶かして(液相を出して)焼結させる液相焼結等、金属粉末の熱処理を行い、その後、冷却を行うようになっている。   In the heating / cooling furnace 6 ', heat treatment of the metal powder such as solid phase sintering in which the metal powder is sintered without melting, or liquid phase sintering in which the metal powder is melted (to give a liquid phase) is performed. After that, cooling is performed.

尚、前述の如きクラッド材製造設備と関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。
特開2005−186127号公報
For example, Patent Document 1 shows a general technical level related to the clad material manufacturing equipment as described above.
JP 2005-186127 A

しかしながら、図2に示されるクラッド材製造設備のように、加熱冷却炉6´を水平方向へ延びるよう配置するのでは、金属粉末が圧着された母材1を、その張力を調整しつつ非接触のまま通過させることが困難になると共に、生産性を高めるために母材1の送り速度を上げようとした場合、熱処理後のクラッド層の冷却時間を確保するために、加熱冷却炉6´の特に冷却部の長さを延長せざるを得ず、設備の全長が長くなるという欠点を有していた。   However, when the heating / cooling furnace 6 ′ is arranged so as to extend in the horizontal direction as in the clad material manufacturing facility shown in FIG. 2, the base material 1 to which the metal powder is pressure bonded is not contacted while adjusting its tension. In order to increase the feed rate of the base material 1 in order to increase productivity, in order to ensure the cooling time of the clad layer after the heat treatment, In particular, the length of the cooling section had to be extended, and the entire length of the equipment was long.

しかも、設備の全長が長くなると、クラッド材の製造開始時に、母材を加熱冷却炉6´の内部に通してクラッド材巻取機9に巻き取るセッティングの作業に手間と時間がかかる一方、ロウ材層が形成されない未加工部が長くなり、スクラップとして廃棄処分しなければならない部分が増え、歩留まりが悪くなるという不具合もあった。   In addition, when the total length of the equipment is increased, it takes time and labor to perform the setting work of passing the base material through the heating / cooling furnace 6 'and winding it on the clad material winder 9 at the start of production of the clad material. There was also a problem that the unprocessed part where the material layer was not formed became longer, the part that had to be discarded as scrap increased, and the yield deteriorated.

尚、前述の如きクラッド材製造設備の加熱冷却炉に限らず、母材1の表面に金属粉末を圧着したクラッド材以外の処理対象物を連続的に加熱処理するための加熱冷却炉においても、炉全長が長くなることは好ましいことではなかった。   In addition to the heating and cooling furnace of the clad material manufacturing equipment as described above, also in the heating and cooling furnace for continuously heating the object to be processed other than the clad material in which the metal powder is pressure-bonded to the surface of the base material 1, Increasing the length of the furnace was not preferable.

本発明は、斯かる実情に鑑み、炉全長の長大化を抑えることができる加熱冷却炉を提供すると共に、張力の調整等を考慮せずに金属粉末が圧着された母材を非接触のまま通過させることができ、クラッド材の品質を向上し得、更に、設備全長の長大化を抑えることができ、製造開始時におけるセッティング作業の高効率化並びに歩留まりの向上を図り得るクラッド材製造設備の加熱冷却炉を提供しようとするものである。   In view of such circumstances, the present invention provides a heating / cooling furnace capable of suppressing an increase in the length of the entire furnace, and a base material to which a metal powder is pressure-bonded without considering tension adjustment or the like is kept in a non-contact state. It is possible to improve the quality of the cladding material that can be passed through, and further suppress the increase in the overall length of the facility, and improve the efficiency of the setting work at the start of production and improve the yield. An attempt is made to provide a heating and cooling furnace.

本発明は、処理対象物を連続的に加熱処理するための加熱冷却炉であって、
加熱手段を有する加熱部と、冷却手段を有する冷却部とを、処理対象物の炉内への導入口から炉外への導出口へ向けて順次配置してなる炉本体を備え、
前記加熱部で加熱処理された前記処理対象物を冷却するために、炉内の処理対象物が搬送される内部通路に、前記冷却部から前記加熱部に向かう方向へ冷却ガスを流通させる冷却ガス通路を備え、
前記冷却部で前記冷却ガス通路の冷却ガスを強制循環させつつ冷却可能な冷却ガス循環手段を備えたことを特徴とする加熱冷却炉にかかるものである。
The present invention is a heating and cooling furnace for continuously heating a processing object,
A furnace body comprising a heating unit having a heating unit and a cooling unit having a cooling unit, which are sequentially arranged from an inlet to the furnace to an outlet to the outside of the processing object,
A cooling gas that circulates a cooling gas in a direction from the cooling unit toward the heating unit in an internal passage through which the processing target in the furnace is transported in order to cool the processing target that has been heat-treated in the heating unit. With a passage,
The present invention is directed to a heating and cooling furnace comprising a cooling gas circulation means capable of cooling while cooling the cooling gas in the cooling gas passage in the cooling section.

前記加熱冷却炉においては、前記冷却部の冷却ガス通路の外周側に、前記処理対象物を冷却することで昇温した冷却ガスを冷却するための冷却手段を備えることができる。   In the heating and cooling furnace, cooling means for cooling the cooling gas heated by cooling the processing object can be provided on the outer peripheral side of the cooling gas passage of the cooling unit.

前記加熱冷却炉においては、前記冷却ガスは、前記加熱部での加熱処理に必要なガスであり、
前記冷却部では処理対象物から冷却ガスへの熱伝達による処理対象物の冷却を促進し、前記加熱部では処理対象物から冷却ガスへの熱伝達による処理対象物の冷却を抑制するために、前記冷却ガス通路の冷却部での流路断面積が前記冷却ガス通路の加熱部での流路断面積より小さくなるようにすることができ、このようにすると、前記冷却部では、冷却ガスの流速が上がって、処理対象物から冷却ガスへの熱伝達による処理対象物の冷却が促進され、加熱部では、冷却ガスの流速が下がって、処理対象物から冷却ガスへの熱伝達による処理対象物の冷却が抑制され、処理対象物の加熱が効果的に行われるようになる。
In the heating and cooling furnace, the cooling gas is a gas necessary for heat treatment in the heating unit,
The cooling unit promotes cooling of the processing object by heat transfer from the processing object to the cooling gas, and the heating unit suppresses cooling of the processing object by heat transfer from the processing object to the cooling gas. The flow passage cross-sectional area at the cooling portion of the cooling gas passage can be made smaller than the flow passage cross-sectional area at the heating portion of the cooling gas passage, and in this way, the cooling portion The flow rate is increased and cooling of the processing object by heat transfer from the processing object to the cooling gas is promoted. In the heating unit, the cooling gas flow rate is decreased and the processing object by heat transfer from the processing object to the cooling gas is performed. Cooling of the object is suppressed, and the object to be processed is effectively heated.

前記加熱冷却炉においては、前記冷却部の冷却ガス通路の内側に、前記冷却ガスの流れを乱し前記処理対象物から冷却ガスへの熱伝達及び冷却ガスから冷却ガス通路の壁面への熱伝達を促進するための強制対流熱伝達促進部材を配設することができ、このようにすると、冷却部の冷却ガス通路としての内部通路を流れる冷却ガスは、強制対流熱伝達促進部材により流れが乱され、処理対象物から冷却ガスへの熱伝達及び冷却ガスから冷却ガス通路の壁面への熱伝達が促進され、熱処理後の処理対象物の冷却がより効率良く行われることとなる。   In the heating and cooling furnace, heat flow from the processing object to the cooling gas and heat transfer from the cooling gas to the wall surface of the cooling gas passage are disturbed inside the cooling gas passage of the cooling section. The forced convection heat transfer promoting member for promoting the cooling can be disposed, and in this way, the flow of the cooling gas flowing through the internal passage as the cooling gas passage of the cooling section is disturbed by the forced convection heat transfer promoting member. Thus, heat transfer from the processing object to the cooling gas and heat transfer from the cooling gas to the wall surface of the cooling gas passage are promoted, and the processing object after the heat treatment is cooled more efficiently.

前記加熱冷却炉においては、前記加熱部と冷却部との境界部近傍に、該冷却部から加熱部への冷却ガスの流通を抑える抵抗部材を配設することが、冷却部の冷却ガス通路としての内部通路において冷却ガスを強制循環させる上でより好ましい。   In the heating and cooling furnace, a resistance member that suppresses the flow of the cooling gas from the cooling unit to the heating unit is disposed near the boundary between the heating unit and the cooling unit as a cooling gas passage of the cooling unit. It is more preferable to forcibly circulate the cooling gas in the internal passage.

前記加熱冷却炉においては、前記処理対象物は母材の表面に金属粉末を圧着したクラッド材であり、前記冷却ガスは還元ガスであるようにすることができる。   In the heating / cooling furnace, the object to be treated may be a clad material in which a metal powder is pressure bonded to the surface of a base material, and the cooling gas may be a reducing gas.

又、本発明は、母材の表面に金属粉末が圧着された処理対象物を加熱部で熱処理した後、冷却部で冷却するクラッド材製造設備の加熱冷却炉であって、
加熱手段を有する加熱部と、冷却手段を有する冷却部とを上下に配置してなる炉本体を備え、該炉本体の内部通路に対し、金属粉末が圧着された母材を上方から下方へ向けて通過させるよう構成したことを特徴とするクラッド材製造設備の加熱冷却炉にかかるものである。
Further, the present invention is a heating and cooling furnace of a clad material manufacturing facility in which a processing object having a metal powder pressed onto the surface of a base material is heat-treated in a heating part and then cooled in a cooling part,
A furnace body comprising a heating part having a heating means and a cooling part having a cooling means is arranged vertically, and the base material on which the metal powder is pressure-bonded to the internal passage of the furnace body is directed from above to below. It is applied to a heating / cooling furnace of a clad material manufacturing facility characterized by being configured to pass through.

前述の如く構成すると、金属粉末が圧着された母材を、その張力を調整することなく非接触のまま、加熱手段を有する加熱部と、冷却手段を有する冷却部とを通過させ、ロウ材層の熱処理と冷却とを行うことが可能となり、クラッド材のロウ材層に傷がついたりする心配もない。   When configured as described above, the brazing material layer is made to pass through the heating part having the heating means and the cooling part having the cooling means through the base material to which the metal powder is pressure-bonded without adjusting the tension, without contact. It is possible to perform the heat treatment and cooling, and there is no fear of scratching the brazing material layer of the clad material.

前記クラッド材製造設備の加熱冷却炉においては、前記加熱部で加熱処理された前記処理対象物を冷却するために、炉内の処理対象物が搬送される内部通路に、前記冷却部から前記加熱部に向かう方向へ冷却ガスを流通させる冷却ガス通路を備え、
前記冷却部では処理対象物から冷却ガスへの熱伝達による処理対象物の冷却を促進し、前記加熱部では処理対象物から冷却ガスへの熱伝達による処理対象物の冷却を抑制するために、前記冷却ガス通路の冷却部での流路断面積が前記冷却ガス通路の加熱部での流路断面積より小さくなるようにすることができ、このようにすると、前記冷却部では、冷却ガスの流速が上がって、処理対象物としてのクラッド材から冷却ガスへの熱伝達によるクラッド材の冷却が促進され、加熱部では、冷却ガスの流速が下がって、処理対象物としてのクラッド材から冷却ガスへの熱伝達によるクラッド材の冷却が抑制され、クラッド材の加熱が効果的に行われ、生産性を高めるために母材の送り速度を上げようとした場合にも、冷却部の長さを延長しなくて済み、設備の全長が長くならず、この結果、クラッド材の製造開始時に、母材を加熱冷却炉の内部に通してクラッド材巻取機に巻き取るセッティングの作業が楽に行える一方、ロウ材層が形成されない未加工部が短くなり、スクラップとして廃棄処分しなければならない部分が減り、歩留まりも良くなる。
In the heating / cooling furnace of the clad material manufacturing facility, in order to cool the processing object heat-treated in the heating unit, the heating part is supplied from the cooling unit to an internal passage through which the processing object in the furnace is conveyed. A cooling gas passage for circulating the cooling gas in the direction toward the part,
The cooling unit promotes cooling of the processing object by heat transfer from the processing object to the cooling gas, and the heating unit suppresses cooling of the processing object by heat transfer from the processing object to the cooling gas. The flow passage cross-sectional area at the cooling portion of the cooling gas passage can be made smaller than the flow passage cross-sectional area at the heating portion of the cooling gas passage, and in this way, the cooling portion Cooling of the clad material by heat transfer from the clad material as the processing target to the cooling gas is promoted, and the cooling gas flow rate is lowered in the heating unit to reduce the cooling gas from the clad material as the processing target. Even if the cooling of the clad material due to heat transfer to is suppressed, the clad material is effectively heated, and the feed rate of the base material is increased in order to increase productivity, the length of the cooling part is reduced. No need to extend The overall length of the equipment does not increase. As a result, when starting production of the clad material, the setting work of winding the base material through the heating / cooling furnace and winding it on the clad material winder can be performed easily, while the brazing material layer The unprocessed part that is not formed is shortened, the part that must be discarded as scrap is reduced, and the yield is improved.

又、前記クラッド材製造設備の加熱冷却炉においては、前記冷却ガス通路の上方から下方に向けて流路断面積が小さくなる部分の内壁面を滑らかに変化させるようにすることが、処理対象物としてのクラッド材を、途中で引っ掛かったりさせずに上から下へスムーズに下ろす上で有効となる。   Further, in the heating / cooling furnace of the clad material manufacturing facility, it is possible to smoothly change the inner wall surface of the portion where the channel cross-sectional area becomes smaller from the upper side to the lower side of the cooling gas passage. This is effective for smoothly lowering the clad material from top to bottom without being caught on the way.

本発明の加熱冷却炉によれば、炉全長の長大化を抑えることができ、又、本発明のクラッド材製造設備の加熱冷却炉によれば、張力の調整等を考慮せずに金属粉末が圧着された母材を非接触のまま通過させることができ、クラッド材の品質を向上し得、更に、設備全長の長大化を抑えることができ、製造開始時におけるセッティング作業の高効率化並びに歩留まりの向上を図り得るという優れた効果を奏し得る。   According to the heating and cooling furnace of the present invention, it is possible to suppress the lengthening of the entire length of the furnace, and according to the heating and cooling furnace of the clad material manufacturing facility of the present invention, the metal powder can be formed without considering tension adjustment or the like. The crimped base material can be passed through without contact, improving the quality of the clad material, further reducing the overall length of the equipment, increasing the efficiency of the setting work at the start of production, and the yield. It is possible to achieve an excellent effect that improvement of the above can be achieved.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の一例であって、図中、図2と同一の符号を付した部分は同一物を表わしており、基本的な構成は図2に示すものと同様であるが、本図示例の特徴とするところは、図1に示す如く、加熱手段12を有する加熱部13と、冷却手段14を有する冷却部15とを上下に配置してなる炉本体16を備え、該炉本体16の内部通路17に対し、処理対象物として金属粉末が圧着された母材1を上方から下方へ向けて通過させるようにして、竪型の加熱冷却炉6を構成した点にある。   FIG. 1 is an example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 2 denote the same components, and the basic configuration is the same as that shown in FIG. However, as shown in FIG. 1, the feature of the illustrated example includes a furnace body 16 in which a heating unit 13 having a heating unit 12 and a cooling unit 15 having a cooling unit 14 are arranged vertically, The vertical heating / cooling furnace 6 is configured such that the base material 1 to which the metal powder is pressure-bonded as an object to be processed is passed from the upper side to the lower side through the internal passage 17 of the furnace body 16. .

前記加熱手段12は、加熱部13の内部通路17の外周を取り囲むように形成された加熱空間18内に電熱線19を配設してなる構成を有し、前記冷却手段14は、冷却部15の内部通路17の外周を取り囲むように形成された冷却空間20内に、冷却水等の冷却媒体を、冷却媒体循環装置21により循環させるようにしてなる構成を有している。   The heating unit 12 has a configuration in which a heating wire 19 is disposed in a heating space 18 formed so as to surround the outer periphery of the internal passage 17 of the heating unit 13, and the cooling unit 14 includes the cooling unit 15. In the cooling space 20 formed so as to surround the outer periphery of the internal passage 17, a cooling medium such as cooling water is circulated by the cooling medium circulation device 21.

前記加熱冷却炉6の炉本体16は、門形に組まれた架台22に吊り下げると共に、ターンバックル23とダンパーバネ機構24とからなる支持部材25によって、炉本体16の下部を架台22と連結し、熱による伸びを吸収しつつ炉本体16を支持するようにしてある。   The furnace body 16 of the heating / cooling furnace 6 is suspended from a gantry 22 assembled in a gate shape, and the lower part of the furnace body 16 is connected to the gantry 22 by a support member 25 including a turnbuckle 23 and a damper spring mechanism 24. The furnace body 16 is supported while absorbing the elongation due to heat.

前記加熱冷却炉6の炉本体16の内部通路17の流路断面積は、下方から上方へ向け段階的に増加させ、冷却ガス供給手段としての還元ガス供給装置26から供給される冷却ガスとしての還元ガスを、冷却部15の下に設けられた還元ガス供給部27に導入し、該還元ガス供給部27に導入された還元ガスを連通孔28を介して内部通路17へ流入させ、該内部通路17を冷却ガス通路とし、大部分の還元ガスを冷却ガス通路としての内部通路17内で上昇させ、上端の排気ダクト29から誘引通風機30(IDF)を経て煙突31から大気放出させると共に、それ以外の残りの還元ガスを冷却ガス通路としての内部通路17内で下降させ、下端の排気ダクト32から誘引通風機33(IDF)を経て前記煙突31から大気放出させるようにし、これにより、前記冷却部15では、冷却ガスとしての還元ガスの流速を上げて、処理対象物としてのクラッド材5から還元ガスへの熱伝達によるクラッド材5の冷却を促進し、加熱部13では、還元ガスの流速を下げて、処理対象物としてのクラッド材5から還元ガスへの熱伝達によるクラッド材5の冷却を抑制するようにしてある。尚、下端の排気ダクト32への冷却ガスの流量を出来るだけ少なくし、前記加熱部13に出来るだけ冷却ガスを導くためには、前記冷却部15の処理対象物の導出口38近傍の前記内部通路17の流路断面積が最も小さくなっていることが好ましい。又、前記処理対象物としてのクラッド材5を、前記内部通路17途中で引っ掛かったりさせずに上から下へスムーズに下ろすために、前記内部通路17の上方から下方に向けて流路断面積が小さくなる部分の内壁面は滑らかに変化させるようにしてある。   The flow passage cross-sectional area of the internal passage 17 of the furnace body 16 of the heating / cooling furnace 6 is increased stepwise from the bottom to the top, and is used as a cooling gas supplied from a reducing gas supply device 26 as a cooling gas supply means. The reducing gas is introduced into a reducing gas supply unit 27 provided below the cooling unit 15, and the reducing gas introduced into the reducing gas supply unit 27 is caused to flow into the internal passage 17 through the communication hole 28. The passage 17 is a cooling gas passage, most of the reducing gas is raised in the internal passage 17 as a cooling gas passage, and is released from the chimney 31 through the induction ventilator 30 (IDF) from the upper exhaust duct 29 to the atmosphere. The remaining reducing gas other than that is lowered in the internal passage 17 as a cooling gas passage, and discharged from the chimney 31 through the induction duct 33 (IDF) from the exhaust duct 32 at the lower end. Thus, the cooling unit 15 increases the flow rate of the reducing gas as the cooling gas, promotes the cooling of the cladding material 5 by heat transfer from the cladding material 5 as the processing object to the reducing gas, and the heating unit 13. Then, the flow rate of the reducing gas is lowered to suppress the cooling of the cladding material 5 due to heat transfer from the cladding material 5 as the processing object to the reducing gas. In order to reduce the flow rate of the cooling gas to the exhaust duct 32 at the lower end as much as possible and guide the cooling gas to the heating unit 13 as much as possible, the inside of the cooling unit 15 in the vicinity of the outlet 38 for the object to be processed is provided. It is preferable that the channel cross-sectional area of the passage 17 is the smallest. Further, in order to smoothly drop the clad material 5 as the object to be processed from the top to the bottom without being caught in the middle of the internal passage 17, the cross-sectional area of the flow passage is directed from the top to the bottom of the internal passage 17. The inner wall surface of the smaller portion is changed smoothly.

本図示例の場合、前記排気ダクト29,32内の圧力と大気圧との差圧を差圧計34,35で検出し、該差圧計34,35で検出された差圧に応じて誘引通風機30,33の駆動を制御するようにしてあるが、煙突効果だけで還元ガスを排気できる場合には、誘引通風機30,33は必ずしも設けなくても良い。又、前記還元ガス供給装置26から供給される還元ガスの一部は、金属粉末が圧着された母材1の加熱冷却炉6への導入口36における遮熱とガスカーテンとを兼ねるシール用として、シールノズル37から噴出させるようにしてある。尚、前記金属粉末が圧着された母材1の加熱冷却炉6からの導出口38には、前記導入口36に配置したようなシールノズル37を特に設けておらず、差圧によって大気が吸い込まれるようにしてあるが、前述と同様のシールノズル37を配置しても良いことは言うまでもない。   In the case of the illustrated example, the differential pressure between the pressure in the exhaust ducts 29 and 32 and the atmospheric pressure is detected by the differential pressure gauges 34 and 35, and the induction fan according to the differential pressure detected by the differential pressure gauges 34 and 35. Although the drive of 30 and 33 is controlled, when the reducing gas can be exhausted only by the chimney effect, the induction ventilators 30 and 33 are not necessarily provided. Further, a part of the reducing gas supplied from the reducing gas supply device 26 is used for sealing that serves both as a heat shield and a gas curtain at the inlet 36 to the heating / cooling furnace 6 of the base material 1 to which the metal powder is pressure bonded. The nozzle is ejected from the seal nozzle 37. Note that the outlet 38 from the heating / cooling furnace 6 of the base material 1 to which the metal powder has been pressed is not particularly provided with a seal nozzle 37 as disposed at the inlet 36, and the atmosphere is sucked in by the differential pressure. Needless to say, a seal nozzle 37 similar to that described above may be disposed.

一方、前記冷却部15には、該冷却部15の冷却ガス通路としての内部通路17において冷却ガスとしての還元ガスを強制循環させつつ冷却可能な還元ガス循環装置39(冷却ガス循環手段)を設けるようにしてある。該冷却ガス循環手段としての還元ガス循環装置39は、冷却部15における冷却ガス通路としての内部通路17下部に還元ガスの流入口40を設け、冷却部15における冷却ガス通路としての内部通路17上部に還元ガスの流出口41を設け、前記流入口40と流出口41に還元ガス循環ライン42を接続し、該還元ガス循環ライン42途中に、還元ガスを強制循環させる還元ガス再循環通風機43(GRF)と、温度上昇した還元ガスを冷却する熱交換器44とを設けてなる構成を有している。   On the other hand, the cooling section 15 is provided with a reducing gas circulation device 39 (cooling gas circulation means) capable of cooling while forcibly circulating a reducing gas as a cooling gas in an internal passage 17 serving as a cooling gas passage of the cooling section 15. It is like that. The reducing gas circulation device 39 as the cooling gas circulation means is provided with a reducing gas inlet 40 at the lower portion of the internal passage 17 as the cooling gas passage in the cooling portion 15, and the upper portion of the internal passage 17 as the cooling gas passage in the cooling portion 15. A reducing gas recirculation ventilator 43 for forcibly circulating a reducing gas in the middle of the reducing gas circulation line 42 is provided with a reducing gas outlet 41 connected to the inlet 40 and the outlet 41. (GRF) and a heat exchanger 44 for cooling the reducing gas whose temperature has risen.

更に、前記冷却部15の冷却ガス通路としての内部通路17内側には、冷却ガスとしての還元ガスの流れを乱し前記処理対象物としてのクラッド材5から還元ガスへの熱伝達及び還元ガスから冷却ガス通路としての内部通路17の壁面への熱伝達を促進するための強制対流熱伝達促進部材45を配設し、前記加熱部13と冷却部15との境界部近傍には、該冷却部15から加熱部13への還元ガスの流通を抑える抵抗部材46を配設するようにしてある。前記強制対流熱伝達促進部材45は、内部通路17と冷却空間20とを仕切る壁の内部通路17側に突出するよう多数取り付けられた伝熱フィンの如き板材によって形成し、又、前記抵抗部材46は、流出口41より上側における内部通路17の流路断面積を絞るように設けられた板材によって形成してある。   Further, inside the internal passage 17 as the cooling gas passage of the cooling unit 15, the flow of the reducing gas as the cooling gas is disturbed, and the heat transfer from the cladding material 5 as the processing object to the reducing gas and the reducing gas A forced convection heat transfer promoting member 45 for promoting heat transfer to the wall surface of the internal passage 17 serving as a cooling gas passage is disposed, and in the vicinity of the boundary between the heating unit 13 and the cooling unit 15, the cooling unit A resistance member 46 that suppresses the flow of the reducing gas from 15 to the heating unit 13 is provided. The forced convection heat transfer promotion member 45 is formed of a plate material such as a heat transfer fin that is attached in large numbers so as to protrude toward the internal passage 17 of the wall that partitions the internal passage 17 and the cooling space 20, and the resistance member 46. Is formed of a plate material provided so as to reduce the flow path cross-sectional area of the internal passage 17 above the outlet 41.

次に、上記図示例の作用を説明する。   Next, the operation of the illustrated example will be described.

前述の如く加熱冷却炉6を竪型に構成すると、金属粉末が圧着された母材1を、その張力を調整することなく非接触のまま、加熱手段12を有する加熱部13と、冷却手段14を有する冷却部15とを通過させ、ロウ材層の熱処理と冷却とを行うことが可能となり、クラッド材5のロウ材層に傷がついたりする心配もない。   When the heating / cooling furnace 6 is configured in a vertical shape as described above, the heating unit 13 having the heating unit 12 and the cooling unit 14 are kept in contact with the base material 1 to which the metal powder is pressed without adjusting the tension. Therefore, the brazing material layer can be heat-treated and cooled, and there is no fear of the brazing material layer of the clad material 5 being damaged.

前記加熱冷却炉6においては、炉本体16を門形に組まれた架台22に吊り下げるようにしてあるため、炉本体16の熱による伸びは下方へ逃がすことが可能となる。しかも、前記炉本体16の下部は、ターンバックル23とダンパーバネ機構24とからなる支持部材25によって架台22と連結してあるため、熱による伸びを吸収しつつ炉本体16を安定して支持することができる。   In the heating / cooling furnace 6, the furnace body 16 is suspended from a gantry 22 that is assembled in a gate shape, so that the heat elongation of the furnace body 16 can be released downward. In addition, since the lower part of the furnace body 16 is connected to the gantry 22 by a support member 25 including a turnbuckle 23 and a damper spring mechanism 24, the furnace body 16 is stably supported while absorbing heat expansion. be able to.

前記加熱冷却炉6の炉本体16の内部通路17の流路断面積は、下方から上方へ向け段階的に増加させているため、冷却ガス供給手段としての還元ガス供給装置26から供給されて冷却部15の下に設けられた還元ガス供給部27に導入された冷却ガスとしての還元ガスは、連通孔28を介して冷却ガス通路としての内部通路17へ流入した後、大部分が冷却ガス通路としての内部通路17内で上昇して行き、上端の排気ダクト29から誘引通風機30(IDF)を経て煙突31から大気放出されると共に、それ以外の残りの還元ガスは冷却ガス通路としての内部通路17内で下降して行き、下端の排気ダクト32から誘引通風機33(IDF)を経て前記煙突31から大気放出され、これにより、前記冷却部15では、冷却ガスとしての還元ガスの流速が上がって、処理対象物としてのクラッド材5から還元ガスへの熱伝達によるクラッド材5の冷却が促進され、加熱部13では、還元ガスの流速が下がって、処理対象物としてのクラッド材5から還元ガスへの熱伝達によるクラッド材5の冷却が抑制され、クラッド材5の加熱が効果的に行われる形となり、還元ガス雰囲気の中でロウ材層の熱処理と冷却とが良好に行われることとなる。尚、前記内部通路17の上方から下方に向けて流路断面積が小さくなる部分の内壁面は滑らかに変化させるようにしてあるため、処理対象物としてのクラッド材5は、途中で引っ掛かったりせずに上から下へスムーズに下ろすことが可能となる。又、前記クラッド材5の製造開始時に、母材1を加熱冷却炉6の内部に通す際、該母材1の先端における幅方向端部の角をなくして滑らかな湾曲形状となるようにしておけば、母材1を途中で引っ掛かったりさせずに上から下へスムーズに下ろす上で、より有効となる。   Since the flow passage cross-sectional area of the internal passage 17 of the furnace body 16 of the heating / cooling furnace 6 is increased stepwise from the bottom to the top, the cooling gas is supplied from the reducing gas supply device 26 as the cooling gas supply means and cooled. The reducing gas as the cooling gas introduced into the reducing gas supply unit 27 provided under the section 15 flows into the internal passage 17 as the cooling gas passage through the communication hole 28 and then mostly comprises the cooling gas passage. Ascends in the internal passage 17 and is discharged to the atmosphere from the chimney 31 through the induction fan 30 (IDF) from the exhaust duct 29 at the upper end, and the remaining reducing gas other than that is inside the cooling gas passage It descends in the passage 17 and is released into the atmosphere from the chimney 31 via the induction fan 33 (IDF) from the exhaust duct 32 at the lower end. As a result, the cooling unit 15 returns it as cooling gas. As the gas flow rate increases, cooling of the clad material 5 by heat transfer from the clad material 5 as the processing object to the reducing gas is promoted, and in the heating unit 13, the reducing gas flow rate decreases, Cooling of the clad material 5 due to heat transfer from the clad material 5 to the reducing gas is suppressed, and the clad material 5 is effectively heated, and the heat treatment and cooling of the brazing material layer is good in the reducing gas atmosphere. Will be done. In addition, since the inner wall surface of the portion where the flow path cross-sectional area decreases from the upper side to the lower side of the internal passage 17 is changed smoothly, the clad material 5 as the processing object may be caught in the middle. It is possible to move down smoothly from top to bottom. In addition, when the base material 1 is passed through the heating / cooling furnace 6 at the start of the production of the clad material 5, the corner of the end in the width direction at the front end of the base material 1 is eliminated so that a smooth curved shape is obtained. If this is done, it is more effective in smoothly lowering the base material 1 from top to bottom without being caught on the way.

ここで、前記加熱冷却炉6の冷却部15には、流入口40と流出口41に接続された還元ガス循環ライン42途中に還元ガス再循環通風機43(GRF)と熱交換器44とを配設してなる還元ガス循環装置39を設けるようにしてあるため、熱処理後のクラッド層の冷却を、冷却部15の冷却手段14だけでなく強制循環される還元ガスによって効率良く行うことが可能となり、生産性を高めるために母材1の送り速度を上げようとした場合にも、冷却部15の長さを延長しなくて済み、設備の全長が長くならず、この結果、クラッド材5の製造開始時に、母材1を加熱冷却炉6の内部に通してクラッド材巻取機9に巻き取るセッティングの作業が楽に行える一方、ロウ材層が形成されない未加工部が短くなり、スクラップとして廃棄処分しなければならない部分が減り、歩留まりも良くなる。   Here, in the cooling section 15 of the heating and cooling furnace 6, a reducing gas recirculation ventilator 43 (GRF) and a heat exchanger 44 are provided in the middle of the reducing gas circulation line 42 connected to the inlet 40 and the outlet 41. Since the reducing gas circulation device 39 is provided, cooling of the clad layer after the heat treatment can be efficiently performed not only by the cooling means 14 of the cooling unit 15 but also by the forced circulation of the reducing gas. Therefore, even if it is attempted to increase the feed rate of the base material 1 in order to increase productivity, the length of the cooling unit 15 does not have to be extended, and the overall length of the equipment is not increased. As a result, the cladding material 5 At the start of manufacturing, the setting work of winding the base material 1 through the inside of the heating and cooling furnace 6 and winding it around the clad material winder 9 can be carried out easily, while the unprocessed part where the brazing material layer is not formed is shortened and scrapped. Dispose of It reduces the part that must be, and the yield is also better.

又、前記冷却部15の冷却ガス通路としての内部通路17の内側には、冷却ガスとしての還元ガスの流れを乱し前記クラッド材5から還元ガスへの熱伝達及び還元ガスから冷却ガス通路としての内部通路17壁面への熱伝達を促進するための強制対流熱伝達促進部材45を配設するようにしてあるため、冷却部15の冷却ガス通路としての内部通路17を流れる還元ガスは、強制対流熱伝達促進部材45により流れが乱され、クラッド材5から還元ガスへの熱伝達及び還元ガスから冷却ガス通路としての内部通路17壁面への熱伝達が促進され、熱処理後のクラッド層の冷却がより効率良く行われることとなる。   Further, inside the internal passage 17 as the cooling gas passage of the cooling section 15, the flow of the reducing gas as the cooling gas is disturbed to transfer the heat from the cladding material 5 to the reducing gas and as the cooling gas passage from the reducing gas. Since the forced convection heat transfer promoting member 45 for promoting the heat transfer to the wall surface of the internal passage 17 is disposed, the reducing gas flowing through the internal passage 17 as the cooling gas passage of the cooling unit 15 is forced The flow is disturbed by the convective heat transfer promoting member 45, heat transfer from the clad material 5 to the reducing gas and heat transfer from the reducing gas to the wall surface of the internal passage 17 as the cooling gas passage are promoted, and cooling of the clad layer after the heat treatment is performed. Will be performed more efficiently.

更に、前記加熱部13と冷却部15との境界部近傍には、該冷却部15から加熱部13への還元ガスの流通を抑える抵抗部材46を配設するようにしてあるため、冷却部15の内部通路17において還元ガスをより確実に強制循環させることが可能となる。   Further, a resistance member 46 that suppresses the flow of the reducing gas from the cooling unit 15 to the heating unit 13 is disposed in the vicinity of the boundary between the heating unit 13 and the cooling unit 15. It becomes possible to forcibly circulate the reducing gas in the internal passage 17 more reliably.

こうして、張力の調整等を考慮せずに金属粉末が圧着された母材1を非接触のまま通過させることができ、クラッド材の品質を向上し得、更に、設備全長の長大化を抑えることができ、製造開始時におけるセッティング作業の高効率化並びに歩留まりの向上を図り得る。   In this way, the base material 1 to which the metal powder is pressure-bonded can be passed without contact without considering the tension adjustment, etc., and the quality of the clad material can be improved, and further, the length of the entire equipment can be suppressed from increasing. It is possible to improve the efficiency of the setting work at the start of production and improve the yield.

尚、上述の図示例は、クラッド材製造設備の加熱冷却炉について説明したものであるが、このようなクラッド材製造設備の加熱冷却炉に限らず、母材の表面に金属粉末を圧着したクラッド材以外の処理対象物を連続的に加熱処理するための加熱冷却炉に適用しても良いこと、冷却ガスは還元ガスに限らず、処理対象物に応じて不活性ガスやその他のガスを用いることができ、要は加熱部での加熱処理に必要なガスであれば良いこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, although the above-mentioned example illustrates the heating / cooling furnace of the cladding material manufacturing facility, the cladding is not limited to such a heating / cooling furnace of the cladding material manufacturing facility, but a cladding in which metal powder is pressure-bonded to the surface of the base material. It may be applied to a heating / cooling furnace for continuously heat-treating an object to be treated other than a material, and the cooling gas is not limited to a reducing gas, and an inert gas or other gas is used depending on the object to be treated. Of course, various changes can be made without departing from the scope of the present invention, such as a gas necessary for the heat treatment in the heating section.

本発明を実施する形態の一例を示す概要構成図である。It is a schematic block diagram which shows an example of the form which implements this invention. 近年提案されているクラッド材製造設備の一例を示す全体概要構成図である。It is a whole schematic block diagram which shows an example of the clad material manufacturing equipment proposed recently.

符号の説明Explanation of symbols

1 母材
4 粉末圧着機
5 クラッド材(処理対象物)
6 加熱冷却炉
11 粉末供給装置
12 加熱手段
13 加熱部
14 冷却手段
15 冷却部
16 炉本体
17 内部通路(冷却ガス通路)
18 加熱空間
19 電熱線
20 冷却空間
21 冷却媒体循環装置
22 架台
25 支持部材
26 還元ガス供給装置(冷却ガス供給手段)
27 還元ガス供給部
36 導入口
38 導出口
39 還元ガス循環装置(冷却ガス循環手段)
40 流入口
41 流出口
42 還元ガス循環ライン
43 還元ガス再循環通風機
44 熱交換器
45 強制対流熱伝達促進部材
46 抵抗部材
1 Base material 4 Powder crimping machine 5 Clad material (object to be processed)
6 Heating / cooling furnace 11 Powder supply device 12 Heating means 13 Heating part 14 Cooling means 15 Cooling part 16 Furnace body 17 Internal passage (cooling gas passage)
DESCRIPTION OF SYMBOLS 18 Heating space 19 Heating wire 20 Cooling space 21 Cooling medium circulation device 22 Base 25 Support member 26 Reducing gas supply apparatus (cooling gas supply means)
27 Reducing gas supply section 36 Inlet port 38 Outlet port 39 Reducing gas circulation device (cooling gas circulation means)
40 Inlet 41 Outlet 42 Reducing Gas Circulation Line 43 Reducing Gas Recirculation Ventilator 44 Heat Exchanger 45 Forced Convection Heat Transfer Promoting Member 46 Resistance Member

Claims (9)

処理対象物を連続的に加熱処理するための加熱冷却炉であって、
加熱手段を有する加熱部と、冷却手段を有する冷却部とを、処理対象物の炉内への導入口から炉外への導出口へ向けて順次配置してなる炉本体を備え、
前記加熱部で加熱処理された前記処理対象物を冷却するために、炉内の処理対象物が搬送される内部通路に、前記冷却部から前記加熱部に向かう方向へ冷却ガスを流通させる冷却ガス通路を備え、
前記冷却部で前記冷却ガス通路の冷却ガスを強制循環させつつ冷却可能な冷却ガス循環手段を備えたことを特徴とする加熱冷却炉。
A heating / cooling furnace for continuously heating an object to be processed,
A furnace body comprising a heating unit having a heating unit and a cooling unit having a cooling unit, which are sequentially arranged from an inlet to the furnace to an outlet to the outside of the processing object,
A cooling gas that circulates a cooling gas in a direction from the cooling unit toward the heating unit in an internal passage through which the processing target in the furnace is transported in order to cool the processing target that has been heat-treated in the heating unit. With a passage,
A heating and cooling furnace comprising cooling gas circulation means capable of cooling while forcibly circulating the cooling gas in the cooling gas passage in the cooling section.
前記冷却部の冷却ガス通路の外周側に、前記処理対象物を冷却することで昇温した冷却ガスを冷却するための冷却手段を備えた請求項1記載の加熱冷却炉。   The heating and cooling furnace according to claim 1, further comprising cooling means for cooling the cooling gas that has been heated by cooling the object to be processed, on an outer peripheral side of the cooling gas passage of the cooling unit. 前記冷却ガスは、前記加熱部での加熱処理に必要なガスであり、
前記冷却部では処理対象物から冷却ガスへの熱伝達による処理対象物の冷却を促進し、前記加熱部では処理対象物から冷却ガスへの熱伝達による処理対象物の冷却を抑制するために、前記冷却ガス通路の冷却部での流路断面積が前記冷却ガス通路の加熱部での流路断面積より小さくなるようにした請求項1又は2記載の加熱冷却炉。
The cooling gas is a gas necessary for heat treatment in the heating unit,
The cooling unit promotes cooling of the processing object by heat transfer from the processing object to the cooling gas, and the heating unit suppresses cooling of the processing object by heat transfer from the processing object to the cooling gas. The heating / cooling furnace according to claim 1 or 2, wherein a flow path cross-sectional area at a cooling portion of the cooling gas passage is smaller than a flow passage cross-sectional area at a heating portion of the cooling gas passage.
前記冷却部の冷却ガス通路の内側に、前記冷却ガスの流れを乱し前記処理対象物から冷却ガスへの熱伝達及び冷却ガスから冷却ガス通路の壁面への熱伝達を促進するための強制対流熱伝達促進部材を配設した請求項1〜3のいずれか一つに記載の加熱冷却炉。   Forced convection inside the cooling gas passage of the cooling section to disturb the flow of the cooling gas and promote heat transfer from the processing object to the cooling gas and heat transfer from the cooling gas to the wall of the cooling gas passage The heating and cooling furnace according to any one of claims 1 to 3, wherein a heat transfer promoting member is disposed. 前記加熱部と冷却部との境界部近傍に、該冷却部から加熱部への冷却ガスの流通を抑える抵抗部材を配設した請求項1〜4のいずれか一つに記載の加熱冷却炉。   The heating and cooling furnace according to any one of claims 1 to 4, wherein a resistance member that suppresses the flow of the cooling gas from the cooling unit to the heating unit is disposed in the vicinity of the boundary between the heating unit and the cooling unit. 前記処理対象物は母材の表面に金属粉末を圧着したクラッド材であり、前記冷却ガスは還元ガスである請求項1〜4のいずれか一つに記載の加熱冷却炉。   The heating and cooling furnace according to any one of claims 1 to 4, wherein the object to be treated is a clad material in which a metal powder is pressure-bonded to a surface of a base material, and the cooling gas is a reducing gas. 母材の表面に金属粉末が圧着された処理対象物を加熱部で熱処理した後、冷却部で冷却するクラッド材製造設備の加熱冷却炉であって、
加熱手段を有する加熱部と、冷却手段を有する冷却部とを上下に配置してなる炉本体を備え、該炉本体の内部通路に対し、金属粉末が圧着された母材を上方から下方へ向けて通過させるよう構成したことを特徴とするクラッド材製造設備の加熱冷却炉。
A heating and cooling furnace of a clad material manufacturing facility that heats a processing object in which a metal powder is pressure-bonded to the surface of a base material in a heating unit and then cools in a cooling unit,
A furnace body comprising a heating part having a heating means and a cooling part having a cooling means is arranged vertically, and the base material on which the metal powder is pressure-bonded to the internal passage of the furnace body is directed from above to below. A heating / cooling furnace for a clad material manufacturing facility, wherein
前記加熱部で加熱処理された前記処理対象物を冷却するために、炉内の処理対象物が搬送される内部通路に、前記冷却部から前記加熱部に向かう方向へ冷却ガスを流通させる冷却ガス通路を備え、
前記冷却部では処理対象物から冷却ガスへの熱伝達による処理対象物の冷却を促進し、前記加熱部では処理対象物から冷却ガスへの熱伝達による処理対象物の冷却を抑制するために、前記冷却ガス通路の冷却部での流路断面積が前記冷却ガス通路の加熱部での流路断面積より小さくなるようにした請求項7記載のクラッド材製造設備の加熱冷却炉。
A cooling gas that circulates a cooling gas in a direction from the cooling unit toward the heating unit in an internal passage through which the processing target in the furnace is transported in order to cool the processing target that has been heat-treated in the heating unit. With a passage,
The cooling unit promotes cooling of the processing object by heat transfer from the processing object to the cooling gas, and the heating unit suppresses cooling of the processing object by heat transfer from the processing object to the cooling gas. The heating / cooling furnace of the clad material manufacturing facility according to claim 7, wherein a flow path cross-sectional area in the cooling portion of the cooling gas passage is smaller than a flow passage cross-sectional area in the heating portion of the cooling gas passage.
前記冷却ガス通路の上方から下方に向けて流路断面積が小さくなる部分の内壁面を滑らかに変化させるようにした請求項8記載のクラッド材製造設備の加熱冷却炉。   The heating / cooling furnace for a clad material manufacturing facility according to claim 8, wherein the inner wall surface of the portion where the cross-sectional area of the flow path becomes smaller gradually changes from the upper side to the lower side of the cooling gas passage.
JP2006080457A 2006-03-23 2006-03-23 Heating and cooling furnace and heating and cooling furnace of clad material manufacturing equipment Pending JP2007255787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080457A JP2007255787A (en) 2006-03-23 2006-03-23 Heating and cooling furnace and heating and cooling furnace of clad material manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080457A JP2007255787A (en) 2006-03-23 2006-03-23 Heating and cooling furnace and heating and cooling furnace of clad material manufacturing equipment

Publications (1)

Publication Number Publication Date
JP2007255787A true JP2007255787A (en) 2007-10-04

Family

ID=38630207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080457A Pending JP2007255787A (en) 2006-03-23 2006-03-23 Heating and cooling furnace and heating and cooling furnace of clad material manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2007255787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627746A (en) * 2016-02-25 2016-06-01 广德因达电炉成套设备有限公司 Industrial smelting electric furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739105A (en) * 1980-07-14 1982-03-04 Daido Metal Kogyo Kk Production of multilayer sliding material
JPS58212863A (en) * 1982-06-04 1983-12-10 Honda Motor Co Ltd Cooling device of in-furnace brazing furnace
JPH085255A (en) * 1994-06-17 1996-01-12 Inax Corp Continuous kiln
JP2001011507A (en) * 1999-07-02 2001-01-16 Ishikawajima Harima Heavy Ind Co Ltd Method and equipment for manufacturing alloy powder sheet
JP2002256305A (en) * 2001-02-02 2002-09-11 Boc Group Inc:The Method and equipment for metal working
JP2004025251A (en) * 2002-06-26 2004-01-29 Ishikawajima Harima Heavy Ind Co Ltd Composite brazing filler metal plate and method for manufacturing the same, and heat exchanger using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739105A (en) * 1980-07-14 1982-03-04 Daido Metal Kogyo Kk Production of multilayer sliding material
JPS58212863A (en) * 1982-06-04 1983-12-10 Honda Motor Co Ltd Cooling device of in-furnace brazing furnace
JPH085255A (en) * 1994-06-17 1996-01-12 Inax Corp Continuous kiln
JP2001011507A (en) * 1999-07-02 2001-01-16 Ishikawajima Harima Heavy Ind Co Ltd Method and equipment for manufacturing alloy powder sheet
JP2002256305A (en) * 2001-02-02 2002-09-11 Boc Group Inc:The Method and equipment for metal working
JP2004025251A (en) * 2002-06-26 2004-01-29 Ishikawajima Harima Heavy Ind Co Ltd Composite brazing filler metal plate and method for manufacturing the same, and heat exchanger using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627746A (en) * 2016-02-25 2016-06-01 广德因达电炉成套设备有限公司 Industrial smelting electric furnace

Similar Documents

Publication Publication Date Title
JP5711583B2 (en) Reflow device
JP4480231B2 (en) Convection brazing method and apparatus for metal workpiece
JP5795560B2 (en) Furnace for thermal processing of workpieces
JP2010038531A (en) Heat treatment device
JP2006266616A (en) Heat treatment furnace
JP2006266615A (en) Heat treatment furnace
JP2000510810A (en) Heating of glass sheet in tempering furnace
JP2007319924A (en) Continuous furnace for brazing aluminum product and method therefor
JP2007255787A (en) Heating and cooling furnace and heating and cooling furnace of clad material manufacturing equipment
JP2019112689A (en) Heat treatment device and heat treatment method
JP5100327B2 (en) Cold rolled steel sheet manufacturing method
JP2005121308A (en) High-pressure heat treat furnace
JP4662828B2 (en) Cooling zone of horizontal continuous processing furnace and steel strip threading method in the cooling zone
TWI774560B (en) Loading jig for wire coil and heat treatment method for wire coil using the same
JP6440436B2 (en) Heat treatment equipment and heat treatment method for cylindrical plate coil
CN215668109U (en) Hot air circulation tempering furnace
JPS6056218B2 (en) Heat treatment method for metal strips
JP5811199B2 (en) Heat treatment equipment
JP2007253230A (en) High-frequency induction heating device for die casting machine
JP5233481B2 (en) Atmospheric gas replacement method for continuous annealing furnace and continuous annealing furnace
JP4332017B2 (en) Steel strip cooling device for continuous annealing furnace
KR200242384Y1 (en) bright annealing furnace of stainless wire
JP2004330213A (en) Furnace coiler of steckel mill rolling equipment
JP2007263480A (en) Muffle furnace
CN104785787A (en) Powder metallurgy rapid cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A521 Written amendment

Effective date: 20100422

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20110914

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Effective date: 20120417

Free format text: JAPANESE INTERMEDIATE CODE: A02