JP2007253087A - Apparatus and method for mixing powder - Google Patents

Apparatus and method for mixing powder Download PDF

Info

Publication number
JP2007253087A
JP2007253087A JP2006082142A JP2006082142A JP2007253087A JP 2007253087 A JP2007253087 A JP 2007253087A JP 2006082142 A JP2006082142 A JP 2006082142A JP 2006082142 A JP2006082142 A JP 2006082142A JP 2007253087 A JP2007253087 A JP 2007253087A
Authority
JP
Japan
Prior art keywords
powder
additive
particles
air
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006082142A
Other languages
Japanese (ja)
Other versions
JP4986483B2 (en
Inventor
Kenji Hikino
健治 引野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006082142A priority Critical patent/JP4986483B2/en
Publication of JP2007253087A publication Critical patent/JP2007253087A/en
Application granted granted Critical
Publication of JP4986483B2 publication Critical patent/JP4986483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for mixing powder in which powder can be reacted uniformly with an additive in a short time by using more economic equipment and to provide a method for mixing powder by using the apparatus for mixing powder. <P>SOLUTION: The apparatus 1 for mixing powder is provided with a treatment tank 10 having an inner wall-surrounded aerial mixing zone 101 in the upper part and a reaction/sedimentation zone 102 in the lower part. The treatment tank 10 is provided with: a powder supply port 103 through which powder, for example, coal ash 20 is supplied into the aerial mixing zone 101 and additive supply ports 104a, 104b through each of which the additive 30 of an atomized state is supplied into the aerial mixing zone 101 together with air. The treatment tank 10 is further provided with a faucet 108 for controlling the withdrawal of a reaction product 401 of a particle 201 of the powder (coal ash 20) with a particle 301 of the additive 30 each of which descends from the aerial mixing zone 101 to the reaction/sedimentation zone 102. An aging tank 80 to be connected to the faucet 108 is preferably arranged. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、灰やその他の粉体の低害化、無害化処理に用いられる粉体混合処理装置に関し、特に粉体の有害微量元素の溶出を抑制する粉体混合処理装置及び粉体混合処理方法に関する。   The present invention relates to a powder mixing apparatus used for reducing or detoxifying ash and other powders, and in particular, a powder mixing apparatus and a powder mixing process for suppressing the elution of harmful trace elements of powder. Regarding the method.

石油代替エネルギー資源として石炭が見直されている。石炭は、石油に比較して全世界に豊富な埋蔵量を有し、安定した供給が見込めるからである。このような理由もあって、各種石炭燃焼設備は増加傾向にある。例えば、石炭火力発電所が増加しており、副産物としての石炭燃焼灰(以下、石炭灰)も急増している。石炭灰は粉体であり、特にフライアッシュと呼ばれる石炭灰は、捕集されたときにすでに10〜30μm程度の粒径を有する一様な球状になっている。一般に、石炭灰の一部は、コンクリートや土壌改良材等、土木建築材料として有効利用され、その他の余剰した石炭灰は、埋め立てに利用される。   Coal is being reviewed as an alternative energy resource for oil. This is because coal has abundant reserves all over the world compared to oil, and a stable supply can be expected. For these reasons, various types of coal burning facilities are increasing. For example, coal-fired power plants are increasing, and coal-burning ash (hereinafter referred to as coal ash) as a by-product is also increasing rapidly. Coal ash is a powder, and especially coal ash called fly ash is already in a uniform spherical shape having a particle size of about 10 to 30 μm when collected. In general, a part of coal ash is effectively used as civil engineering and building materials such as concrete and soil improvement materials, and other surplus coal ash is used for landfill.

上記のような石炭灰は、微量ではあるが有害な重金属(有害微量元素)を含有している。そこで、石炭灰は、上記用途に用いるにあたり、環境への配慮から、有害微量元素の溶出濃度を規定値以下に低減する対策がとられている。石炭灰の有害微量元素の溶出を抑制する対策として、重金属を不溶化する方法がある。重金属を不溶化する方法は、大量の石炭灰を処理するのに適しており、具体的には、セメント固化法や薬剤処理法などが知られている。セメント固化法は、石炭灰にセメント等を添加して固化し、重金属を不溶化する。薬剤処理法は、石炭灰にキレート化合物等の溶出防止剤を添加し、重金属を不溶化する。   The coal ash as described above contains a heavy metal (hazardous trace element) that is harmful even though it is a trace amount. Therefore, when coal ash is used for the above-mentioned applications, measures are taken to reduce the elution concentration of harmful trace elements to a specified value or less in consideration of the environment. As a measure for suppressing the elution of harmful trace elements of coal ash, there is a method of insolubilizing heavy metals. The method for insolubilizing heavy metals is suitable for treating a large amount of coal ash, and specifically, a cement solidification method and a chemical treatment method are known. In the cement solidification method, cement or the like is added to coal ash and solidified to insolubilize heavy metals. In the chemical treatment method, an elution inhibitor such as a chelate compound is added to coal ash to insolubilize heavy metals.

上記のように、石炭灰のような粉体と、セメントや溶出防止剤等の添加剤とを接触、反応させる技術は、一般に、反応タンク内に石炭灰、添加剤及び水分を投入し、これらを混練するために攪拌機を稼働させる。攪拌機は、粉体と添加剤とを均一に接触させ、反応を促進するための十分な攪拌時間が必要であり、大きな動力を要する。また、相応の反応タンク容量が必要であり、バッチ反応処理となる。   As described above, the technology for contacting and reacting powders such as coal ash and additives such as cement and elution inhibitors generally introduces coal ash, additives and moisture into a reaction tank. The stirrer is operated to knead. The stirrer requires sufficient stirring time for bringing the powder and the additive into uniform contact and promoting the reaction, and requires a large amount of power. In addition, a corresponding reaction tank capacity is required, resulting in a batch reaction process.

一方、別の従来技術として、重金属の固定化材を排ガス中に噴霧し、飛灰と接触させてそれに含まれる重金属を固定化する方法が開示されている(例えば、特許文献1参照)。
特開平9−108647号公報
On the other hand, as another prior art, a method of spraying a heavy metal immobilization material into exhaust gas and bringing it into contact with fly ash to immobilize heavy metals contained therein is disclosed (for example, see Patent Document 1).
JP-A-9-108647

上記のように、石炭灰のような粉体と、セメントや溶出防止剤等の添加剤とを接触、反応させる技術は、粉体と添加剤との均一な混合が不可欠である。添加剤の量が粉体の量に対して少量になるほど、粉体と添加剤との均一混合は難しくなる。よって、この技術は十分な攪拌の動力及び時間のとれる専用の設備や貯蔵設備が必要となり、経済的負担は大きい。   As described above, uniform mixing of powder and additive is indispensable for the technology of contacting and reacting powder such as coal ash with additives such as cement and dissolution inhibitor. The smaller the amount of additive is relative to the amount of powder, the more difficult it is to uniformly mix the powder and additive. Therefore, this technology requires sufficient stirring power and time-consuming dedicated equipment and storage equipment, and the economic burden is great.

一方、特許文献1における、重金属の固定化材を排ガス中に噴霧し、飛灰と接触させてそれに含まれる重金属を固定化する方法は、上記のような粉体と添加剤との攪拌の設備等は必要ないと考えられる。しかし、専用の固定化材を生成するための工数、専用設備を要する。すなわち、特許文献1において、固定化材は、各種原料、粉末を、水などを混合し、養生、固化を経て、細かく砕いたものを使用すると記載されている。よって、このような固定化材は、専用の設備を必要とするか、相当のコストをかけて入手することになり、経済的に好ましくない。   On the other hand, the method of spraying a heavy metal immobilization material in exhaust gas and bringing it into contact with fly ash in order to immobilize the heavy metal contained therein is a facility for stirring powder and additives as described above. Etc. are not considered necessary. However, it requires man-hours and dedicated equipment to produce a dedicated immobilizing material. That is, in Patent Document 1, it is described that the immobilization material is made by using various raw materials and powders that are finely crushed through mixing with water and the like, followed by curing and solidification. Therefore, such an immobilizing material is not economically preferable because it requires a dedicated facility or is obtained at a considerable cost.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、より経済的な設備でもって、短時間に粉体と添加剤とを均一に反応させることが可能な粉体混合処理装置及びそれを用いた粉体混合処理方法を提供することにある。   The present invention has been made in view of the above problems, and its object is to perform a powder mixing process capable of uniformly reacting powder and additives in a short time with more economical equipment. The object is to provide an apparatus and a powder mixing method using the same.

本発明者は、上記目的を達成するため、粉体と添加剤とを空中で混合させ、接触、反応したものから下方に沈降し、養生過程へ移行し得る連続処理技術を見出し、以下のような発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventor has found a continuous processing technique that allows powder and additives to be mixed in the air, contacted and reacted, settled downward, and transferred to a curing process, as follows. Has led to the completion of this invention.

(1) 内壁に囲まれた上部に空中混合領域、下部に反応沈降領域を有する処理槽と、前記処理槽に設けられ、前記空中混合領域に粉体を供給する粉体供給口と、前記処理槽に設けられ、前記空中混合領域に空気と共に添加剤を噴射状態にして供給する添加剤供給口と、前記処理槽に設けられ、前記空中混合領域から前記反応沈降領域に降りてきた前記粉体の粒子と前記添加剤の粒子との反応物の抜き出しを制御する活栓機構と、を備えたことを特徴とする粉体混合処理装置。   (1) A processing tank having an air mixing region at the upper part surrounded by an inner wall and a reaction sedimentation region at the lower part, a powder supply port provided in the processing tank and supplying powder to the air mixing region, and the processing An additive supply port that is provided in the tank and supplies the air mixing area with air in an injection state; and the powder that is provided in the processing tank and descends from the air mixing area to the reaction settling area. And a stopcock mechanism for controlling extraction of a reaction product between the particles of the additive and the particles of the additive.

(1)の発明によれば、処理槽は、その内部において上部に空中混合領域、下部に反応沈降領域を有し、粉体供給口と添加剤供給口とを有する。これにより、粉体と添加剤とは、空中混合領域にて空中で混合され、粉体の粒子と添加剤の粒子とは、接触、反応したものから下方の反応沈降領域に沈降する。粉体と添加剤とは、灰などの粉体粒子と、灰に含まれる有害微量元素を反応させるため、添加剤を噴射させ細かい粒子とした粒子どうしである。なお、例えば、添加剤を加水して噴霧粒子としてもよい。また、処理槽内に水分があれば添加剤に加水しなくてもよい。このような粉体粒子は粉体供給口から、添加剤粒子は添加剤供給口から、それぞれの粒子どうしが空中で衝突、接触し易い方向で処理槽内へ供給し得る。これにより、粉体粒子と添加剤粒子の粒子どうしは、接触し、反応が促進され、反応物が反応沈降領域に自重沈降していく。反応物は、処理槽において、例えば反応沈降領域の底部から活栓機構を介して抜き出される。これにより、処理槽に連続供給される粉体は、添加剤との混合及びそれによる反応が効率的に行われ、処理槽からの反応物の回収は、時間や量を判断するなど、任意のタイミングで実行し得る。処理槽は、例えば、石炭火力発電システムにおける灰サイロの場所に設置することも可能であり、経済的な設備になり得る。   According to the invention of (1), the treatment tank has an air mixing region in the upper part and a reaction sedimentation region in the lower part, and has a powder supply port and an additive supply port. As a result, the powder and the additive are mixed in the air in the air mixing region, and the particles of the powder and the particles of the additive settle from the contact and reaction to the reaction setting region below. The powder and the additive are particles made by injecting the additive into fine particles in order to react powder particles such as ash and harmful trace elements contained in the ash. For example, the additive may be added to form spray particles. Moreover, if there exists a water | moisture content in a processing tank, it does not need to be added to an additive. Such powder particles can be supplied from the powder supply port, and the additive particles can be supplied from the additive supply port into the treatment tank in a direction in which the particles easily collide and come into contact with each other in the air. Thereby, the particles of the powder particles and the additive particles come into contact with each other, the reaction is promoted, and the reaction product is settled by its own weight in the reaction sedimentation region. The reaction product is extracted from the bottom of the reaction sedimentation region, for example, through a stopcock mechanism in the treatment tank. As a result, the powder continuously supplied to the processing tank is efficiently mixed with the additive and the reaction thereby, and the recovery of the reaction product from the processing tank is optional, such as judging the time and amount. Can be executed at the timing. A processing tank can also be installed in the place of the ash silo in a coal thermal power generation system, for example, and can become an economical installation.

(2) (1)に記載の粉体混合処理装置において、前記活栓機構に連結し、前記反応物が送り込まれる養生槽を備えることを特徴とする粉体混合処理装置。   (2) The powder mixing apparatus according to (1), further comprising a curing tank connected to the stopcock mechanism and fed with the reaction product.

(2)の発明によれば、(1)の発明に加えて、養生槽を備える。処理槽は、連続的に反応物を生成可能である。養生槽は、この反応物をさらに時間をかけて反応を進ませる場合に有用である。養生槽は、複数設けられていてもよく、例えば活栓機構の切り替えで複数の養生槽に反応物の送り込みを振り分けてもよい。   According to the invention of (2), in addition to the invention of (1), a curing tank is provided. The treatment tank can continuously generate a reaction product. The curing tank is useful when this reaction product is allowed to react further over time. A plurality of curing tanks may be provided. For example, the reactants may be fed to the plurality of curing tanks by switching the stopcock mechanism.

(3) (1)または(2)に記載の粉体混合処理装置において、前記粉体供給口は、前記粉体を噴霧状態にして前記空中混合領域に供給することを特徴とする粉体混合処理装置。   (3) The powder mixing apparatus according to (1) or (2), wherein the powder supply port supplies the powder in a sprayed state to the air mixing region. Processing equipment.

(3)の発明によれば、(1)または(2)の発明に加えて、粉体は、例えば加水されるなどして粉体供給口から処理槽内の空中混合領域に噴霧状態で供給されることになる。これにより、噴射される添加剤が空中混合領域に供給される場合、粉体と添加剤とは、液体を含んだ粒子が衝突することになるので、より高速に衝突、かつ接触し易くなる。よって、粉体の粒子と添加剤の粒子とは、より混合及び反応が促進され易くなり、反応効率が高まる。   According to the invention of (3), in addition to the invention of (1) or (2), the powder is supplied in a sprayed state from the powder supply port to the air mixing region in the treatment tank, for example, by being hydrated. Will be. Thereby, when the additive to be injected is supplied to the air mixing region, the powder and the additive collide with particles containing the liquid, and therefore, the powder and the additive are more likely to collide and come into contact with each other at a higher speed. Therefore, mixing and reaction of the powder particles and additive particles are facilitated, and the reaction efficiency is increased.

(4) (1)または(2)に記載の粉体混合処理装置において、前記処理槽において、前記空中混合領域に液体の噴霧供給が可能な噴霧機構を備えることを特徴とする粉体混合処理装置。   (4) The powder mixing processing apparatus according to (1) or (2), wherein the processing tank includes a spray mechanism capable of spraying a liquid to the air mixing region. apparatus.

(4)の発明によれば、(1)または(2)の発明に加えて、噴霧機構を設けることにより、例えば、空中混合領域への噴霧による加水(例えば、蒸気やミストなど)などが可能である。これにより、粉体と添加剤との混合、反応状態に合わせて、空中混合領域への噴霧による加水、その他の調整をすることが可能である。   According to the invention of (4), in addition to the invention of (1) or (2), by providing a spray mechanism, for example, hydration (for example, steam, mist, etc.) by spraying into the air mixing region is possible. It is. Thereby, it is possible to adjust the mixing of the powder and the additive, the addition of water by spraying to the air mixing region, and other adjustments according to the reaction state.

(5) (1)から(4)いずれかに記載の粉体混合処理装置において、前記処理槽に設けられ、前記空中混合領域に散在する前記粉体のうちの一部の粒子及び前記添加剤のうちの一部の粒子が前記処理槽の外部へ導かれる上部導出口と、前記処理槽において、前記上部導出口と前記添加剤供給口の間に設けられた下部導入口と、前記上部導出口と前記下部導入口とを繋ぐ下流経路と、を備え、前記空中混合領域に散在する前記粉体のうちの一部の粒子及び前記添加剤のうちの一部の粒子を、再び前記下部導入口を介して前記空中混合領域に供給することを特徴とする粉体混合処理装置。   (5) In the powder mixing apparatus according to any one of (1) to (4), some particles of the powder and the additive provided in the processing tank and scattered in the air mixing region An upper outlet from which some of the particles are guided to the outside of the processing tank, a lower inlet provided between the upper outlet and the additive supply port in the processing tank, and the upper guide A downstream path connecting the outlet and the lower introduction port, and introducing the lower part again with some particles of the powder and some particles of the additive scattered in the air mixing region A powder mixing processing apparatus, characterized in that it is supplied to the aerial mixing region through a mouth.

(5)の発明によれば、(1)から(4)いずれかの発明に加えて、上部導出口、下流経路、下部導入口を備える。これにより、例えば未反応粒子を含む、粉体のうちの一部の粒子及び添加剤のうちの一部の粒子は、上部導出口から下流経路を通り、下部導入口より再度空中混合領域に供給される。これにより、空中混合領域に連続供給される粉体と添加剤との混合、接触、反応の連続処理効率が高められる。   According to the invention of (5), in addition to any of the inventions of (1) to (4), an upper outlet, a downstream path, and a lower inlet are provided. As a result, for example, some particles of the powder including unreacted particles and some particles of the additive are supplied from the lower outlet to the air mixing region again through the downstream path from the upper outlet. Is done. Thereby, the continuous processing efficiency of mixing, contacting, and reaction of the powder and additive continuously supplied to the air mixing region is enhanced.

(6) (1)から(4)いずれかに記載の粉体混合処理装置において、前記処理槽に設けられ、前記空中混合領域に存在する前記粉体のうちの一部の粒子及び前記添加剤のうちの一部の粒子が前記処理槽の外部へ導かれる上部導出口と、前記上部導出口と前記粉体供給口とを繋ぐ上流経路と、を備え、前記空中混合領域に散在する前記粉体のうちの一部の粒子及び前記添加剤のうちの一部の粒子を、再び前記粉体供給口を介して前記空中混合領域に供給することを特徴とする粉体混合処理装置。   (6) In the powder mixing apparatus according to any one of (1) to (4), some particles of the powder provided in the processing tank and present in the air mixing region and the additive The powder that is dispersed in the aerial mixing region, and includes an upper outlet port through which some of the particles are guided to the outside of the treatment tank, and an upstream path that connects the upper outlet port and the powder supply port A powder mixing processing apparatus, wherein a part of the particles and a part of the additives are supplied again to the air mixing region via the powder supply port.

(6)の発明によれば、(1)から(4)いずれかの発明に加えて、上部導出口及びこの上部導出口と粉体供給口とを繋ぐ上流経路を備える。これにより、例えば未反応粒子を含む、粉体のうちの一部の粒子及び添加剤のうちの一部の粒子は、上部導出口から上流経路を通り、粉体供給口より再度空中混合領域に供給される。これにより、空中混合領域に連続供給される粉体と添加剤との接触、反応の連続処理効率が高められる。   According to the invention of (6), in addition to any of the inventions of (1) to (4), an upper outlet and an upstream path connecting the upper outlet and the powder supply port are provided. Thereby, for example, some particles of the powder and some particles of the additive including unreacted particles pass through the upstream path from the upper outlet and again enter the air mixing region from the powder supply port. Supplied. Thereby, the contact between the powder continuously supplied to the air mixing region and the additive and the continuous processing efficiency of the reaction are enhanced.

(7) (1)から(6)いずれかに記載の粉体混合処理装置において、前記添加剤供給口は、前記添加剤と前記空気とを水平より上斜め方向に互いに対向噴射して前記空中混合領域へ到達させ得るように、前記処理槽の内壁に複数設けられていることを特徴とする粉体混合処理装置。   (7) In the powder mixing apparatus according to any one of (1) to (6), the additive supply port jets the additive and the air so as to face each other in an obliquely upward direction from the horizontal. A powder mixing processing apparatus, wherein a plurality of powder mixing processing apparatuses are provided on the inner wall of the processing tank so as to reach the mixing region.

(7)の発明によれば、(1)から(6)いずれかの発明に加えて、添加剤供給口は、複数設けて、添加剤と空気とを水平より上斜め方向に互いに対向噴射する。添加剤が乾燥して軽く、加水を必要とするなら、加水することにより、噴射スピードが増す。これにより、添加剤が空気と共に噴射状態で空中混合領域へより均一に到達し、かつ、空中混合領域に粉体を滞空させ得る。   According to the invention of (7), in addition to any of the inventions of (1) to (6), a plurality of additive supply ports are provided, and the additive and the air are jetted oppositely in an oblique direction above the horizontal. . If the additive is dry and light and requires hydration, hydration will increase the jetting speed. Thereby, an additive can reach | attain an air mixing area | region more uniformly in an injection state with air, and powder can stay in an air mixing area | region.

(8) 処理槽内に粉体と添加剤を供給し、水分のある空中で混合させることによって反応を促進させる工程と、処理槽内で前記水分のある空中から下方に降りてきた前記粉体の粒子と前記添加剤の粒子との反応物を前記処理槽の外部に抜き出す工程と、前記反応物を養生させる工程と、を備えたことを特徴とする粉体混合処理方法。   (8) A step of supplying a powder and an additive into a treatment tank and promoting the reaction by mixing in a moisture-containing air, and the powder falling downward from the moisture-containing air in the treatment tank A powder mixing treatment method comprising: a step of extracting a reaction product of the particles of the additive and the additive particles to the outside of the treatment tank; and a step of curing the reaction product.

(8)の発明によれば、粉体と添加剤とは、水分のある空中で混合されることにより、粉体粒子と添加剤の粒子との衝突、接触がより均一に起こる。これにより、粉体粒子と添加剤の粒子とは、より反応が促進され、反応したものから順次反応沈降領域に自重沈降していく。このような反応物は処理槽の外部に抜き出され、所定時間養生させる。これにより、処理槽に、例えば連続供給される粉体における添加剤の混合及びそれによる反応、反応物の回収を効率的に行うことができる。   According to the invention of (8), when the powder and the additive are mixed in the air with moisture, the collision and contact between the powder particles and the additive particles occur more uniformly. As a result, the reaction between the powder particles and the additive particles is further promoted, and the self-weight sedimentation sequentially proceeds from the reacted particles to the reaction sedimentation region. Such a reaction product is extracted outside the treatment tank and is cured for a predetermined time. Thereby, for example, mixing of additives in the powder continuously supplied to the treatment tank, reaction thereby, and recovery of the reactants can be performed efficiently.

(9) (8)に記載の粉体混合処理方法において、前記粉体と前記添加剤とは、少なくとも一方を噴霧状態にすると共に、互いに接触、衝突し合う方向に前記処理槽内への供給方向を定めることを特徴とする粉体混合処理方法。   (9) In the powder mixing method according to (8), at least one of the powder and the additive is in a sprayed state, and is supplied into the processing tank in a direction in which the powder contacts and collides with each other. A powder mixing method characterized by determining a direction.

(9)の発明によれば、(8)の発明に加えて、粉体と前記添加剤の少なくとも一方は、噴霧状態で処理槽内に供給される。かつ、粉体と添加剤との処理槽内への供給方向は、互いに接触、衝突し合う方向に定められる。これにより、粉体と添加剤とは、少なくともいずれか一方が液体を含んでより高速に衝突、かつ接触もし易い。よって、粉体と添加剤とは、より混合及び反応が促進され易い。   According to the invention of (9), in addition to the invention of (8), at least one of the powder and the additive is supplied into the treatment tank in a sprayed state. In addition, the supply direction of the powder and the additive into the processing tank is determined in a direction in which the powder and the additive come into contact with each other and collide with each other. As a result, at least one of the powder and the additive contains a liquid and collides at a higher speed and also easily contacts. Therefore, mixing and reaction of the powder and the additive are more facilitated.

本発明によれば、粉体と添加剤とは、互いに粒子の状態で、処理槽内の空中混合領域に供給される。すなわち、粉体は、粉体粒子であり、添加剤は、噴射状態とした細かい粒子である。これらの粒子は空中混合領域でより均一に混合され、接触、反応が促進される。粉体と添加剤とは、粒子どうし反応したものから下方の反応沈降領域に沈降させる。すなわち、処理槽は、粉体と添加剤とのより均一な混合、より均一な反応から、反応物を一連の過程で得ることができる。従って、処理槽は、より経済的な設備になり得る。反応物は活栓機構を介して抜き出される。これにより、処理槽に連続供給される粉体は、添加剤との混合及びそれによる反応が効率的に行われ、反応物の回収は、任意のタイミングで実行し得る。これにより、より経済的な設備でもって、短時間に粉体と添加剤とを均一に反応させることが可能な粉体混合処理装置及び粉体混合処理方法を提供することができる。   According to the present invention, the powder and the additive are supplied to the air mixing region in the treatment tank in the state of particles. That is, the powder is powder particles, and the additive is fine particles in a sprayed state. These particles are mixed more uniformly in the air mixing region, and contact and reaction are promoted. The powder and the additive are allowed to settle in the reaction sedimentation region below from the reaction between the particles. That is, the treatment tank can obtain the reaction product in a series of processes from a more uniform mixing of the powder and the additive and a more uniform reaction. Therefore, the treatment tank can be a more economical facility. The reaction product is withdrawn through a stopcock mechanism. As a result, the powder continuously supplied to the treatment tank is efficiently mixed with the additive and the reaction thereby, and the recovery of the reactant can be performed at an arbitrary timing. Thereby, it is possible to provide a powder mixing processing apparatus and a powder mixing processing method capable of uniformly reacting the powder and the additive in a short time with more economical equipment.

以下、本発明に係る実施形態について図面を参照しながら説明する。本発明は以下の実施形態により発明が限定されるものではない。また、以下の実施形態においては、本発明を説明するための構成要件上で、当業者が容易に想定できる構成要素も含まれている。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments. In the following embodiments, components that can be easily assumed by those skilled in the art are included in terms of the configuration requirements for describing the present invention.

図1は、本発明の第1実施形態に係る粉体混合処理装置の要部を示す構成図である。粉体混合処理装置1は、縦型の処理槽10を有する。処理槽10は、直胴部を有する槽内壁100に囲まれた上部に空中混合領域101、下部に反応沈降領域102を有する。また、処理槽10には粉体供給口103が設けられている。粉体供給口103は、好ましくは、処理槽10の比較的上方に設けられ、処理を要する粉体、例えば石炭灰20を空中混合領域101に供給する。石炭灰20は、例えば、石炭火力発電システムの副産物であるフライアッシュであり、図示しない集塵機で捕集され、ロータリーバルブやファン等を介して粉体供給口103から空中混合領域101に供給される。さらに、処理槽10の、空中混合領域101と反応沈降領域102との間の付近の槽内壁100において、複数の添加剤供給口104a、104bが設けられている。添加剤供給口104a、104bは、処理を要する粉体、例えば石炭灰20に対する有用な添加剤30を空中混合領域101へ供給する。添加剤供給口104a、104bは、空中混合領域101に空気と共に添加剤30を噴射して供給する。例えば、ここでは、添加剤30を噴霧状態とした噴射である。破線矢印は添加剤30を含んだ噴霧状態を示す。この場合の噴霧状態とは、添加剤30に加水し、霧状にして空気と共に噴出させることをいう。   FIG. 1 is a configuration diagram showing a main part of the powder mixing apparatus according to the first embodiment of the present invention. The powder mixing processing apparatus 1 has a vertical processing tank 10. The treatment tank 10 has an aerial mixing region 101 in the upper part surrounded by a tank inner wall 100 having a straight body part, and a reaction sedimentation region 102 in the lower part. The processing tank 10 is provided with a powder supply port 103. The powder supply port 103 is preferably provided relatively above the processing tank 10 and supplies powder requiring processing, such as coal ash 20, to the air mixing region 101. The coal ash 20 is, for example, fly ash that is a by-product of the coal-fired power generation system, collected by a dust collector (not shown), and supplied to the air mixing region 101 from the powder supply port 103 via a rotary valve, a fan, or the like. . Furthermore, a plurality of additive supply ports 104 a and 104 b are provided in the tank inner wall 100 in the vicinity of the treatment tank 10 between the air mixing region 101 and the reaction sedimentation region 102. The additive supply ports 104a and 104b supply the air-mixing region 101 with a useful additive 30 for the powder requiring processing, for example, coal ash 20. The additive supply ports 104a and 104b inject and supply the additive 30 together with air to the air mixing region 101. For example, in this case, injection is performed with the additive 30 in a sprayed state. A broken line arrow indicates a spray state including the additive 30. The sprayed state in this case refers to adding water to the additive 30 to form a mist and ejecting it together with air.

添加剤供給口104a、104bは、例えば、図示しないが、液体を扱えるブロースルーバルブ(ブロースルー型のロータリーバルブ)を介して空気と共に添加剤30を噴霧状態にして空中混合領域101に供給する。添加剤供給口104a、104bは、例えば、蒸気を用いて加水した添加剤30と空気とを水平より上斜め方向に互いに対向噴霧して空中混合領域101へ到達させ得る。添加剤供給口104a、104bは、図示に限らず、処理槽10の内周にさらに複数配設されていてよい。これにより、添加剤30が空気と共に噴霧状態で空中混合領域101へより均一に到達し、かつ、空中混合領域101に石炭灰20を滞空させ得る。   The additive supply ports 104a and 104b supply, for example, the additive 30 together with air to the aerial mixing region 101 via a blow-through valve (blow-through type rotary valve) that can handle liquid, although not shown. The additive supply ports 104a and 104b can, for example, reach the air mixing region 101 by spraying the additive 30 and air that have been hydrated with steam in a diagonally upward direction from the horizontal. The additive supply ports 104 a and 104 b are not limited to the illustration, and a plurality of additive supply ports 104 a and 104 b may be provided on the inner periphery of the processing tank 10. Thereby, the additive 30 can reach the air mixing region 101 more uniformly in the sprayed state together with air, and the coal ash 20 can stay in the air mixing region 101.

ここでの添加剤30は、石炭灰20に含まれる有害微量元素の溶出を抑制すべく、水和反応を促進する添加剤を選択する。より好ましくは、添加剤30は、例えば、石炭灰20に含まれる有害微量元素(砒素、セレン、ホウ素等)の溶出を低減する作用のある石灰質原料(石灰石、消石灰、生石灰等)とする。すなわち、石灰石は炭酸カルシウム、消石灰は水酸化カルシウム、生石灰は酸化カルシウムであり、有害微量元素は、これらいずれかの石灰質原料と反応し、形成されたカルシウム系水和物により取り込まれ、溶出が抑えられる。これら石灰質原料は安価で入手し易い。   The additive 30 here selects the additive which accelerates | stimulates a hydration reaction in order to suppress the elution of the harmful trace element contained in the coal ash 20. FIG. More preferably, the additive 30 is, for example, a calcareous raw material (limestone, slaked lime, quick lime, etc.) having an action of reducing elution of harmful trace elements (arsenic, selenium, boron, etc.) contained in the coal ash 20. In other words, limestone is calcium carbonate, slaked lime is calcium hydroxide, and quicklime is calcium oxide. It is done. These calcareous raw materials are inexpensive and easy to obtain.

粉体供給口103と添加剤供給口104a、104bとは、空中混合領域101において、石炭灰20の粒子201と添加剤30の粒子301とを衝突、接触、反応させる環境を作る。好ましくは、石炭灰20の粒子201と添加剤30の粒子301どうしが空中で接触し、水和反応が促進される。石炭灰20の粒子201と添加剤30の粒子301の反応物401は、反応沈降領域102に自重沈降していく。反応物401は、処理槽10の底部に溜まる。処理槽10の底部には、活栓108が設けられている。活栓108は、例えば、反応沈降領域102の底部から、溜まった反応物401を抜き出す。より好ましくは、処理槽10の近くに養生槽80が設けられている。養生槽80は、活栓108に連結され、ポンプ等、輸送装置60を介して反応物401が送り込まれる。養生槽80は、常温、上圧下での養生槽の他、蒸気養生槽、オートクレーブ養生槽などが考えられる。養生槽80は、図示のように一つとは限らず、複数設けてよい。その際、活栓108も複数設け、切り替え制御して反応物401がそれぞれの養生槽80に送り込まれるようにすればよい。   The powder supply port 103 and the additive supply ports 104a and 104b create an environment in which the particles 201 of the coal ash 20 and the particles 301 of the additive 30 collide, contact, and react in the air mixing region 101. Preferably, the particles 201 of the coal ash 20 and the particles 301 of the additive 30 come into contact with each other in the air, and the hydration reaction is promoted. The reaction product 401 of the particles 201 of the coal ash 20 and the particles 301 of the additive 30 settles in the reaction sedimentation region 102 by its own weight. The reactant 401 accumulates at the bottom of the treatment tank 10. A stopcock 108 is provided at the bottom of the treatment tank 10. The stopcock 108 extracts, for example, the accumulated reactant 401 from the bottom of the reaction sedimentation region 102. More preferably, a curing tank 80 is provided near the treatment tank 10. The curing tank 80 is connected to the stopcock 108, and the reactant 401 is fed through the transport device 60 such as a pump. As the curing tank 80, a steam curing tank, an autoclave curing tank, and the like are conceivable in addition to a curing tank at normal temperature and under high pressure. The curing tank 80 is not limited to one as illustrated, and a plurality of curing tanks 80 may be provided. At that time, a plurality of stopcocks 108 may also be provided and controlled to be switched so that the reactant 401 is sent to each curing tank 80.

上記実施形態のように、粉体混合処理装置1は、処理槽の一例として、内壁に囲まれた上部に空中混合領域101、下部に反応沈降領域102を有する処理槽10を備える。さらに、処理槽10には、粉体供給口の一例として、空中混合領域101に粉体、例えば石炭灰20を供給する粉体供給口103を備え、かつ、添加剤供給口の一例として、空中混合領域101に空気と共に添加剤30を噴霧状態にして供給する添加剤供給口104a,104bとを備える。そしてさらに、処理槽10には、活栓機構の一例として、活栓108を備える。活栓108は、空中混合領域101から反応沈降領域102に降りてきた粉体(石炭灰20)の粒子201と添加剤30の粒子301との反応物401の抜き出しを制御する。また、好ましくは、活栓108に連結する養生槽80を設けてもよい。養生槽80は、活栓機構(活栓108)に連結し、反応物(水和反応物)401が送り込まれる養生槽の一例である。   Like the said embodiment, the powder mixing processing apparatus 1 is provided with the processing tank 10 which has the air mixing area | region 101 in the upper part enclosed by the inner wall, and the reaction sedimentation area | region 102 in the lower part as an example of a processing tank. Further, the processing tank 10 includes a powder supply port 103 for supplying powder, for example, coal ash 20, to the air mixing region 101 as an example of a powder supply port, and an air supply as an example of an additive supply port. The mixing region 101 includes additive supply ports 104a and 104b that supply the additive 30 together with air in a sprayed state. Furthermore, the processing tank 10 includes a stopcock 108 as an example of a stopcock mechanism. The stopcock 108 controls the extraction of the reactant 401 from the particles 201 of the powder (coal ash 20) and the particles 301 of the additive 30 that have descended from the air mixing region 101 to the reaction sedimentation region 102. Preferably, a curing tank 80 connected to the stopcock 108 may be provided. The curing tank 80 is an example of a curing tank that is connected to a stopcock mechanism (stopcock 108) and into which a reaction product (hydration reaction product) 401 is sent.

図2は、上記第1実施形態に準じて本発明の粉体混合処理方法の要部を示す工程図である。図1を参照しながら図2を説明する。処理S1〜S4は、処理槽10で連続的に行われる処理である。すなわち、空中混合処理S3は、例えば石炭灰20などの処理を要する粉体と、添加剤(例えば、石灰質原料などの添加剤30)とを処理槽10内の空中混合領域101に供給し(S1、S2)、空中で混合させる。このときの空中混合処理S3において、石炭灰20と添加剤30とは、水分のある空中で混合させることが重要である。第1実施形態では、加水した添加剤30を空気と共に噴霧状態にして空中混合領域101に供給しているので、石炭灰20と添加剤30とは水分のある空中で混合される。空中混合領域101において、石炭灰20の粒子201と添加剤30の粒子301とは、衝突、接触し、水和反応が促進される(S4)。すなわち、石炭灰20に含まれる有害微量元素が、添加剤30のカルシウムとの化合物を形成し、この化合物がいくつかの水分子と一緒に別種の固体分子(水和反応物)を形成する。これにより、石炭灰20に含まれる有害微量元素の溶出が抑えられる。   FIG. 2 is a process diagram showing the main part of the powder mixing method of the present invention according to the first embodiment. 2 will be described with reference to FIG. Processes S <b> 1 to S <b> 4 are processes performed continuously in the processing tank 10. That is, in the air mixing process S3, for example, powder such as coal ash 20 that needs to be processed and an additive (for example, an additive 30 such as calcareous raw material) are supplied to the air mixing region 101 in the processing tank 10 (S1). , S2) and mixing in the air. In the air mixing process S3 at this time, it is important that the coal ash 20 and the additive 30 are mixed in the air with moisture. In the first embodiment, since the hydrolyzed additive 30 is sprayed together with air and supplied to the air mixing region 101, the coal ash 20 and the additive 30 are mixed in the moisture-containing air. In the air mixing region 101, the particles 201 of the coal ash 20 and the particles 301 of the additive 30 collide and come into contact with each other, and the hydration reaction is promoted (S4). That is, harmful trace elements contained in the coal ash 20 form a compound with the calcium of the additive 30, and this compound forms another kind of solid molecule (hydration reaction product) together with some water molecules. Thereby, the elution of the harmful trace element contained in the coal ash 20 is suppressed.

石炭灰20の粒子201と添加剤30(例えば、石灰質原料)の粒子301の反応物401は、反応沈降領域102に自重沈降していく。すなわち、反応物401は、水和反応物として処理槽10の底部に溜まっていく。ある程度溜まった反応物401は、活栓108を介して処理槽10の外部に抜き出す(S5)。反応物401は、養生が必要な場合、養生槽80に送り込まれる(S6)。養生槽処理S6において、養生期間は、反応物401の養生の必要性、養生槽の能力に応じて、数時間〜1週間程度の適当な期間が与えられ得る。養生槽処理S6は、常温、上圧下での養生の他、蒸気養生、オートクレーブ養生などが考えられる。   The reaction product 401 of the particles 201 of the coal ash 20 and the particles 301 of the additive 30 (for example, calcareous raw material) settles in the reaction sedimentation region 102 by its own weight. That is, the reactant 401 accumulates at the bottom of the treatment tank 10 as a hydrated reactant. The reactant 401 accumulated to some extent is extracted outside the processing tank 10 through the stopcock 108 (S5). The reactant 401 is fed into the curing tank 80 when curing is required (S6). In the curing tank process S6, the curing period can be given an appropriate period of several hours to one week depending on the necessity of curing the reactant 401 and the capacity of the curing tank. The curing tank treatment S6 may be steam curing, autoclave curing, etc., in addition to curing at normal temperature and under high pressure.

上記実施形態及び方法によれば、処理槽10は、その内部において上部に空中混合領域101、下部に反応沈降領域102を有し、粉体供給口103と添加剤供給口104a、104bとを有する。粉体(石炭灰20)と添加剤30(例えば、石灰質原料)とは、互いに粒子の状態で、処理槽10内の空中混合領域101に供給される。すなわち、石炭灰20は、粉体の粒子201であり、添加剤30は、噴霧状態とした粒子301である。これらの粒子201と301とは空中混合領域101でより均一に混合され、接触、水和反応が促進される。反応物401は、順次、反応沈降領域102に自重沈降していく。このようにして、処理槽10の底部に溜まった反応物401は、水和反応物として活栓108を介して抜き出すことができる。これにより、処理槽10において連続供給される粉体(石炭灰20)は、添加剤30(例えば、石灰質原料)との混合及びそれによる反応を効率的に行い得る。そして、反応物401の回収は、時間や量を判断するなど、任意のタイミングで実行可能である。反応物401の養生が必要な場合、養生槽80が設けられる。反応物401は、活栓108、ポンプ等、輸送装置60を介して養生槽80に送り込まれる。これにより、より経済的な設備でもって、短時間に粉体(石炭灰20)と添加剤30(例えば、石灰質原料)とを均一に反応させ、粉体(石炭灰20)に含まれる有害微量元素の溶出が抑えられ得る粉体混合処理装置及び粉体混合処理方法を提供することができる。   According to the above embodiment and method, the processing tank 10 has an air mixing region 101 in the upper portion and a reaction sedimentation region 102 in the lower portion, and has a powder supply port 103 and additive supply ports 104a and 104b. . The powder (coal ash 20) and the additive 30 (for example, calcareous raw material) are supplied to the air mixing region 101 in the processing tank 10 in the state of particles. That is, the coal ash 20 is a powder particle 201, and the additive 30 is a particle 301 in a sprayed state. These particles 201 and 301 are more uniformly mixed in the air mixing region 101, and the contact and hydration reactions are promoted. The reactant 401 sequentially settles by its own weight in the reaction sedimentation region 102. In this way, the reactant 401 accumulated at the bottom of the treatment tank 10 can be extracted through the stopcock 108 as a hydrated reactant. Thereby, the powder (coal ash 20) continuously supplied in the treatment tank 10 can be efficiently mixed with the additive 30 (for example, calcareous raw material) and thereby reacted. The recovery of the reactant 401 can be performed at an arbitrary timing, such as determining the time and amount. When curing of the reactant 401 is required, a curing tank 80 is provided. The reactant 401 is fed into the curing tank 80 via the transport device 60 such as a stopcock 108 and a pump. Thereby, with a more economical facility, the powder (coal ash 20) and the additive 30 (for example, calcareous raw material) are reacted uniformly in a short time, and a harmful trace amount contained in the powder (coal ash 20). It is possible to provide a powder mixing apparatus and a powder mixing method that can suppress element elution.

なお、上記実施形態及び方法によれば、粉体供給口103から空中混合領域101に供給する粉体として、石炭灰20を例に示したが、その他の粉体でもよい。例えば汚泥などは、比較的石炭灰20と同種の成分を有するものがある。このような汚泥を粉末状にした粉体は、粉体供給口103から空中混合領域101に供給する粉体として適する場合がある。添加剤30も、石灰質原料に限らず、他の有用な化合物を用いてもよい。   In addition, according to the said embodiment and method, although coal ash 20 was shown as an example as a powder supplied to the air mixing area | region 101 from the powder supply port 103, another powder may be sufficient. For example, some sludges have relatively similar components to the coal ash 20. Such powdered sludge powder may be suitable as powder supplied to the air mixing region 101 from the powder supply port 103. The additive 30 is not limited to the calcareous raw material, and other useful compounds may be used.

また、上記実施形態及び方法によれば、添加剤30を噴霧状態としたが、処理槽内に水分があれば添加剤に加水しなくてもよい。また、添加剤によっては加水する必要がない場合もある。ただし、添加剤を噴射させ細かい粒子とすることは重要である。さらに、反応物401を形成するために水和反応を経たが、水和反応に限定することなく、他の反応も考えられる。このようなことは、以下の他の実施形態についても同様である。   Moreover, according to the said embodiment and method, although the additive 30 was made into the sprayed state, if there exists a water | moisture content in a processing tank, it does not need to be added to an additive. Further, depending on the additive, it may not be necessary to add water. However, it is important to spray the additive into fine particles. Furthermore, although a hydration reaction has been performed to form the reactant 401, other reactions are possible without being limited to the hydration reaction. The same applies to other embodiments described below.

図3は、本発明の第2実施形態に係る粉体混合処理装置の要部を示す構成図である。前記第1実施形態と同様の箇所には同一の符号を付して説明は省略する。この第2実施形態における粉体混合処理装置2は、前記第1実施形態に比べて、粉体としての石炭灰20を噴霧状態にして空中混合領域101へ供給する構成とした点で異なっている。処理槽10には、粉体供給口103に代わる粉体供給口の一例として、粉体としての石炭灰20を噴霧状態にして空中混合領域101に供給する粉体供給口105を備える。粉体供給口105は、例えば、図示しないが、液体を扱えるブロースルーバルブ(ブロースルー型のロータリーバルブ)を介して空気と共に、加水した石炭灰20を噴霧状態(20a)にして空中混合領域101に供給する。その他の構成は、前記第1実施形態と同様である。   FIG. 3 is a configuration diagram showing a main part of the powder mixing apparatus according to the second embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The powder mixing apparatus 2 in the second embodiment is different from the first embodiment in that the coal ash 20 as a powder is sprayed and supplied to the air mixing region 101. . The processing tank 10 includes a powder supply port 105 as an example of a powder supply port that replaces the powder supply port 103 and supplies the coal ash 20 as powder to the air mixing region 101 in a sprayed state. For example, the powder supply port 105 is not shown in the drawing, but is mixed with air through a blow-through valve (blow-through type rotary valve) that can handle a liquid, and the mixed coal ash 20 is sprayed (20a) into the air mixing region 101. To supply. Other configurations are the same as those in the first embodiment.

上記実施形態によれば、粉体(石炭灰20)は、例えば加水されるなどして粉体供給口105から処理槽10内の空中混合領域101に噴霧状態(20a)で供給されることになる。これにより、添加剤30が噴霧状態で空中混合領域101に供給される場合、石炭灰20と添加剤30とは、液体(水分)を含んだ粒子どうし、より高速に衝突、接触する。よって、第1実施形態で得られる作用、効果に加えて、粉体(石炭灰20)の粒子202と添加剤30(例えば、石灰質原料)の粒子301とは、より接触及び反応が促進され易く、反応物401の生成効率が高められる。なお、この第2実施形態における粉体混合処理方法についても、大略図2の工程図に当てはめることができる。   According to the above embodiment, the powder (coal ash 20) is supplied in a sprayed state (20a) from the powder supply port 105 to the aerial mixing region 101 in the treatment tank 10 by, for example, hydration. Become. Thereby, when the additive 30 is supplied to the air mixing region 101 in a sprayed state, the coal ash 20 and the additive 30 collide and come into contact with each other at a higher speed between particles containing liquid (water). Therefore, in addition to the actions and effects obtained in the first embodiment, the contact between the particles 202 of the powder (coal ash 20) and the particles 301 of the additive 30 (for example, calcareous raw material) is more facilitated. The production efficiency of the reactant 401 is increased. The powder mixing method in the second embodiment can also be applied to the process diagram of FIG.

図4は、本発明の第3実施形態に係る粉体混合処理装置の要部を示す構成図である。前記第1実施形態と同様の箇所には同一の符号を付して説明は省略する。この第3実施形態における粉体混合処理装置3は、前記第1実施形態に比べて、処理槽10の上部に液体の噴霧供給が可能なノズル106を付加した点で異なっている。ノズル106は、処理槽10において、空中混合領域101に液体の噴霧供給が可能な噴霧機構の一例である。ノズル106は、例えば、破線矢印106aに示すように、蒸気を噴霧または蒸気をミスト状にして、空中混合領域101に供給し、主に粉体(石炭灰20)に対して加水する。その他の構成は、前記第1実施形態と同様である。   FIG. 4 is a configuration diagram showing a main part of a powder mixing apparatus according to the third embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The powder mixing treatment apparatus 3 in the third embodiment is different from the first embodiment in that a nozzle 106 capable of spraying a liquid is added to the upper part of the treatment tank 10. The nozzle 106 is an example of a spray mechanism capable of spraying liquid to the air mixing region 101 in the processing tank 10. For example, as shown by a broken line arrow 106a, the nozzle 106 sprays steam or forms steam in a mist state, supplies it to the air mixing region 101, and mainly hydrates the powder (coal ash 20). Other configurations are the same as those in the first embodiment.

上記実施形態によれば、粉体(石炭灰20)は、ノズル106を介して加水されることになる。これにより、添加剤30が噴霧状態で空中混合領域101に供給される場合、石炭灰20と添加剤30とは、液体(水分)を含んだ粒子どうし、より高速に衝突、接触し易くなる。また、石炭灰20と添加剤30(例えば、石灰質原料)との混合、反応状態に合わせて、空中混合領域101への噴霧による加水、その他の調整をすることが可能である。よって、第1実施形態で得られる作用、効果に加えて、粉体(石炭灰20)の粒子203と添加剤30(例えば、石灰質原料)の粒子301とは、より接触及び反応が促進され易く、反応物401の生成効率が高められる。なお、この第3実施形態における粉体混合処理方法についても、大略図2の工程図に当てはめることができる。   According to the embodiment, the powder (coal ash 20) is hydrated through the nozzle 106. Thereby, when the additive 30 is supplied to the air mixing region 101 in a sprayed state, the coal ash 20 and the additive 30 are likely to collide and come into contact with each other at high speed between particles containing liquid (water). Moreover, according to the mixing and reaction state of the coal ash 20 and the additive 30 (for example, calcareous raw material), it is possible to add water by spraying to the air mixing region 101 and other adjustments. Therefore, in addition to the actions and effects obtained in the first embodiment, the contact between the particles 203 of the powder (coal ash 20) and the particles 301 of the additive 30 (for example, calcareous raw material) is more facilitated. The production efficiency of the reactant 401 is increased. The powder mixing method in the third embodiment can also be applied to the process diagram of FIG.

図5は、本発明の第4実施形態に係る粉体混合処理装置の要部を示す構成図である。前記第1実施形態と同様の箇所には同一の符号を付して説明は省略する。この第4実施形態における粉体混合処理装置4は、前記第1実施形態に比べて、空中混合領域101に散在する粉体(石炭灰20)及び添加剤30の一部の粒子を導出して、再び空中混合領域101へ供給する構成を設ける点で異なっている。例えば、この第4実施形態は、上部導出口51、下流経路52、下部導入口53を備える。上部導出口51は、処理槽10において、空中混合領域101に散在する粉体(石炭灰20)のうちの一部の粒子205及び添加剤30のうちの一部の粒子305を処理槽10の外部に導くために設けられている。また、下部導入口53は、処理槽10において、上部導出口51と添加剤供給口104bの間に設けられている。さらに、下流経路52は、上部導出口51と下部導入口53とを繋ぐように設けられている。このような上部導出口51、下流経路52、下部導入口53いずれかの構成中に図示しないファンやロータリーバルブ等が設けられ、適度な循環系を構成している。その他の構成は、前記第1実施形態と同様である。   FIG. 5 is a configuration diagram showing a main part of a powder mixing apparatus according to the fourth embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Compared with the first embodiment, the powder mixing apparatus 4 in the fourth embodiment derives some particles of the powder (coal ash 20) and the additive 30 scattered in the air mixing region 101. The difference is that a configuration for supplying the air mixing region 101 again is provided. For example, the fourth embodiment includes an upper outlet 51, a downstream path 52, and a lower inlet 53. The upper outlet 51 removes some particles 205 of the powder (coal ash 20) scattered in the air mixing region 101 and some particles 305 of the additive 30 in the treatment tank 10 of the treatment tank 10. It is provided to guide outside. In addition, the lower introduction port 53 is provided between the upper outlet 51 and the additive supply port 104b in the processing tank 10. Further, the downstream path 52 is provided so as to connect the upper outlet 51 and the lower inlet 53. A fan, a rotary valve, or the like (not shown) is provided in the configuration of any one of the upper outlet 51, the downstream path 52, and the lower inlet 53 to configure an appropriate circulation system. Other configurations are the same as those in the first embodiment.

上記実施形態によれば、例えば未反応粒子を含む、粉体(石炭灰20)のうちの一部の粒子205及び添加剤30のうちの一部の粒子305は、上部導出口51から下流経路52を通り、下部導入口53より再度空中混合領域101に供給される。これにより、第1実施形態で得られる作用、効果に加えて、空中混合領域101に連続供給される粉体(石炭灰20)と添加剤30(例えば、石灰質原料)との混合、接触、反応の連続処理効率が高められる。なお、このような第4実施形態は、前記第2実施形態の構成または前記第3実施形態の構成に加えるようにしてもよい。なお、この第4実施形態における粉体混合処理方法についても、大略図2の工程図に当てはめることができる。   According to the embodiment, for example, some particles 205 of the powder (coal ash 20) and some particles 305 of the additive 30 including unreacted particles are downstream from the upper outlet 51. After passing through 52, the air is again supplied to the air mixing region 101 from the lower inlet 53. Thereby, in addition to the operations and effects obtained in the first embodiment, mixing, contact, and reaction of the powder (coal ash 20) continuously supplied to the air mixing region 101 and the additive 30 (for example, calcareous raw material). The continuous processing efficiency is improved. Such a fourth embodiment may be added to the configuration of the second embodiment or the configuration of the third embodiment. The powder mixing method in the fourth embodiment can also be applied to the process diagram of FIG.

図6は、本発明の第5実施形態に係る粉体混合処理装置の要部を示す構成図である。前記第1実施形態と同様の箇所には同一の符号を付して説明は省略する。この第5実施形態における粉体混合処理装置5は、前記第1実施形態に比べて、空中混合領域101に散在する粉体(石炭灰20)及び添加剤30の一部の粒子を導出して、再び空中混合領域101へ供給する構成を設ける点で異なっている。例えば、この第5実施形態は、上部導出口61、上流経路62を備える。上部導出口61は、処理槽10において、空中混合領域101に散在する粉体(石炭灰20)のうちの一部の粒子205及び添加剤30のうちの一部の粒子305を処理槽10の外部に導くために設けられている。また、上流経路62は、上部導出口61と粉体供給口103とを繋ぐように設けられている。このような上部導出口51、上流経路62いずれかの構成中に図示しないファンやロータリーバルブ等が設けられ、適度な循環系を構成している。その他の構成は、前記第1実施形態と同様である。   FIG. 6 is a block diagram showing a main part of a powder mixing apparatus according to the fifth embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Compared with the first embodiment, the powder mixing apparatus 5 in the fifth embodiment derives some particles of the powder (coal ash 20) and the additive 30 scattered in the air mixing region 101. The difference is that a configuration for supplying the air mixing region 101 again is provided. For example, the fifth embodiment includes an upper outlet 61 and an upstream path 62. The upper outlet 61 removes some particles 205 of the powder (coal ash 20) scattered in the air mixing region 101 and some particles 305 of the additive 30 in the treatment tank 10 in the treatment tank 10. It is provided to guide outside. Further, the upstream path 62 is provided so as to connect the upper outlet 61 and the powder supply port 103. A fan, a rotary valve, or the like (not shown) is provided in the configuration of either the upper outlet 51 or the upstream path 62, thereby configuring an appropriate circulation system. Other configurations are the same as those in the first embodiment.

上記実施形態によれば、例えば未反応粒子を含む、粉体(石炭灰20)のうちの一部の粒子205及び添加剤30のうちの一部の粒子305は、上部導出口61から上流経路62を通り、粉体供給口105より再度空中混合領域101に供給される。これにより、第1実施形態で得られる作用、効果に加えて、空中混合領域101に連続供給される粉体(石炭灰20)と添加剤30(例えば、石灰質原料)との混合、接触、反応の連続処理効率が高められる。なお、このような第5実施形態は、前記第2実施形態の構成または前記第3実施形態の構成に加えるようにしてもよい。なお、この第5実施形態における粉体混合処理方法についても、大略図2の工程図に当てはめることができる。   According to the above embodiment, for example, some particles 205 of the powder (coal ash 20) and some particles 305 of the additive 30 including unreacted particles are upstream from the upper outlet 61. After passing through 62, the air is again supplied to the air mixing region 101 from the powder supply port 105. Thereby, in addition to the operations and effects obtained in the first embodiment, mixing, contact, and reaction of the powder (coal ash 20) continuously supplied to the air mixing region 101 and the additive 30 (for example, calcareous raw material). The continuous processing efficiency is improved. Such a fifth embodiment may be added to the configuration of the second embodiment or the configuration of the third embodiment. The powder mixing method in the fifth embodiment can also be applied to the process diagram of FIG.

図7は、本発明の第6実施形態に係る粉体混合処理装置の要部を示す構成図である。前記第1実施形態と同様の箇所には同一の符号を付して説明は省略する。この第6実施形態における粉体混合処理装置6は、前記第1実施形態に比べて、処理槽10において、反応沈降領域102に溜まった反応物401を攪拌する攪拌機70を設ける点で異なっている。例えば、この第6実施形態は、反応沈降領域102底部付近、または活栓108近傍において、横型の攪拌機70を設置している。その他の構成は、前記第1実施形態と同様である。   FIG. 7 is a configuration diagram showing a main part of a powder mixing apparatus according to the sixth embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The powder mixing apparatus 6 in the sixth embodiment is different from the first embodiment in that a stirrer 70 for stirring the reactant 401 accumulated in the reaction sedimentation region 102 is provided in the processing tank 10. . For example, in the sixth embodiment, a horizontal stirrer 70 is installed near the bottom of the reaction sedimentation region 102 or near the stopcock 108. Other configurations are the same as those in the first embodiment.

上記実施形態によれば、攪拌機はコストパフォーマンスを考えれば必ずしも必要ではない。しかし、横型の攪拌機70は、比較的小さな動力で高い攪拌効果が得られるため、経済性にも優れる。これにより、第1実施形態で得られる作用、効果に加えて、反応沈降領域102に溜まった反応物401のより確実な攪拌と反応が達成し得る。攪拌機70は、大きなものでなくてよく、経済的な負担は小さく抑えられる。なお、このような第6施形態は、前記第2実施形態の構成〜前記第5実施形態の構成のいずれかに加えるようにしてもよい。なお、この第6実施形態における粉体混合処理方法についても、大略図2の工程図に当てはめることができる。   According to the above embodiment, the agitator is not always necessary in view of cost performance. However, the horizontal stirrer 70 is excellent in economic efficiency because a high stirring effect can be obtained with relatively small power. Thereby, in addition to the operations and effects obtained in the first embodiment, more reliable stirring and reaction of the reactant 401 accumulated in the reaction sedimentation region 102 can be achieved. The stirrer 70 does not need to be large, and the economical burden can be kept small. In addition, you may make it add such 6th embodiment to either the structure of the said 2nd Embodiment-the structure of the said 5th Embodiment. The powder mixing method in the sixth embodiment can also be applied to the process diagram of FIG.

図8は、上記各実施形態で示した粉体混合処理装置の応用例を示すブロック構成図である。各実施形態で示した粉体混合処理装置1〜6のいずれかは、石炭火力発電システムにおける灰サイロの場所に設置することが可能である。例えば、フライアッシュ803は、石炭焚きのボイラ801からの排ガスに乗って、集塵機802で捕集される。集塵機802からのフライアッシュ803は、灰サイロに替えて設置された粉体混合処理装置1〜6いずれかの処理槽10に、石炭灰20として供給するようにする。これにより、フライアッシュ803の有害微量元素の溶出防止処理が効率よく達成できる。   FIG. 8 is a block diagram showing an application example of the powder mixing apparatus shown in the above embodiments. Any of the powder mixing treatment apparatuses 1 to 6 shown in each embodiment can be installed at the location of the ash silo in the coal-fired power generation system. For example, fly ash 803 rides on exhaust gas from coal-fired boiler 801 and is collected by dust collector 802. The fly ash 803 from the dust collector 802 is supplied as the coal ash 20 to the treatment tank 10 of any of the powder mixing treatment apparatuses 1 to 6 installed in place of the ash silo. Thereby, the elution prevention process of the harmful trace element of fly ash 803 can be achieved efficiently.

例えば、500MW(50万キロワット)の発電所の場合、1日あたり約3,500tの石炭を消費する。石炭中の灰分は、約10wt%であり、日量約350tの石炭灰が発生するものと想定する。これに対して、添加剤30として混合される石灰石を考慮に入れると、混合物(石炭灰+石灰石)の処理量は、一日に最大約450tと考えられる。450tの処理量を考慮して、処理槽10の容積は、だいたい500m程度と設定する。これにより、例えば、1日分の貯灰量を有するサイロ並みに考えると、粉体混合処理装置1〜6のいずれかの処理槽10の大きさは、半径4m,高さ25m(空中混合領域101の高さ5m,反応沈降領域102の高さ20m)程度となる。 For example, a 500 MW (500,000 kilowatt) power plant consumes approximately 3,500 tons of coal per day. It is assumed that the ash content in the coal is about 10 wt%, and about 350 t of coal ash is generated per day. On the other hand, when the limestone mixed as the additive 30 is taken into consideration, the processing amount of the mixture (coal ash + limestone) is considered to be a maximum of about 450 t per day. Considering the processing amount of 450 t, the volume of the processing tank 10 is set to about 500 m 3 . Thus, for example, when considered like a silo having a daily ash storage amount, the size of the processing tank 10 of any one of the powder mixing treatment apparatuses 1 to 6 is a radius of 4 m and a height of 25 m (aerial mixing region). The height of 101 is about 5 m, and the height of reaction sedimentation region 102 is about 20 m).

以上各実施形態において説明したように、本発明によれば、粉体(石炭灰20)と添加剤30(例えば、石灰質原料)とは、互いに粒子の状態で、処理槽10内の空中混合領域101に供給される。すなわち、粉体としての石炭灰20は、粉体粒子であり、添加剤30(例えば、石灰質原料)は、噴霧状態とした噴霧粒子である。これらの粒子は空中混合領域101でより均一に混合され、接触、反応が促進される。粉体(石炭灰20)と添加剤30とは、粒子どうし反応したものから下方の反応沈降領域102に沈降させる。すなわち、処理槽10において、粉体(石炭灰20)と添加剤30(例えば、石灰質原料)のより均一な混合、より均一な反応物401が一連の過程で得られ、経済的な設備になり得る。反応物401は活栓108を介して抜き出される。これにより、処理槽10に連続供給される粉体は、添加剤との混合及びそれによる反応が効率的に行われ、反応物の回収は、比較的リアルタイムに近い処理になり得る。反応物401の養生が必要な場合、養生槽80が設けられる。反応物401は、活栓108、ポンプ等、輸送装置60を介して養生槽80に送り込まれる。これにより、より経済的な設備でもって、短時間に粉体と添加剤とを均一に反応させ、粉体(石炭灰20)に含まれる有害微量元素の溶出を抑え得る粉体混合処理装置及び粉体混合処理方法を提供することができる。   As described above in each embodiment, according to the present invention, the powder (coal ash 20) and the additive 30 (for example, calcareous raw material) are in the state of particles with each other and in the air mixing region in the processing tank 10. 101. That is, the coal ash 20 as powder is powder particles, and the additive 30 (for example, calcareous raw material) is spray particles in a sprayed state. These particles are mixed more uniformly in the air mixing region 101, and contact and reaction are promoted. The powder (coal ash 20) and the additive 30 are allowed to settle in the reaction settling region 102 below from what has reacted with each other. That is, in the treatment tank 10, more uniform mixing of the powder (coal ash 20) and the additive 30 (for example, calcareous raw material) and a more uniform reaction product 401 are obtained in a series of processes, which is an economical facility. obtain. The reactant 401 is extracted through the stopcock 108. Thereby, the powder continuously supplied to the processing tank 10 is efficiently mixed with the additive and the reaction thereby, and the recovery of the reactant can be a process that is relatively near real time. When curing of the reactant 401 is required, a curing tank 80 is provided. The reactant 401 is fed into the curing tank 80 via the transport device 60 such as a stopcock 108 and a pump. Thereby, with a more economical facility, a powder mixing treatment device capable of reacting the powder and additive uniformly in a short time and suppressing the elution of harmful trace elements contained in the powder (coal ash 20), and A powder mixing method can be provided.

本発明の第1実施形態に係る粉体混合処理装置の要部を示す構成図である。It is a block diagram which shows the principal part of the powder mixing processing apparatus which concerns on 1st Embodiment of this invention. 本発明の粉体混合処理方法の要部を示す工程図である。It is process drawing which shows the principal part of the powder mixing processing method of this invention. 本発明の第2実施形態に係る粉体混合処理装置の要部を示す構成図である。It is a block diagram which shows the principal part of the powder mixing processing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る粉体混合処理装置の要部を示す構成図である。It is a block diagram which shows the principal part of the powder mixing processing apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る粉体混合処理装置の要部を示す構成図である。It is a block diagram which shows the principal part of the powder mixing processing apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る粉体混合処理装置の要部を示す構成図である。It is a block diagram which shows the principal part of the powder mixing processing apparatus which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る粉体混合処理装置の要部を示す構成図である。It is a block diagram which shows the principal part of the powder mixing processing apparatus which concerns on 6th Embodiment of this invention. 本発明の粉体混合処理装置の応用例を示すブロック構成図である。It is a block block diagram which shows the application example of the powder mixing processing apparatus of this invention.

符号の説明Explanation of symbols

1〜6 粉体混合処理装置
10 処理槽
20 石炭灰(粉体)
30 添加剤
51、61 上部導出口
52 下流経路
53 下部導入口
60 輸送装置
62 上流経路
70 攪拌機
80 養生槽
100 槽内壁
101 空中混合領域
102 反応沈降領域
103、105 粉体供給口
104a、104b 添加剤供給口
106 ノズル
108 活栓
201、202、203、205 石炭灰の粒子
301、305 添加剤の粒子
401 反応物
801 ボイラ
802 集塵機
803 フライアッシュ
1-6 Powder mixing processing equipment 10 Processing tank 20 Coal ash (powder)
30 Additive 51, 61 Upper outlet 52 Downstream path 53 Lower inlet 60 Transport device 62 Upstream path 70 Stirrer 80 Curing tank 100 Tank inner wall 101 Air mixing area 102 Reaction sedimentation area 103, 105 Powder supply port 104a, 104b Additive Supply port 106 Nozzle 108 Stopcock 201, 202, 203, 205 Coal ash particles 301, 305 Additive particles 401 Reactant 801 Boiler 802 Dust collector 803 Fly ash

Claims (9)

内壁に囲まれた上部に空中混合領域、下部に反応沈降領域を有する処理槽と、
前記処理槽に設けられ、前記空中混合領域に粉体を供給する粉体供給口と、
前記処理槽に設けられ、前記空中混合領域に空気と共に添加剤を噴射状態にして供給する添加剤供給口と、
前記処理槽に設けられ、前記空中混合領域から前記反応沈降領域に降りてきた前記粉体の粒子と前記添加剤の粒子との反応物の抜き出しを制御する活栓機構と、
を備えたことを特徴とする粉体混合処理装置。
A treatment tank having an aerial mixing region in the upper part surrounded by the inner wall and a reaction sedimentation region in the lower part;
A powder supply port that is provided in the processing tank and supplies powder to the air mixing region;
An additive supply port that is provided in the processing tank and supplies the air mixing region in an injection state together with air; and
A stopcock mechanism that is provided in the treatment tank and controls extraction of a reaction product of the powder particles and the additive particles that have descended from the air mixing region to the reaction sedimentation region;
A powder mixing treatment apparatus comprising:
前記活栓機構に連結し、前記反応物が送り込まれる養生槽を備えることを特徴とする請求項1に記載の粉体混合処理装置。   The powder mixing apparatus according to claim 1, further comprising a curing tank connected to the stopcock mechanism and fed with the reactant. 前記粉体供給口は、前記粉体を噴霧状態にして前記空中混合領域に供給することを特徴とする請求項1または2に記載の粉体混合処理装置。   3. The powder mixing apparatus according to claim 1, wherein the powder supply port supplies the powder in a sprayed state to the air mixing region. 前記処理槽において、前記空中混合領域に液体の噴霧供給が可能な噴霧機構を備えることを特徴とする請求項1または2に記載の粉体混合処理装置。   3. The powder mixing apparatus according to claim 1, wherein the processing tank includes a spray mechanism capable of spraying a liquid to the air mixing region. 前記処理槽に設けられ、前記空中混合領域に散在する前記粉体のうちの一部の粒子及び前記添加剤のうちの一部の粒子が前記処理槽の外部へ導かれる上部導出口と、
前記処理槽において、前記上部導出口と前記添加剤供給口の間に設けられた下部導入口と、
前記上部導出口と前記下部導入口とを繋ぐ下流経路と、
を備え、
前記空中混合領域に散在する前記粉体のうちの一部の粒子及び前記添加剤のうちの一部の粒子を、再び前記下部導入口を介して前記空中混合領域に供給することを特徴とする請求項1から4いずれか一項に記載の粉体混合処理装置。
An upper outlet port that is provided in the treatment tank and that leads to the outside of the treatment tank in which some particles of the powder scattered in the air mixing region and some particles of the additive are guided;
In the treatment tank, a lower inlet provided between the upper outlet and the additive supply port;
A downstream path connecting the upper outlet and the lower inlet;
With
A part of the particles dispersed in the air mixing region and a part of the additive particles are again supplied to the air mixing region through the lower inlet. The powder mixing apparatus according to any one of claims 1 to 4.
前記処理槽に設けられ、前記空中混合領域に存在する前記粉体のうちの一部の粒子及び前記添加剤のうちの一部の粒子が前記処理槽の外部へ導かれる上部導出口と、
前記上部導出口と前記粉体供給口とを繋ぐ上流経路と、
を備え、
前記空中混合領域に散在する前記粉体のうちの一部の粒子及び前記添加剤のうちの一部の粒子を、再び前記粉体供給口を介して前記空中混合領域に供給することを特徴とする請求項1から4いずれか一項に記載の粉体混合処理装置。
An upper outlet port that is provided in the processing tank and through which some particles of the powder existing in the air mixing region and some particles of the additive are led to the outside of the processing tank;
An upstream path connecting the upper outlet and the powder supply port;
With
A part of particles of the powder scattered in the air mixing region and a part of particles of the additive are again supplied to the air mixing region through the powder supply port, The powder mixing apparatus according to any one of claims 1 to 4.
前記添加剤供給口は、前記添加剤と前記空気とを水平より上斜め方向に互いに対向噴射して前記空中混合領域へ到達させ得るように、前記処理槽の内壁に複数設けられていることを特徴とする請求項1から6いずれか一項に記載の粉体混合処理装置。   A plurality of the additive supply ports are provided on the inner wall of the treatment tank so that the additive and the air can be jetted opposite to each other in an oblique direction above the horizontal to reach the air mixing region. The powder mixing apparatus according to claim 1, wherein the apparatus is a powder mixing apparatus. 処理槽内に粉体と添加剤を供給し、水分のある空中で混合させることによって反応を促進させる工程と、
処理槽内で前記水分のある空中から下方に降りてきた前記粉体の粒子と前記添加剤の粒子との反応物を前記処理槽の外部に抜き出す工程と、
前記反応物を養生させる工程と、
を備えたことを特徴とする粉体混合処理方法。
Supplying the powder and additives into the treatment tank and promoting the reaction by mixing in a moisture-containing air;
Extracting the reaction product of the particles of the powder and the particles of the additive that have descended from the moisture-containing air in the treatment tank to the outside of the treatment tank;
Curing the reactants;
A powder mixing method characterized by comprising:
前記粉体と前記添加剤とは、少なくとも一方を噴霧状態にすると共に、互いに接触、衝突し合う方向に前記処理槽内への供給方向を定めることを特徴とする請求項8に記載の粉体混合処理方法。   9. The powder according to claim 8, wherein at least one of the powder and the additive is in a sprayed state, and a supply direction into the treatment tank is determined in a direction in which the powder and the additive are in contact with and collide with each other. Mixed processing method.
JP2006082142A 2006-03-24 2006-03-24 Powder mixing processing apparatus and powder mixing processing method Active JP4986483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082142A JP4986483B2 (en) 2006-03-24 2006-03-24 Powder mixing processing apparatus and powder mixing processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082142A JP4986483B2 (en) 2006-03-24 2006-03-24 Powder mixing processing apparatus and powder mixing processing method

Publications (2)

Publication Number Publication Date
JP2007253087A true JP2007253087A (en) 2007-10-04
JP4986483B2 JP4986483B2 (en) 2012-07-25

Family

ID=38627852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082142A Active JP4986483B2 (en) 2006-03-24 2006-03-24 Powder mixing processing apparatus and powder mixing processing method

Country Status (1)

Country Link
JP (1) JP4986483B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233646A (en) * 2008-03-06 2009-10-15 Kobe Steel Ltd Method for treating toxic component by solidifying waste
FR3002744A1 (en) * 2013-03-04 2014-09-05 Ecoval Environnement Device for mixing of finished product i.e. materials output from mattress to be recycled, has enclosure including material input unit and dispersion unit that is arranged for dispersion of materials entering enclosure
JP2014180610A (en) * 2013-03-19 2014-09-29 Hitachi Zosen Corp Particulate manufacturing apparatus
CN111085141A (en) * 2020-01-04 2020-05-01 焦作大学 Efficient dust-free low-noise homogenizing device and homogenizing method for chemical solid powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296832A (en) * 1987-05-29 1988-12-02 Nordson Kk Method and apparatus for mixing powders and particles
JPH01284382A (en) * 1988-05-11 1989-11-15 Nkk Corp Treatment of fly ash
JP2002224550A (en) * 2001-01-31 2002-08-13 Matsushita Electric Works Ltd Kneading apparatus
JP2003181411A (en) * 2001-12-20 2003-07-02 Ebara Corp Heavy metal elution preventing agent and treatment method of contaminated medium
JP2005193160A (en) * 2004-01-07 2005-07-21 Kumakura Industry Co Ltd Garbage disposer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296832A (en) * 1987-05-29 1988-12-02 Nordson Kk Method and apparatus for mixing powders and particles
JPH01284382A (en) * 1988-05-11 1989-11-15 Nkk Corp Treatment of fly ash
JP2002224550A (en) * 2001-01-31 2002-08-13 Matsushita Electric Works Ltd Kneading apparatus
JP2003181411A (en) * 2001-12-20 2003-07-02 Ebara Corp Heavy metal elution preventing agent and treatment method of contaminated medium
JP2005193160A (en) * 2004-01-07 2005-07-21 Kumakura Industry Co Ltd Garbage disposer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233646A (en) * 2008-03-06 2009-10-15 Kobe Steel Ltd Method for treating toxic component by solidifying waste
FR3002744A1 (en) * 2013-03-04 2014-09-05 Ecoval Environnement Device for mixing of finished product i.e. materials output from mattress to be recycled, has enclosure including material input unit and dispersion unit that is arranged for dispersion of materials entering enclosure
JP2014180610A (en) * 2013-03-19 2014-09-29 Hitachi Zosen Corp Particulate manufacturing apparatus
CN111085141A (en) * 2020-01-04 2020-05-01 焦作大学 Efficient dust-free low-noise homogenizing device and homogenizing method for chemical solid powder
CN111085141B (en) * 2020-01-04 2022-04-22 焦作大学 Efficient dust-free low-noise homogenizing device and homogenizing method for chemical solid powder

Also Published As

Publication number Publication date
JP4986483B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
CN101797466B (en) Wet flue gas desulphurizing method utilizing carbide slag slurry and device thereof
CN102755827B (en) Flue gas desulfurization process and device adopting acetylene sludge-gypsum method
JP4986483B2 (en) Powder mixing processing apparatus and powder mixing processing method
del Valle-Zermeño et al. Wet flue gas desulfurization using alkaline agents
CN101723604A (en) Continuous preparation system for lime slurry having fixed concentration
del Valle-Zermeño et al. Reutilization of low-grade magnesium oxides for flue gas desulfurization during calcination of natural magnesite: A closed-loop process
CN101983098A (en) Systems and methods for processing co2
KR101001280B1 (en) Manufacturing equipment of clean calcium hydroxide
CN105107366A (en) Direct flow spraying semi-dry type flue gas desulfurization method
JP2009057257A (en) Carbonated slag, and carbonation treatment method for slag
KR100818309B1 (en) Method and apparatus for demisting NOx from exhaust gas using reactors installed in lateral sequence
CN105396449A (en) Limestone-gypsum wet-process flue gas desulfurization process
CN101306304A (en) Desulfurizing method using soda waste liquid and calcium carbide waste residue
CN1087645C (en) Method and equipment for desulfurizing flue gas by circulation and fluidization
US10646823B2 (en) Flue gas cleaning installation and method for cleaning flue gas
CN102020305B (en) Method for preparing gypsum by using semi-dry method to sinter flue gas desulfurization byproduct
CN105316480A (en) Adding method and device of inhibitor used for reducing generation of dioxin in sintering process
Rodrigues et al. Sulfite removal from flue-gas desulfurization residues of coal-fired power plants: Oxidation experiments and kinetic parameters estimation
CN211358355U (en) A deacidification device for gas cleaning
CN201801463U (en) Device for preparing lime slurry
Liu et al. New wet flue gas desulfurization process using granular limestone and organic acid additives
CN111054197A (en) Semi-dry deep desulfurization method for sulfur-containing flue gas
CN103301727A (en) Deep wet process flue gas desulfurizing device and deep wet process flue gas desulfurizing method
CN208249916U (en) A kind of useless dilute sulfuric acid zero discharge treatment device relying on flue gas desulphurization system
Jeong et al. Novel waste bone recovery system for CO2 and SOx utilization in cement plants using microbubble carbonation reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250