JP2007250753A - Cooling plate - Google Patents

Cooling plate Download PDF

Info

Publication number
JP2007250753A
JP2007250753A JP2006071006A JP2006071006A JP2007250753A JP 2007250753 A JP2007250753 A JP 2007250753A JP 2006071006 A JP2006071006 A JP 2006071006A JP 2006071006 A JP2006071006 A JP 2006071006A JP 2007250753 A JP2007250753 A JP 2007250753A
Authority
JP
Japan
Prior art keywords
plate
cooling plate
thin
cooling
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006071006A
Other languages
Japanese (ja)
Inventor
Yutaka Kobayashi
裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006071006A priority Critical patent/JP2007250753A/en
Publication of JP2007250753A publication Critical patent/JP2007250753A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an inexpensive cooling plate which is capable of improving a rate of convective heat transfer from the inner surface of the cooling plate to the cooling medium, in a cooling member which indirectly cools down an electronic apparatus in which heating electronic parts are mounted inside. <P>SOLUTION: A thin plate 3b provided with projections 6 is internally inserted into the cooling medium passage of a thin-wall flat plate 3a that constitutes the cooling plate, so as to induce some of the cooling medium flowing in the cooling medium passage to flow toward the inner surface of the cooling plate, so that a rate of convective heat transfer from the inner surface of the cooling plate to the cooling medium can be improved, and the cooling plate can be configured at a low cost. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子部品を実装した電子機器を冷却する冷却板に関する。   The present invention relates to a cooling plate for cooling an electronic device on which an electronic component is mounted.

従来、エレクトロニクスモジュールの放熱面に接触して、モジュール内部の電子部品を間接冷却する冷却板が知られている。この冷却板は、内部に冷媒の流れる流路が形成され、冷媒を流したときの流路の内圧上昇によって膨張変形する。これによって、モジュールの放熱面に密着して接触熱抵抗を低減する。また、流路を構成する内面に突起を設けて冷媒の流れを乱流化し、流路内面に向かう流れ方向成分を発生させ温度境界層を崩すことで、冷却板の流路内面と冷媒との対流熱伝達率を向上させていた。(例えば、特許文献1参照)   2. Description of the Related Art Conventionally, there is known a cooling plate that indirectly cools electronic components inside a module in contact with a heat dissipation surface of the electronic module. The cooling plate has a flow path through which the refrigerant flows, and is expanded and deformed by an increase in the internal pressure of the flow path when the refrigerant is flowed. As a result, the contact thermal resistance is reduced by being in close contact with the heat dissipation surface of the module. In addition, by providing protrusions on the inner surface of the flow path to turbulent flow of the refrigerant, generating a flow direction component toward the inner surface of the flow path and breaking the temperature boundary layer, the flow path inner surface of the cooling plate and the refrigerant The convective heat transfer coefficient was improved. (For example, see Patent Document 1)

特開2004−221315号公報(図3)Japanese Patent Laying-Open No. 2004-221315 (FIG. 3)

従来の冷却板は、2つの平板を対向配置して流路内面を構成し、平板の内側壁面に非対象な突起を形成していた。しかし、この構成では、冷却板の内側壁面に直接突起を加工することから、製造コストの低い押出し成型による加工ができず、加工コストが高くなってしまうという問題があった。   In the conventional cooling plate, two flat plates are arranged to face each other to form the inner surface of the flow path, and an unintended protrusion is formed on the inner wall surface of the flat plate. However, in this configuration, since the protrusions are directly processed on the inner wall surface of the cooling plate, there is a problem in that processing by extrusion molding with low manufacturing cost cannot be performed and processing cost becomes high.

また、壁面に複数の突起を形成することにより、突起の有無により冷却板の剛性が部分的に変化する。このため、冷媒を流したときに冷却板が膨張変形する際、表面形状にバラツキを持つことになり、この形状バラツキによってモジュールと冷却板間の密着性が悪くなり、接触熱抵抗にバラツキを生じるという問題があった。   Further, by forming a plurality of protrusions on the wall surface, the rigidity of the cooling plate partially changes depending on the presence or absence of the protrusions. For this reason, when the cooling plate expands and deforms when the refrigerant is flowed, the surface shape has a variation, and the variation in the shape deteriorates the adhesion between the module and the cooling plate, resulting in a variation in the contact thermal resistance. There was a problem.

この発明は、このような問題点を解決するためになされたものであり、内部流路に乱流を生じさせて高い対流熱伝達率を確保しながら、冷却面の剛性を均一にし、かつ加工コストを低減した冷却板を得ることを目的とする。   The present invention has been made to solve such problems. The turbulent flow is generated in the internal flow path to ensure a high convective heat transfer coefficient, and the rigidity of the cooling surface is made uniform and processed. It aims at obtaining the cooling plate which reduced cost.

この発明による冷却板は、矩形状の中空断面を有し、当該中空断面が長手方向に冷媒の流れる流路を形成し、外壁面に発熱性の電子部品が熱的に間接的に接続される薄肉平板と、上記薄肉平板の流路内に内挿され、薄肉平板の長手方向に傾斜面を成すように複数個配列された突起が形成された薄板とを備えたものである。   The cooling plate according to the present invention has a rectangular hollow cross section, the hollow cross section forms a flow path through which a refrigerant flows in the longitudinal direction, and an exothermic electronic component is thermally and indirectly connected to the outer wall surface. A thin flat plate, and a thin plate that is inserted in the flow path of the thin flat plate and on which a plurality of protrusions are formed so as to form an inclined surface in the longitudinal direction of the thin flat plate.

また、薄板は、上記突起が弾性変形された状態で薄肉平板の内壁面に付勢されるように、上記薄肉平板に内挿されたものであっても良い。   The thin plate may be inserted into the thin flat plate such that the protrusion is elastically deformed and is biased to the inner wall surface of the thin flat plate.

また、薄板は、上記薄肉平板への内挿後に規定の温度を印加することにより上記突起が薄肉平板の内壁面に付勢されるように、形状記憶された突起を有したものであっても良い。   Further, the thin plate may have a shape-memory projection so that the projection is biased to the inner wall surface of the thin flat plate by applying a specified temperature after the thin plate is inserted into the thin flat plate. good.

この発明によれば、プレス加工、板金加工等により突起を形成した薄板を、冷却板の流路内に挿入することで、冷却板内面と冷媒間の対流熱伝達率を向上させた冷却板を安価に構成することができるとともに、冷却面を成す外壁面の剛性を均一化した、冷却板を得ることができる。   According to the present invention, a cooling plate with improved convective heat transfer coefficient between the inner surface of the cooling plate and the refrigerant is inserted by inserting a thin plate having projections formed by pressing, sheet metal processing or the like into the flow path of the cooling plate. It is possible to obtain a cooling plate that can be configured at low cost and has the rigidity of the outer wall surface forming the cooling surface made uniform.

実施の形態1.
図1(a)は、この発明の実施の形態1において、エレクトロニクスモジュール1(以下、モジュール1)が規則正しく配列された電子機器の斜視図である。図1(b)は図1(a)のAA断面図、図1(c)および図1(d)は、図1(a)のBB断面図である。
Embodiment 1 FIG.
FIG. 1A is a perspective view of an electronic device in which an electronic module 1 (hereinafter, module 1) is regularly arranged in the first embodiment of the present invention. 1B is a cross-sectional view taken along the line AA in FIG. 1A, and FIGS. 1C and 1D are cross-sectional views taken along the line BB in FIG. 1A.

電子機器としては、例えばアクティブフェーズドアレイアンテナのような電子走査アンテナ装置が構成される。モジュール1は、シャーシ5の上に複数個アレイ状に配置されている。モジュール1は、例えば高出力増幅器、低雑音増幅器等の発熱性の電子部品2を内蔵し、電子部品2の保護や所定の性能を得るために冷却を必要とする。モジュール1は外部表面に平坦な放熱面を有する。冷却板3の外壁面には冷却面が構成され、この冷却面に複数のモジュール1の放熱面が接触するように、冷却板3とモジュール1が配置される。冷却板3は、薄肉平板の内部に薄板(後述する)を挿入して構成される。   As the electronic device, for example, an electronic scanning antenna device such as an active phased array antenna is configured. A plurality of modules 1 are arranged in an array on the chassis 5. The module 1 incorporates a heat-generating electronic component 2 such as a high-power amplifier or a low-noise amplifier, and requires cooling to protect the electronic component 2 and to obtain a predetermined performance. The module 1 has a flat heat radiating surface on the outer surface. A cooling surface is formed on the outer wall surface of the cooling plate 3, and the cooling plate 3 and the module 1 are arranged so that the heat dissipation surfaces of the plurality of modules 1 are in contact with the cooling surface. The cooling plate 3 is configured by inserting a thin plate (described later) into a thin flat plate.

冷却板3を構成する薄肉平板は、押出し成型により平板の内部に流路を成型することによって形成するのが良い。押出し成型は、比較的安価で大量に冷却板3を製造するのに適している。また、冷媒の流れる流路溝を加工した薄肉平板と均一厚さの極めて薄い平板とを、ろう付によって接合して冷却板3の薄肉平板を構成しても良い。   The thin flat plate constituting the cooling plate 3 is preferably formed by forming a flow path inside the flat plate by extrusion molding. Extrusion molding is relatively inexpensive and suitable for manufacturing the cooling plate 3 in large quantities. Alternatively, the thin flat plate of the cooling plate 3 may be formed by joining a thin flat plate processed with the flow channel through which the coolant flows and an extremely thin flat plate having a uniform thickness by brazing.

冷却板3の薄肉平板は、対向配置した幅が広い2枚の長尺の平板61と、その平板の短手方向の2つの端面に接続された幅の狭い2枚の長尺の平板62とで、中空の矩形断面を形成するように内部流路が構成される。この幅が広い2枚の長尺の平板は、外壁面が冷却板3の冷却面を構成する。冷却板3は、内部流路の長手方向へ冷媒4が流れるように構成される。また、冷却板3は長手方向の両端に出入孔50が設けられる。出入孔50を通じて、冷媒4が冷却板3の内部流路に対し垂直に流入もしくは流出する。   The thin flat plate of the cooling plate 3 includes two long flat plates 61 which are arranged opposite to each other and two long flat plates 62 which are connected to two end faces in the short direction of the flat plate and which are narrow. Thus, the internal flow path is configured to form a hollow rectangular cross section. In the two long flat plates having a wide width, the outer wall surface forms the cooling surface of the cooling plate 3. The cooling plate 3 is configured such that the refrigerant 4 flows in the longitudinal direction of the internal flow path. In addition, the cooling plate 3 is provided with access holes 50 at both ends in the longitudinal direction. Through the access hole 50, the refrigerant 4 flows in or out perpendicularly to the internal flow path of the cooling plate 3.

図1(b)に、冷却板における冷媒の流れ方向41(41a、41b、41c)を図示する。図において、冷媒4は、冷却板3の出入孔50を通じて外部から符号41aの方向に流入し、冷却板3の長手方向41bの方向に流れた後、出入孔50から符号41cの方向に流れて冷却板外部に排出される。これによって、モジュール1の電子部品で発生した熱は、モジュール1の放熱面と冷却板3の冷却面の接触により冷媒4に伝達され、冷媒4を通じて冷却板3の流路内を移送されて、冷媒4の排出とともに外部に放熱される。なお、各モジュール1は、冷却板3の長手方向41bの方向に配列される。   FIG. 1B illustrates a refrigerant flow direction 41 (41a, 41b, 41c) on the cooling plate. In the figure, the refrigerant 4 flows in the direction of reference numeral 41a from the outside through the entrance / exit hole 50 of the cooling plate 3, flows in the direction of the longitudinal direction 41b of the cooling plate 3, and then flows in the direction of reference numeral 41c from the entrance / exit hole 50. It is discharged outside the cooling plate. As a result, heat generated in the electronic components of the module 1 is transmitted to the refrigerant 4 by contact between the heat radiation surface of the module 1 and the cooling surface of the cooling plate 3, and is transferred through the flow path of the cooling plate 3 through the refrigerant 4. Heat is radiated to the outside along with the discharge of the refrigerant 4. Each module 1 is arranged in the direction of the longitudinal direction 41 b of the cooling plate 3.

図1(d)に示すとおり、冷却板3の内部に冷媒4が流れると、冷却板3は薄肉であるため、冷却板内の内圧が上昇し、この内圧上昇により冷却板3が膨張して、冷却板3の冷却面とモジュール1の放熱面とが密着する。これによって、冷却板3とモジュール1間の空気層を減じ、接触熱抵抗を減じて、モジュール内の電子部品で発生した熱を効率的に放熱することができる。この状態で、モジュール1の内部の電子部品2で発生した熱は、冷却板3の壁面を通過して冷媒4に伝達され、冷媒4の流れ方向41に冷媒4を介して移送される。   As shown in FIG. 1 (d), when the refrigerant 4 flows inside the cooling plate 3, the cooling plate 3 is thin, so that the internal pressure in the cooling plate increases, and the cooling plate 3 expands due to the increase in internal pressure. The cooling surface of the cooling plate 3 and the heat dissipation surface of the module 1 are in close contact. Thereby, the air layer between the cooling plate 3 and the module 1 can be reduced, the contact thermal resistance can be reduced, and the heat generated by the electronic components in the module can be efficiently radiated. In this state, heat generated in the electronic component 2 inside the module 1 passes through the wall surface of the cooling plate 3 and is transmitted to the refrigerant 4, and is transferred via the refrigerant 4 in the flow direction 41 of the refrigerant 4.

一方、図1(c)に示すとおり、冷却板3の流路に冷媒4が流れていない状態では、冷却板3は膨張せず、モジュール1の放熱面と冷却板3間に隙間を有している。このため、モジュール1の整備時、および故障による交換作業時等での、モジュール1の取外し、および取付作業を容易にしている。   On the other hand, as shown in FIG. 1 (c), when the refrigerant 4 is not flowing in the flow path of the cooling plate 3, the cooling plate 3 does not expand, and there is a gap between the heat radiation surface of the module 1 and the cooling plate 3. ing. For this reason, it is easy to remove and attach the module 1 during maintenance of the module 1 and replacement work due to failure.

ところで、モジュール1の内部に収納される電子部品は、近年、高出力化、高密度実装化、稼働率の向上等に伴って、発熱量が増大する傾向にある。このため、冷却板3の流路を流れる冷媒4とモジュール1との熱伝達率を減少させる必要がある。
ここで、冷却板の流路内面が冷媒の流れる方向に平坦な断面を有すると、冷媒の流れは乱流に発達せず層流状態の流れとなり、冷媒の流れに平行に温度境界層が形成され、流れに対し直交する方向の熱移動は制限される。従ってこの場合、冷却板内面と冷媒間の対流熱伝達率は向上せず、冷却板内面と冷媒間に許容できない温度差が生じてしまう。
By the way, in recent years, electronic components housed in the module 1 tend to increase in calorific value with higher output, higher density mounting, improved operation rate, and the like. For this reason, it is necessary to reduce the heat transfer coefficient between the refrigerant 4 flowing in the flow path of the cooling plate 3 and the module 1.
Here, if the inner surface of the flow path of the cooling plate has a flat cross section in the direction of refrigerant flow, the refrigerant flow does not develop into turbulent flow and becomes a laminar flow state, and a temperature boundary layer is formed in parallel with the refrigerant flow. Heat transfer in the direction orthogonal to the flow is limited. Therefore, in this case, the convective heat transfer coefficient between the cooling plate inner surface and the refrigerant is not improved, and an unacceptable temperature difference occurs between the cooling plate inner surface and the refrigerant.

この実施の形態1ではこの温度差を解消するため、冷却板を構成する薄肉平板の内部に突起を有した薄板を配置して、流路内の冷媒の流れを乱流化している。これによって、冷却板内面と冷媒4の対流熱伝達率を向上させている。以下、冷却板の流路内に配置した突起の構成について説明する。   In the first embodiment, in order to eliminate this temperature difference, a thin plate having protrusions is arranged inside a thin flat plate constituting the cooling plate to turbulently flow the refrigerant in the flow path. This improves the convective heat transfer coefficient between the cooling plate inner surface and the refrigerant 4. Hereinafter, the configuration of the protrusions arranged in the flow path of the cooling plate will be described.

図2は実施の形態1による突起6の構造を示す図であり、図2(a)は突起6が形成された薄板3bの斜視図、図2(b)は薄板3bに形成された突起6の詳細形状を示す図、図2(c)は薄板3bを内挿した状態での冷却板3の断面図、図2(d)は薄板挿入前の突起6の状態を示す図である。
薄板3bは、プレス加工、板金加工等により突起6を比較的安価に形成することができる。
2A and 2B are diagrams showing the structure of the protrusion 6 according to the first embodiment. FIG. 2A is a perspective view of the thin plate 3b on which the protrusion 6 is formed, and FIG. 2B is a protrusion 6 formed on the thin plate 3b. FIG. 2C is a sectional view of the cooling plate 3 with the thin plate 3b inserted therein, and FIG. 2D is a view showing the state of the protrusion 6 before the thin plate is inserted.
The thin plate 3b can form the protrusions 6 at a relatively low cost by pressing, sheet metal processing or the like.

図に示すように、薄肉平板3aの流路内に、表裏両面に複数の切り起し状の突起6が形成された薄板3bを内挿して、冷却板3を構成する。これによって、冷媒の流れ41は突起6により乱流化され、冷却板3の流路の内面に向かう流れ方向成分を持ち、この流れ方向成分が温度境界層を崩すことで、冷却板内面と冷媒間の対流熱伝達率が向上する。   As shown in the figure, a cooling plate 3 is configured by interpolating a thin plate 3b having a plurality of cut-and-raised projections 6 formed on both front and back surfaces in the flow path of a thin flat plate 3a. As a result, the refrigerant flow 41 is turbulently generated by the protrusions 6 and has a flow direction component toward the inner surface of the flow path of the cooling plate 3, and this flow direction component breaks the temperature boundary layer. The convective heat transfer coefficient between is improved.

図2(b)に示すように、突起6は、薄板3bの表面を切り起し、その切り起しの両端面を薄板側に斜めに折り曲げることで形成され、断面が台形状となる傾斜面61を有している。この突起6に冷媒が流れると、突起6の傾斜面61によって冷媒の流れに縦渦42が発生し、この縦渦42は冷却板の内面に向かう流れ方向成分を持っているため温度境界層を崩し、冷却板の内面と冷媒間の対流熱伝達率を向上することができる。 As shown in FIG. 2 (b), the protrusion 6 is formed by cutting and raising the surface of the thin plate 3b, and bending the both end surfaces of the cut and raising obliquely to the thin plate side, and the cross section has a trapezoidal shape. 61. When the refrigerant flows through the protrusion 6, a vertical vortex 42 is generated in the flow of the refrigerant by the inclined surface 61 of the protrusion 6, and the vertical vortex 42 has a flow direction component toward the inner surface of the cooling plate. The convective heat transfer coefficient between the inner surface of the cooling plate and the refrigerant can be improved.

図2(c)に示すように、突起の傾斜面61で発生した縦渦42の回転軸の方向成分は、冷媒の流れ方向41と近いため、縦渦42はすぐに消失することなく持続性が高い。これにより、冷却板長手方向の冷却板内面と冷媒間の対流熱伝達率が安定し、また薄板3bの挿入による冷却板3aの圧力損失の増大を小さくすることが可能となる。また、突起6を冷却板の長手方向に複数並べることにより、縦渦42を連続的に発生している。 As shown in FIG. 2C, since the direction component of the rotation axis of the vertical vortex 42 generated on the inclined surface 61 of the protrusion is close to the refrigerant flow direction 41, the vertical vortex 42 does not disappear immediately and is sustained. Is expensive. As a result, the convective heat transfer coefficient between the inner surface of the cooling plate in the longitudinal direction of the cooling plate and the refrigerant is stabilized, and the increase in pressure loss of the cooling plate 3a due to the insertion of the thin plate 3b can be reduced. Moreover, the vertical vortex 42 is continuously generated by arranging a plurality of protrusions 6 in the longitudinal direction of the cooling plate.

なお、冷却板3の片側のみの対流熱伝達率を向上させればよいときは、薄板3bに形成される突起6は表裏の片側だけに形成しても良い。この場合は突起6の存在する側の冷媒流れが乱流化され、突起の存在する側の冷却板内面と冷媒間の対流熱伝達率が向上する。また、突起6を表裏両面に形成した場合よりも冷却板3の全体の圧力損失が低くなる利点がある。 When the convective heat transfer coefficient only on one side of the cooling plate 3 is to be improved, the projection 6 formed on the thin plate 3b may be formed only on one side of the front and back. In this case, the refrigerant flow on the side where the protrusions 6 are present is turbulent, and the convective heat transfer coefficient between the inner surface of the cooling plate on the side where the protrusions are present and the refrigerant is improved. Further, there is an advantage that the entire pressure loss of the cooling plate 3 is lower than when the protrusions 6 are formed on both the front and back surfaces.

ここで、冷却板3の表面、および裏面での冷却板内面と冷媒間の対流熱伝達率のバラツキを低減させる必要がある場合は、図2(d)に示すように、薄肉平板3aへの挿入前の薄板3bの突起高さを、冷却板3の流路高さ31よりも高く、なおかつ冷却板3の膨張量を加味した高さ(膨張時の冷却板3の流路高さ31と同じか僅かに高い高さ)に設定しておく。薄肉平板3aへの挿入の際、突起部分が薄肉平板の内壁面に付勢されて、突起6が弾性変形した状態で、薄板3bを冷却板3の流路に内挿すれば良い。また、薄板3bの中央面は冷却板3の流路高さ31の中央に位置するように配置しておく。これにより、膨張時においても薄板3bの中央面の位置を冷媒流路の中立位置(流路高さ31の中央)に維持させることが可能となる。これによって、冷却板3の膨張時に薄板3bが片側に偏ることによる、冷却板内面と冷媒間の対流熱伝達率のバラツキを抑制することができる。 Here, when it is necessary to reduce variations in the convective heat transfer coefficient between the cooling plate inner surface and the refrigerant on the front surface and the back surface of the cooling plate 3, as shown in FIG. The height of the projection of the thin plate 3b before insertion is higher than the flow path height 31 of the cooling plate 3 and also takes into account the expansion amount of the cooling plate 3 (the flow path height 31 of the cooling plate 3 during expansion and Same height or slightly higher height). When inserting into the thin flat plate 3 a, the thin plate 3 b may be inserted into the flow path of the cooling plate 3 in a state where the protruding portion is urged by the inner wall surface of the thin flat plate and the protrusion 6 is elastically deformed. The central surface of the thin plate 3b is arranged so as to be positioned at the center of the flow path height 31 of the cooling plate 3. Thereby, the position of the central surface of the thin plate 3b can be maintained at the neutral position of the refrigerant flow path (the center of the flow path height 31) even during expansion. Thereby, variation in the convective heat transfer coefficient between the cooling plate inner surface and the refrigerant due to the thin plate 3b being biased to one side when the cooling plate 3 is expanded can be suppressed.

なお、他の実施の態様として、内挿する薄板3bの材質を、使用環境下で冷却板3の膨張量を加味した高さで形状記憶し、周囲温度が低い状態で薄板3bの突起6の高さが膨張前の冷却板3の流路高さよりも低くなるような、形状記憶合金を使用しても良い。この場合、周囲温度が低い環境下で薄板3bを冷却板3の冷媒流路の中に内挿することによって、薄板3bの突起6の高さが冷却板3の流路高さよりも低い状態となっているため、薄板3bを容易に薄肉平板3aに内挿することができる。一方、使用環境下で冷却板3の内部温度が上昇し、突起高さが記憶された形状高さに復元すれば、冷却板3の膨張時に薄板が片側に偏ることによる対流熱伝達率のバラツキを抑制することができる。 As another embodiment, the shape of the material of the thin plate 3b to be inserted is memorized in a height that takes into account the amount of expansion of the cooling plate 3 in the use environment, and the projection 6 of the thin plate 3b is in a state where the ambient temperature is low. A shape memory alloy whose height is lower than the flow path height of the cooling plate 3 before expansion may be used. In this case, by inserting the thin plate 3 b into the refrigerant flow path of the cooling plate 3 in an environment where the ambient temperature is low, the height of the protrusion 6 of the thin plate 3 b is lower than the flow path height of the cooling plate 3. Therefore, the thin plate 3b can be easily inserted into the thin flat plate 3a. On the other hand, if the internal temperature of the cooling plate 3 rises in the use environment and the projection height is restored to the memorized shape height, the convective heat transfer coefficient variation due to the thin plate being biased to one side when the cooling plate 3 expands. Can be suppressed.

以上説明したとおり、この実施の形態1によれば、矩形状の中空断面により長手方向に冷媒の流れる流路を形成して薄肉平板3aを構成し、薄肉平板3aの長手方向に傾斜面61を成す複数の突起6を配列した薄板3bを、薄肉平板3aの流路内に内挿して冷却板3を構成する。これによって、冷却板3の外壁面に発熱性の電子部品を密着させることにより、冷却板内面と冷媒間の対流熱伝達率を向上させた冷却板を安価に構成することができるとともに、冷却面を成す外壁面の剛性を均一化した、冷却板を得ることができる。また、薄肉平板3aの内壁面に直接突起を加工せず、薄板3bを内挿して突起を構成しているので、突起形状による薄肉平板3aの外壁面の剛性低下がなく、モジュールの放熱面と冷却板の外壁面とを緊密に密着させることができる。   As described above, according to the first embodiment, the thin plate 3a is formed by forming the flow path through which the refrigerant flows in the longitudinal direction by the rectangular hollow cross section, and the inclined surface 61 is formed in the longitudinal direction of the thin plate 3a. The cooling plate 3 is configured by inserting the thin plate 3b in which the plurality of protrusions 6 formed are inserted into the flow path of the thin flat plate 3a. Accordingly, the heat generating electronic component is brought into close contact with the outer wall surface of the cooling plate 3, whereby a cooling plate with improved convective heat transfer coefficient between the inner surface of the cooling plate and the refrigerant can be configured at a low cost. A cooling plate in which the rigidity of the outer wall surface is made uniform can be obtained. In addition, since the protrusion is configured by inserting the thin plate 3b without directly processing the protrusion on the inner wall surface of the thin flat plate 3a, the rigidity of the outer wall surface of the thin flat plate 3a is not reduced by the protrusion shape, and The outer wall surface of the cooling plate can be closely adhered.

また、薄板3bは、プレス加工、板金加工等で突起が形成され、突起が弾性変形された状態で薄肉平板の内壁面に付勢されるように、薄肉平板3aに内挿される。これによって、冷却板3の膨張時に薄板3bが片側に偏ることによる、冷却板内面と冷媒間の対流熱伝達率のバラツキを抑制することができる。   Further, the thin plate 3b is inserted into the thin flat plate 3a so that projections are formed by pressing, sheet metal processing, etc., and the projections are elastically deformed and are urged against the inner wall surface of the thin flat plate. Thereby, variation in the convective heat transfer coefficient between the cooling plate inner surface and the refrigerant due to the thin plate 3b being biased to one side when the cooling plate 3 is expanded can be suppressed.

また、薄板3bは、薄肉平板3aへの内挿後に規定の温度を印加することにより、突起が薄肉平板3bの内壁面に付勢されるように、形状記憶された突起6を構成しても良い。これによって、薄板3bを容易に薄肉平板3aに内挿することができる。   Further, the thin plate 3b may be configured to have a shape-memory projection 6 so that the projection is biased to the inner wall surface of the thin flat plate 3b by applying a predetermined temperature after the thin plate 3a is inserted into the thin flat plate 3a. good. Thereby, the thin plate 3b can be easily inserted into the thin flat plate 3a.

実施の形態2.
図3はこの発明の実施の形態2における冷却板3の構成を示すものであり、図3(a)は薄肉平板と薄板を示す図、図3(b)は薄板を内挿した状態での冷却板3の断面図、図3(c)は薄板挿入前の突起の状態を示す図である。
Embodiment 2. FIG.
FIG. 3 shows the structure of the cooling plate 3 according to Embodiment 2 of the present invention. FIG. 3 (a) shows a thin flat plate and a thin plate, and FIG. 3 (b) shows a state in which the thin plate is inserted. FIG. 3C is a cross-sectional view of the cooling plate 3, and FIG. 3C is a view showing a state of the protrusion before the thin plate is inserted.

図において、薄板3cは、長手方向に表裏交互に長方形状の傾斜面71を切り起して、突起7を複数形成し、冷媒の流れ方向に対し突起が開口した形状としている。なお、図3(a)では、冷媒の流れに対して垂直方向に立設した突起を1つとした例を示しているが、この突起を分割して、垂直方向に複数並べた構成としても良い。   In the drawing, the thin plate 3c has a shape in which a plurality of protrusions 7 are formed by cutting and inclining rectangular inclined surfaces 71 alternately in the longitudinal direction, and the protrusions open in the refrigerant flow direction. FIG. 3A shows an example in which one protrusion is provided in the vertical direction with respect to the flow of the refrigerant. However, a plurality of the protrusions may be divided and arranged in the vertical direction. .

図3(b)に示すように、冷却板3に冷媒4が流れると、薄板3cの傾斜面71により冷媒の流れは薄板3cの開口部72へ導かれる。これにより、冷媒の流れ方向41は薄板3cによって仕切られた冷却板3の表側と裏側をジグザグ上に流れることになり、冷媒4の流れは冷却板3の内面に向かう流れ方向成分を持つため、冷却板内面の温度境界層を崩し、対流熱伝達率を向上することができる。 As shown in FIG. 3B, when the refrigerant 4 flows through the cooling plate 3, the refrigerant flow is guided to the opening 72 of the thin plate 3c by the inclined surface 71 of the thin plate 3c. Thereby, the flow direction 41 of the refrigerant flows zigzag on the front side and the back side of the cooling plate 3 partitioned by the thin plate 3c, and the flow of the refrigerant 4 has a flow direction component toward the inner surface of the cooling plate 3, The temperature boundary layer on the inner surface of the cooling plate can be broken to improve the convective heat transfer coefficient.

また、図3(c)に示すとおり、実施の形態1と同様に、薄板3cの突起高さを冷却板3の膨張量を加味した高さに設定する。突起部分を弾性変形させながら突起7が形成された薄板3cを冷却板流路に内挿すれば、冷却板3の表裏面での冷却性能のバラツキを低減させることができる。また、実施の形態1と同様に形状記憶合金を使用すれば、薄板3cを容易に冷却板3の流路の中に内挿することができる。   Further, as shown in FIG. 3C, the projection height of the thin plate 3 c is set to a height that takes into account the expansion amount of the cooling plate 3 as in the first embodiment. If the thin plate 3c on which the protrusion 7 is formed is inserted into the cooling plate flow path while elastically deforming the protruding portion, the variation in cooling performance on the front and back surfaces of the cooling plate 3 can be reduced. If a shape memory alloy is used as in the first embodiment, the thin plate 3c can be easily inserted into the flow path of the cooling plate 3.

実施の形態3.
図4はこの発明の実施の形態3における冷却板の構成を示すものであり、図4(a)は薄肉平板と薄板を示す図、図4(b)は薄板を内挿した状態での冷却板3の断面図、図4(c)は薄板挿入前の突起の状態を示す図である。
図において、薄板3dは、冷却板長手方向にジグザグ状に折り曲げられて突起9が形成された形状をしており、その曲げられた上下の角部を構成する突起9に対して、冷媒の流れに垂直方向に、複数の切欠き部8を設けることを特徴とする。
Embodiment 3 FIG.
FIG. 4 shows the configuration of the cooling plate according to Embodiment 3 of the present invention. FIG. 4 (a) shows a thin plate and a thin plate, and FIG. 4 (b) shows the cooling in a state where the thin plate is inserted. Sectional drawing of the board 3, FIG.4 (c) is a figure which shows the state of the protrusion before thin board insertion.
In the figure, the thin plate 3d has a shape in which protrusions 9 are formed by being bent in a zigzag shape in the longitudinal direction of the cooling plate, and the flow of the refrigerant with respect to the protrusions 9 constituting the bent upper and lower corners. A plurality of notches 8 are provided in a direction perpendicular to the first and second portions.

図4(b)は図4(a)における、切り欠き部8を含む部分の断面を示しており、この切り欠き部8に冷媒が流れると、傾斜面81により冷媒の流れは冷却板3の内面に向かう流れ方向の成分を発生し、冷却板内面の温度境界層を崩し、対流熱伝達率を向上することができる。   FIG. 4B shows a cross section of the portion including the notch 8 in FIG. 4A. When the refrigerant flows through the notch 8, the refrigerant flows on the cooling plate 3 by the inclined surface 81. A component in the flow direction toward the inner surface is generated, the temperature boundary layer on the inner surface of the cooling plate is broken, and the convective heat transfer coefficient can be improved.

図4(c)に示すとおり、実施の形態1と同様に、薄板3dの突起高さを冷却板3の膨張量を加味した高さに設定する。そして、突起9を弾性変形させながら突起9が形成された薄板3dを冷却板流路に内挿すれば、冷却板3の表裏面での冷却性能のバラツキを低減させることができる。また、実施の形態1と同様に、形状記憶合金を使用すれば、薄板3dを容易に冷却板3の流路中に内挿することができる。   As shown in FIG. 4C, the projection height of the thin plate 3 d is set to a height that takes into account the expansion amount of the cooling plate 3 as in the first embodiment. If the thin plate 3d on which the protrusions 9 are formed is inserted into the cooling plate flow path while elastically deforming the protrusions 9, variations in cooling performance on the front and back surfaces of the cooling plate 3 can be reduced. Similarly to the first embodiment, if a shape memory alloy is used, the thin plate 3d can be easily inserted into the flow path of the cooling plate 3.

この発明の実施の形態1による電子機器装置を示す斜視図である。It is a perspective view which shows the electronic device apparatus by Embodiment 1 of this invention. この発明の実施の形態1による冷却板を示す構成図である。It is a block diagram which shows the cooling plate by Embodiment 1 of this invention. この発明の実施の形態2による冷却板を示す構成図である。It is a block diagram which shows the cooling plate by Embodiment 2 of this invention. この発明の実施の形態3による冷却板を示す構成図である。It is a block diagram which shows the cooling plate by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 モジュール、2 電子部品、3 冷却板、31 流路高さ、3a 薄肉平板、3b 薄板、3c 薄板、3d 薄板、4 冷媒、5 シャーシ、6 突起、61 傾斜面、7 突起、71 傾斜面、8 切り欠き部、81 傾斜面、9 突起。   1 module, 2 electronic components, 3 cooling plate, 31 flow path height, 3a thin plate, 3b thin plate, 3c thin plate, 3d thin plate, 4 refrigerant, 5 chassis, 6 projection, 61 inclined surface, 7 protrusion, 71 inclined surface, 8 notch, 81 inclined surface, 9 protrusion.

Claims (3)

矩形状の中空断面を有し、当該中空断面が長手方向に冷媒の流れる流路を形成し、外壁面に発熱性の電子部品が熱的に間接的に接続される薄肉平板と、
上記薄肉平板の流路内に内挿され、薄肉平板の長手方向に傾斜面を成すように複数個配列された突起が形成された薄板と、
を備えた冷却板。
A thin flat plate having a rectangular hollow cross section, the hollow cross section forming a flow path through which a refrigerant flows in a longitudinal direction, and an exothermic electronic component thermally connected to an outer wall surface;
A thin plate formed with a plurality of protrusions arranged so as to form an inclined surface in the longitudinal direction of the thin flat plate, inserted in the flow path of the thin flat plate;
With cooling plate.
上記薄板は、上記突起が弾性変形された状態で薄肉平板の内壁面に付勢されるように、上記薄肉平板に内挿されたことを特徴とする請求項1記載の冷却板。 2. The cooling plate according to claim 1, wherein the thin plate is inserted into the thin flat plate so that the protrusion is elastically deformed and biased to the inner wall surface of the thin flat plate. 上記薄板は、上記薄肉平板への内挿後に規定の温度を印加することにより上記突起が薄肉平板の内壁面に付勢されるように、形状記憶された突起を有することを特徴とする請求項1記載の冷却板。 The thin plate has a protrusion whose shape is memorized so that the protrusion is biased to the inner wall surface of the thin flat plate by applying a prescribed temperature after the thin plate is inserted into the thin flat plate. 1. The cooling plate according to 1.
JP2006071006A 2006-03-15 2006-03-15 Cooling plate Pending JP2007250753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006071006A JP2007250753A (en) 2006-03-15 2006-03-15 Cooling plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006071006A JP2007250753A (en) 2006-03-15 2006-03-15 Cooling plate

Publications (1)

Publication Number Publication Date
JP2007250753A true JP2007250753A (en) 2007-09-27

Family

ID=38594737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006071006A Pending JP2007250753A (en) 2006-03-15 2006-03-15 Cooling plate

Country Status (1)

Country Link
JP (1) JP2007250753A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294067A (en) * 2007-05-22 2008-12-04 Aisin Aw Co Ltd Semiconductor module and inverter
JP2009188387A (en) * 2008-01-10 2009-08-20 Denso Corp Semiconductor cooling structure
JP2009266937A (en) * 2008-04-23 2009-11-12 Denso Corp Stacked cooler
JP2015023044A (en) * 2013-07-16 2015-02-02 株式会社Uacj Cooler
DE102009004097B4 (en) 2008-01-10 2018-09-13 Denso Corporation Semiconductor cooling structure
CN110610909A (en) * 2018-06-14 2019-12-24 大众汽车有限公司 Electronic component with improved cooling power and motor vehicle with electronic component
KR20220026320A (en) * 2020-08-25 2022-03-04 김진수 Battery cooler
KR20220048272A (en) * 2020-10-12 2022-04-19 김진수 Battery cooler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310602U (en) * 1989-06-16 1991-01-31
JPH09214161A (en) * 1996-02-06 1997-08-15 Mitsubishi Electric Corp Electronic device
JP2002098454A (en) * 2000-07-21 2002-04-05 Mitsubishi Materials Corp Liquid-cooled heat sink and its manufacturing method
JP2004119939A (en) * 2002-09-30 2004-04-15 Mitsubishi Electric Corp Cooling device
JP2005302898A (en) * 2004-04-08 2005-10-27 Mitsubishi Electric Corp Heat sink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310602U (en) * 1989-06-16 1991-01-31
JPH09214161A (en) * 1996-02-06 1997-08-15 Mitsubishi Electric Corp Electronic device
JP2002098454A (en) * 2000-07-21 2002-04-05 Mitsubishi Materials Corp Liquid-cooled heat sink and its manufacturing method
JP2004119939A (en) * 2002-09-30 2004-04-15 Mitsubishi Electric Corp Cooling device
JP2005302898A (en) * 2004-04-08 2005-10-27 Mitsubishi Electric Corp Heat sink

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294067A (en) * 2007-05-22 2008-12-04 Aisin Aw Co Ltd Semiconductor module and inverter
JP2009188387A (en) * 2008-01-10 2009-08-20 Denso Corp Semiconductor cooling structure
DE102009004097B4 (en) 2008-01-10 2018-09-13 Denso Corporation Semiconductor cooling structure
JP2009266937A (en) * 2008-04-23 2009-11-12 Denso Corp Stacked cooler
JP2015023044A (en) * 2013-07-16 2015-02-02 株式会社Uacj Cooler
CN110610909A (en) * 2018-06-14 2019-12-24 大众汽车有限公司 Electronic component with improved cooling power and motor vehicle with electronic component
KR20220026320A (en) * 2020-08-25 2022-03-04 김진수 Battery cooler
KR102406655B1 (en) 2020-08-25 2022-06-07 김진수 Battery cooler
KR20220048272A (en) * 2020-10-12 2022-04-19 김진수 Battery cooler
KR102503281B1 (en) * 2020-10-12 2023-02-23 김진수 Battery cooler

Similar Documents

Publication Publication Date Title
JP2007250753A (en) Cooling plate
KR100294873B1 (en) LS Eye Package Cooling Wave Heat Sink Assembly
JP5397543B2 (en) Heat exchanger and manufacturing method thereof
JP5342392B2 (en) Cooling system
EP2337069A2 (en) Semiconductor device
JP2010056131A (en) Liquid-cooled-type cooling device
JP6378299B2 (en) heatsink
US20050145379A1 (en) Flat tube cold plate assembly
JP2008177314A (en) Motor controller
JP3340053B2 (en) Heat dissipation structure and electronic device using the same
JP5333161B2 (en) heatsink
JP4867411B2 (en) Cooling device for electronic equipment
JP5589647B2 (en) Cooling system
US20100020494A1 (en) Heat dissipation device
JP2004221315A (en) Cooling device
JP4228680B2 (en) Cooling member
JP4324367B2 (en) Element heatsink
JP4011598B2 (en) Heat sink and electronics
CN101925290A (en) Flat type heat radiating mechanism on heating surface with parallel radiator fins
JP2010103418A (en) Heatsink having louver, and assembling method therefor
JP2007019365A (en) Micro heat sink and jacket using the same
JP7235922B1 (en) heat sink
JP3184826U (en) Radiator
JP4513236B2 (en) Joining method for dissimilar metal joints
KR100438497B1 (en) Radiator of Heat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Effective date: 20100401

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100406

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727