JP2007252767A - Blood oxygen concentration analyzer, and method and apparatus for measuring blood pressure value by electrocardiograph - Google Patents

Blood oxygen concentration analyzer, and method and apparatus for measuring blood pressure value by electrocardiograph Download PDF

Info

Publication number
JP2007252767A
JP2007252767A JP2006083346A JP2006083346A JP2007252767A JP 2007252767 A JP2007252767 A JP 2007252767A JP 2006083346 A JP2006083346 A JP 2006083346A JP 2006083346 A JP2006083346 A JP 2006083346A JP 2007252767 A JP2007252767 A JP 2007252767A
Authority
JP
Japan
Prior art keywords
blood
electrocardiograph
microprocessor
pressure
blood pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006083346A
Other languages
Japanese (ja)
Inventor
Guo-He Yang
楊國和
Jen-Chien Chien
簡仁建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Health and Life Co Ltd
Original Assignee
Health and Life Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Health and Life Co Ltd filed Critical Health and Life Co Ltd
Priority to JP2006083346A priority Critical patent/JP2007252767A/en
Publication of JP2007252767A publication Critical patent/JP2007252767A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • A61B2560/0468Built-in electrodes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blood oxygen concentration analyzer and a method and an apparatus for measuring a blood pressure value by an electrocardiograph. <P>SOLUTION: The method for measuring the blood pressure value unerringly detects a periodic continuous changing waveform of blood oxygen in a cardio-artery pulsation by a blood oxygen concentration analyzer and the pulsation intervals of systolic pressure and diastolic pressure by the electrocardiograph, relates the pulsation intervals to the continuous changing waveform measured by the blood oxygen concentration analyzer, computes cross-sectional areas by relating the continuous changing waveform to the pulsation intervals of an electrocardiograms by using a micro-processor, converts them to the diastolic pressure and systolic pressure values by a saved calculation formula to achieve the accurate measurement of the blood pressure values (systolic and diastolic pressures). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明の血中酸素濃度計と心電図計による血圧値計測方法及びその装置は、一種の血中酸素濃度計および心電図計を用いて、被測定者に対し非侵入方式により計測を行う。
血中酸素濃度計より計測された血中酸素の周期的な連続変化波形並び心電図計より計測された収縮期圧および拡張期圧の脈動インターバルと対応させことにより、血圧値を精確に計測できる。
The blood pressure value measuring method and apparatus using a blood oximeter and an electrocardiograph according to the present invention measures the subject by a non-intrusive method using a kind of blood oximeter and electrocardiograph.
The blood pressure value can be accurately measured by corresponding to the periodic continuous change waveform of blood oxygen measured by the blood oxygen concentration meter and the pulsation intervals of the systolic pressure and the diastolic pressure measured by the electrocardiograph.

通常、血圧計は侵入方式と非侵入方式の2種類がある。
非侵入方式血圧計はさらに、従来の水銀式血圧気と電子式血圧計に分ける。
そのうち、電子式血圧計のほとんどは聴音法と共振法が主流で、聴音法の電子式血圧計の計測方法は、コロトコフ音により、収縮期圧と拡張期圧を識別する。
この方法は、血圧計の圧迫帯を被測定者の上腕または手首に巻いた後、圧迫帯に空気を被測定者の上腕または手首の動脈の血液を完全に阻止されるまで圧送し続けて、圧迫帯を巻いた動脈の脈動を完全に中止させる。そして、圧迫帯の空気を徐々に解放するとともに、血管内のパルス脈動を監視する。
圧迫帯の圧力が収縮期圧になるとき、圧力センサーは圧迫帯を巻いた動脈血管の脈動を検出する。コルトコフ音の第1音を検出したときに、血圧計の値を読み取って、収縮期圧(Systolic Pressure, SP)とする。そのあと、圧迫帯の空気を徐々に解放し続けると、血管の通路が大きくなり、時間も大きくなる。
このとき、血液が血管における噴流時間が長くなり、圧迫帯の圧力がある段階に落としたとき、血管通路が次第に大きくなり、圧力噴流効果も消える。コルトコフ音が鈍化し始めるとき、最後の一音を記録し、拡張期圧(Diastioic Pressure, DP)とする。
Usually, there are two types of sphygmomanometers, an intrusion system and a non-intrusion system.
Non-invasive blood pressure monitors are further divided into conventional mercury blood pressure monitors and electronic blood pressure monitors.
Among them, most of the electronic sphygmomanometers are the acoustic method and the resonance method, and the electronic sphygmomanometer method of the acoustic method distinguishes systolic pressure and diastolic pressure by Korotkoff sound.
In this method, after the pressure band of the sphygmomanometer is wound around the upper arm or wrist of the person to be measured, air is continuously pumped into the pressure band until the blood in the artery of the upper arm or wrist of the person to be completely blocked, Completely stop the pulsation of the artery wrapped around the compression band. Then, the air in the compression zone is gradually released and the pulse pulsation in the blood vessel is monitored.
When the pressure in the compression band becomes systolic pressure, the pressure sensor detects the pulsation of the arterial blood vessel wound around the compression band. When the first Koltkoff sound is detected, the value of the sphygmomanometer is read to obtain systolic pressure (SP). After that, if the air in the compression zone is gradually released, the blood vessel passage becomes larger and the time also becomes longer.
At this time, when the blood is jetted in the blood vessel for a long time and dropped to a stage where the pressure in the compression zone is at a certain level, the blood vessel passage gradually increases and the pressure jet effect disappears. When the Koltkoff sound begins to slow down, the last note is recorded and used as the diastolic pressure (DP).

図1Aは連続した曲線の波形aは血管内部の血圧変化を示し、斜線bは圧迫帯の圧力解放するときの圧力変化値を示す。
斜線bから左上と連続した曲線の波形aとの第1交差点はコルトコフ音の収縮期圧に当たり、一番右下の斜線bと接続線の曲線波形aと最後の交叉する点はコルトコフ音の拡張期圧に当たる。その間に現れた数個の交差点で聴取したコルトコフ音は、血液干渉流れの音声である。
しかし、圧迫帯は空気圧送と解放のためインターバルを形成するため、正確な血圧値を知ることができない。また、空気を圧迫帯に充填から解放するまでの期間は、被測定者の上腕または手首に圧迫するため、被測定者に不自由感を与える。
In FIG. 1A, a continuous curve waveform a indicates a change in blood pressure inside the blood vessel, and a hatched line b indicates a pressure change value when the pressure in the compression band is released.
The first intersection between the diagonal line b and the upper left and the continuous curve waveform a corresponds to the systolic pressure of the Kortkoff sound, and the lowermost diagonal line b and the curve waveform a of the connecting line and the last crossing point are expansions of the Kortkoff sound. Hit the period pressure. The Koltkoff sound heard at several intersections appearing in the meantime is the sound of blood interference flow.
However, since the compression band forms an interval for air supply and release, it is impossible to know an accurate blood pressure value. Further, during the period from when the air is filled into the compression band until it is released, pressure is applied to the measurement subject's upper arm or wrist, which causes inconvenience to the measurement subject.

前記方式の欠点に対して、一種の血管容積変化信号により、正確に血圧値を計る方式が開発された。
血管容積変化信号と血圧とも循環系統から形成する物理の量である。心臓の脈動周期により、血管内部の容積は周期に変化を引き起こし、血管は圧力によりその径が変わる。このような血管の径変化も連続的な血圧により連続する特性を表す。
現在、もっとも使われている方法は光学系測定方式である。その方式は反射式と通過式の2種類に分ける。
反射式光学センサーは発光ダイオードの出射光は真皮層によってセンサーに反射されるのに対し、通過式センサー異なる波長を有する2種類の波長を出射し、発光ダイオード光源(赤光と赤外線光)を指組織に通過し、指の下部に設ける受信機により信号を受信する。血管の径は、動脈の脈動による変化が投射光源の屈折を引き起こし、屈折された角度は光エネルギーを電気エネルギーに変換させ、時間軸に連続した波形を描き出す。
図1Bに示すとおり、血圧は血管の容積変化により、同じく周期性の信号を形成する。一つの血圧周期の定義とは、一つの心臓収縮から次の収縮開始のときと言い、つまり、一つずつの周期信号における波谷と波谷によって含まれたインターバルである。
しかし、この光学測定方式による血管容積の変化は、血管容積の絶対値でないため、計測された血管の径変化の波形における時間軸変化は、データ捕捉するときの電位を示す。
さらに、計測された血管の径変化波形が時間軸に描いた振幅は、データ捕捉するときの電位のみを表す。
また、心臓の収縮と血管壁の働きが重なった結果、各血圧周期の波の頂点と谷部の位置を正確に計算することができない。
このため、精確な血圧値を計ることができない。
In response to the drawbacks of the above-described method, a method for accurately measuring the blood pressure value using a kind of blood vessel volume change signal has been developed.
Both the blood vessel volume change signal and the blood pressure are physical quantities formed from the circulatory system. Due to the pulsation cycle of the heart, the volume inside the blood vessel causes a change in the cycle, and the diameter of the blood vessel changes with pressure. Such a change in the diameter of the blood vessel also represents a continuous characteristic due to continuous blood pressure.
Currently, the most used method is the optical system measurement method. The method is divided into two types, a reflection type and a passing type.
In the reflective optical sensor, the light emitted from the light emitting diode is reflected to the sensor by the dermis layer, whereas the passing sensor emits two types of wavelengths having different wavelengths, and points to the light emitting diode light source (red light and infrared light). The signal passes through the tissue and is received by a receiver provided below the finger. Changes in the diameter of the blood vessel due to the pulsation of the arteries cause refraction of the projection light source, and the refracted angle converts light energy into electrical energy and draws a continuous waveform on the time axis.
As shown in FIG. 1B, blood pressure also forms a periodic signal due to changes in the volume of blood vessels. The definition of one blood pressure cycle is the time when the next contraction starts from one heart contraction, that is, the interval included by wave valleys and wave valleys in each cycle signal.
However, since the change of the blood vessel volume by this optical measurement method is not the absolute value of the blood vessel volume, the time axis change in the waveform of the measured blood vessel diameter change shows the potential when data is captured.
Further, the amplitude drawn on the time axis of the measured blood vessel diameter change waveform represents only the potential when data is captured.
In addition, as a result of overlapping of the heart contraction and the action of the blood vessel wall, it is not possible to accurately calculate the positions of the peaks and valleys of the waves in each blood pressure cycle.
For this reason, an accurate blood pressure value cannot be measured.

本発明人は前記の血圧測定における欠点に対して、鋭意に研究した結果、本発明の血中酸素濃度計と心電図計による血圧値計測方法及びその装置を発明した。   As a result of earnest research on the above-mentioned drawbacks in blood pressure measurement, the present inventor has invented the blood pressure measurement method and apparatus using the blood oximeter and electrocardiograph according to the present invention.

本発明の主な目的は、一種の血中酸素濃度計と心電図計による血圧値計測方法の方法を提供する。
この方法は血中酸素濃度計により測定された血中酸素周期の連続変化波形と心電図計により測定された心臓の収縮期圧と拡張期圧の電位変化を利用し、血圧を精確に計測できる。
主な特徴として、血中酸素濃度計により血中酸素濃度を測定するときに、心臓の収縮と拡張するときの脈動により、周期的な連続変化波形を描き出す。同時に、同じインターバルの心電図計により、心臓の収縮期拡張期の電位変化を精確に測定した上、マイクロプロセッサーにより、血中酸素濃度の周期的な連続変化波形の断面積を算出する。
一方、心電図計の測定により、収縮期圧と拡張期圧の計測インターバルを明確にし、マイクロプロセッサーに保存された計算式でもって、変換処理した後、正確な収縮期圧と拡張期圧の値が得られる。これにより、被測定者の血圧が精確に測定するとともに、パルスの脈動回数/1分間あたり血液中の酸素含有量を測定し、心電図と血圧波形図が得られる。
The main object of the present invention is to provide a blood pressure measurement method using a kind of blood oximeter and electrocardiograph.
This method can accurately measure blood pressure using a continuous change waveform of the blood oxygen cycle measured by a blood oximeter and a potential change of the systolic pressure and diastolic pressure of the heart measured by an electrocardiograph.
The main feature is that when the blood oxygen concentration is measured by a blood oximeter, a periodic continuous change waveform is drawn by the pulsation when the heart contracts and dilates. At the same time, the potential change during the systolic and diastolic phases of the heart is accurately measured with an electrocardiograph at the same interval, and the cross-sectional area of a cyclic continuous change waveform of blood oxygen concentration is calculated with a microprocessor.
On the other hand, the measurement interval of the systolic pressure and the diastolic pressure is clarified by the measurement of the electrocardiograph, and after the conversion processing by the calculation formula stored in the microprocessor, the accurate systolic pressure and diastolic pressure value are obtained. can get. Thereby, the blood pressure of the measurement subject is accurately measured, and the oxygen content in the blood is measured per number of pulse pulsations / minute, and an electrocardiogram and a blood pressure waveform diagram are obtained.

本発明のもう一つの目的は、一種の血液酸素濃度計と心電図計を利用した血圧値測定装置を提供する。
係る装置に本体を設け、本体の表面に結果を表示する表示幕を設ける。
機体の表面はさらに、二つの電極を向かい合って設け、これらの電極は両手の親指が当てるために備える。
機体の一端にプローブを設け、機体の内部に備えるマイクロプロセッサーとレジスターは電気回路に接続して、データ処理および関連データを保存する。
使用するときは、親指を電極に当てて、プローブに親指以外1本の指を挟んでおく。
これにより、血中酸素の周期的な連続変化波形および心臓の収縮期圧と拡張期圧のインターバルを計測し、表示幕にて両者の交叉を確認し、マイクロプロセッサーによって演算した上、収縮期圧と拡張期圧の値が得られる。
Another object of the present invention is to provide a blood pressure measurement device using a kind of blood oximeter and electrocardiograph.
The apparatus is provided with a main body, and a display curtain for displaying the result is provided on the surface of the main body.
The surface of the fuselage is further provided with two electrodes facing each other, which are provided for the thumbs of both hands to touch.
A probe is provided at one end of the airframe, and a microprocessor and a register provided inside the airframe are connected to an electric circuit to store data processing and related data.
When using, place the thumb against the electrode and hold one finger other than the thumb between the probes.
As a result, the cyclic continuous change waveform of blood oxygen and the interval between systolic pressure and diastolic pressure of the heart are measured, the crossing of the two is confirmed on the display screen, and the systolic pressure is calculated by the microprocessor. And the value of diastolic pressure is obtained.

本発明のさらなるの目的は、一種の血液酸素濃度計と心電図計を利用した血圧値測定装置を提供する。
係る装置に本体を設け、本体の表面に結果を表示する表示幕を設ける。
機体の表面はさらに、二つの電極を向かい合って設け、これらの電極は体に貼り付けるために備える。
機体の一端にプローブを設け、機体の内部に備えるマイクロプロセッサーとレジスターは電気回路に接続して、データ処理および関連データを保存する。
使用するときは、電極を腕に貼り付けて、プローブを1本の指に挟んでおく。
これにより、血中酸素の周期的な連続変化波形および心臓の収縮期圧と拡張期圧のインターバルを測定し、表示幕により、両者の交叉を確認して、マイクロプロセッサーによって演算した上、収縮期圧と拡張期圧の値が得られる。さらに、被測定者が24時間に携帯し、随時の計測に備える。
A further object of the present invention is to provide a blood pressure measuring device using a kind of blood oximeter and electrocardiograph.
The apparatus is provided with a main body, and a display curtain for displaying the result is provided on the surface of the main body.
The surface of the airframe is further provided with two electrodes facing each other, which are provided for attaching to the body.
A probe is provided at one end of the airframe, and a microprocessor and a register provided inside the airframe are connected to an electric circuit to store data processing and related data.
When used, the electrode is attached to the arm and the probe is held between one finger.
As a result, the cyclic continuous change waveform of blood oxygen and the interval between systolic pressure and diastolic pressure of the heart are measured. Pressure and diastolic pressure values are obtained. Furthermore, the person to be measured carries it for 24 hours and prepares for measurement at any time.

本発明のさらなる一つの目的は、一種の血液酸素濃度計と心電図計を利用した血圧値測定装置を提供する。
この装置に機体を設け、機体の内部に備えるマイクロプロセッサーとレジスターは電気回路に接続する。
マイクロプロセッサーはさらに、入/出力素子と接続し、有線または無線方式により、電気信号を伝送する。
Another object of the present invention is to provide a blood pressure measurement device using a kind of blood oximeter and electrocardiograph.
The device is provided with a fuselage, and a microprocessor and a register provided in the fuselage are connected to an electric circuit.
The microprocessor is further connected to input / output elements to transmit electrical signals in a wired or wireless manner.

上記目的を達成するためになされた本願の第1発明は、同じ時間軸における血中酸素濃度計により、心臓脈動の血中酸素の周期的な連続変化波形を測定し、心電図計により心臓の収縮期と拡張期のインターバルに対応させ、マイクロプロセッサーにより血中酸素の周期的な連続変化波形が時間軸に対応する断面積を算出し、心電図の測定により収縮期圧と拡張期圧の計算インターバルを確定し、マイクロプロセッサーに保存された計算式によって演算処理した後、収縮期圧と拡張期圧の値を算出することを特徴とする、血中酸素濃度計と心電図計による血圧値計測方法を提供することを目的とする。
本願の第2発明は、二つ以上の連続した拡張期/収縮期インターバルによって計算された血中酸素の、周期的な連続変化波形の周期的な断面積を合計し、平均することを特徴とする、第1発明に記載の血中酸素濃度計と心電図計による血圧値計測方法を提供することを目的とする。
本願の第3発明は、マイクロプロセッサーを設け、データの演算処理を制御し、表示幕を設け、マイクロプロセッサーに接続し、結果を表示し、入力素子、マイクロプロセッサーに接続し、データを入力し、アナログ/デジタル変換回路を設け、マイクロプロセッサーに接続し、アナログ信号をデジタル信号に置き換え、信号濾過回路を設け、アナログ/デジタルへ変換回路に接続し、ノイズを濾過し、信号アンプ回路、信号濾過回路に接続し、信号を拡大処理し、二つの電極を設け、信号アンプ回路に接続し、被測定者の体に接触し、プローブを設け、信号アンプ回路、アナログ/デジタル変換回路に接続し被測定者の体に貼り付けることを特徴とする、血中酸素濃度計と心電図計による血圧値計測装置を提供することを目的とする。
本願の第4発明は、装置は一つの機器に整合されていることを特徴とする、第3発明に記載の血中酸素濃度計と心電図計による血圧値計測装置を提供することを目的とする。
本願の第5発明は、マイクロプロセッサーは、有線または無線素子に接続することを特徴とする、第3発明に記載の血中酸素濃度計と心電図計による血圧値計測装置を提供することを目的とする。
本願の第6発明は、電極は、装置本体に取り付けて、被測定者の指を当てるに適することを特徴とする、第3発明に記載の血中酸素濃度計と心電図計による血圧値計測装置を提供することを目的とする。
本願の第7発明は、電極は、電気回線により本体外部に延ばして、被測定者の体に貼り付けることを特徴とする、第3発明に記載の血中酸素濃度計と心電図計による血圧値計測装置を提供することを目的とする。
The first invention of the present application, which has been made to achieve the above object, measures a cyclic continuous change waveform of blood oxygen of heart pulsation with a blood oximeter on the same time axis, and contracts the heart with an electrocardiograph. Corresponding to the interval between diastole and diastole, the microprocessor calculates the cross-sectional area corresponding to the time axis of the periodic change waveform of blood oxygen, and the interval between systolic pressure and diastolic pressure is calculated by measuring the electrocardiogram Providing a blood pressure measurement method using a blood oximeter and an electrocardiograph characterized by calculating systolic pressure and diastolic pressure after processing is performed using a formula stored in a microprocessor. The purpose is to do.
The second invention of the present application is characterized by summing and averaging the periodic cross-sectional areas of the cyclic continuous change waveform of blood oxygen calculated by two or more consecutive diastolic / systolic intervals. An object of the present invention is to provide a blood pressure measurement method using a blood oximeter and an electrocardiograph according to the first invention.
The third invention of the present application is provided with a microprocessor, controls the arithmetic processing of data, provides a display screen, connects to the microprocessor, displays the result, connects to the input element, the microprocessor, inputs data, Provide analog / digital conversion circuit, connect to microprocessor, replace analog signal with digital signal, provide signal filtering circuit, connect to analog / digital conversion circuit, filter noise, signal amplifier circuit, signal filtering circuit Connect to the signal, enlarge the signal, provide two electrodes, connect to the signal amplifier circuit, contact the body of the person to be measured, provide a probe, connect to the signal amplifier circuit, analog / digital conversion circuit, and measure It aims at providing the blood-pressure-value measuring apparatus by a blood oximeter and the electrocardiograph characterized by sticking on a person's body.
A fourth invention of the present application aims to provide a blood pressure measurement device using a blood oximeter and an electrocardiograph according to the third invention, characterized in that the device is matched to one device. .
The fifth invention of the present application aims to provide a blood pressure measurement device using a blood oximeter and an electrocardiograph according to the third invention, wherein the microprocessor is connected to a wired or wireless device. To do.
6th invention of this application attaches an electrode to an apparatus main body, and is suitable for a to-be-measured person's finger | toe contact, The blood pressure value measuring device by the blood oximeter and the electrocardiograph according to 3rd invention characterized by the above-mentioned The purpose is to provide.
The seventh invention of the present application is characterized in that the electrode extends to the outside of the main body by an electric line and is attached to the body of the subject, and the blood pressure value by the blood oximeter and the electrocardiograph according to the third invention It aims at providing a measuring device.

この方法は血中酸素濃度計により、心臓動脈脈動における血中酸素の周期的の連続した変化波形、並びに心電図計により、血圧の収縮期圧、拡張期圧の脈動インターバルを確実に検出し、この脈動インターバルと血中酸素濃度計より計測された連続した変化波形を対応させ、マイクロプロセッサーを用いて、この連続した変化波形と心電図の脈動インターバルと対応させ断面積を算出し、保存された計算式でもって収縮期圧と拡張期圧の値に換算することにより、血圧値(収縮期圧と拡張期圧)の精確計測を実現する。   This method uses a blood oximeter to reliably detect the cyclic continuous change waveform of blood oxygen in cardiac artery pulsation, and an electrocardiograph to detect the systolic pressure of blood pressure and the pulsation interval of diastolic pressure. Corresponding the pulsation interval and the continuous change waveform measured by the blood oximeter, using a microprocessor, calculate the cross-sectional area by correlating this continuous change waveform and the pulsation interval of the ECG, and the stored formula Thus, accurate measurement of blood pressure values (systolic pressure and diastolic pressure) is realized by converting the values into systolic pressure and diastolic pressure.

本発明の方法および構造に対して、より深くの認識と理解を図るため、実施例を図面に合わせて、以下の通り詳細説明する。   In order to better understand and understand the method and structure of the present invention, embodiments will be described in detail with reference to the drawings.

本発明は一種の血中酸素濃度計と心電図計による血圧値計測方法に関わるものである。
血中酸素濃度は血液が酸素と結合するヘモグロビン酸素(hemoglobIn oxygen, HBO2)の容量が結合可能なヘモグロビン(hemoglobIn, HB)容量の百分比を示すものである。すなわち、血中酸素濃度(blood oxygen levels, SPO2)をいう。
今日、血中酸素濃度の測定原理の利用は、分光光度測定と血液容積測定計測定原理包括有分光光度測定和血液容積描画二つの分野である。
本実施例において、分光光度方式により、血中酸素濃度計と本発明との相互関係を説明する。
ただし、この種の技術を熟知するものは、その他の測定方式を用いることが可能である。
The present invention relates to a blood pressure measurement method using a kind of blood oximeter and electrocardiograph.
The blood oxygen concentration indicates the percentage of hemoglobin (hemoglobIn, HB) capacity that can be combined with the capacity of hemoglobin oxygen (HBO2) that binds oxygen to blood. That is, it refers to blood oxygen levels (SPO2).
Today, the use of the measurement principle of blood oxygen concentration is in two fields: spectrophotometry and blood volume meter measurement principle comprehensive spectrophotometry sum blood volume drawing.
In this embodiment, the interrelationship between the blood oximeter and the present invention will be described using a spectrophotometric method.
However, those who are familiar with this type of technology can use other measurement methods.

分光光度測定方式による血中酸素濃度計は、それぞれ波長660nmの赤光と940nmの赤外線光を使用する。
ヘモグロビン酸素(HBO2)は660nm波長の赤光に対する吸収量が多いに対し、940nmの赤外線光吸収量が多い。
これに対して、ヘモグロビン(HB)は660nm赤光に対する吸収量が少なく、940nmの赤外線光吸収量が多い現象から、分光光度方式と赤光吸収量の比例値により、ヘモグロビン酸素濃度を測定できる。
A blood oximeter based on a spectrophotometric method uses red light having a wavelength of 660 nm and infrared light having a wavelength of 940 nm.
Hemoglobin oxygen (HBO2) has a large amount of absorption with respect to red light having a wavelength of 660 nm, whereas it has a large amount of absorption with infrared light at 940 nm.
On the other hand, hemoglobin (HB) has a small amount of absorption with respect to red light at 660 nm and a large amount of infrared light absorption at 940 nm, so that the hemoglobin oxygen concentration can be measured by a proportional value between the spectrophotometric method and the amount of red light absorption.

血中酸素濃度計による血中酸素濃度の測定は、血中酸素濃度値を計測できるほか、血管内部にある血液は心臓の収縮と拡張に従って脈動する。
このとき、光エネルギーを血管外部組織に照射したとき、光エネルギーの減衰度合と心臓脈動の関係を検出できる。
心臓は収縮するとき、血管外部の血液容量が一番多いため、光エネルギーの吸収量も一番多くなり、計測される光エネルギーがもっとも少ない。
そして、心臓は拡張するとき、ちょうどこれに反して、光エネルギー吸収量の変化は血管容積の変化を反映し、光エネルギーを電気エネルギーに変換することにより、血管容積の変化を時間軸に連続した血液酸素の周期変化波形を描画する。
The measurement of the blood oxygen concentration by the blood oximeter can measure the blood oxygen concentration value, and the blood inside the blood vessel pulsates according to the contraction and dilation of the heart.
At this time, when light energy is applied to the blood vessel external tissue, the relationship between the attenuation degree of the light energy and the heart pulsation can be detected.
When the heart contracts, the blood volume outside the blood vessel is the largest, so the amount of light energy absorbed is the largest and the measured light energy is the smallest.
And when the heart dilates, on the contrary, the change in light energy absorption reflects the change in blood vessel volume, and by converting light energy into electrical energy, the change in blood vessel volume continues on the time axis. Draw a periodic change waveform of blood oxygen.

一方、心電図(ECG)信号は、心臓の収縮期と拡張期の電位変化を測定できる。
心臓の筋肉は人間の筋肉のうち、唯一に自発性を持った脈動とリズム的な収縮する筋肉である。
心臓循環系統より送り出した電波は、筋肉繊維に刺激して、収縮を引き起こす。よって、電波の発生及び伝送するたびに、筋肉に微弱電波を発生して、全身に伝わる。
そこで、心電図系の信号電極を体のさまざまな部位に接続させることにより、心電図を描画できる。
On the other hand, an electrocardiogram (ECG) signal can measure potential changes in the systole and diastole of the heart.
The heart muscle is the only spontaneous muscle pulsation and rhythmically contracting muscle.
Radio waves sent from the cardiac circulation system stimulate muscle fibers and cause contraction. Therefore, every time a radio wave is generated and transmitted, a weak radio wave is generated in the muscle and transmitted to the whole body.
Therefore, an electrocardiogram can be drawn by connecting electrocardiographic signal electrodes to various parts of the body.

その原理は、心臓の収縮と拡張運動で発生する弱電流により、この種の弱電流が体中に流す(体は導体である)ことにより、手や足に取り付けた電極の信号を電流計に伝送した上、その波形を紙テープに記録させて、心電図となる。   The principle is that this kind of weak current flows through the body due to the weak current generated by the contraction and expansion of the heart (the body is a conductor), so that the signal of the electrode attached to the hand or foot is transferred to the ammeter. After being transmitted, the waveform is recorded on a paper tape to form an electrocardiogram.

現在、医学臨床でもっとも使われているものは、12誘導心電図(12 lead electrocadIogram;; 12-lead ECG)で、I、II、III三つの標準誘導期、三つの加圧誘導期aVR、aVL、aVFおよび六つの胸部誘導期V1、V2、V3、V4、V5、V6がある。
心臓の収縮が時間軸に対する一連の電位変化を引き起す。
心房脱分極、心房再極化、心室脱分極、心室再極化を順次に変化し、発生する波形はP波、QRS総合波およびT波をそれぞれに形成する。
波形の帯びる生理上の意義は、P波は心房脱分極、QRS総合波は心室脱分極、T波は心室再極化、PRインターバルは左右心房の脱分極と脱分極波を房室結節に伝導する時間、QTインターバルは左右心室の脱分極と再極化の時間、心臓の脈動波形のPRインターバルは心臓の収縮期、PSTインターバルは心臓の拡張期である。
Currently, the most used in clinical practice is a 12-lead electrocardiogram (12-lead ECG), I, II, III three standard induction periods, three pressurization induction periods aVR, aVL, There are aVF and six chest induction periods V1, V2, V3, V4, V5, V6.
Heart contraction causes a series of potential changes with respect to the time axis.
Atrial depolarization, atrial repolarization, ventricular depolarization, and ventricular repolarization are sequentially changed, and the generated waveforms form a P wave, a QRS integrated wave, and a T wave, respectively.
The physiological significance of the waveform is that P wave is atrial depolarization, QRS integrated wave is ventricular depolarization, T wave is ventricular repolarization, PR interval conducts left and right atrial depolarization and depolarization wave to atrioventricular node The QT interval is the time for depolarization and repolarization of the left and right ventricles, the PR interval of the heart pulsation waveform is the systole of the heart, and the PST interval is the diastole of the heart.

本発明の実施例は第1誘導期測定方式により、心電図計と本発明との相互関係を説明する。
ただし、この種の技術を熟知するものは、その他の測定方式を用いることが可能である。
本実施例において、両手を別々の電極に接触させ、心臓脈動のときに発生する微電流変化を検出することにより、心電図の時間軸において心臓の収縮期と拡張期のインターバルを描画できる。
The embodiment of the present invention will explain the interrelationship between the electrocardiograph and the present invention by the first induction period measurement method.
However, those who are familiar with this type of technology can use other measurement methods.
In the present embodiment, the interval between the systole and the diastole of the heart can be drawn on the time axis of the electrocardiogram by contacting both hands with separate electrodes and detecting a minute current change that occurs during cardiac pulsation.

図2A、2Bに示すとおり、本発明の方法は心電図計により、収縮期圧と拡張期圧インターバルの計測を知り、血中酸素濃度計により測定された血中酸素濃度の周期的な連続した電位波形と心電図計における心臓脈動するときの波形を同じの時間軸に対応させ、血中酸素の周期的な連続した波形を電位波形が時間軸に対応させた心電図上の心臓脈動波形PRインターバルの断面積、および心電図上の心臓脈動波形PSTインターバルの断面積に置き換えて、マイクロプロセッサーに保存された計算式により演算処理した上、収縮期圧と拡張期圧の値が得られる。
これにより、被測定者の収縮期圧/拡張期圧を精確に測定する同時に、1分間単位の血中酸素、心電図波形および血圧波形が得られる。
As shown in FIGS. 2A and 2B, the method of the present invention knows the measurement of systolic pressure and diastolic pressure interval by an electrocardiograph, and the periodic continuous potential of the blood oxygen concentration measured by the blood oximeter. Correlation between the heartbeat waveform PR interval on the electrocardiogram in which the waveform and the waveform at the time of cardiac pulsation in the electrocardiograph correspond to the same time axis, and the periodic waveform of blood oxygen corresponds to the time axis in the potential waveform Substituting the area and the cross-sectional area of the heart pulsation waveform PST interval on the electrocardiogram, and performing arithmetic processing using the calculation formula stored in the microprocessor, the values of systolic pressure and diastolic pressure are obtained.
As a result, the systolic pressure / diastolic pressure of the measurement subject is accurately measured, and at the same time, blood oxygen, electrocardiogram waveform, and blood pressure waveform in units of one minute are obtained.

前記の方法について、図3、図4に示すとおり、この装置は主に本体10を設ける。
本体10にマイクロプロセッサー20を設け、マイクロプロセッサー20は表示幕11と入/出力素子12、13及び電源スイッチ14に接続する。そのうち、表示幕11は本体10の表面に設け、測定結果を表示する。
入力素子12は本体10の表面に設け、関連設定とデータ(血圧の収縮期圧/拡張期圧または心電図もしくは血圧波形の選択など)を入力する。
出力素子13は有線または無線方式伝送装置を設けて、この伝送装置を介して、その他の外部電子装置17に接続(PDA、パソコンなど)する。
マイクロプロセッサー20内部は関連データを保存し、マイクロプロセッサー20はさらに、アナログ/デジタル変換回路30信号濾過回路31および信号アンプ回路32に接続する。
そのうち、信号アンプ回路32は本体10表面に備える電極15とプローブ16に接続し、プローブ16の一端に赤光、赤外線光二つの発光管を設け、他端に受信機を設けて、指の動脈血管を通過し検出された赤色と赤外線光を電位信号に置き換える。この二種類の光は、皮膚、筋肉、脂肪、静脈、ヘモグロビン、および骨などに対する吸収係数は一定であり、動脈血液中のヘモグロビン酸素(HBO2)とヘモグロビン(HB)濃度は、血液の動脈周期によって変化される。電光計測器の出力信号強度も周期的に変化し、これらの周期的な変化信号を処理することによって、対応する血中酸素濃度を測定できる。同時にパルスを算出し、血中酸素の周期的な連続変化波形を描画できる。電極は心臓の収縮と拡張による電位変化を測定する。
Regarding the above method, as shown in FIGS. 3 and 4, this apparatus mainly includes a main body 10.
A microprocessor 20 is provided in the main body 10, and the microprocessor 20 is connected to the display screen 11, input / output elements 12 and 13, and a power switch 14. Among them, the display screen 11 is provided on the surface of the main body 10 and displays the measurement result.
The input element 12 is provided on the surface of the main body 10 and inputs related settings and data (such as selection of blood pressure systolic pressure / diastolic pressure or electrocardiogram or blood pressure waveform).
The output element 13 is provided with a wired or wireless transmission device, and is connected to other external electronic devices 17 (PDA, personal computer, etc.) via this transmission device.
The microprocessor 20 internally stores relevant data, and the microprocessor 20 is further connected to an analog / digital conversion circuit 30, a signal filtering circuit 31, and a signal amplifier circuit 32.
Among them, the signal amplifier circuit 32 is connected to the electrode 15 and the probe 16 provided on the surface of the main body 10, the red light and infrared light emitting tubes are provided at one end of the probe 16, the receiver is provided at the other end, and the arterial blood vessel of the finger is provided. Red and infrared light detected after passing through are replaced with potential signals. These two types of light have a constant absorption coefficient for skin, muscle, fat, vein, hemoglobin, bone, etc., and hemoglobin oxygen (HBO2) and hemoglobin (HB) concentrations in arterial blood depend on the arterial cycle of blood. Changed. The output signal intensity of the electro-optical measuring instrument also changes periodically, and the corresponding blood oxygen concentration can be measured by processing these periodic change signals. At the same time, a pulse can be calculated and a periodic continuous change waveform of blood oxygen can be drawn. The electrodes measure changes in potential due to heart contraction and dilation.

使用するときは、親指を電極15に当てる(図5)か、または電極15を電気回線により、本体10より延ばして、体の関係部位(図6)に貼り付け、プローブ16を親指以外の指を挟んでおく。
これにより、血中酸素の周期的な連続変化波形と心臓の収縮期と拡張期のインターバルを測定し、表示幕11により、両者間の変化をはっきり見ることができる。
さらに、アナログ/デジタル変換回路30、信号濾過回路31および信号アンプ回路32の変換により、データをマイクロプロセッサー20に伝送し、マイクロプロセッサー20に保存された計算式によって演算処理した後、精確な収縮期圧と拡張期圧が得られる。
In use, the thumb is applied to the electrode 15 (FIG. 5), or the electrode 15 is extended from the main body 10 by an electric circuit and attached to a related part of the body (FIG. 6), and the probe 16 is attached to a finger other than the thumb. Hold it.
Thereby, the periodic continuous change waveform of blood oxygen and the interval between the systole and the diastole of the heart are measured, and the change between the two can be clearly seen by the display curtain 11.
Further, the data is transmitted to the microprocessor 20 by the conversion of the analog / digital conversion circuit 30, the signal filtering circuit 31, and the signal amplifier circuit 32, and is processed by the calculation formula stored in the microprocessor 20, and then the precise contraction period. Pressure and diastolic pressure are obtained.

公知技術の血圧計測方式による計測結果概略図である。It is a measurement result schematic diagram by a blood pressure measurement system of a publicly known technique. 公知技術の血圧計測方式による計測結果の概略図である。It is the schematic of the measurement result by the blood pressure measurement system of a well-known technique. 本発明の計測後の波形概略図である。It is the waveform schematic after the measurement of this invention. 本発明の計測後の波形拡大概略図である。It is a waveform expansion schematic after measurement of the present invention. 本発明の電気回路ブロック概略図である。It is an electric circuit block schematic diagram of the present invention. 本発明の装置概略図である。It is the apparatus schematic of this invention. 本発明の使用態様概略図である。It is a use mode schematic of the present invention. 本発明もう一つの使用態様概略図である。It is another use mode schematic of this invention.

符号の説明Explanation of symbols

10 本体
11 表示幕
12 入力素子
13 出力素子
14 電源スイッチ
15 電極
16 プローブ
17 外部電子装置
20 マイクロプロセッサー
30 アナログ/デジタル変換回路
31 信号濾過回路
32 信号アンプ回路

DESCRIPTION OF SYMBOLS 10 Main body 11 Display curtain 12 Input element 13 Output element 14 Power switch 15 Electrode 16 Probe 17 External electronic device 20 Microprocessor 30 Analog / digital conversion circuit 31 Signal filtering circuit 32 Signal amplifier circuit

Claims (7)

同じ時間軸における血中酸素濃度計により、心臓脈動の血中酸素の周期的な連続変化波形を測定し、
心電図計により心臓の収縮期と拡張期のインターバルに対応させ、
マイクロプロセッサーにより血中酸素の周期的な連続変化波形が時間軸に対応する断面積を算出し、
心電図の測定により収縮期圧と拡張期圧の計算インターバルを確定し、
マイクロプロセッサーに保存された計算式によって演算処理した後、収縮期圧と拡張期圧の値を算出することを特徴とする、
血中酸素濃度計と心電図計による血圧値計測方法。
With a blood oximeter on the same time axis, the periodic continuous change waveform of blood oxygen in heart pulsation is measured,
Corresponding to the interval between the systole and diastole of the heart with an electrocardiograph,
The microprocessor calculates the cross-sectional area corresponding to the time axis of the cyclic continuous change waveform of blood oxygen,
Determine the systolic and diastolic pressure calculation intervals by measuring ECG,
It is characterized by calculating the value of systolic pressure and diastolic pressure after processing by the calculation formula stored in the microprocessor,
Blood pressure measurement method using a blood oximeter and an electrocardiograph.
二つ以上の連続した拡張期/収縮期インターバルによって計算された血中酸素の、周期的な連続変化波形の周期的な断面積を合計し、平均することを特徴とする、請求項1に記載の血中酸素濃度計と心電図計による血圧値計測方法。   2. The periodic cross-sectional area of a cyclic continuous change waveform of blood oxygen calculated by two or more consecutive diastolic / systolic intervals is summed and averaged. Blood pressure measurement method using blood oxygen meter and electrocardiograph. マイクロプロセッサーを設け、データの演算処理を制御し、
表示幕を設け、マイクロプロセッサーに接続し、結果を表示し、
入力素子、マイクロプロセッサーに接続し、データを入力し、
アナログ/デジタル変換回路を設け、マイクロプロセッサーに接続し、アナログ信号をデジタル信号に置き換え、
信号濾過回路を設け、アナログ/デジタルへ変換回路に接続し、ノイズを濾過し、
信号アンプ回路、信号濾過回路に接続し、信号を拡大処理し、
二つの電極を設け、信号アンプ回路に接続し、被測定者の体に接触し、
プローブを設け、信号アンプ回路、アナログ/デジタル変換回路に接続し被測定者の体に貼り付けることを特徴とする、
血中酸素濃度計と心電図計による血圧値計測装置。
A microprocessor is provided to control data processing,
Provide a display screen, connect to the microprocessor, display the results,
Connect to input element, microprocessor, input data,
An analog / digital conversion circuit is provided, connected to a microprocessor, and analog signals are replaced with digital signals.
Provide signal filtering circuit, connect to analog / digital conversion circuit, filter noise,
Connect to the signal amplifier circuit and signal filtering circuit, expand the signal,
Provide two electrodes, connect to the signal amplifier circuit, contact the body of the person being measured,
A probe is provided, which is connected to a signal amplifier circuit, an analog / digital conversion circuit, and is attached to the body of a person to be measured.
Blood pressure measurement device using a blood oximeter and an electrocardiograph.
装置は一つの機器に整合されていることを特徴とする、請求項3に記載の血中酸素濃度計と心電図計による血圧値計測装置。   The blood pressure value measuring device using a blood oximeter and an electrocardiograph according to claim 3, wherein the device is matched to one device. マイクロプロセッサーは、有線または無線素子に接続することを特徴とする、請求項3に記載の血中酸素濃度計と心電図計による血圧値計測装置。   The blood pressure value measuring apparatus using a blood oximeter and an electrocardiograph according to claim 3, wherein the microprocessor is connected to a wired or wireless device. 電極は、装置本体に取り付けて、被測定者の指を当てるに適することを特徴とする、請求項3に記載の血中酸素濃度計と心電図計による血圧値計測装置。   4. The blood pressure measurement apparatus using a blood oximeter and an electrocardiograph according to claim 3, wherein the electrode is attached to the apparatus main body and is suitable for applying a finger of the measurement subject. 電極は、電気回線により本体外部に延ばして、被測定者の体に貼り付けることを特徴とする、請求項3に記載の血中酸素濃度計と心電図計による血圧値計測装置。

4. The blood pressure measurement apparatus according to claim 3, wherein the electrode is extended to the outside of the main body by an electric line and attached to the body of the subject.

JP2006083346A 2006-03-24 2006-03-24 Blood oxygen concentration analyzer, and method and apparatus for measuring blood pressure value by electrocardiograph Pending JP2007252767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006083346A JP2007252767A (en) 2006-03-24 2006-03-24 Blood oxygen concentration analyzer, and method and apparatus for measuring blood pressure value by electrocardiograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083346A JP2007252767A (en) 2006-03-24 2006-03-24 Blood oxygen concentration analyzer, and method and apparatus for measuring blood pressure value by electrocardiograph

Publications (1)

Publication Number Publication Date
JP2007252767A true JP2007252767A (en) 2007-10-04

Family

ID=38627591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083346A Pending JP2007252767A (en) 2006-03-24 2006-03-24 Blood oxygen concentration analyzer, and method and apparatus for measuring blood pressure value by electrocardiograph

Country Status (1)

Country Link
JP (1) JP2007252767A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014106873A1 (en) * 2013-01-07 2014-07-10 テルモ株式会社 Portable electrocardiograph
US10342485B2 (en) 2014-10-01 2019-07-09 Covidien Lp Removable base for wearable medical monitor
US10820838B2 (en) 2015-02-19 2020-11-03 Briteseed, Llc System for determining vessel size using light absorption

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014106873A1 (en) * 2013-01-07 2014-07-10 テルモ株式会社 Portable electrocardiograph
JPWO2014106873A1 (en) * 2013-01-07 2017-01-19 テルモ株式会社 Portable electrocardiograph
US10342485B2 (en) 2014-10-01 2019-07-09 Covidien Lp Removable base for wearable medical monitor
US10820838B2 (en) 2015-02-19 2020-11-03 Briteseed, Llc System for determining vessel size using light absorption

Similar Documents

Publication Publication Date Title
Shriram et al. Continuous cuffless blood pressure monitoring based on PTT
US20210030372A1 (en) Methods to estimate the blood pressure and the arterial stiffness based on photoplethysmographic (ppg) signals
US7544168B2 (en) Measuring systolic blood pressure by photoplethysmography
KR100871230B1 (en) Method and?apparatus for the cuffless and non-invasive device connected to communication device which measures blood pressure from a wrist
US6120459A (en) Method and device for arterial blood pressure measurement
JP3208066B2 (en) Blood pressure monitoring device
EP1388321A1 (en) Method and system for continuous and non-invasive blood pressure measurement
US20060224073A1 (en) Integrated physiological signal assessing device
JP2008532719A (en) Portable diagnostic device
EP1241980A1 (en) Non-invasively monitoring hemodynamic parameters
EP1014852A1 (en) Apparatuses and methods for a noninvasive measurement of physiological parameters
Zahedi et al. Finger photoplethysmogram pulse amplitude changes induced by flow-mediated dilation
JP2006158974A (en) Integral type physiologic signal evaluation apparatus
KR100877207B1 (en) Apparatus for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness
KR100855043B1 (en) Method for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness
Kumar et al. Estimation of blood pressure by using electrocardiogram (ECG) and photo-plethysmogram (PPG)
Samartkit et al. A non-invasive heart rate and blood pressure monitoring system using piezoelectric and photoplethysmographic sensors
Taha et al. A review on non-invasive hypertension monitoring system by using photoplethysmography method
KR100855042B1 (en) Apparatus for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness
US20070239039A1 (en) Method and apparatus for measuring blood pressures by using blood oxygen concentration and electrocardiography
JP2001029318A (en) Patient monitor apparatus
JP2007252767A (en) Blood oxygen concentration analyzer, and method and apparatus for measuring blood pressure value by electrocardiograph
KR20070101696A (en) Method and apparatus for measuring blood pressures by using blood oxygen concentration and electrocardiography
US20180055427A1 (en) Method and Apparatus to Enhance Peripheral Venous Oxygen Measurements
KR100877212B1 (en) Apparatus for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818