JP2007252024A - Control device for vehicles - Google Patents

Control device for vehicles Download PDF

Info

Publication number
JP2007252024A
JP2007252024A JP2006068628A JP2006068628A JP2007252024A JP 2007252024 A JP2007252024 A JP 2007252024A JP 2006068628 A JP2006068628 A JP 2006068628A JP 2006068628 A JP2006068628 A JP 2006068628A JP 2007252024 A JP2007252024 A JP 2007252024A
Authority
JP
Japan
Prior art keywords
vehicle
rotating electrical
electrical machine
torque command
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006068628A
Other languages
Japanese (ja)
Inventor
Takeshi Nozaki
武司 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006068628A priority Critical patent/JP2007252024A/en
Publication of JP2007252024A publication Critical patent/JP2007252024A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/10Temporary overload
    • B60L2260/16Temporary overload of electrical drive trains
    • B60L2260/167Temporary overload of electrical drive trains of motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent overvoltage from being produced in an inverter for giving and receiving electric power to and from a driving motor (rotary electric machine) coupled with wheels in a hill start (climbing a hill). <P>SOLUTION: A vehicle 1 has a rotary electric machine MG2 as a power plant. Further, it has a second resolver 34 as a means capable of detecting the rotating state of wheels, provided in the rotary electric machine MG2, and HV-ECU 60 that determines a torque command value for the rotary electric machine MG2 based on driving operation information. When it is determined that the direction of wheel rotation and the direction of the torque of the rotary electric machine MG2 are opposite to each other based on the state of wheel rotation detected by the second resolver 34 and a torque command value for the rotary electric machine MG2, the HV-ECU 60 zeroes the torque command value for the rotary electric machine MG2. Based on this torque command value, the rotary electric machine MG2 is controlled by MG-ECU 80. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ハイブリッド車両等のような駆動源としての回転電機を有する車両の制御装置に関し、特に登坂時における回転電機の制御に関する。   The present invention relates to a control device for a vehicle having a rotating electrical machine as a drive source such as a hybrid vehicle, and more particularly to control of the rotating electrical machine during climbing.

ハイブリッド車両や電気自動車等のEV走行中、例えば坂道発進(登坂)時において、車両を前方(登坂方向)に発進させるために運転者がアクセルペダルを踏み込むと、車輪を駆動する駆動モータは前進方向(登坂方向)にトルクを出す。しかし、登坂の傾斜が大きい場合に車両のずり落ちが発生すると、駆動モータは逆回転、すなわちトルクの方向(前進方向)とは逆方向に回転することがある。本来、駆動モータのトルクの方向と回転方向とが同じ場合にはこの駆動モータは力行状態となるが、上記のように駆動モータのトルクの方向と回転方向とが異なる(逆となる)場合には、駆動モータは回生状態となり、回生電力を発生する場合がある。   When the driver depresses the accelerator pedal to start the vehicle forward (uphill direction) during EV traveling of a hybrid vehicle or an electric vehicle, for example, when starting on a slope (uphill), the drive motor that drives the wheels moves in the forward direction. Torque (in the uphill direction). However, if the vehicle slips when the slope of the uphill is large, the drive motor may rotate in the reverse direction, that is, in the direction opposite to the direction of the torque (forward direction). Originally, when the torque direction and the rotation direction of the drive motor are the same, the drive motor is in a power running state. However, when the torque direction and the rotation direction of the drive motor are different (reverse) as described above. The drive motor is in a regenerative state and may generate regenerative power.

ここで、下記特許文献1には、ロールバック判定時にエンジンのモータリングを開始し、ロールバック時の回生電力を消費できるように予め準備して、バッテリが回生電力を受け入れられない状態で実際にロールバックが発生してもバッテリを過充電することなく望みの駆動トルクを出力するようにした技術が開示されている。   Here, in Patent Document 1 below, engine motoring is started at the time of rollback determination, and prepared in advance so that the regenerative power at the time of rollback can be consumed, and the battery actually does not accept the regenerative power. A technique is disclosed in which a desired driving torque is output without overcharging the battery even when rollback occurs.

特開2003−65107号公報JP 2003-65107 A

ところで、坂道発進(登坂)時において車両を前方(登坂方向)に発進させる場合、一般的には、車両側は力行状態としての制御を行っている。つまり、バッテリと駆動モータとの間に配置されるインバータに対して、バッテリからの出力電力は正でありバッテリへの入力電力は0であるとして制御を行っている。   By the way, when the vehicle is started forward (uphill direction) when starting on a hill (uphill), generally, the vehicle side performs control as a power running state. That is, control is performed on the inverter arranged between the battery and the drive motor on the assumption that the output power from the battery is positive and the input power to the battery is zero.

しかしながら、このような状態において駆動モータが回生状態となった場合、発生した回生電力の行き場がなくなり、バッテリと駆動モータとの間に配置されるインバータ(より詳細にはインバータ内のコンデンサ)に過電圧が発生するといった事態が生じる虞がある。   However, when the drive motor enters a regenerative state in such a state, there is no place for the generated regenerative power, and an overvoltage is applied to an inverter (more specifically, a capacitor in the inverter) disposed between the battery and the drive motor. May occur.

上記従来技術では、バッテリを過充電することなく望みの駆動トルクを出力する点については開示されているが、バッテリと駆動モータとの間に配置されるインバータの過電圧防止については考慮されていない。   The above prior art discloses that a desired driving torque is output without overcharging the battery, but does not consider overvoltage prevention of an inverter arranged between the battery and the driving motor.

また、ハイブリッド車両においては、補機を含む各種部品が正常に動作するか否かを検出(診断)するダイアグ機能を備えたものがあるが、このような車両において回生電力によりインバータに過電圧が発生すると、特にインバータ自体に不具合が生じているわけでもないにもかかわらず、インバータに支障があるとして誤った検出(診断)がされてしまうといった問題も生じる。   Some hybrid vehicles have a diagnostic function to detect (diagnose) whether or not various components including auxiliary equipment operate normally. In such vehicles, regenerative power generates overvoltage at the inverter. As a result, there is a problem that the inverter is erroneously detected (diagnosed) as having a problem even though the inverter itself is not defective.

なお、上記のような問題は、リンプホームモードが「回生禁止のEV走行」にある場合にも同様に生じる。   The above-mentioned problem also occurs when the limp home mode is in “EV regeneration prohibited”.

本発明の目的は、坂道発進(登坂)時においてバッテリと駆動モータ(回転電機)との間に設けられるインバータで過電圧が発生するのを防止可能な車両の制御装置を提供することにある。   An object of the present invention is to provide a vehicle control device capable of preventing an overvoltage from being generated by an inverter provided between a battery and a drive motor (rotating electrical machine) when starting on a slope (uphill).

本発明は、駆動源としての回転電機を有する車両の制御装置であって、車輪の回転状態を検出する検出手段と、運転操作情報に基づき回転電機のトルク指令値を決定する制御手段と、を備え、前記制御手段は、前記検出手段より検出された車輪の回転状態と前記回転電機のトルク指令値とに基づき車輪の回転方向と回転電機のトルクの方向とが逆方向であると判定した場合、回転電機へのトルク指令値を0として回転電機を制御することを特徴とするものである。   The present invention is a control device for a vehicle having a rotating electrical machine as a drive source, comprising: a detecting means for detecting a rotation state of a wheel; and a control means for determining a torque command value of the rotating electrical machine based on driving operation information. And the control means determines that the direction of rotation of the wheel and the direction of torque of the rotating electrical machine are opposite based on the rotational state of the wheel detected by the detecting means and the torque command value of the rotating electrical machine. The rotary electric machine is controlled by setting the torque command value to the rotary electric machine to zero.

ここで、上記構成の車両の制御装置において、前記制御手段は、車輪が所定値より少ない回転数で車両の後進方向に回転する状態が検出され、且つ、車両を前進させるための回転電機のトルク指令値が所定値よりも大きい状態である場合に、回転電機へのトルク指令値を0として回転電機を制御するのが好適である。   Here, in the vehicle control apparatus having the above-described configuration, the control means detects a state in which the wheels rotate in the reverse direction of the vehicle at a rotation speed less than a predetermined value, and torque of the rotating electrical machine for moving the vehicle forward When the command value is larger than the predetermined value, it is preferable to control the rotating electrical machine by setting the torque command value to the rotating electrical machine to 0.

さらに、上記構成の車両の制御装置において、前記制御手段は、車輪が所定値より少ない回転数で車両の後進方向に回転する回転状態で、且つ、車両を前進させるための回転電機のトルク指令値が所定値よりも大きい状態が所定時間継続した場合に、回転電機へのトルク指令値を0として回転電機を制御するのが好適である。   Further, in the vehicle control apparatus having the above-described configuration, the control means is a torque command value of a rotating electrical machine for advancing the vehicle in a rotational state in which the wheels rotate in the backward direction of the vehicle at a rotational speed less than a predetermined value. When the state in which the value is larger than the predetermined value continues for a predetermined time, it is preferable to control the rotating electrical machine by setting the torque command value to the rotating electrical machine to 0.

また、上記構成の車両の制御装置において、車両を停止状態にするよう運転者に警告する警告手段をさらに備え、前記制御手段は、回転電機へのトルク指令値を0として回転電機の制御を行うと共に、車両を停止状態にする警告を行うよう警告手段を制御するのが好適である。   The vehicle control apparatus having the above-described configuration further includes warning means for warning the driver to put the vehicle into a stop state, and the control means controls the rotating electrical machine with a torque command value to the rotating electrical machine being zero. At the same time, it is preferable to control the warning means so as to issue a warning to put the vehicle in a stopped state.

本発明によれば、坂道発進(登坂)時において、車輪と連結する回転電機の要求トルクの方向と回転方向とが異なる(逆となる)場合には、この回転電機に対するモータトルク指令値を0[Nm]として制御するため、回転電機は回生状態とはならず、回生電力が発生しなくなる。したがって、この回転電機と電力の授受を行うインバータにおける過電圧の発生を防止することができる。   According to the present invention, when the direction of the required torque of the rotating electrical machine connected to the wheel and the rotational direction are different (reverse) when starting on a slope (uphill), the motor torque command value for the rotating electrical machine is set to 0. Since the control is performed as [Nm], the rotating electrical machine is not in a regenerative state, and regenerative power is not generated. Therefore, it is possible to prevent the occurrence of overvoltage in the inverter that exchanges power with the rotating electrical machine.

本発明の実施の形態について、図面を参照して説明する。一例として、原動機として内燃機関(エンジン)と回転電機(モータジェネレータ)とを備えるハイブリッド車両について説明する。   Embodiments of the present invention will be described with reference to the drawings. As an example, a hybrid vehicle including an internal combustion engine (engine) and a rotating electrical machine (motor generator) as a prime mover will be described.

図1は、本実施形態における車両の制御装置を備えるハイブリッド車両1の概略構成を模式的に示す図である。車両1には、車輪46を駆動する原動機として、内燃機関10と発電可能な電動機である回転電機MG1,MG2が設けられている。これら各原動機は、車両全体を制御するハイブリッド用電子制御装置(HV−ECU)60からのトルク指令値に基づき、内燃機関用電子制御装置(ENG−ECU)70や回転電機用電子制御装置(MG−ECU)80により、協調して作動するよう制御される。   FIG. 1 is a diagram schematically illustrating a schematic configuration of a hybrid vehicle 1 including a vehicle control device according to the present embodiment. The vehicle 1 is provided with rotating electric machines MG1 and MG2 which are electric motors capable of generating electric power with the internal combustion engine 10 as prime movers for driving the wheels 46. Each of these prime movers is based on a torque command value from a hybrid electronic control unit (HV-ECU) 60 that controls the entire vehicle, and an internal combustion engine electronic control unit (ENG-ECU) 70 and a rotating electrical machine electronic control unit (MG). -ECU) 80 is controlled to operate in a coordinated manner.

内燃機関10は、燃料噴射装置、点火装置、及びスロットルバルブ(いずれも図示せず)を有している。これら各装置は、HV−ECU60から出力されたエンジントルク指令値に基づいて、ENG−ECU70により制御されている。ENG−ECU70は、内燃機関10が発生させる機械的動力を調整することができ、内燃機関10が発生させた機械的動力は、クランク軸12から出力される。また、内燃機関10にはクランク角センサ11が設けられており、このセンサ11は、クランク軸12の回転角度を検知し、HV−ECU60に出力する。これにより、HV−ECU60はエンジン回転数等の回転状態の情報を取得できる。   The internal combustion engine 10 includes a fuel injection device, an ignition device, and a throttle valve (all not shown). These devices are controlled by the ENG-ECU 70 based on the engine torque command value output from the HV-ECU 60. The ENG-ECU 70 can adjust the mechanical power generated by the internal combustion engine 10, and the mechanical power generated by the internal combustion engine 10 is output from the crankshaft 12. The internal combustion engine 10 is provided with a crank angle sensor 11, which detects the rotation angle of the crankshaft 12 and outputs it to the HV-ECU 60. Thereby, the HV-ECU 60 can acquire information on the rotational state such as the engine speed.

回転電機MG1及びMG2は、供給された電力を機械的動力に変換する電動機としての機能と、入力された機械的動力を電力に変換する発電機としての機能とを兼ね備えた、いわゆるモータジェネレータである。回転電機MG1は、主に発電機として用いられ、一方、回転電機MG2は、主に電動機として用いられる。これらの機能の切換えと、回転電機MG1及びMG2が発生させる機械的動力、又は回収する電力は、回転電機MG1及びMG2にそれぞれ対応して設けられたインバータ51,52によって制御される。MG−ECU80は、HV−ECU60から出力されたモータトルク指令値に基づいてインバータ51,52を制御することで、それぞれ回転電機MG1,MG2から発生する機械的動力を調整することができる。回転電機MG1及びMG2から発生した機械的動力は、ロータ31,32にそれぞれ結合された回転軸31a,32aから出力される。なお、回転軸31a,32aから回転電機MG1及びMG2に入力された機械的動力は、ここで電力に変換されて、後述するバッテリ54に回収することが可能となっている。   The rotating electrical machines MG1 and MG2 are so-called motor generators that have both a function as an electric motor that converts supplied electric power into mechanical power and a function as a generator that converts input mechanical power into electric power. . The rotating electrical machine MG1 is mainly used as a generator, while the rotating electrical machine MG2 is mainly used as an electric motor. The switching of these functions and the mechanical power generated by the rotating electrical machines MG1 and MG2 or the recovered power are controlled by inverters 51 and 52 provided corresponding to the rotating electrical machines MG1 and MG2, respectively. The MG-ECU 80 can adjust the mechanical power generated from the rotating electrical machines MG1 and MG2 by controlling the inverters 51 and 52 based on the motor torque command value output from the HV-ECU 60, respectively. Mechanical power generated from the rotating electrical machines MG1 and MG2 is output from rotating shafts 31a and 32a coupled to the rotors 31 and 32, respectively. The mechanical power input from the rotary shafts 31a and 32a to the rotary electric machines MG1 and MG2 is converted into electric power here and can be recovered in the battery 54 described later.

ここで、回転電機MG1には第一レゾルバ33が設けられており、このレゾルバ33は、回転電機MG1のモータ軸の回転角度を検知し、HV−ECU60に出力する。これにより、HV−ECU60は回転電機MG1の回転状態の情報(例えば回転数等)を取得できる。同様に、回転電機MG2には第二レゾルバ34が設けられており、このレゾルバ34は、回転電機MG2のモータ軸の回転角度を検知し、HV−ECU60に出力する。これにより、HV−ECU60は回転電機MG2の回転状態の情報(例えば回転数等)、すなわち車輪の回転状態の情報を取得できる。   Here, the rotary electric machine MG1 is provided with a first resolver 33. The resolver 33 detects the rotation angle of the motor shaft of the rotary electric machine MG1 and outputs it to the HV-ECU 60. Thereby, the HV-ECU 60 can acquire information (for example, the number of rotations) of the rotation state of the rotating electrical machine MG1. Similarly, the rotary electric machine MG2 is provided with a second resolver 34. The resolver 34 detects the rotation angle of the motor shaft of the rotary electric machine MG2 and outputs it to the HV-ECU 60. Thereby, the HV-ECU 60 can acquire information on the rotational state of the rotating electrical machine MG2 (for example, the rotational speed), that is, information on the rotational state of the wheels.

また、車両1には、上記の内燃機関10と回転電機MG1,MG2から出力した機械的動力を車輪に伝達する装置として、内燃機関10から出力した機械的動力を分割する遊星歯車機構20と、遊星歯車機構20から伝達された回転を減速しトルクを増大させる減速装置40と、減速装置40から伝達された機械的動力を左右の駆動軸44に分配して出力する差動装置42が設けられている。   In addition, the vehicle 1 includes a planetary gear mechanism 20 that divides the mechanical power output from the internal combustion engine 10 as a device that transmits the mechanical power output from the internal combustion engine 10 and the rotating electrical machines MG1 and MG2 to wheels. A speed reduction device 40 that reduces the rotation transmitted from the planetary gear mechanism 20 and increases torque, and a differential device 42 that distributes and outputs the mechanical power transmitted from the speed reduction device 40 to the left and right drive shafts 44 are provided. ing.

遊星歯車機構20のプラネタリキャリア24には、内燃機関10のクランク軸12が、サンギア22には、回転電機MG1のロータ31が、リングギア28には、回転電機MG2のロータ32が結合されている。内燃機関10がクランク軸12から出力した動力は、遊星歯車機構20のプラネタリキャリア24からサンギア22に伝達される機械的動力と、ピニオンギア26を介してリングギア28に伝達される機械的動力に分割される。内燃機関10からサンギア22に伝達された機械的動力は、回転電機MG1に伝達されて、ここで発電に供される。一方、内燃機関10からリングギア28に伝達された機械的動力は、回転電機MG2が出力した機械的動力と統合されて、リングギア28から減速装置40に伝達される。減速装置40から差動装置42に伝達された機械的動力は、ここで左右の駆動軸44に分配されて、車輪46を駆動する。   The planetary carrier 24 of the planetary gear mechanism 20 is coupled to the crankshaft 12 of the internal combustion engine 10, the sun gear 22 is coupled to the rotor 31 of the rotating electrical machine MG1, and the ring gear 28 is coupled to the rotor 32 of the rotating electrical machine MG2. . The power output from the crankshaft 12 by the internal combustion engine 10 is converted into mechanical power transmitted from the planetary carrier 24 of the planetary gear mechanism 20 to the sun gear 22 and mechanical power transmitted to the ring gear 28 via the pinion gear 26. Divided. The mechanical power transmitted from the internal combustion engine 10 to the sun gear 22 is transmitted to the rotating electrical machine MG1, where it is used for power generation. On the other hand, the mechanical power transmitted from the internal combustion engine 10 to the ring gear 28 is integrated with the mechanical power output from the rotary electric machine MG2 and transmitted from the ring gear 28 to the reduction gear 40. The mechanical power transmitted from the speed reduction device 40 to the differential device 42 is distributed to the left and right drive shafts 44 to drive the wheels 46.

また、車両1には、上記の回転電機に供給する電力を貯蔵するバッテリ54が設けられている。バッテリ54は、回転電機MG1,MG2に対応して設けられたインバータ51,52に電気的に接続されており、インバータ51,52を介して、それぞれ回転電機MG1,MG2との間で電力の授受が可能となっている。この電力の授受は、HV−ECU60により制御される。具体的には、バッテリ54は、HV−ECU60が回転電機MG1,MG2を電動機として作動させる場合、回転電機MG1,MG2に電力を供給する。一方、HV−ECU60が回転電機MG1,MG2を発電機として作動させる場合、バッテリ54は、回転電機MG1,MG2で得られた電力(電気エネルギ)を、回収して蓄えることができる。   Further, the vehicle 1 is provided with a battery 54 that stores electric power supplied to the rotating electric machine. The battery 54 is electrically connected to inverters 51 and 52 provided corresponding to the rotary electric machines MG1 and MG2, and exchanges electric power with the rotary electric machines MG1 and MG2 via the inverters 51 and 52, respectively. Is possible. Transmission and reception of this electric power is controlled by the HV-ECU 60. Specifically, battery 54 supplies electric power to rotating electrical machines MG1 and MG2 when HV-ECU 60 operates rotating electrical machines MG1 and MG2 as electric motors. On the other hand, when HV-ECU 60 operates rotating electric machines MG1 and MG2 as a generator, battery 54 can collect and store electric power (electric energy) obtained by rotating electric machines MG1 and MG2.

また、車両1には、シフトレバー62の操作位置(シフト位置)を検出するシフトポジションセンサ64が設けられている。このセンサ64は、検出されたシフト位置の信号(例えばシフトレバー62がDレンジに入っていることを示す信号、等)をHV−ECU60に出力する。これにより、HV−ECU60はシフト位置の情報を取得する。   Further, the vehicle 1 is provided with a shift position sensor 64 that detects an operation position (shift position) of the shift lever 62. The sensor 64 outputs a signal of the detected shift position (for example, a signal indicating that the shift lever 62 is in the D range, etc.) to the HV-ECU 60. Thereby, the HV-ECU 60 acquires information on the shift position.

HV−ECU60は、内燃機関10や回転電機MG1,MG2等の運転状態や車両1の走行状態を示す諸パラメータを取得する。例えば、上述のように、内燃機関10のクランク角センサ11からクランク軸12の回転角度情報を取得し、これにより内燃機関10の回転状態(例えばエンジン回転数)の情報を取得する。また、回転電機MG1の第一レゾルバ33から、回転電機MG1のモータ軸の回転角度情報を取得し、これにより回転電機MG1の回転状態(例えば回転数や回転方向)の情報を取得する。また、回転電機MG2の第二レゾルバ34から、回転電機MG2のモータ軸の回転角度情報を取得し、これにより回転電機MG2の回転状態(例えば回転数や回転方向)の情報を取得する。また、シフトレバー62のシフトポジションセンサ64からシフト位置情報を取得し、運転者により操作されているシフト位置(例えばシフトレバー62がDレンジに入っている、等)の情報を取得する。また、アクセルポジションセンサ(図示せず)からアクセルペダルの踏込量すなわち加速要求量の情報を取得したり、車速センサ(図示せず)から車両速度や車輪の回転状態などの情報を取得することもできる。   The HV-ECU 60 acquires parameters indicating the operating state of the internal combustion engine 10 and the rotating electrical machines MG1, MG2, and the traveling state of the vehicle 1. For example, as described above, the rotation angle information of the crankshaft 12 is acquired from the crank angle sensor 11 of the internal combustion engine 10, thereby acquiring information on the rotation state (for example, the engine speed) of the internal combustion engine 10. Further, the rotation angle information of the motor shaft of the rotating electrical machine MG1 is acquired from the first resolver 33 of the rotating electrical machine MG1, and thereby the information on the rotation state (for example, the rotational speed and the rotation direction) of the rotating electrical machine MG1 is acquired. Further, the rotation angle information of the motor shaft of the rotating electrical machine MG2 is acquired from the second resolver 34 of the rotating electrical machine MG2, and thereby the information on the rotation state (for example, the rotational speed and the rotating direction) of the rotating electrical machine MG2 is acquired. Further, shift position information is acquired from the shift position sensor 64 of the shift lever 62, and information on the shift position operated by the driver (for example, the shift lever 62 is in the D range) is acquired. It is also possible to acquire information on the accelerator pedal depression amount, that is, the acceleration request amount from an accelerator position sensor (not shown), and information such as vehicle speed and wheel rotation state from a vehicle speed sensor (not shown). it can.

また、HV−ECU60は、内燃機関10及び回転電機MG1,MG2が出力すべき機械的動力や、回転電機MG1,MG2が発電すべき電力を決定している。この決定に基づいて、内燃機関10及び回転電機MG1,MG2を制御している。具体的には、上述のように、取得した情報に基づいてエンジントルク指令値やモータトルク指令値を決定し、これらをENG−ECU70やMG−ECU80に出力し、これらトルク指令値を受けたENG−ECU70やMG−ECU80が、トルク指令値に基づいて内燃機関10及び回転電機MG1,MG2を制御する。こうして内燃機関10、及び回転電機MG1,MG2は、停車時を含む車両1の走行状態に応じて、協調して動作するよう制御される。   Further, the HV-ECU 60 determines mechanical power to be output by the internal combustion engine 10 and the rotating electrical machines MG1 and MG2, and electric power to be generated by the rotating electrical machines MG1 and MG2. Based on this determination, the internal combustion engine 10 and the rotating electrical machines MG1, MG2 are controlled. Specifically, as described above, the engine torque command value and the motor torque command value are determined based on the acquired information, and these are output to the ENG-ECU 70 and the MG-ECU 80, and the ENG that has received these torque command values. -ECU70 and MG-ECU80 control the internal combustion engine 10 and the rotating electrical machines MG1, MG2 based on the torque command value. Thus, the internal combustion engine 10 and the rotating electrical machines MG1 and MG2 are controlled to operate cooperatively according to the traveling state of the vehicle 1 including when the vehicle is stopped.

ところで、以上のように構成されたハイブリッド車両1では、坂道発進(登坂)時に車両を前方(登坂方向)に発進させるために、ドライバがシフトレバー62をDレンジに入れてアクセルペダルを踏み込むと、HV−ECU60は、シフトポジションセンサ64からのシフト位置情報(この場合、Dレンジであるという情報)と、アクセルポジションセンサからのアクセルペダルの踏込量すなわち加速要求量の情報などに基づいて、トルク指令値を決定して出力する。つまり、車輪を駆動する回転電機MG2に対し、前進方向(登坂方向)にトルクを出すようなモータトルク指令値がHV−ECU60からMG−ECU80に出力される。そしてMG−ECU80は、このモータトルク指令値に基づいて回転電機MG2を制御し、前進方向(登坂方向)にトルクを出す。   By the way, in the hybrid vehicle 1 configured as described above, when the driver puts the shift lever 62 into the D range and depresses the accelerator pedal in order to start the vehicle forward (uphill direction) when starting on a slope (uphill), The HV-ECU 60 generates a torque command based on the shift position information from the shift position sensor 64 (in this case, information indicating that the engine is in the D range) and information on the accelerator pedal depression amount, that is, the acceleration request amount, from the accelerator position sensor. Determine the value and output it. That is, a motor torque command value that outputs torque in the forward direction (uphill direction) is output from the HV-ECU 60 to the MG-ECU 80 for the rotating electrical machine MG2 that drives the wheels. The MG-ECU 80 controls the rotating electrical machine MG2 based on the motor torque command value and outputs torque in the forward direction (uphill direction).

しかし、このとき登坂の傾斜が大きい場合に車両のずり落ちが発生すると、回転電機MG2は逆回転、すなわちトルクの方向(前進方向)とは逆方向に回転することがあり、このように回転電機MG2のトルクの方向と回転方向とが異なる(逆となる)と、回転電機MG2は回生状態となり、回生電力を発生する場合がある。   However, if the vehicle slips down when the slope of the uphill is large at this time, the rotating electrical machine MG2 may rotate in the reverse direction, that is, in the direction opposite to the direction of the torque (forward direction). If the direction of torque and the rotation direction of MG2 are different (reverse), rotating electric machine MG2 enters a regenerative state and may generate regenerative power.

ここで、坂道発進(登坂)時において車両を前方(登坂方向)に発進させる場合には、車両1側(HV−ECU60及びMG−ECU80)は力行状態としての制御を行っており、インバータ52に対して、バッテリ54からの出力電力を正、バッテリ54への入力電力を0とした制御を行っている。しかしながら、この状況下で上記のように回転電機MG2が回生状態となると、発生した回生電力の行き場がなくなり、インバータ52(より詳細にはインバータ52内のコンデンサ)に過電圧が発生するといった事態が生じる虞がある。   Here, when the vehicle is started forward (in the uphill direction) when starting on a slope (uphill), the vehicle 1 side (HV-ECU 60 and MG-ECU 80) performs control as a power running state, and the inverter 52 On the other hand, control is performed such that the output power from the battery 54 is positive and the input power to the battery 54 is zero. However, when the rotating electrical machine MG2 is in a regenerative state as described above under this situation, there is no place for the generated regenerative power, and an overvoltage is generated in the inverter 52 (more specifically, a capacitor in the inverter 52). There is a fear.

そこで、本実施形態におけるHV−ECU60では、次のような制御が行われる。図2は、本実施形態における車両の制御装置により実行される制御のフローチャート図である。   Therefore, the HV-ECU 60 in the present embodiment performs the following control. FIG. 2 is a flowchart of control executed by the vehicle control apparatus in the present embodiment.

まず、HV−ECU60は、シフトポジションセンサ64から入力されるシフト位置情報に基づき、シフト位置がDレンジであるか否かを検出する(ステップS1)。このとき、シフト位置がDレンジでない場合には、現状の制御状態を維持する(ステップS5)。   First, the HV-ECU 60 detects whether or not the shift position is in the D range based on the shift position information input from the shift position sensor 64 (step S1). At this time, if the shift position is not in the D range, the current control state is maintained (step S5).

一方、シフト位置がDレンジである場合には、回転電機MG2の第二レゾルバ34からの入力情報に基づく回転電機MG2の回転状態(回転数や回転方向)と、HV−ECU60で決定したモータトルク指令値とに基づいて、回転電機MG2のトルクの方向と回転方向とが異なる(逆となる)状態となっているか否か、すなわち回転電機MG2は回生状態であるか否かを判定する(ステップS2)。   On the other hand, when the shift position is in the D range, the rotation state (number of rotations and rotation direction) of the rotating electrical machine MG2 based on the input information from the second resolver 34 of the rotating electrical machine MG2 and the motor torque determined by the HV-ECU 60. Based on the command value, it is determined whether or not the torque direction and the rotation direction of the rotating electrical machine MG2 are different (reverse), that is, whether or not the rotating electrical machine MG2 is in a regenerative state (step). S2).

このステップS2では、例えば、前進方向の回転数やトルクの値を正(すなわち、負の値は後進方向の回転数やトルクの値である)とした場合、「回転電機MG2の回転数が負の所定値(例えば−500[ppm])よりも少なく、且つ回転電機MG2に対するモータトルク指令値が所定値(例えば100[Nm])よりも大きい」という状態が所定時間(例えば1秒)継続しているとHV−ECU60が検知すると、HV−ECU60は、回転電機MG2のトルクの方向と回転方向とが異なる(逆となる)状態となっている、すなわち回転電機MG2は回生状態である、と判定する。なお、この判定は、回転電機MG2の回転状態の情報に替えて、車速センサ(図示せず)からの車輪の回転状態(回転方向)の情報を用いて行われても良い。また、この判定で用いられる回転電機MG2の回転数、回転電機MG2に対するモータトルク指令値、及び継続時間に関する所定値はいずれも一例であり、いずれの値も適宜設定可能である。   In this step S2, for example, if the rotational speed and torque values in the forward direction are positive (that is, the negative value is the rotational speed and torque values in the reverse direction), “the rotational speed of the rotating electrical machine MG2 is negative. Is less than a predetermined value (for example, −500 [ppm]) and the motor torque command value for the rotating electrical machine MG2 is larger than a predetermined value (for example, 100 [Nm]) ”continues for a predetermined time (for example, 1 second). The HV-ECU 60 detects that the direction of the torque of the rotating electrical machine MG2 and the rotational direction are different (reverse), that is, the rotating electrical machine MG2 is in a regenerative state. judge. This determination may be performed using information on the rotation state (rotation direction) of the wheel from a vehicle speed sensor (not shown) instead of the information on the rotation state of the rotating electrical machine MG2. Also, the rotational speed of the rotating electrical machine MG2 used in this determination, the motor torque command value for the rotating electrical machine MG2, and the predetermined value relating to the duration are all examples, and any value can be set as appropriate.

そして、ステップS2において、「回転電機MG2のトルクの方向と回転方向とが異なる(逆となる)状態となっている」、すなわち「回転電機MG2は回生状態である」とHV−ECU60が判定した場合には、HV−ECU60は、回転電機MG2に対するモータトルク指令値を0[Nm]と決定して出力する。そして、MG−ECU80は、0[Nm]というHV−ECU60からのモータトルク指令値に基づいて回転電機MG2を制御する(ステップS3)。これにより回転電機MG2は回生状態とはならず、回転電機MG2から回生電力が発生しなくなる。   In step S2, the HV-ECU 60 determines that “the direction of torque of the rotating electrical machine MG2 and the rotational direction are different (reverse)”, that is, “the rotating electrical machine MG2 is in a regenerative state”. In this case, the HV-ECU 60 determines the motor torque command value for the rotating electrical machine MG2 as 0 [Nm] and outputs it. Then, MG-ECU 80 controls rotating electric machine MG2 based on the motor torque command value from HV-ECU 60 of 0 [Nm] (step S3). As a result, the rotating electrical machine MG2 does not enter a regenerative state, and no regenerative power is generated from the rotating electrical machine MG2.

またこのとき、運転者はブレーキペダルを踏込んで車両1を停止状態にする必要がある。そこで、例えば車両1にインジケーターや警告灯等の警告手段(図示せず)を介して、車両1を一旦停止させ、再度アクセルペダルの操作(坂道発進の再度実施)を行うよう、警告を促す(ステップS4)。この警告は、HV−ECU60が0[Nm]というモータトルク指令値を出力する際に、合わせて警告手段に対して制御を行うことで実行される。こうして警告手段を介して上記のような警告を促されると、運転者は車両1を一旦停止させ、坂道発進を再度実施することとなる。   At this time, the driver needs to depress the brake pedal to bring the vehicle 1 to a stop state. Therefore, for example, the vehicle 1 is temporarily stopped via a warning means (not shown) such as an indicator or a warning light, and a warning is urged to operate the accelerator pedal again (restarting the hill start) ( Step S4). This warning is executed by controlling the warning means when the HV-ECU 60 outputs a motor torque command value of 0 [Nm]. Thus, when the above warning is prompted via the warning means, the driver temporarily stops the vehicle 1 and starts the slope again.

以上のように、HV−ECU60が回転電機MG2の制御と合わせて、上記のような警告手段の制御をも行うことで、インバータ52への過電圧の発生を抑制することができると共に、運転者への車両一旦停止および坂道発進の再度実施を確実に行わせることができ、これにより坂道発進時における運転の安全性も向上する。   As described above, the HV-ECU 60 controls the warning means as described above together with the control of the rotating electrical machine MG2, thereby suppressing the occurrence of overvoltage to the inverter 52 and also to the driver. It is possible to reliably stop the vehicle and start again on the slope, thereby improving the safety of driving when starting the slope.

なお、ステップS2において、「回転電機MG2は回生状態である」とHV−ECU60が判定しなかった場合には、現状の制御状態を維持することとなる(ステップS5)。   In Step S2, if the HV-ECU 60 does not determine that “the rotating electrical machine MG2 is in the regenerative state”, the current control state is maintained (Step S5).

また、上記の実施形態では、制御装置として、HV−ECU60とMG−ECU80とが別体である場合について説明されているが、これに限定されるものではなく、例えば一つの制御装置がHV−ECU60とMG−ECU80の両機能を実行するようにしても良い。   In the above-described embodiment, the case where the HV-ECU 60 and the MG-ECU 80 are separate bodies is described as the control device. However, the present invention is not limited to this. For example, one control device is an HV- Both functions of the ECU 60 and the MG-ECU 80 may be executed.

本発明の実施の形態における車両の制御装置を備えるハイブリッド車両の概略構成を示す図である。It is a figure which shows schematic structure of a hybrid vehicle provided with the control apparatus of the vehicle in embodiment of this invention. 本発明の実施の形態における車両の制御装置により実行される制御のフローチャート図である。It is a flowchart figure of the control performed by the control apparatus of the vehicle in embodiment of this invention.

符号の説明Explanation of symbols

1 車両、10 内燃機関、20 遊星歯車機構、40 減速装置、42 差動装置、44 駆動軸、46 車輪、51,52 インバータ、54 バッテリ、60 ハイブリッド用電子制御装置(HV−ECU)、62 シフトレバー、64 シフトポジションセンサ、70 内燃機関用電子制御装置(ENG−ECU)、80 回転電機用電子制御装置(MG−ECU)。   DESCRIPTION OF SYMBOLS 1 Vehicle, 10 Internal combustion engine, 20 Planetary gear mechanism, 40 Deceleration device, 42 Differential device, 44 Drive shaft, 46 Wheel, 51, 52 Inverter, 54 Battery, 60 Hybrid electronic control device (HV-ECU), 62 Shift Lever, 64 shift position sensor, 70 electronic control unit for internal combustion engine (ENG-ECU), 80 electronic control unit for rotating electrical machine (MG-ECU).

Claims (4)

駆動源としての回転電機を有する車両の制御装置であって、
車輪の回転状態を検出する検出手段と、
運転操作情報に基づき回転電機のトルク指令値を決定する制御手段と、
を備え、
前記制御手段は、
前記検出手段より検出された車輪の回転状態と前記回転電機のトルク指令値とに基づき車輪の回転方向と回転電機のトルクの方向とが逆方向であると判定した場合、回転電機へのトルク指令値を0として回転電機を制御する、
ことを特徴とする車両の制御装置。
A control device for a vehicle having a rotating electrical machine as a drive source,
Detecting means for detecting the rotation state of the wheel;
Control means for determining a torque command value of the rotating electrical machine based on the driving operation information;
With
The control means includes
If it is determined that the rotational direction of the wheel and the direction of the torque of the rotating electrical machine are opposite based on the rotational state of the wheel detected by the detecting means and the torque command value of the rotating electrical machine, the torque command to the rotating electrical machine The rotary electric machine is controlled with a value of 0.
A control apparatus for a vehicle.
請求項1に記載の車両の制御装置であって、
前記制御手段は、
車輪が所定値より少ない回転数で車両の後進方向に回転する状態が検出され、且つ、車両を前進させるための回転電機のトルク指令値が所定値よりも大きい状態である場合に、回転電機へのトルク指令値を0として回転電機を制御する、
ことを特徴とする車両の制御装置。
The vehicle control device according to claim 1,
The control means includes
When a state in which the wheel rotates in the reverse direction of the vehicle at a rotational speed less than a predetermined value is detected, and the torque command value of the rotating electric machine for moving the vehicle forward is greater than the predetermined value, to the rotating electric machine To control the rotating electrical machine with the torque command value of 0 as
A control apparatus for a vehicle.
請求項2に記載の車両の制御装置であって、
前記制御手段は、
車輪が所定値より少ない回転数で車両の後進方向に回転する回転状態で、且つ、車両を前進させるための回転電機のトルク指令値が所定値よりも大きい状態が所定時間継続した場合に、回転電機へのトルク指令値を0として回転電機を制御する、
ことを特徴とする車両の制御装置。
The vehicle control device according to claim 2,
The control means includes
Rotating when the wheel rotates in the reverse direction of the vehicle at a rotational speed less than the predetermined value and the torque command value of the rotating electrical machine for moving the vehicle forward is larger than the predetermined value for a predetermined time. The rotary electric machine is controlled by setting the torque command value to the electric machine to 0.
A control apparatus for a vehicle.
請求項1から3のいずれか一つに記載の車両の制御装置であって、
車両を停止状態にするよう運転者に警告する警告手段をさらに備え、
前記制御手段は、
回転電機へのトルク指令値を0として回転電機の制御を行うと共に、車両を停止状態にする警告を行うよう警告手段を制御する、
ことを特徴とする車両の制御装置。

The vehicle control device according to any one of claims 1 to 3,
Warning means for warning the driver to bring the vehicle to a stop;
The control means includes
Controlling the rotating electrical machine by setting the torque command value to the rotating electrical machine to 0, and controlling the warning means so as to issue a warning to stop the vehicle;
A control apparatus for a vehicle.

JP2006068628A 2006-03-14 2006-03-14 Control device for vehicles Pending JP2007252024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006068628A JP2007252024A (en) 2006-03-14 2006-03-14 Control device for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006068628A JP2007252024A (en) 2006-03-14 2006-03-14 Control device for vehicles

Publications (1)

Publication Number Publication Date
JP2007252024A true JP2007252024A (en) 2007-09-27

Family

ID=38595757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006068628A Pending JP2007252024A (en) 2006-03-14 2006-03-14 Control device for vehicles

Country Status (1)

Country Link
JP (1) JP2007252024A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042937A2 (en) 2007-09-27 2009-04-01 Kabushiki Kaisha Toshiba Sheet thickness measuring device and image forming apparatus
JP2015048073A (en) * 2013-08-30 2015-03-16 マグネティ マレッリ ソチエタ ペル アツィオニ Method for controlling a hybrid vehicle so as to prevent the hybrid vehicle from moving backward or forward when it stops on a sloping road surface
JP2017034929A (en) * 2015-08-05 2017-02-09 本田技研工業株式会社 Electric vehicle
JP2018007457A (en) * 2016-07-05 2018-01-11 トヨタ自動車株式会社 Automobile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042937A2 (en) 2007-09-27 2009-04-01 Kabushiki Kaisha Toshiba Sheet thickness measuring device and image forming apparatus
JP2015048073A (en) * 2013-08-30 2015-03-16 マグネティ マレッリ ソチエタ ペル アツィオニ Method for controlling a hybrid vehicle so as to prevent the hybrid vehicle from moving backward or forward when it stops on a sloping road surface
JP2017034929A (en) * 2015-08-05 2017-02-09 本田技研工業株式会社 Electric vehicle
JP2018007457A (en) * 2016-07-05 2018-01-11 トヨタ自動車株式会社 Automobile

Similar Documents

Publication Publication Date Title
JP3812570B2 (en) Drive device for hybrid vehicle
JP5949731B2 (en) Hybrid vehicle
JP4147687B2 (en) Hybrid vehicle and control method thereof
JP4039427B2 (en) Automobile and control method thereof
JP2013139225A (en) Control apparatus
JP2009184500A (en) Vehicle and its control method
EP3141445B1 (en) Control system for hybrid vehicle
JP6344338B2 (en) Hybrid vehicle
JP2007252024A (en) Control device for vehicles
US8814749B2 (en) Vehicle and control method for vehicle
JP2008168773A (en) Vehicle and its control method
JP3700941B2 (en) Hybrid vehicle steering system
JP2007112291A (en) Power output device, vehicle loading it and control method for power output device
JP2006304389A (en) Vehicle and its control method
JP5541151B2 (en) Hybrid car
JP5948877B2 (en) Control device for hybrid vehicle
JP2009126330A (en) Hybrid vehicle, control method for it, and driving device
JP4033109B2 (en) Power output device and automobile equipped with the same
JP4165321B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND AUTOMOBILE
JP5724840B2 (en) Hybrid vehicle
JP5136205B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP2007255556A (en) Mount device and control device of vehicle
JP2010264795A (en) Apparatus for detecting abnormal sound of hybrid vehicle
JP3587055B2 (en) Hybrid vehicle control device
JP4196961B2 (en) Power output apparatus, automobile equipped with the same, and control method therefor