JP2007254944A - Conjugate cross section fiber - Google Patents

Conjugate cross section fiber Download PDF

Info

Publication number
JP2007254944A
JP2007254944A JP2007040774A JP2007040774A JP2007254944A JP 2007254944 A JP2007254944 A JP 2007254944A JP 2007040774 A JP2007040774 A JP 2007040774A JP 2007040774 A JP2007040774 A JP 2007040774A JP 2007254944 A JP2007254944 A JP 2007254944A
Authority
JP
Japan
Prior art keywords
fiber
polymer
component
composite cross
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007040774A
Other languages
Japanese (ja)
Inventor
Hajime Fujii
一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007040774A priority Critical patent/JP2007254944A/en
Publication of JP2007254944A publication Critical patent/JP2007254944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conjugate cross section fiber excellent in warmth-keeping property and adsorbing property, and also a conjugate cross section fiber having a sheath core structure being a precursor of the fiber. <P>SOLUTION: This conjugate cross section fiber having the sheath core structure form in which a core component is exposed from one position of a sheath component, has the core component of a polymer alloy having a sea-island structure, in which an easily dissolvable polymer (A) is a sea component and a hardly dissolvable polymer (B) is an island component, and the sheath component of another hardly dissolvable polymer (C). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複合断面繊維に関する。
さらに詳しくは、特殊な芯鞘構造状の複合断面を有する複合断面繊維に関するものである。
The present invention relates to a composite cross-sectional fiber.
More specifically, the present invention relates to a composite cross-section fiber having a special core-sheath structure-like composite cross section.

ポリカプロアミドやポリヘキサメチレンアジパミドに代表されるポリアミド繊維や、ポ
リエチレンテレフタレートやポリブチレンテレフタレートに代表されるポリエステル繊維
は、力学特性や寸法安定性に優れるため、衣料用途のみならずインテリアや車両内装、産
業用途等幅広く利用されている。しかしながら、通常のポリアミド、ポリエステル繊維は
、元来、その表面と内部構造が均一かつ単純であることから、単なる丸断面繊維では、触感が冷たく、例えば冬季の衣料としての暖かさや保温性が不十分という欠点がある。また、吸湿性、吸水性、消臭性といった吸着性能に関しても不十分である。
Polyamide fiber typified by polycaproamide and polyhexamethylene adipamide, and polyester fiber typified by polyethylene terephthalate and polybutylene terephthalate are excellent in mechanical properties and dimensional stability. Widely used in interior and industrial applications. However, ordinary polyamide and polyester fibers are originally uniform and simple in surface and internal structure. Therefore, a simple round cross-section fiber is cold to the touch, for example, insufficient warmth and heat retaining properties as winter clothing. There is a drawback. Further, the adsorption performance such as hygroscopicity, water absorption, and deodorant is insufficient.

これらの問題を解決すべく、例えば、繊維内部に中空層を持つ中空繊維により保温性と
いった機能を高める技術が提案されている(特許文献1参照)。
In order to solve these problems, for example, a technique for improving a function such as heat retention by a hollow fiber having a hollow layer inside the fiber has been proposed (see Patent Document 1).

ところが、これらの中空繊維は紡糸口金の形状、ポリマー粘度等の工夫以外は通常の溶
融紡糸により製造されるため、中空率を高くすることが困難であり、後加工工程において
も中空部が潰れやすいという問題が発生していた。また、これらの問題を改善するためには単糸を太繊度するしかなく、その結果として、風合い、触感としても粗硬でソフト性に欠けたものとなっていた。しかも、外気と接触する繊維表面積も従来繊維と同等であるため、吸水性については毛細管現象で従来繊維対比良好であるが、吸湿性、消臭性については従来繊維と同等であった。
However, since these hollow fibers are manufactured by ordinary melt spinning except for the device such as the spinneret shape and polymer viscosity, it is difficult to increase the hollow ratio, and the hollow portion is easily crushed in the post-processing step. The problem that occurred. Further, in order to improve these problems, the single yarn has to be thick, and as a result, the texture and feel are coarse and lack softness. Moreover, since the fiber surface area in contact with the outside air is the same as that of the conventional fiber, the water absorption is good as compared with the conventional fiber due to the capillary action, but the hygroscopic property and the deodorizing property are the same as those of the conventional fiber.

また、ポリアミドに易溶出性ポリマーとして親水基共重合ポリエチレンテレフタレート
をブレンドして、これから親水基共重合ポリエチレンテレフタレートを溶出除去すること
で多孔ポリアミド繊維とし、光沢感などの風合い、吸水性等の機能を高める技術が提案されている(特許文献2参照)。
Also, polyamide-terminated polyethylene terephthalate is blended with polyamide as an easily-eluting polymer, and the hydrophilic group-copolymerized polyethylene terephthalate is eluted and removed from the polyamide to form porous polyamide fibers, which have functions such as gloss and texture, and water absorption. A technique for enhancing the content has been proposed (see Patent Document 2).

この方法は、細孔を多数有する多孔繊維であるため、後加工工程においての中空部潰れが少なく、結果として中空率を維持できるため、吸湿性、吸水性、消臭性という吸着性能の向上が見込めるといった利点がある。しかしながら、易溶出性ポリマーが露出されていないことから溶出速度が遅くなり、その結果として溶出に時間がかかるため、例えば、一部が溶出しきれずにムラとなり製品欠点が生じる可能性があった。   Since this method is a porous fiber having a large number of pores, the hollow portion is less crushed in the post-processing step, and as a result, the hollow ratio can be maintained, so that the adsorption performance of hygroscopicity, water absorption, and deodorization can be improved. There is an advantage that you can expect. However, since the elution polymer is not exposed, the elution rate is slow, and as a result, it takes a long time for elution. For example, some of the elution polymer is not completely eluted, resulting in product defects.

また、ポリアミドに易溶出性ポリマーとしてポリエチレン、及び酸変性ポリオレフィンをブレンドして、これからポリエチレン、酸変性ポリオレフィンを溶出除去することで極細ポリアミド繊維とする方法が提案されている(特許文献3参照)。   In addition, a method has been proposed in which polyethylene and acid-modified polyolefin are blended with polyamide as an easily-eluting polymer, and then polyethylene and acid-modified polyolefin are eluted and removed to form ultrafine polyamide fibers (see Patent Document 3).

この方法は、易溶出性ポリマーが繊維表面全面に露出されているため、溶出速度も速く、所望の極細ポリアミド繊維を容易に得ることができる。また、極細とすることで繊維表面積が大きくなることから、吸湿性、吸水性、消臭性という吸着性能の向上が見込めるといった利点がある。しかしながら、こうした極細ポリアミド繊維は中空部を有していないため、従来繊維と同じで保温性に欠けたものとなる。   In this method, since the elution polymer is exposed on the entire surface of the fiber, the elution rate is high and the desired ultrafine polyamide fiber can be easily obtained. Further, since the fiber surface area is increased by making it extremely fine, there is an advantage that improvement in adsorption performance such as hygroscopicity, water absorption, and deodorization can be expected. However, since such an ultrafine polyamide fiber does not have a hollow portion, it is the same as a conventional fiber and lacks heat retention.

その他にも、中空繊維の中空層にナノファイバーがカプセル化された繊維が提案されて
いる(特許文献4参照)。
In addition, a fiber in which nanofibers are encapsulated in a hollow layer of hollow fibers has been proposed (see Patent Document 4).

しかしながら、この方法も易溶出性ポリマーが露出されていないことから溶出速度が遅
くなり、その結果として溶出に時間がかかるため、例えば、一部が溶出しきれずにムラと
なり製品欠点が生じる可能性がある。中空層による保温性の他、カプセル化されたナノファイバーの効果により、従来繊維より吸湿、吸水、消臭というような吸着性能に優れてはいるものの、実質内部のナノファイバーが外気に触れていないため、特許文献3の極細ポリアミド繊維ほどの吸着性能を発現できるとは言い難い。
特開平9−217225号公報 特開平2−175965号公報 特開平4−174767号公報 特開2005−23436号公報
However, since this method also does not expose the easily-eluting polymer, the elution rate is slow, and as a result, it takes a long time for elution. is there. In addition to heat retention due to the hollow layer, the encapsulated nanofibers have better absorption performance such as moisture absorption, water absorption and deodorization than conventional fibers, but the nanofibers inside the substance are not touching the outside air. For this reason, it is difficult to say that the adsorption performance of the ultrafine polyamide fiber of Patent Document 3 can be expressed.
Japanese Patent Laid-Open No. 9-217225 Japanese Patent Laid-Open No. 2-175965 JP-A-4-174767 JP-A-2005-23436

そこで、本発明は、上記に示した従来技術の問題点を解決しようとするものであり、保
温性、吸着性能に優れた複合断面繊維、また、それを得るための前駆体となる芯鞘構造状
の複合断面繊維を生産性良く提供するものである。
Therefore, the present invention is intended to solve the above-described problems of the prior art, a composite cross-sectional fiber excellent in heat retention and adsorption performance, and a core-sheath structure which is a precursor for obtaining the same The composite cross-section fiber is provided with good productivity.

上記課題を解決するため、本発明は以下の(1)の構成を採用する。
(1)鞘成分の一箇所から芯成分が露出している芯鞘構造状の複合断面繊維であって、易
溶出性ポリマー(A)が海成分でありかつ難溶出性ポリマー(B)が島成分である海島構
造状のポリマーアロイが前記芯成分であり、難溶出性ポリマー(C)が前記鞘成分である
複合断面繊維。
(2)鞘成分の横断面形状がC型であることを特徴とする前記(1)に記載の複合断面繊
維。
(3)前記芯成分であるポリマーアロイの島の平均直径が1〜200nmであることを特
徴とする前記(1)または(2)に記載の複合断面繊維。
(4)前記芯成分と鞘成分の重量比が10:90〜90:10の範囲にあることを特徴と
する前記(1)〜(3)のいずれかに記載の複合断面繊維。
(5)前記芯成分であるポリマーアロイの易溶出性ポリマー(A)と難溶出性ポリマー(
B)の重量比が、50:50〜90:10の範囲にあることを特徴とする前記(1)〜(
4)のいずれかに記載の複合断面繊維。
(6)前記(1)〜(5)のいずれかに記載の複合断面繊維中に含まれる易溶出性ポリマ
ーを溶出除去して得られたものであることを特徴とする複合断面繊維。
In order to solve the above problems, the present invention employs the following configuration (1).
(1) A composite sheath fiber having a core-sheath structure in which the core component is exposed from one part of the sheath component, wherein the easily-eluting polymer (A) is a sea component and the hardly-eluting polymer (B) is an island. A composite cross-section fiber in which a sea-island-structured polymer alloy as a component is the core component, and a hardly-eluting polymer (C) is the sheath component.
(2) The composite cross-section fiber according to (1), wherein the sheath component has a C-shaped cross-sectional shape.
(3) The composite cross-section fiber according to (1) or (2), wherein an average diameter of the polymer alloy island as the core component is 1 to 200 nm.
(4) The composite cross-section fiber according to any one of (1) to (3), wherein a weight ratio of the core component to the sheath component is in a range of 10:90 to 90:10.
(5) The polymer alloy which is the core component, an easily eluting polymer (A) and a hardly eluting polymer (
The weight ratio of B) is in the range of 50:50 to 90:10, (1) to (1) above
The composite cross-section fiber according to any one of 4).
(6) A composite cross-section fiber obtained by eluting and removing an easily-eluting polymer contained in the composite cross-section fiber according to any one of (1) to (5).

本発明によれば、保温性、吸着性能に優れた複合断面繊維、また、それを得るための前
駆体となる芯鞘構造状の複合断面繊維を生産性良く提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the composite cross-section fiber excellent in heat retention and adsorption | suction performance and the core-sheath-structure composite cross-section fiber used as the precursor for obtaining it can be provided with sufficient productivity.

以下、本発明の複合断面繊維をさらに詳細に説明する。
本発明の複合断面繊維は、鞘の一箇所から芯成分が露出している芯鞘構造状の複合断面
繊維であって、易溶出性ポリマー(A)が海成分、難溶出性ポリマー(B)が島成分であ
る海島構造状のポリマーアロイが芯成分であり、難溶出性ポリマー(C)が鞘成分である
構成のものである。このような芯鞘構造状の複合断面繊維とすることで、布帛に加工後、
芯成分の易溶出性ポリマー(A)を溶出除去することにより、高中空率で後加工において
も中空部潰れが少なく、かつ中空内部の極細繊維凝集部が外気に触れる形となるので、吸着性能をも併せ持った保温性に優れた複合断面繊維を製造することができるのである。
Hereinafter, the composite cross-section fiber of the present invention will be described in more detail.
The composite cross-section fiber of the present invention is a core-sheath-structured composite cross-section fiber in which the core component is exposed from one part of the sheath, and the easily-eluting polymer (A) is a sea component and the hardly-eluting polymer (B). A sea-island-structured polymer alloy in which is an island component is a core component, and a hardly-eluting polymer (C) is a sheath component. By making such a core-sheath-structured composite cross-section fiber, after processing into a fabric,
Elution and removal of the easy-eluting polymer (A) of the core component results in a high hollow ratio and little hollow portion crushing even in post-processing, and the ultrafine fiber agglomerate inside the hollow comes into contact with the outside air, so the adsorption performance Therefore, it is possible to produce a composite cross-section fiber having excellent heat retention properties.

本発明の複合断面繊維の芯鞘構造は、鞘の一箇所から芯成分が露出している構造を有し
ていることが重要である。例えば、鞘成分が芯成分を完全に覆っており、芯成分が繊維表
面に露出していない芯鞘構造では、易溶出性ポリマーが露出されていないことから溶出速
度が遅くなり、その結果として溶出に時間がかかるため、例えば、一部が溶出しきれずに
ムラとなり製品欠点が生じる可能性がある。また、中空内部の極細繊維凝集部が外気に触れないので、吸着性能に関する効果は小さくなる。鞘の形状に関しては、鞘の一箇所から芯成分を露出させる構成となっている、つまり鞘の一箇所が開放状態になっていればどのような形状でも良いが、溶出除去後の高中空率を維持させるために、丸形繊維の中心部に丸形の中空部を持つ中空繊維の一箇所が開放されている、いわゆるC型断面が好ましい。また、C型断面部の開放長については、本発明の複合断面繊維、その加工品の要求特性、またはそれらを安定して得るために適当な範囲から適宜に選択してよいが、好ましくは外周円長の5〜30%の範囲であり、更に好ましくは10〜20%の範囲である。
It is important that the core-sheath structure of the composite cross-section fiber of the present invention has a structure in which the core component is exposed from one part of the sheath. For example, in a core-sheath structure in which the sheath component completely covers the core component and the core component is not exposed on the fiber surface, the elution rate is slowed because the easy-dissolvable polymer is not exposed, resulting in elution Therefore, for example, there is a possibility that a part of the product is not completely eluted and becomes uneven, resulting in a product defect. In addition, since the ultrafine fiber aggregation portion inside the hollow does not touch the outside air, the effect on the adsorption performance is reduced. As for the shape of the sheath, the core component is exposed from one location of the sheath, that is, any shape is acceptable as long as one location of the sheath is open, but the high hollow ratio after elution removal Therefore, a so-called C-shaped cross section in which one part of a hollow fiber having a round hollow portion at the center of the round fiber is opened is preferable. Further, the open length of the C-shaped cross section may be appropriately selected from the composite cross-section fiber of the present invention, the required characteristics of the processed product, or an appropriate range in order to stably obtain them, It is in the range of 5-30% of the circle length, more preferably in the range of 10-20%.

本発明の複合断面繊維の鞘成分(C)は、難溶出性ポリマーであることが重要である。本発明の複合断面繊維は、後加工で溶出処理工程が入ることから、溶出除去後の鞘成分を残すためである。また、この鞘成分の難溶出性ポリマー(B)は、芯成分であるポリマーアロイを構成する難溶出性ポリマー(C)と同一であってもよく、あるいは異なっていてもよい。本発明の複合断面繊維で好ましく用いられる鞘成分は、熱可塑性ポリマーからなることが成形性の観点から好ましい。中でも、ポリアミドに代表される縮重合系ポリマーは融点が高いものが多く、より好ましい。ここでいうポリアミドとは、いわゆる炭化水素基が主鎖にアミド結合を介して連結された高分子量体からなる樹脂であって、該ポリアミドは、染色性、機械特性に優れている、主としてポリカプロアミド(ナイロン6)、もしくはポリヘキサメチレンアジパミド(ナイロン66)からなることが最も好ましい。なお、ここでいう「主として」とは、ポリカプロアミドを構成するε−カプロラクタム単位、またはポリヘキサメチレンアジパミドを構成するヘキサメチレンジアンモニウムアジペート単位として80モル%以上であることを言い、さらに好ましくは90モル%以上である。その他の成分としては、特に限定されないが、例えば、ポリドデカノアミド、ポリヘキサメチレンアゼラミド、ポリヘキサメチレンセバカミド、ポリヘキサメチレンドデカノアミド、ポリメタキシリレンアジパミド、ポリヘキサメチレンテレフタラミド、ポリヘキサメチレンイソフタラミド等を構成するモノマーである、アミノカルボン酸、ジカルボン酸、ジアミン等の単位が挙げられる。また、ポリアミドの重合度は、本発明の複合断面繊維、その加工品の要求特性、またはそれらを安定して得るために適当な範囲から適宜に設定してよいが、繊維形成能や力学特性の観点から、好ましくは98%硫酸相対粘度で2〜3.5の範囲であり、更に好ましくは2.5〜3.3の範囲のものである。   It is important that the sheath component (C) of the composite cross-section fiber of the present invention is a hardly-eluting polymer. This is because the composite cross-section fiber of the present invention leaves the sheath component after elution removal because the elution treatment step is performed in post-processing. Further, the hardly-eluting polymer (B) of the sheath component may be the same as or different from the hardly-eluting polymer (C) constituting the polymer alloy as the core component. The sheath component preferably used in the composite cross-section fiber of the present invention is preferably made of a thermoplastic polymer from the viewpoint of moldability. Among these, many polycondensation polymers represented by polyamide are more preferable because they have a high melting point. The polyamide here is a resin composed of a high molecular weight substance in which a so-called hydrocarbon group is connected to the main chain through an amide bond, and the polyamide is excellent in dyeability and mechanical properties. Most preferably, it consists of amide (nylon 6) or polyhexamethylene adipamide (nylon 66). As used herein, “mainly” means 80 mol% or more of the ε-caprolactam unit constituting polycaproamide or the hexamethylene diammonium adipate unit constituting polyhexamethylene adipamide. Preferably it is 90 mol% or more. Examples of other components include, but are not limited to, polydodecanoamide, polyhexamethylene azelamide, polyhexamethylene sebamide, polyhexamethylene dodecanoamide, polymetaxylylene adipamide, polyhexamethylene terephthalate Units such as aminocarboxylic acid, dicarboxylic acid, and diamine, which are monomers constituting ramid, polyhexamethylene isophthalamide, and the like can be mentioned. Further, the degree of polymerization of polyamide may be appropriately set from the composite cross-section fiber of the present invention, the required characteristics of the processed product, or an appropriate range in order to stably obtain them. From the viewpoint, it is preferably in the range of 2-3.5 in terms of 98% sulfuric acid relative viscosity, and more preferably in the range of 2.5-3.3.

本発明の複合断面繊維の芯成分は、易溶出性ポリマー(A)が海成分、難溶出性ポリマー(B)が島成分である海島構造状のポリマーアロイであることが重要である。本発明の複合断面繊維は、後加工で溶出除去工程が入ることから、溶出除去後の島成分(極細繊維凝集体となる)を残すためである。なお、ここでいう海島構造状とは、繊維横断面において、真円、楕円状等に島ポリマーが微分散しており、かつ繊維軸方向に島ポリマーが細く伸びた筋状に微分散している構造をいう。更には、筋状構造の繊維軸方向の島の平均長さLと島の平均直径Dの比L/Dが4以上であることが好ましい。上記構造を満足できないと、ポリマーアロイ繊維中の島ポリマー自体が欠点となるため、紡糸操業性不良を引き起こしたり、更には得られる複合断面繊維にも毛羽や単糸切れ等が発生しやすくなる場合がある。また、ポリマーアロイに含まれる易溶出性ポリマー(A)を溶出除去しても、L/Dが小さいため極細繊維としての形態を維持できない可能性がある。   It is important that the core component of the composite cross-section fiber of the present invention is a sea-island structure polymer alloy in which the easily-eluting polymer (A) is a sea component and the hardly-eluting polymer (B) is an island component. This is because the composite cross-section fiber of the present invention is subjected to an elution removal step in post-processing, so that the island component (becomes an ultrafine fiber aggregate) after elution removal remains. The sea-island structure mentioned here means that in the fiber cross section, the island polymer is finely dispersed in a perfect circle, an ellipse, etc., and the island polymer is finely dispersed in a streak shape extending in the fiber axis direction. Refers to the structure. Furthermore, the ratio L / D of the average length L of the islands in the fiber axis direction of the streak structure and the average diameter D of the islands is preferably 4 or more. If the above structure is not satisfied, the island polymer itself in the polymer alloy fiber becomes a defect, which may cause poor spinning operability, and further, the resulting composite cross-sectional fiber may be susceptible to fluff and single yarn breakage. . Moreover, even if the elution polymer (A) contained in the polymer alloy is eluted and removed, there is a possibility that the form as an ultrafine fiber cannot be maintained because L / D is small.

本発明の複合断面繊維で好ましく用いられるポリマーアロイは、本発明の複合断面繊維
、その加工品の要求特性、またはそれらを安定して得るために適当な成分から適宜設定し
てよいが、繊維形成能の観点から、またアルカリ溶出という既に確立された溶出手法があ
るという点から、ポリアミドが島、ポリエステルが海のポリマーアロイであることが好
ましい。
The polymer alloy preferably used in the composite cross-section fiber of the present invention may be appropriately set from the composite cross-section fiber of the present invention, the required properties of the processed product, or an appropriate component to obtain them stably. From the viewpoint of performance, and from the point that there is an already established elution method called alkali elution, it is preferable that the polyamide is an island polymer and the polyester is an ocean polymer alloy.

ポリマーアロイに用いられるポリアミドとしては、染色性、機械特性に優れており、ポ
リエステルとのポリマーアロイに好適な、主としてポリカプロアミドからなることが好ま
しい。ここでいう「主として」とは、ポリカプロアミドを構成するε−カプロラクタム単
位として80モル%以上であることをいい、さらに好ましくは90モル%以上である。そ
の他の成分としては、特に限定されないが、例えば、ポリドデカノアミド、ポリヘキサメ
チレンアジパミド、ポリヘキサメチレンアゼラミド、ポリヘキサメチレンセバカミド、ポ
リヘキサメチレンドデカノアミド、ポリメタキシリレンアジパミド、ポリヘキサメチレン
テレフタラミド、ポリヘキサメチレンイソフタラミド等を構成するモノマーである、アミ
ノカルボン酸、ジカルボン酸、ジアミン等の単位が挙げられる。また、ポリカプロアミド
の重合度は、本発明の複合断面繊維、その加工品の要求特性、またはそれらを安定して得
るために適当な成分より適宜選択してよいが、繊維形成能や力学特性の観点から、好まし
くは98%硫酸相対粘度で2〜3.3の範囲であり、更に好ましくは2〜2.8の範囲で
ある。
The polyamide used for the polymer alloy is preferably mainly composed of polycaproamide, which is excellent in dyeability and mechanical properties and suitable for polymer alloy with polyester. Here, “mainly” means 80 mol% or more, more preferably 90 mol% or more as the ε-caprolactam unit constituting polycaproamide. Examples of other components include, but are not limited to, polydodecanoamide, polyhexamethylene adipamide, polyhexamethylene azelamide, polyhexamethylene sebamide, polyhexamethylene dodecanoamide, polymetaxylylene adipa Examples thereof include units such as aminocarboxylic acid, dicarboxylic acid, and diamine, which are monomers constituting imide, polyhexamethylene terephthalamide, polyhexamethylene isophthalamide and the like. Further, the degree of polymerization of polycaproamide may be appropriately selected from the composite cross-section fiber of the present invention, the required properties of the processed product, or appropriate components for stably obtaining them, but the fiber forming ability and mechanical properties From this viewpoint, the relative viscosity of 98% sulfuric acid is preferably in the range of 2 to 3.3, and more preferably in the range of 2 to 2.8.

ポリマーアロイに用いられるポリエステルとは、いわゆる塩基酸とアルコールがエステ
ル結合を介して連結された高分子量体からなる樹脂であって、かかるポリエステルとして
は、溶出除去が容易であり、また、バイオマス利用、生分解性の観点からも脂肪族ポリエ
ステルであることが好ましい。ここで、前記脂肪族ポリエステルを例示すると、ポリ乳酸
、ポリヒドロキシブチレート、ポリブチレンサクシネート、ポリグリコール酸、ポリカプ
ロラクトン等が挙げられるが、溶融成形が容易であるという点でポリ乳酸がより好ましい
。ポリ乳酸とは乳酸モノマーを重合したものであり、L体またはD体の光学純度が90%
以上であると、融点が高くなり好ましい。また、ポリ乳酸の性質を損なわない範囲におい
て、乳酸以外のモノマーを共重合していてもよいが、好ましくはポリ乳酸を構成する乳酸
単位として80モル%以上であり、更に好ましくは90モル%以上である。また、ポリ乳
酸の分子量は、本発明の複合断面繊維、その加工品の要求特性、またはそれらを安定して
得るために適当な範囲より適宜選択してよいが、繊維形成能の観点から、好ましくは重量
平均分子量で5万〜30万の範囲であり、更に好ましくは5万〜15万の範囲である。
The polyester used in the polymer alloy is a resin composed of a high molecular weight product in which a so-called basic acid and alcohol are linked via an ester bond, and as such a polyester, elution removal is easy, and biomass use, From the viewpoint of biodegradability, an aliphatic polyester is preferable. Examples of the aliphatic polyester include polylactic acid, polyhydroxybutyrate, polybutylene succinate, polyglycolic acid, polycaprolactone, etc., but polylactic acid is more preferable in terms of easy melt molding. . Polylactic acid is a polymerized lactic acid monomer, and the optical purity of L-form or D-form is 90%
The above is preferable because the melting point becomes high. In addition, a monomer other than lactic acid may be copolymerized as long as it does not impair the properties of polylactic acid, but it is preferably 80 mol% or more, more preferably 90 mol% or more as a lactic acid unit constituting polylactic acid. It is. The molecular weight of polylactic acid may be appropriately selected from the composite cross-sectional fiber of the present invention, the required properties of the processed product, or an appropriate range in order to stably obtain them, but from the viewpoint of fiber-forming ability, Is in the range of 50,000 to 300,000, more preferably 50,000 to 150,000 in terms of weight average molecular weight.

ポリマーアロイに含まれる易溶出性ポリマー(A)と難溶出性ポリマー(B)の重量比は、好ましくは50:50〜90:10の範囲であり、更に好ましくは60:40〜80:20の範囲である。易溶出性ポリマー(A)と難溶出性ポリマー(B)の重量比が50:50のような中心値に近づけるにつれ、易溶出性ポリマー(A)と難溶出性ポリマー(B)の接触界面が大きくなって相互作用が過大となるため、紡糸操業性不良を引き起こしたり、高次通過性を悪化させたりすることがある。また、易溶出性ポリマー(A)と難溶出性ポリマー(B)の組み合わせによっては、易溶出性ポリマー(A)が難溶出性ポリマー(B)中に微分散化したポリマーアロイとなるため、目的とする複合断面繊維を得ることができなくなる。   The weight ratio of the easily eluting polymer (A) and the hardly eluting polymer (B) contained in the polymer alloy is preferably in the range of 50:50 to 90:10, more preferably 60:40 to 80:20. It is a range. As the weight ratio of the easily eluting polymer (A) and the hardly eluting polymer (B) approaches the center value such as 50:50, the contact interface between the easily eluting polymer (A) and the hardly eluting polymer (B) Since it becomes large and the interaction becomes excessive, the spinning operability may be deteriorated or the high-order passability may be deteriorated. In addition, depending on the combination of the easily-eluting polymer (A) and the hardly-eluting polymer (B), the easily-eluting polymer (A) becomes a polymer alloy finely dispersed in the hardly-eluting polymer (B). It becomes impossible to obtain a composite cross-section fiber.

ポリマーアロイの島成分(難溶出性ポリマー(A))の平均直径は、本発明の複合断面繊維、その加工品の要求特性、またはそれらを安定して得るために適当な範囲から適宜に設定してよいが、好ましくは1〜200nmの範囲であり、更に好ましくは10〜150nmの範囲である。島成分である難溶出性ポリマー(A)の平均直径が1nm未満では、海成分である易溶出性ポリマー(B)と島成分である難溶出性ポリマー(A)の接触界面が大きくなって相互作用が過大となり、紡糸操業性不良を引き起こしたり、高次通過性を悪化させたりすることがある。島成分の平均直径が200nmを越えると、島成分である難溶出性ポリマー(B)自体が欠点となるため、紡糸操業性不良を引き起こしたり、さらには得られる複合断面繊維にも毛羽や単糸切れ等が発生しやすくなったりする場合がある。また、島成分である難溶出性ポリマー(B)の大きさがある一定以上のものがある一定量存在している場合も、島成分である難溶出ポリマー(B)自体が欠点となるため、紡糸操業性不良を引き起こしたり、さらには得られる複合断面繊維にも毛羽や単糸切れ等が発生しやすくなったりする場合がある。従って、ポリマーアロイの繊維横断面に現れる直径300nm以上の粗大島の総面積が、全ての島成分の総面積の3%以下であることが好ましく、更に好ましくは2%以下である。   The average diameter of the island component of the polymer alloy (hardly soluble polymer (A)) is appropriately set from the composite cross-sectional fiber of the present invention, the required properties of the processed product, or an appropriate range for obtaining them stably. However, it is preferably in the range of 1 to 200 nm, more preferably in the range of 10 to 150 nm. If the average diameter of the hardly-eluting polymer (A) that is the island component is less than 1 nm, the contact interface between the easily-eluting polymer (B) that is the sea component and the hardly-eluting polymer (A) that is the island component becomes large, The action becomes excessive, which may cause poor spinning operability and deteriorate high-order passability. When the average diameter of the island component exceeds 200 nm, the difficult-to-elute polymer (B) itself, which is the island component, becomes a defect, which causes a poor spinning operation, and even the obtained composite cross-section fiber has fluff and single yarn. In some cases, cutting or the like is likely to occur. In addition, even when there is a certain amount of a slightly soluble polymer (B) that is a certain amount of the island component, the difficultly eluted polymer (B) itself that is an island component is a drawback, In some cases, the spinning operability may be poor, and further, the resulting composite cross-section fiber may be susceptible to fluff and single yarn breakage. Accordingly, the total area of coarse islands having a diameter of 300 nm or more appearing in the fiber cross section of the polymer alloy is preferably 3% or less, more preferably 2% or less of the total area of all island components.

ここで、複合繊維横断面の芯成分に現れる島成分は、やや歪んだ楕円状となる場合があり、必ずしも真円とは限らないため、ここでいう島の平均直径とは、島の面積から真円換算で求めたものをいう。   Here, the island component that appears in the core component of the composite fiber cross section may be a slightly distorted ellipse, and is not necessarily a perfect circle, so the average diameter of the island here is from the area of the island This is the value obtained by converting to a true circle.

本発明の複合断面繊維の芯成分と鞘成分の重量比は、発明の複合断面繊維、その加工品の要求特性、またはそれらを安定して得るために適当な範囲から適宜に設定してよいが、好ましくは10:90〜90:10の範囲であり、更に好ましくは30:70〜70:30の範囲である。芯成分が10重量%未満では、本発明の複合断面繊維の中空率が小さくなるため、目的とする保温性を十分に得ることがむずかしくなる。また、本発明の複合断面繊維における中空内部の極細繊維凝集体の比率も少なくなるため、吸着性能の向上も劣っていく方向となる。鞘成分が10重量%未満では、鞘自体が薄くなるため、後加工工程において中空部が潰れやすくなったり、実用耐久性に劣る繊維となる場合があるので注意を要する。   The weight ratio of the core component and the sheath component of the composite cross-section fiber of the present invention may be appropriately set from an appropriate range in order to stably obtain the composite cross-section fiber of the invention, the required properties of the processed product, or the like. , Preferably in the range of 10:90 to 90:10, more preferably in the range of 30:70 to 70:30. When the core component is less than 10% by weight, the hollowness of the composite cross-section fiber of the present invention is small, and it is difficult to sufficiently obtain the desired heat retention. Moreover, since the ratio of the ultrafine fiber aggregate inside the hollow in the composite cross-section fiber of the present invention is reduced, the improvement in adsorption performance is also inferior. If the sheath component is less than 10% by weight, the sheath itself becomes thin, so that the hollow part is likely to be crushed in the post-processing step, or the fiber may be inferior in practical durability.

本発明の複合断面繊維には、本発明の効果が損なわれない範囲において種々の添加剤を含んでもよい。例えば、添加剤を例示すると、マンガン化合物等の安定剤、酸化チタン等の着色剤、可塑剤、難燃剤、導電性付与剤、繊維状強化剤等である。また、ポリマーの性質が損なわれない範囲で他の成分が共重合されていてもよい。   The composite cross-section fiber of the present invention may contain various additives as long as the effects of the present invention are not impaired. Examples of additives include stabilizers such as manganese compounds, colorants such as titanium oxide, plasticizers, flame retardants, conductivity imparting agents, and fibrous reinforcing agents. Further, other components may be copolymerized as long as the properties of the polymer are not impaired.

本発明の複合断面繊維は、そのまま繊維製品として用いることもできるが、溶出処理によりポリマーアロイに含まれる易溶出性ポリマーを溶出除去することにより、目的とする複合断面繊維、つまりC型中空繊維内部に極細繊維が混入された繊維を得ることができる。例えば、易溶出性ポリマーをポリエステルとした場合、ポリマーアロイをそのままアルカリで処理、織編物を製造した後にアルカリで処理、いずれの工程でも加工することができる。ここで言うアルカリとは、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等が挙げられるが、水酸化ナトリウム、水酸化カリウム等の強アルカリ(pH=10〜14)を0.5〜20g/L、60〜120℃で処理することが好ましい。   The composite cross-section fiber of the present invention can be used as a fiber product as it is. However, by eluting and removing the easily-dissolvable polymer contained in the polymer alloy by elution treatment, the target composite cross-section fiber, that is, the inside of the C-type hollow fiber A fiber in which ultrafine fibers are mixed can be obtained. For example, when the easily eluting polymer is polyester, the polymer alloy can be processed with an alkali as it is, and the woven or knitted fabric can be processed with an alkali after being manufactured, and processed in any step. Examples of the alkali mentioned here include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, etc., but 0.5-20 g of strong alkali (pH = 10-14) such as sodium hydroxide, potassium hydroxide and the like. / L, preferably at 60 to 120 ° C.

本発明の複合断面繊維は、芯成分である易溶出性ポリマー(A)を全量溶出除去することにより、目的とする複合断面繊維、つまりC型中空繊維内部に極細繊維凝集体が混入された繊維を得ることができるが、該複合断面繊維は、通常の繊維と比較して、鞘が一箇所から露出していることによって、比表面積が増大することから優れた吸着性能を示すメリットがある。   The composite cross-section fiber of the present invention is a fiber in which ultrafine fiber aggregates are mixed inside the target composite cross-section fiber, that is, C-shaped hollow fiber by eluting and removing all of the easy-dissolvable polymer (A) as a core component. However, the composite cross-section fiber has an advantage of exhibiting excellent adsorption performance because the specific surface area is increased by exposing the sheath from one place as compared with a normal fiber.

すなわち、本発明の複合断面繊維は、吸湿性能の指標であるΔMRが概して3〜5%に達し、綿とほぼ同等の吸湿性能を示すことができるものである。ここでいうΔMRとは、30℃、90%RH下での平衡吸湿率から、25℃、65%RH下での平衡吸湿率を差し引いた値である。また、本発明の複合断面繊維は、湿気だけでなく、種々の物質の吸着性能にも優れ、例えば消臭繊維としても有用なものとすることができる。更には綿並みの吸水性を発揮するものにすることができる。   That is, the composite cross-section fiber of the present invention has a ΔMR that is an index of moisture absorption performance, generally reaching 3 to 5%, and can exhibit moisture absorption performance substantially equivalent to cotton. Here, ΔMR is a value obtained by subtracting the equilibrium moisture absorption rate at 25 ° C. and 65% RH from the equilibrium moisture absorption rate at 30 ° C. and 90% RH. Moreover, the composite cross-section fiber of the present invention is excellent not only in moisture but also in the adsorption performance of various substances, and can be useful as, for example, a deodorizing fiber. Furthermore, it can be made to exhibit water absorption similar to cotton.

本発明の複合断面繊維を用いた繊維製品としては、キャミソール、ショーツ等のインナーウエア、ストッキング、ソックス等のレッグニット、シャツやブルゾン等のスポーツ・カジュアルウエア、パンツ、コート、紳士・婦人衣料等の衣料用途のみならず、カップやパッド等の衣料資材用途、カーテンやカーペット、マット、家具等のインテリア用途、さらにはフィルター等の産業資材用途、車両内装用途にも好適に用いることができる。また、従来の合成繊維にはない優れた特性を有することから、上記した用途以外にも、シートコスメ、マスカラといった美容分野、吸水フェルト、研磨布などの工業資材、創傷被覆材といった医療分野にも好適に用いることができる。   Examples of the textile products using the composite cross-section fiber of the present invention include camisole, shorts and other innerwear, stockings, socks and other leg knits, shirts and blouson sports and casual wear, pants, coats, men's and women's clothing, etc. It can be suitably used not only for clothing but also for clothing materials such as cups and pads, interiors such as curtains, carpets, mats and furniture, industrial materials such as filters, and vehicle interiors. In addition to the above-mentioned applications, it has excellent properties not found in conventional synthetic fibers. In addition to the above-mentioned applications, it is also used in beauty fields such as sheet cosmetics and mascara, industrial materials such as water absorbent felt and abrasive cloth, and medical fields such as wound dressings. It can be used suitably.

本発明の複合断面繊維の製造方法は、下記の方法を採用することが好ましい。
すなわち、芯成分である易溶出性ポリマー(A)が海成分、難溶出性ポリマー(B)が島成分である海島構造状のポリマーアロイと鞘成分をそれぞれ別個に溶融した後に、同一の紡糸口金に導いて芯鞘構造となるように複合し、吐出させることにより得られる。吐出された糸条は、紡糸した後にいったん巻き取ることなく引き続き延伸する直接紡糸延伸法、紡糸速度を4000m/分以上のように高速として実質的に延伸工程を省略する高速紡糸法、それらを組合せた高速直接紡糸延伸法、加えて、紡糸した後にいったん巻き取り、巻き取った後に延伸する2工程法等のいずれの製造方法でも可能であるが、未延伸糸の寸法や物性の経時変化を抑制するため、紡糸速度は2000m/分以上として繊維構造を発達させることが好ましい。
The following method is preferably adopted as the method for producing the composite cross-section fiber of the present invention.
That is, the same spinneret is prepared after separately melting the sea-island-structured polymer alloy and sheath component in which the core component is an easily-eluting polymer (A) and the hardly-eluting polymer (B) is an island component. It is obtained by being guided to be combined with a core-sheath structure and discharged. The discharged yarn is directly spun and drawn after spinning, and then stretched without winding once. The spinning speed is set to a high speed such as 4000 m / min. In addition to the high-speed direct spinning drawing method, in addition, any production method such as a two-step method in which winding is performed after spinning and then winding and then drawing is possible, but changes in the dimensions and physical properties of the undrawn yarn are suppressed. Therefore, it is preferable to develop the fiber structure with a spinning speed of 2000 m / min or more.

また、芯成分である易溶出性ポリマー(A)が海成分、難溶出性ポリマー(B)が島成分である海島構造状のポリマーアロイについては、易溶出性ポリマー(A)と難溶出性ポリマー(B)を溶融混練し、難溶出性ポリマー(B)が易溶出性ポリマー(A)中に微分散化した海島構造状のポリマーアロイチップを得る。ここで、易溶出性ポリマー(A)と難溶出性ポリマー(B)との溶融混練の際、溶融混練方法が重要であり、押出混練機や静止混練器等により強制的に混練することにより粗大な凝集ポリマー粒子の生成を大幅に抑制することができるのである。強制的に混練する観点から、押出混練機としては二軸押出混練機、静止混練器としては分割数100万分割以上のものを用いることが好ましい。また、島ポリマーの再凝集を抑制する観点からポリマーアロイ形成、溶融から紡糸口金から吐出するまでの滞留時間も重要であり、ポリマーアロイの溶融部先端から紡糸口金から吐出するまでの時間は30分以内とすることが好ましい。   In addition, regarding the sea-island-structured polymer alloy in which the core component easy-elution polymer (A) is the sea component and the hardly-elution polymer (B) is the island component, the easy-elution polymer (A) and the hardly-elution polymer (B) is melt-kneaded to obtain a sea-island-structured polymer alloy chip in which the hardly-eluting polymer (B) is finely dispersed in the easily-eluting polymer (A). Here, the melt-kneading method is important when melt-kneading the easily-eluting polymer (A) and the hardly-eluting polymer (B), and it is coarse by forcibly kneading with an extrusion kneader or a stationary kneader. Therefore, it is possible to greatly suppress the formation of agglomerated polymer particles. From the viewpoint of forcibly kneading, it is preferable to use a biaxial extrusion kneader as the extrusion kneader and a unit having a division number of 1 million divisions or more as the stationary kneader. Also, from the viewpoint of suppressing the reaggregation of the island polymer, the residence time from the formation and melting of the polymer alloy to the discharge from the spinneret is also important. The time from the melted portion of the polymer alloy to the discharge from the spinneret is 30 minutes. It is preferable to be within.

以下、実施例により本発明をさらに詳細に説明する。また、本発明のポリマーアロイ繊維の物性の測定方法は、以下の通りである。   Hereinafter, the present invention will be described in more detail with reference to examples. Moreover, the measuring method of the physical property of the polymer alloy fiber of this invention is as follows.

A.ポリカプロアミド、ポリヘキサメチレンアジパミドの98%硫酸相対粘度(ηr)
オストワルド粘度計にて下記溶液の25℃での落下秒数を測定し、下式により算出した

すなわち、ポリカプロアミド、ポリヘキサメチレンアジパミドを1g/100mlとなるように溶解した98%濃硫酸(T1秒)、98%濃硫酸(T2秒)とすると、以下のとおりである。
(ηr)=T1/T2
A. 98% sulfuric acid relative viscosity (ηr) of polycaproamide and polyhexamethylene adipamide
The number of seconds at 25 ° C. of the following solution was measured with an Ostwald viscometer and calculated according to the following formula.
That is, assuming that 98% concentrated sulfuric acid (T1 second) and 98% concentrated sulfuric acid (T2 second) in which polycaproamide and polyhexamethylene adipamide are dissolved to 1 g / 100 ml are as follows:
(Ηr) = T1 / T2

B.ポリ乳酸の重量平均分子量(Mw)
ポリ乳酸のクロロホルム溶液にテトラヒドロフランを混合し測定溶液とした。これをゲルパーミエーションクロマトグラフィー(GPC)で測定し、ポリスチレン換算でMwを求めた。
B. Weight average molecular weight of polylactic acid (Mw)
Tetrahydrofuran was mixed with a chloroform solution of polylactic acid to obtain a measurement solution. This was measured by gel permeation chromatography (GPC), and Mw was determined in terms of polystyrene.

C.透過型電子顕微鏡(TEM)による繊維およびペレットの断面観察
繊維については繊維横断面に、チップについては任意の断面に超薄切片を切り出し、TEM((株)日立製作所社製H−7100FA型)で断面を観察した。また、海成分と島成分の識別がしやすいようにPTA染色を施した。
C. Cross-sectional observation of fibers and pellets with a transmission electron microscope (TEM) Ultra-thin sections were cut out in the cross-section of the fibers for fibers and in arbitrary cross-sections for chips, and TEM (H-7100FA, manufactured by Hitachi, Ltd.) was used. The cross section was observed. In addition, PTA staining was performed so that the sea component and the island component could be easily distinguished.

D.島ポリマーの直径、平均直径、直径300nm以上の粗大島の総面積の割合
TEMによる繊維およびペレットの断面写真を画像処理ソフト(三谷商事(株)社製WINROOF)を用いて処理し、求めた島ポリマーの面積を円換算して直径を算出した。島ポリマーの平均直径は、得られた個々の直径から数平均して算出した。直径300nm以上の粗大島の総面積の割合は、島の総面積に占める割合で算出した。これらの算出に用いる島ドメイン数は、同一断面内で無作為に抽出した300の島ドメインとした。ただし、TEM観察用のサンプルは超薄切片とするため、サンプルに破れや穴あきが発生しやすい。このため、島ポリマーの直径解析時にはサンプルの状況と照し合わせながら慎重に行った。
D. Island polymer diameter, average diameter, ratio of the total area of coarse islands with a diameter of 300 nm or more TEM obtained by processing cross-sectional photographs of fibers and pellets with TEM using image processing software (WINROOF manufactured by Mitani Corporation) The diameter was calculated by converting the area of the polymer into a circle. The average diameter of the island polymer was calculated by averaging the obtained individual diameters. The ratio of the total area of coarse islands having a diameter of 300 nm or more was calculated as the ratio of the total area of the islands. The number of island domains used for these calculations was 300 island domains randomly extracted within the same cross section. However, since the sample for TEM observation is an ultrathin section, the sample is easily broken or perforated. For this reason, the analysis of the diameter of the island polymer was carried out carefully with reference to the condition of the sample.

E.中空率
繊維から織密度が経糸120本/2.54cm、緯糸90本/2.54cmの平織地を作成し、2%−水酸化ナトリウム水溶液で、95℃で1hr浸透し、易溶出性ポリマー(A)を溶出除去後、流水で1hr水洗し、1日間風乾した。なお、ポリカプロアミド単独で得られた平織地についてのアルカリ処理は不要とした。平織地から繊維を分解し、ニコン社製光学顕微鏡で倍率400倍にて得た断面写真を画像処理ソフト(三谷商事(株)社製WINROOF)を用いて処理し、中空部と鞘部+極細繊維凝集部の面積比より平織地とした後の中空率を算出した。なお、C型断面の開放部は中空部に含めた。また、測定はランダムに選んだ10本の単繊維にて行い数平均して算出した。なお、比較例4のポリカプロアミド多孔繊維については、TEMで得られた断面写真を画像処理ソフト(三谷商事(株)社製WINROOF)を用いて処理し、孔部総面積を算出した後、TEM観察部総面積からの比率で中空率を算出した。
E. Hollow ratio A plain weave fabric with a weaving density of 120 warps / 2.54 cm and 90 wefts / 2.54 cm was prepared from the fiber and infiltrated with a 2% aqueous sodium hydroxide solution at 95 ° C. for 1 hr. After elution and removal of A), it was washed with running water for 1 hr and air-dried for 1 day. In addition, the alkali treatment was not required for the plain woven fabric obtained with polycaproamide alone. Fibers were disassembled from plain weave fabric, and a cross-sectional photograph obtained with a Nikon optical microscope at a magnification of 400 times was processed using image processing software (WINROOF, Mitani Corp.), hollow part and sheath part + extra fine The hollow ratio after the plain woven fabric was calculated from the area ratio of the fiber aggregation part. The open part of the C-shaped cross section was included in the hollow part. Moreover, the measurement was carried out with 10 monofilaments selected at random and the number averaged. In addition, about the polycaproamide porous fiber of the comparative example 4, after processing the cross-sectional photograph obtained by TEM using image processing software (WINROOF made by Mitani Corporation), and calculating a hole total area, The hollow ratio was calculated as a ratio from the total area of the TEM observation part.

F.C型断面部の開放長
繊維をニコン社製光学顕微鏡で倍率400倍にて観察、得られた断面写真を画像処理ソフト(三谷商事(株)社製WINROOF)を用いて処理し、開放長と外周円長の比より算出した。なお、測定はランダムに選んだ10の単糸にて行い数平均して算出した。
F. Open length of C-shaped cross section The fiber was observed with a Nikon optical microscope at a magnification of 400 times, and the resulting cross-sectional photograph was processed using image processing software (WINROOF, Mitani Corp.). It was calculated from the ratio of the circumference circle length. The measurement was carried out with 10 single yarns selected at random and the number averaged.

G.吸湿性(標準吸湿率、最高吸湿率、吸湿率差)
(1)繊維から編密度が45本/2.54cmの丸編地を作成し、2%−水酸化ナトリウム水溶液で、95℃で1hr浸透し、を溶出除去後、流水で1hr水洗し、1日間風乾した。なお、ポリカプロアミド単独で得られた繊維編地についてのアルカリ処理は不要とした。
(2)上記操作を行った丸編地1gを、重量が既知の秤量瓶に入れ、秤量瓶の蓋を開放した状態で、乾燥機中で40℃、10Torr以下で30分間予備乾燥した。
(3)予備乾燥後の丸編地を、20℃、65%RHに設定された恒温恒湿槽中に、秤量瓶の蓋を開放した状態で入れ、24時間調湿した。
(4)調湿後、秤量瓶に蓋をした後、速やかに丸編地の入った秤量瓶の総重量を測定し、そこから秤量瓶の重量を差し引き、丸編地の重量(W65%)を算出した。
(5)重量算出後の丸編地を、30℃、90%RHに設定された恒温恒湿槽中に秤量瓶の蓋を開放した状態で入れ、24時間調湿した。
(6)調湿後、秤量瓶に蓋をした後、速やかに丸編地の入った秤量瓶の総重量を測定し、そこから秤量瓶の重量を差し引き、丸編地の重量(W90%)を算出した。
(7)重量算出後の丸編地を、秤量瓶の蓋を開放した状態で、乾燥機中で80℃、10Torr以下で1時間乾燥した。
(8)乾燥後、秤量瓶に蓋をした後、速やかに丸編地の入った秤量瓶の総重量を測定し、そこから秤量瓶の重量を差し引き丸編地の重量(W)を算出した。
(9)上記W65%、W90%、Wから下式により算出した。
標準吸湿率(MR65%)={(W65%−W)/W}×100(重量%)
最高吸湿率(MR90%)={(W90%−W)/W}×100(重量%)
吸湿率差(ΔMR)=MR90%−MR65%(重量%)。
G. Hygroscopicity (standard moisture absorption rate, maximum moisture absorption rate, moisture absorption difference)
(1) Create a circular knitted fabric with a knitting density of 45 / 2.54 cm from the fiber, infiltrate with a 2% -sodium hydroxide aqueous solution at 95 ° C. for 1 hr, remove it by elution, wash with running water for 1 hr, Air dried for days. In addition, the alkali treatment was not required for the fiber knitted fabric obtained with polycaproamide alone.
(2) 1 g of the circular knitted fabric subjected to the above operation was put in a weighing bottle with a known weight, and pre-dried at 40 ° C. and 10 Torr or less for 30 minutes in a dryer with the lid of the weighing bottle opened.
(3) The pre-dried circular knitted fabric was placed in a constant temperature and humidity chamber set to 20 ° C. and 65% RH with the lid of the weighing bottle opened, and the humidity was adjusted for 24 hours.
(4) After humidity control, after covering the weighing bottle, immediately measure the total weight of the weighing bottle containing the circular knitted fabric, subtract the weight of the weighing bottle from there, and the weight of the circular knitted fabric (W65%) Was calculated.
(5) The circular knitted fabric after calculating the weight was placed in a constant temperature and humidity chamber set at 30 ° C. and 90% RH with the lid of the weighing bottle opened, and conditioned for 24 hours.
(6) After the humidity control, after covering the weighing bottle, immediately measure the total weight of the weighing bottle containing the circular knitted fabric, subtract the weight of the weighing bottle from there, and the weight of the circular knitted fabric (W90%) Was calculated.
(7) The circular knitted fabric after calculating the weight was dried at 80 ° C. and 10 Torr or less for 1 hour in a dryer with the lid of the weighing bottle opened.
(8) After drying, after covering the weighing bottle, the total weight of the weighing bottle containing the circular knitted fabric was quickly measured, and the weight of the circular knitted fabric was calculated by subtracting the weight of the weighing bottle from there. .
(9) Calculated from the above W65%, W90%, and W by the following equation.
Standard moisture absorption rate (MR65%) = {(W65% −W) / W} × 100 (% by weight)
Maximum moisture absorption rate (MR90%) = {(W90% -W) / W} × 100 (% by weight)
Moisture absorption difference (ΔMR) = MR 90% −MR 65% (weight%).

H.吸水性(バイレック法)
JIS L1907(2004)繊維製品の吸水性試験方法の7.1.2バイレック法に準じて測定した。なお、試料については、繊維から織密度が経糸120本/2.54cm、緯糸90本/2.54cmの平織地を作成し、2%−水酸化ナトリウム水溶液で、95℃で1hr浸透し、ポリ乳酸を溶出除去後、流水で1hr水洗し、1日間風乾したものを使用した。なお、ポリカプロアミド単独で得られた繊維平織地についてのアルカリ処理は不要とした。
H. Water absorption (Bilec method)
The measurement was performed according to JIS L1907 (2004) 7.1.2 Birec method of water absorption test method for textiles. For the sample, a plain woven fabric having a weaving density of 120 warps / 2.54 cm and 90 wefts / 2.54 cm was prepared from the fiber, and infiltrated with a 2% aqueous sodium hydroxide solution at 95 ° C. for 1 hr. After elution and removal of lactic acid, it was washed with running water for 1 hr and air-dried for 1 day. In addition, alkali treatment was not required for the plain fiber fabric obtained with polycaproamide alone.

I.消臭性(アンモニアの消臭率)
試料3gを500mlのポリエチレン製容器内に固定した後、アンモニアを容器内に200ppmの濃度となるよう導入した。そして、密栓後、容器を50℃で1分間保持し、アンモニアを十分気化させた。そして、30℃で10分間放置後、容器内の空気をサンプリングし、ガステック(株)社製のガス検知管でアンモニア濃度(Appm)を測定した。上記(Appm)から下式により算出した。
アンモニアの消臭率=(200−A)/200×100(%)
なお、試料については、繊維から編密度が45本/2.54cmの丸編地を作成し、2%−水酸化ナトリウム水溶液で、95℃で1hr浸透し、ポリ乳酸を溶出除去後、流水で1hr水洗し、1日間風乾したものを使用した。なお、ポリカプロアミド単独で得られた繊維編地についてのアルカリ処理は不要とした。
I. Deodorant (deodorization rate of ammonia)
After fixing 3 g of the sample in a 500 ml polyethylene container, ammonia was introduced into the container to a concentration of 200 ppm. And after sealing, the container was hold | maintained for 1 minute at 50 degreeC, and ammonia was fully vaporized. And after leaving at 30 degreeC for 10 minute (s), the air in a container was sampled and ammonia concentration (Appm) was measured with the gas detection pipe | tube made from Gastec Corporation. It calculated from the above (Appm) by the following formula.
Deodorization rate of ammonia = (200−A) / 200 × 100 (%)
For the sample, a circular knitted fabric having a knitting density of 45 / 2.54 cm was prepared from the fiber, infiltrated with a 2% -sodium hydroxide aqueous solution at 95 ° C. for 1 hr, and the polylactic acid was eluted and removed with running water. Washed with water for 1 hr and air-dried for 1 day was used. In addition, the alkali treatment was not required for the fiber knitted fabric obtained with polycaproamide alone.

J.保温性(CLO値)
繊維から織密度が経糸120本/2.54cm、緯糸90本/2.54cmの平織地を作成し、2%−水酸化ナトリウム水溶液で、95℃で1hr浸透し、ポリ乳酸を溶出除去後、流水で1hr水洗し、1日間風乾した。なお、ポリカプラミド単独で得られた平織地についてのアルカリ処理は不要とした。得られた平織地を20℃、65%RHの環境下で24時間調湿し、40±0.1℃に設定された熱板上に設置し、1分経過後の安定した状態で、熱板から平織地を通して環境中に放散する熱損失量を、熱板面積S(m2)と消費電力E(EW)とから求めた。このとき、熱板からの対流による放熱を防止するため、熱板周辺は上部に開閉口のある樹脂製ケースで覆って無風状態とした。
CLO値=(1/0.155)×(20×S/E)
J. et al. Thermal insulation (CLO value)
A plain weave fabric with a weaving density of 120 warps / 2.54 cm and 90 wefts / 2.54 cm was prepared from the fibers, and infiltrated and removed with 2% aqueous sodium hydroxide solution at 95 ° C. for 1 hr. It was washed with running water for 1 hr and air-dried for 1 day. In addition, the alkali treatment was not required for the plain woven fabric obtained with polycapramide alone. The obtained plain woven fabric was conditioned for 24 hours in an environment of 20 ° C. and 65% RH, installed on a hot plate set to 40 ± 0.1 ° C., and heated in a stable state after 1 minute. The amount of heat loss dissipated from the plate through the plain weave into the environment was determined from the hot plate area S (m2) and power consumption E (EW). At this time, in order to prevent heat dissipation due to convection from the hot plate, the hot plate periphery was covered with a resin case having an opening at the top so as to be in a windless state.
CLO value = (1 / 0.155) × (20 × S / E)

このCLO値は、保温性を示す指標として一般的に用いられているものであり、値が大きいほど保温性が優れることを表す。そして、21℃、50%RH以下、気流5cm/秒の室内で安静状態にある人体の平均皮膚温度(33℃)を維持できる布帛の保温性がCL0値1.0で表される。   This CLO value is generally used as an index indicating heat retention, and the larger the value, the better the heat retention. And the heat retention property of the fabric which can maintain the average skin temperature (33 degreeC) of the human body which is still in a room | chamber interior of 21 degreeC, 50% RH or less, and airflow 5 cm / sec is represented by CL0 value 1.0.

実施例1、2、5〜8
ηrが2.6のポリカプロアミドと、Mwが9.2万のポリ乳酸とを、両者の水分率が0.03重量%以下になるまで乾燥した後、ポリカプロアミド/ポリ乳酸=4/6、2/8の重量比で、二軸押出混練機で、240℃で溶融混練して、海がポリ乳酸、島がポリカプロアミドの海島構造状のポリマーアロイチップを得た。これらの得られたチップを任意の断面に超薄切片を切り出し、TEM((株)日立製作所社製H−7100FA型)で断面を観察したところ、島の平均直径は、重量比が4/6では760nm、重量比が2/8では880nmであった。
Examples 1, 2, 5-8
After drying polycaproamide having an ηr of 2.6 and polylactic acid having an Mw of 92,000 until the water content of the both becomes 0.03% by weight or less, polycaproamide / polylactic acid = 4 / It was melt kneaded at 240 ° C. with a twin-screw extruder kneader at a weight ratio of 6 and 2/8 to obtain a polymer alloy chip having a sea-island structure in which the sea was polylactic acid and the island was polycaproamide. When the obtained chips were cut into ultrathin sections in an arbitrary cross section and the cross section was observed with a TEM (H-7100FA type manufactured by Hitachi, Ltd.), the average diameter of the islands was 4/6 by weight. And 880 nm when the weight ratio was 2/8.

これらのポリマーアロイを芯成分とし、ηrが2.8のポリカプロアミドを鞘成分として、それぞれ別々に溶融し、お互いの重量比が表1の値となるように計量して複合断面紡糸口金に導き、ポリマーアロイが芯成分、ポリカプロアミドが鞘成分となるように複合、溶融吐出した(芯成分溶融温度230℃、鞘成分溶融温度260℃、紡糸保温箱温度250℃)。続いて、糸条を18℃の冷却風で冷却し、給油、交絡処理を行った後、非加熱ローラーで引き取り、150℃の加熱ローラーとの間で1.5倍延伸して巻き取り速度4000m/分で巻き取りをおこない、78デシテックス−24フィラメントの複合断面繊維を得た。   Using these polymer alloys as the core component and polycaproamide having ηr of 2.8 as the sheath component, each was melted separately, and weighed so that the weight ratios of the components would be the values shown in Table 1, to obtain a composite cross-section spinneret. The mixture was then melted and discharged so that the polymer alloy was the core component and the polycaproamide was the sheath component (core component melting temperature 230 ° C., sheath component melting temperature 260 ° C., spinning insulation box temperature 250 ° C.). Subsequently, the yarn is cooled with a cooling air of 18 ° C., subjected to refueling and entanglement treatment, taken up with a non-heated roller, drawn 1.5 times with a heating roller of 150 ° C., and a winding speed of 4000 m. The film was wound up at a rate of / min to obtain a composite cross-section fiber of 78 dtex-24 filaments.

得られた複合断面繊維について、ポリマーアロイ島の平均直径、直径300nm以上の粗大島の総面積の割合、C部開放長について測定した。また、得られた複合断面繊維を編織、アルカリ溶出した後の中空率、吸湿性、吸水性、消臭性、CLO値についても併せて評価した。これらの結果を表1、2に示す。   About the obtained composite cross-section fiber, it measured about the average diameter of a polymer alloy island, the ratio of the total area of the coarse island of diameter 300nm or more, and C part open length. Further, the obtained composite cross-sectional fiber was knitted, and the hollow ratio after elution with alkali, hygroscopicity, water absorption, deodorizing property, and CLO value were also evaluated. These results are shown in Tables 1 and 2.

実施例3、4
鞘成分をηrが2.8のポリヘキサメチレンアジパミド、溶融吐出温度を鞘成分溶融温度290℃、紡糸保温箱温度285℃とする以外は、実施例1と同様に紡糸し、78デシテックス−24フィラメントの複合断面繊維を得た。
Examples 3 and 4
Spinning was carried out in the same manner as in Example 1 except that the sheath component was polyhexamethylene adipamide having ηr of 2.8, the melt discharge temperature was 290 ° C., and the heat insulation box temperature was 285 ° C. A composite filament of 24 filaments was obtained.

得られた複合断面繊維について、ポリマーアロイ島の平均直径、直径300nm以上の粗大島の総面積の割合、C部開放長について測定した。また、得られた複合断面繊維を編織、アルカリ溶出した後の中空率、吸湿性、吸水性、消臭性、CLO値についても併せて評価した。これらの結果を表1、表2に示す。   About the obtained composite cross-section fiber, it measured about the average diameter of the polymer alloy island, the ratio of the total area of the coarse island of diameter 300nm or more, and C part open length. Further, the obtained composite cross-sectional fiber was knitted, and the hollowness ratio after elution with alkali, hygroscopicity, water absorption, deodorizing property, and CLO value were also evaluated. These results are shown in Tables 1 and 2.

比較例1
ηrが2.8のポリカプロアミドチップを丸孔紡糸口金に導き、溶融吐出した(溶融温度260℃、紡糸保温箱温度250℃)。続いて糸条を18℃の冷却風で冷却し、給油、交絡を行った後、非加熱ローラーで引き取り、150℃の加熱ローラーとの間で延伸して巻き取り速度4000m/分で巻き取りを行い、78デシテックス−24フィラメントのポリカプロアミド繊維を得た。得られたポリカプロアミド繊維を編織した後の吸湿性、吸水性、消臭性、CLO値について評価した。これらの結果を表2に示す。
Comparative Example 1
A polycaproamide chip having ηr of 2.8 was introduced into a round hole spinneret and melted and discharged (melting temperature 260 ° C., spinning heat insulation box temperature 250 ° C.). Subsequently, the yarn is cooled with a cooling air of 18 ° C., lubricated and entangled, then taken up with a non-heated roller, drawn with a heated roller at 150 ° C., and taken up at a winding speed of 4000 m / min. And a polycaproamide fiber of 78 dtex-24 filaments was obtained. The resulting polycaproamide fiber was evaluated for hygroscopicity, water absorption, deodorant properties, and CLO value after knitting. These results are shown in Table 2.

比較例2
ηrが3.2のポリカプロアミドチップを中空孔紡糸口金に導き、溶融吐出した(溶融温度275℃、紡糸保温箱温度265℃)。続いて糸条を18℃の冷却風で冷却し、給油、交絡を行った後、非加熱ローラーで引き取り、150℃の加熱ローラーとの間で延伸して巻き取り速度4000m/分で巻き取りを行い、55デシテックス−24フィラメントのポリカプロアミド繊維を得た。得られた繊維の中空率を測定したところ、中空率は30%であった。得られたポリカプロアミド繊維を編織した後の中空率は15%であり、後加工工程において中空部が潰れていた。また、吸湿性、吸水性、消臭性、CLO値についても併せて評価した。これらの結果を表2に示す。
Comparative Example 2
A polycaproamide chip having ηr of 3.2 was introduced into a hollow-hole spinneret and melted and discharged (melting temperature 275 ° C., spinning heat insulation box temperature 265 ° C.). Subsequently, the yarn is cooled with a cooling air of 18 ° C., lubricated and entangled, then taken up with a non-heated roller, drawn with a heated roller at 150 ° C., and taken up at a winding speed of 4000 m / min. And a polycaproamide fiber of 55 dtex-24 filaments was obtained. When the hollow ratio of the obtained fiber was measured, the hollow ratio was 30%. The hollow ratio after knitting the obtained polycaproamide fiber was 15%, and the hollow portion was crushed in the post-processing step. Moreover, hygroscopicity, water absorption, deodorant property, and CLO value were also evaluated. These results are shown in Table 2.

比較例3、4
ηrが2.6のポリカプロアミドと、Mwが9.2万のポリ乳酸とを、両者の水分率が0.03重量%以下になるまで乾燥した後、ポリカプロアミド/ポリ乳酸=4/6、8/2の重量比で、二軸押出混練機で、240℃で溶融混練して、ポリカプロアミド/ポリ乳酸の重量比が4/6については海がポリ乳酸、島がポリカプロアミド、重量比が8/2については海がポリカプロアミド、島がポリ乳酸の海島構造状のポリマーアロイチップを得た。これらの得られたチップを任意の断面に超薄切片を切り出し、TEM((株)日立製作所社製H−7100FA型)で断面を観察したところ、島の平均直径は、重量比が4/6では760nm、重量比が8/2では650nmであった。
Comparative Examples 3 and 4
After drying polycaproamide having an ηr of 2.6 and polylactic acid having an Mw of 92,000 until the water content of the both becomes 0.03% by weight or less, polycaproamide / polylactic acid = 4 / 6 and 8/2 by a twin screw extruder kneading at 240 ° C., and when the polycaproamide / polylactic acid weight ratio is 4/6, the sea is polylactic acid and the island is polycaproamide When the weight ratio was 8/2, a polymer alloy chip having a sea-island structure in which the sea was polycaproamide and the island was polylactic acid was obtained. When the obtained chips were cut into ultrathin sections in an arbitrary cross section and the cross section was observed with a TEM (H-7100FA type manufactured by Hitachi, Ltd.), the average diameter of the islands was 4/6 by weight. Was 760 nm, and the weight ratio was 8/2 at 650 nm.

上記これらのポリマーアロイを丸孔紡糸口金に導き、溶融吐出した(ポリカプロアミド/ポリ乳酸の重量比が4/6については溶融温度235℃、紡糸保温箱温度235℃、重量比が8/2については溶融温度260℃、紡糸保温箱温度250℃)。続いて糸条を18℃の冷却風で冷却し、給油、交絡を行った後、非加熱ローラーで引き取り、150℃の加熱ローラーとの間で延伸して巻き取り速度4000m/分で巻き取りを行い、78デシテックス−24フィラメントのポリマーアロイ繊維を得た。   These polymer alloys were introduced into a round hole spinneret and melted and discharged (for a polycaproamide / polylactic acid weight ratio of 4/6, a melting temperature of 235 ° C., a spinning heat insulation box temperature of 235 ° C., and a weight ratio of 8/2). (Melting temperature 260 ° C., spinning insulation box temperature 250 ° C.). Subsequently, the yarn is cooled with a cooling air of 18 ° C., lubricated and entangled, then taken up with a non-heated roller, drawn with a heated roller at 150 ° C., and taken up at a winding speed of 4000 m / min. And a polymer alloy fiber of 78 dtex-24 filaments was obtained.

得られたポリマーアロイ繊維について、ポリマーアロイ島の平均直径、直径300nm以上の粗大島の総面積の割合について測定した。また、得られたポリマーアロイ繊維を編織、アルカリ溶出した後の中空率、吸湿性、吸水性、消臭性、CLO値についても併せて評価した。これらの結果を表1、表2に示す。   About the obtained polymer alloy fiber, it measured about the average diameter of a polymer alloy island, and the ratio of the total area of the coarse island of diameter 300nm or more. Further, the obtained polymer alloy fibers were knitted and evaluated with respect to the hollow ratio, hygroscopicity, water absorption, deodorant properties, and CLO value after elution with alkali. These results are shown in Tables 1 and 2.

比較例5
ηrが2.6のポリカプロアミドと、Mwが9.2万のポリ乳酸とを、両者の水分率が0.03重量%以下になるまで乾燥した後、ポリカプロアミド/ポリ乳酸=4/6の重量比で、二軸押出混練機で、240℃で溶融混練して、海がポリ乳酸、島がポリカプロアミドの海島構造状のポリマーアロイチップを得た。得られたチップを任意の断面に超薄切片を切り出し、TEM((株)日立製作所社製H−7100FA型)で断面を観察したところ、島の平均直径は760nmであった。
Comparative Example 5
After drying polycaproamide having an ηr of 2.6 and polylactic acid having an Mw of 92,000 until the water content of the both becomes 0.03% by weight or less, polycaproamide / polylactic acid = 4 / The mixture was melt-kneaded at 240 ° C. with a twin screw extruder at a weight ratio of 6 to obtain a polymer alloy chip having a sea-island structure in which the sea was polylactic acid and the islands were polycaproamide. When the obtained chip was cut into an ultrathin section in an arbitrary cross section and the cross section was observed with a TEM (H-7100FA type, manufactured by Hitachi, Ltd.), the average diameter of the islands was 760 nm.

上記ポリマーアロイを芯成分とし、ηrが2.8のポリカプロアミドを鞘成分として、それぞれ別々に溶融し、互いの重量比が5/5となるように計量して複合断面紡糸口金に導き、ポリマーアロイが芯成分、ポリカプロアミドが鞘成分となるように複合、溶融吐出した(芯成分溶融温度230℃、鞘成分溶融温度260℃、紡糸保温箱温度250℃)。続いて糸条を18℃の冷却風で冷却し、給油、交絡処理を行った後、非加熱ローラーで引き取り、150℃の加熱ローラーとの間で延伸して巻き取り速度4000m/分で巻き取りを行い、78デシテックス−24フィラメントの芯成分が露出されていない2重芯鞘の複合断面繊維を得た。   Using the above polymer alloy as a core component and polycaproamide having a ηr of 2.8 as a sheath component, each melted separately, and weighed so that the weight ratio of each becomes 5/5, leading to a composite cross-section spinneret, The polymer alloy was combined and melted and discharged so that the core component and polycaproamide were the sheath component (core component melting temperature 230 ° C., sheath component melting temperature 260 ° C., spinning heat insulation box temperature 250 ° C.). Subsequently, the yarn is cooled with a cooling air of 18 ° C., subjected to oiling and entanglement treatment, taken up with a non-heated roller, drawn with a heating roller of 150 ° C., and taken up at a winding speed of 4000 m / min. The composite cross-section fiber of the double core sheath in which the core component of 78 dtex-24 filament is not exposed was obtained.

得られた複合断面繊維について、ポリマーアロイ島の平均直径、直径300nm以上の粗大島の総面積の割合について測定した。また、得られた複合断面繊維を編織、アルカリ溶出した後の中空率、吸湿性、吸水性、消臭性、CLO値についても併せて評価した。これらの結果を表1、表2に示す。   About the obtained composite cross section fiber, it measured about the average diameter of a polymer alloy island, and the ratio of the total area of the coarse island of diameter 300nm or more. Further, the obtained composite cross-sectional fiber was knitted, and the hollowness ratio after elution with alkali, hygroscopicity, water absorption, deodorizing property, and CLO value were also evaluated. These results are shown in Tables 1 and 2.

Figure 2007254944
Figure 2007254944

Figure 2007254944
Figure 2007254944

表1、表2の結果から明らかなように、本発明の複合断面繊維は、従来繊維、中空繊維と比較して、高中空率で後加工においても中空部潰れが少なく、また、保温性、吸着性能に優れた、極めて顕著な効果を奏するものであることがわかる。   As is clear from the results of Tables 1 and 2, the composite cross-section fiber of the present invention has a high hollow ratio and less hollow portion crushing even in post-processing, as compared with conventional fibers and hollow fibers. It can be seen that it has excellent adsorption performance and has a very remarkable effect.

Claims (6)

鞘成分の一箇所から芯成分が露出している芯鞘構造状の複合断面繊維であって、易溶出
性ポリマー(A)が海成分でありかつ難溶出性ポリマー(B)が島成分である海島構造状
のポリマーアロイが前記芯成分であり、難溶出性ポリマー(C)が前記鞘成分であること
を特徴とする複合断面繊維。
A core-sheath-structured composite cross-section fiber in which the core component is exposed from one portion of the sheath component, the easily-eluting polymer (A) is the sea component and the hardly-eluting polymer (B) is the island component A composite cross-section fiber, wherein a sea-island-structured polymer alloy is the core component, and a hardly-elutable polymer (C) is the sheath component.
鞘成分の断面形状がC型であることを特徴とする請求項1に記載の複合断面繊維。   The composite cross-section fiber according to claim 1, wherein a cross-sectional shape of the sheath component is C-type. 前記芯成分であるポリマーアロイの島の平均直径が1〜200nmであることを特徴と
する請求項1または2に記載の複合断面繊維。
The composite cross-section fiber according to claim 1 or 2, wherein an average diameter of the polymer alloy island as the core component is 1 to 200 nm.
前記芯成分と鞘成分の重量比が、10:90〜90:10の範囲にあることを特徴とす
る請求項1〜3のいずれかに記載の複合断面繊維。
The composite cross-section fiber according to any one of claims 1 to 3, wherein a weight ratio of the core component to the sheath component is in a range of 10:90 to 90:10.
前記芯成分であるポリマーアロイの易溶出性ポリマー(A)と、難溶出性ポリマー(B
)の重量比が、50:50〜90:10の範囲にあることを特徴とする請求項1〜4のい
ずれかに記載の複合断面繊維。
Easily eluting polymer (A) and polymer (B)
) In the range of 50:50 to 90:10. The composite cross-section fiber according to any one of claims 1 to 4,
請求項1〜5のいずれかに記載の複合断面繊維中に含まれる易溶出性ポリマーを溶出除
去して得られたものであることを特徴とする複合断面繊維。
A composite cross-section fiber obtained by eluting and removing the easily-eluting polymer contained in the composite cross-section fiber according to any one of claims 1 to 5.
JP2007040774A 2006-02-24 2007-02-21 Conjugate cross section fiber Pending JP2007254944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040774A JP2007254944A (en) 2006-02-24 2007-02-21 Conjugate cross section fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006047859 2006-02-24
JP2007040774A JP2007254944A (en) 2006-02-24 2007-02-21 Conjugate cross section fiber

Publications (1)

Publication Number Publication Date
JP2007254944A true JP2007254944A (en) 2007-10-04

Family

ID=38629461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040774A Pending JP2007254944A (en) 2006-02-24 2007-02-21 Conjugate cross section fiber

Country Status (1)

Country Link
JP (1) JP2007254944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846449A (en) * 2015-06-15 2015-08-19 湖州市菱湖重兆金辉丝织厂 Novel cobweb-imitated fiber based on layer-by-layer self-assembling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846449A (en) * 2015-06-15 2015-08-19 湖州市菱湖重兆金辉丝织厂 Novel cobweb-imitated fiber based on layer-by-layer self-assembling

Similar Documents

Publication Publication Date Title
KR101029515B1 (en) Porous fiber
JP4922654B2 (en) Nanofiber fiber structure, method for producing the same, and fiber product
JP2007204864A (en) Fabric, and innerwear and stockings each using the same
KR101906325B1 (en) Sheath-core bicomponent fibre
JP2004162244A (en) Nano-fiber
WO2007078203A1 (en) Anti-bacterial micro-fibre and production thereof
CN100363541C (en) Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
JP4736494B2 (en) Blended yarn or blended yarn or knitted fabric containing polyphenylene sulfide nanofiber
JP5040270B2 (en) Composite processed yarn
JP4134829B2 (en) Nanofiber mixed yarn
JP4698930B2 (en) Fiber structures containing nanofibers
JP4315009B2 (en) Blended yarn and textile products comprising the same
JP5385085B2 (en) Deodorant functional agent-containing ultrafine fiber and method for producing the same
JP2005133250A (en) Core-sheath conjugate fiber
JP2007254944A (en) Conjugate cross section fiber
JP3297492B2 (en) Sheath-core type composite fiber
JP4292893B2 (en) Polymer alloy crimped yarn
JP4325616B2 (en) Nanoporous fiber
JP4848950B2 (en) Polymer alloy fiber
JP4270202B2 (en) Nanofiber assembly
JP4100180B2 (en) Polymer alloy fiber
JP2003064558A (en) Comfortable knitted fabric
JP2020094310A (en) Composite fiber and fiber structure comprising the same
JP2004270110A (en) Polymer alloy fiber
JP2005015969A (en) Nano-porous fiber composite woven or knitted fabric