JP2007248427A - Ultrasonic measuring apparatus - Google Patents

Ultrasonic measuring apparatus Download PDF

Info

Publication number
JP2007248427A
JP2007248427A JP2006076368A JP2006076368A JP2007248427A JP 2007248427 A JP2007248427 A JP 2007248427A JP 2006076368 A JP2006076368 A JP 2006076368A JP 2006076368 A JP2006076368 A JP 2006076368A JP 2007248427 A JP2007248427 A JP 2007248427A
Authority
JP
Japan
Prior art keywords
ultrasonic
inspection material
acoustic separator
transducer
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006076368A
Other languages
Japanese (ja)
Inventor
Minoru Matsui
穣 松井
Yukimichi Iizuka
幸理 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006076368A priority Critical patent/JP2007248427A/en
Publication of JP2007248427A publication Critical patent/JP2007248427A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic measuring apparatus for scanning minute reflected waves from the interior of an inspected material at a high detection resolution using an immersion test method. <P>SOLUTION: The ultrasonic measuring apparatus uses the immersion test method, implemented by dividing transmitted and received ultrasonic waves into a transmitting oscillator and a receiving oscillator, and installing an acoustic isolation plane between the transmitting oscillator and the receiving oscillator. The shape of the lower end on the acoustic isolation plane is defined so as to prevent the reflected waves, generated at a tip of the lower end on the inspected material side on the acoustic isolation plane, from entering the receiving oscillator. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、振動子を用いて、水媒介を介して検査材内部に超音波を送信し、検査材内部にある欠陥等で反射した微小な超音波を計測するための超音波計測装置に関するものである。   The present invention relates to an ultrasonic measurement apparatus for transmitting ultrasonic waves inside an inspection material through a water medium using a vibrator and measuring minute ultrasonic waves reflected by a defect or the like inside the inspection material. It is.

鉄鋼製品(棒、板、管など)内部の欠陥探傷には、超音波探傷法が使われている。一般に良く知られている超音波探傷方法は垂直パルスエコー法である。この垂直パルスエコー法は一つの超音波探触子と検査材とを油や水で音響結合して、超音波探触子から検査材内部に垂直に超音波を送信して、内部に存在する欠陥で反射したエコーを超音波探触子で受信する方法である。   Ultrasonic flaw detection is used for flaw detection inside steel products (bars, plates, pipes, etc.). A well-known ultrasonic flaw detection method is a vertical pulse echo method. In this vertical pulse echo method, an ultrasonic probe and an inspection material are acoustically coupled with oil or water, and ultrasonic waves are transmitted vertically from the ultrasonic probe to the inside of the inspection material. In this method, an echo reflected by a defect is received by an ultrasonic probe.

この方法は、検査材の肉厚の中央部は十分に探傷することができるが、表層部については、直接接触法では送信パルス幅、水を介して探傷する方法では検査材の表面で反射したエコーの幅(表面エコー幅)が不感帯(探傷不可能領域)となって、探傷することができない。そこで以下の方法が提案されている。   In this method, the central part of the thickness of the inspection material can be sufficiently detected, but the surface layer part is reflected on the surface of the inspection material in the direct contact method and in the method of flaw detection through water. The echo width (surface echo width) becomes a dead zone (undetectable area) and cannot be detected. Therefore, the following method has been proposed.

(1)非特許文献1に記載の技術
図1は、非特許文献1に記載のいわゆる二振動子垂直探傷法の構造と検査材の欠陥を探傷した際の伝播経路を示す図である。二振動子垂直探触子は、超音波送信用振動子と超音波受信用振動子をコルク等から成る音響隔離板を挟んで並列に配置して、振動子下部に遅延材(シュー)を設ける。検査材と二振動子垂直探触子の間にはわずかな隙間を設け、その隙間に水を満たすことで検査材と分割型探触子とを音響結合させる。
(1) Technology described in Non-Patent Document 1 FIG. 1 is a diagram showing a structure of the so-called dual-vibrator vertical flaw detection method described in Non-Patent Document 1 and a propagation path when a defect in an inspection material is detected. In the dual transducer vertical probe, an ultrasonic transmission transducer and an ultrasonic reception transducer are arranged in parallel with an acoustic separator made of cork or the like interposed therebetween, and a delay material (shoe) is provided at the lower portion of the transducer. . A slight gap is provided between the inspection material and the dual transducer vertical probe, and the inspection material and the split-type probe are acoustically coupled by filling the gap with water.

超音波送信用振動子から送信された超音波は、水を介して検査材内部へ入射し、欠陥で反射して超音波受信用振動子に受信される。送信された超音波が水を介して検査材内部へ入射する際、大部分は検査材表面で反射し、散乱する。   The ultrasonic wave transmitted from the ultrasonic transmission vibrator enters the inspection material through water, is reflected by the defect, and is received by the ultrasonic reception vibrator. When the transmitted ultrasonic waves enter the inside of the inspection material through water, most of the ultrasonic waves are reflected and scattered by the surface of the inspection material.

検査材の表面で反射、散乱した超音波は超音波送信用振動子と超音波受信用振動子との間にある音響隔離板で遮られ、超音波受信用振動子に直接受信されにくくなる。従って、送信パルス幅、表面エコー幅によって生じる不感帯が小さくなり、検査材表層部の欠陥探傷性能が高くなる。   The ultrasonic waves reflected and scattered on the surface of the inspection material are blocked by an acoustic separator between the ultrasonic transmission transducer and the ultrasonic reception transducer, and are not easily received directly by the ultrasonic reception transducer. Therefore, the dead zone caused by the transmission pulse width and the surface echo width is reduced, and the defect flaw detection performance of the inspection material surface layer is increased.

(2)特許文献1に記載の技術
図2は、特許文献1に記載の技術と欠陥を探傷した際の超音波の伝播経路を示す図である。図2に示した断面図のとおり、二振動子垂直探触子及び探触子ホルダーから構成されており、二振動子垂直探触子の超音波送信用振動子と超音波受信用振動子との間にはゴムから成る音響隔離板がある。
(2) Technology described in Patent Document 1 FIG. 2 is a diagram illustrating the technology described in Patent Document 1 and the propagation path of ultrasonic waves when flaws are detected. As shown in the cross-sectional view of FIG. 2, it is composed of a two-element vertical probe and a probe holder. There is an acoustic separator made of rubber.

さらに、超音波送信用振動子と超音波受信用振動子との間にある音響隔離板と平面を同じにして、同じゴムから成る音響隔離板が二振動子垂直探触子の下部から検査材側に形成されており、その下端部は探触子ホルダー下端部と同位置となっている。超音波の送受信を行なう振動子と検査材との音響結合には水を用い、そのための局部水浸部が探触子に備わっている。   Furthermore, the acoustic separator made of the same rubber is placed from the lower part of the two-transducer vertical probe with the same plane as the acoustic separator between the ultrasonic transmitting transducer and the ultrasonic receiving transducer. The lower end portion is formed at the same position as the lower end portion of the probe holder. Water is used for the acoustic coupling between the transducer that transmits and receives ultrasonic waves and the inspection material, and a local water immersion part is provided for the probe.

超音波送信用振動子から送信された超音波は、探触子ホルダー内の局部水浸部に給水された水を介して検査材へ入射し、欠陥で反射して超音波受信用振動子で受信される。このとき、送信された超音波は検査材表面で反射し、散乱するが、音響隔離板に遮られることで超音波受信用振動子には受信さにくくなる。よって、表面エコーの振幅は小さく、表面エコー幅によって生じる不感帯が小さくなるので、検査材表層部の欠陥探傷性能が高くなる。
社団法人 日本鉄鋼協会、鋼板の超音波探傷方法、p48 特開平5−164747号公報
The ultrasonic wave transmitted from the ultrasonic transmission vibrator enters the inspection material through the water supplied to the local water immersion part in the probe holder, is reflected by the defect, and is reflected by the ultrasonic reception vibrator. Received. At this time, the transmitted ultrasonic wave is reflected and scattered by the surface of the inspection material, but is hardly received by the ultrasonic wave receiving vibrator by being blocked by the acoustic separator. Therefore, the amplitude of the surface echo is small and the dead zone caused by the surface echo width is small, so that the defect flaw detection performance of the inspection material surface layer portion is enhanced.
Japan Iron and Steel Institute, Ultrasonic flaw detection method for steel sheets, p.48 JP-A-5-164747

しかしながら、上述の従来技術には、以下にあげる問題がある。   However, the above-described prior art has the following problems.

(1)非特許文献1に記載の技術
二振動子垂直探触子で探傷する際、検査材表面とシューとの間での超音波が反射するようになって、乱反射が生じる。水ギャップ距離(二振動子垂直探触子と検査体との距離)が増すと水ギャップ内での乱反射が増大し、超音波受信用震動子に受信され信号対ノイズ比が低下する。これを避けるため、水ギャップ距離は約0.5mm程度と極めて小さくする必要がある。このため、検査材の表面の凹凸との衝突による故障や、熱間材の探傷ではシューの破損といった問題がある。
(1) Technology described in Non-Patent Document 1 When flaw detection is performed with a dual transducer vertical probe, ultrasonic waves are reflected between the surface of the inspection material and the shoe, and irregular reflection occurs. When the water gap distance (distance between the dual transducer vertical probe and the test object) increases, irregular reflection within the water gap increases, and the signal-to-noise ratio is received by the ultrasonic wave receiving vibrator. In order to avoid this, the water gap distance needs to be extremely small, about 0.5 mm. For this reason, there are problems such as a failure due to a collision with the unevenness of the surface of the inspection material and a breakage of the shoe in the case of flaw detection of the hot material.

(2)特許文献1に記載の技術
特許文献1に記載の技術であれば、シューと検査材表面との距離を十分に離すことができるので、シューと検査材表面と凹凸との衝突による故障や破損といった問題は解決されている。
(2) Technology described in Patent Document 1 With the technology described in Patent Document 1, the distance between the shoe and the surface of the inspection material can be sufficiently separated. And issues such as damage have been resolved.

しかし、特許文献1に記載の技術で探傷した場合、音響隔離板の下端部と検査材表面との間で乱反射が生じる。音響隔離板と下端部との距離が増すと乱反射も増大し、この乱反射が超音波受信用振動子で受信され、信号対ノイズ比が低下する問題がある。   However, when flaw detection is performed by the technique described in Patent Document 1, irregular reflection occurs between the lower end portion of the acoustic separator and the surface of the inspection material. As the distance between the acoustic separator and the lower end increases, irregular reflection also increases, and this irregular reflection is received by the ultrasonic wave receiving transducer, resulting in a problem that the signal-to-noise ratio decreases.

本発明は上記事情に鑑みてなされたもので、水浸法で検査材の内部からの微小な反射波をさらに高い検出能力により探傷することが可能な超音波計測方法及び装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an ultrasonic measurement method and apparatus that can detect a minute reflected wave from the inside of an inspection material by a water immersion method with a higher detection capability. Objective.

本発明の請求項1に係る発明は、送信用振動子から検査材に超音波を送信し、前記検査材で反射した超音波を受信する受信用振動子との間に音響隔離板を設置した超音波計測装置において、前記音響隔離板を、その検査材側先端部で反射する超音波が受信用振動子に入らない形状とすることを特徴とする超音波計測装置である。   In the invention according to claim 1 of the present invention, an acoustic separator is provided between the transmitting vibrator and the receiving vibrator that transmits the ultrasonic wave to the inspection material and receives the ultrasonic wave reflected by the inspection material. In the ultrasonic measurement apparatus, the acoustic separator is shaped so that the ultrasonic wave reflected from the inspection material side tip does not enter the receiving vibrator.

また本発明の請求項2に係る発明は、前記音響隔離板の検査材側先端部で、送信用振動子側の面と受信用振動子側の面とのなす角を鋭角とすることを特徴とする請求項1記載の超音波計測装置である。   The invention according to claim 2 of the present invention is characterized in that an angle formed by the surface on the transmitting transducer side and the surface on the receiving transducer side is an acute angle at the test material side tip of the acoustic separator. The ultrasonic measurement apparatus according to claim 1.

また本発明の請求項3に係る発明は、前記音響隔離板の検査材側先端部で、検査材表面と略平行となる面の厚さを超音波の波長以下とすることを特徴とする請求項1または2に記載の超音波計測装置
である。
The invention according to claim 3 of the present invention is characterized in that the thickness of the surface substantially parallel to the surface of the inspection material is made equal to or less than the wavelength of the ultrasonic wave at the inspection material side tip of the acoustic separator. Item 3. The ultrasonic measurement device according to Item 1 or 2.

また本発明の請求項4に係る発明は、前記音響隔離板の内部に空気層を設けることを特徴とする請求項1ないし3のいずれかに記載の超音波計測装置である。   The invention according to claim 4 of the present invention is the ultrasonic measurement apparatus according to any one of claims 1 to 3, wherein an air layer is provided inside the acoustic separator.

本発明を適用すれば、検査材の表面と音響隔離板との間で生じる乱反射が超音波受信用振動子に入らなくなり、検査材内部からの微小な反射波を高い感度で検出することが可能となる。   By applying the present invention, irregular reflection generated between the surface of the inspection material and the acoustic separator does not enter the ultrasonic receiving vibrator, and it is possible to detect a minute reflected wave from the inside of the inspection material with high sensitivity. It becomes.

本発明を実施するための最良の形態について、以下に図面を参照しながら具体的に説明を行う。図3は、本発明を実施するための装置概要を示す図である。図中、1は検査材、2は超音波送信用振動子、3は超音波受信用振動子、4は音響隔離板、5は局部水浸部、および6は探触子ホルダーをそれぞれ表す。   The best mode for carrying out the present invention will be specifically described below with reference to the drawings. FIG. 3 is a diagram showing an outline of an apparatus for carrying out the present invention. In the figure, 1 is an inspection material, 2 is an ultrasonic transmission vibrator, 3 is an ultrasonic reception vibrator, 4 is an acoustic separator, 5 is a local water immersion part, and 6 is a probe holder.

本発明は探触子ホルダー6、超音波送信用振動子2、超音波受信用振動子3、音響隔離板4、局部水浸部5で構成される。超音波送信用振動子2から超音波を検査材1に送信し、検査材の表面や内部で反射される超音波を超音波受信用振動子3にて受信する。その際、検査材4を経由せず、直接、送信用振動子から受信用振動子に到達する送信波や、検査材内部の欠陥を検出する際に、検査材表面での反射される不要な反射波を、受信用振動子で受信しないように、送信用振動子2と受信用振動子2との間に音響隔離板4を挟み、超音波の送信と受信を音響的に分割して配置する。なお、音響隔離板4の材質としては、アクリル樹脂系の材質からなることが好ましい。   The present invention includes a probe holder 6, an ultrasonic transmission transducer 2, an ultrasonic reception transducer 3, an acoustic separator 4, and a local water immersion unit 5. An ultrasonic wave is transmitted from the ultrasonic wave transmission vibrator 2 to the inspection material 1, and an ultrasonic wave reflected by the surface or inside of the inspection material is received by the ultrasonic wave reception vibrator 3. At that time, when detecting a transmission wave that directly reaches the receiving vibrator from the transmitting vibrator or a defect inside the inspection material without passing through the inspection material 4, it is unnecessary to be reflected on the surface of the inspecting material. An acoustic separator 4 is sandwiched between the transmitting transducer 2 and the receiving transducer 2 so that the reflected wave is not received by the receiving transducer, and the ultrasonic transmission and reception are acoustically divided. To do. The material of the acoustic separator 4 is preferably made of an acrylic resin material.

図4は、音響隔離板の下端部先端(検査材側先端)の形状例を示す図である。検査材表面と音響隔離板との間で生じる反射波が、受信用探触子に入らないように形状を定めるようにする。そのためには、音響隔離板の先端部において、送信用振動子側の面と受信振動子側の面とのなす角度φを鋭角とする。また、先端部において検査材に対向する検査材表面に略平行となる面の厚さを超音波の波長以下とする。それを実現するための形状例を以下に説明する。   FIG. 4 is a diagram showing an example of the shape of the lower end tip (inspection material side tip) of the acoustic separator. The shape is determined so that the reflected wave generated between the surface of the inspection material and the acoustic separator does not enter the receiving probe. For this purpose, the angle φ formed by the surface on the transmitting transducer side and the surface on the receiving transducer side is an acute angle at the tip of the acoustic separator. Further, the thickness of the surface substantially parallel to the surface of the inspection material facing the inspection material at the tip is set to be equal to or less than the wavelength of the ultrasonic wave. A shape example for realizing this will be described below.

図4(A)の例では、超音波の音響隔離板下端部で反射面積を小さくするために、音響隔離板の下端部先端の形状において、送信用振動子側の面と受信用振動子の面とのなす角を鋭角としている。このときの先端の厚みdは、反射し難くなるように波長以下とし、波長の2分の1以下であることが好ましい。   In the example of FIG. 4A, in order to reduce the reflection area at the lower end portion of the ultrasonic acoustic separator, the shape of the lower end tip of the acoustic separator has a surface on the transmitting transducer side and the receiving transducer side. The angle with the surface is an acute angle. At this time, the thickness d of the tip is set to be equal to or less than the wavelength so that reflection is difficult, and is preferably equal to or less than one half of the wavelength.

また、図4(B)の例では、音響隔離板の断面形状を受信用振動子側の面は検査材表面に対して略垂直となる角度とし、送信側の下端部先端の面を受信側の面に対して角度φを鋭角にして、音響隔離板下端部先端で生じた反射波が送信側に反射させている。また、これとは逆に、送信用振動子側の面は検査材表面に対して略直交となる角度とし、受信側の面を送信側の面に対して角度φを鋭角とする、音響隔離板の断面形状としても、同様の効果が得られるので、どちらの形状であってもよい。   In the example of FIG. 4B, the cross-sectional shape of the acoustic separator is set to an angle at which the surface on the receiving transducer side is substantially perpendicular to the surface of the inspection material, and the surface at the front end of the lower end on the transmitting side The angle φ is made an acute angle with respect to this surface, and the reflected wave generated at the tip of the lower end of the acoustic separator is reflected to the transmitting side. On the contrary, the surface on the transmitting transducer side is set to an angle that is substantially orthogonal to the surface of the inspection material, and the receiving side surface is set to an acute angle with respect to the transmitting side surface. Since the same effect is acquired also as a cross-sectional shape of a board, any shape may be sufficient.

このように音響隔離板の下端部先端の形状を定めているので、検査材表面で反射したエコーは、音響隔離板の下端先端で反射しても、受信用振動子にはほとんど入らず、信号対ノイズ比を高くすることができる。   Since the shape of the tip of the lower end of the acoustic separator is defined in this way, even if the echo reflected from the surface of the inspection material is reflected from the lower end of the acoustic separator, it hardly enters the receiving transducer, and the signal The noise-to-noise ratio can be increased.

さらに、図5は、空気層を内部に設けた音響隔離板の例を示す図である。図中、7は空気層を表す。良く知られているように、空気と固体の音響インピーダンスは大きく異なるので、音響隔離板に入射した超音波は空気層にはほとんど伝わらない。従って、図7に示すようにすること、音響隔離板を透過してしまう超音波エコーを小さくすることができ、信号対ノイズ比を高くすることができる。   Furthermore, FIG. 5 is a figure which shows the example of the acoustic separator which provided the air layer in the inside. In the figure, 7 represents an air layer. As is well known, since the acoustic impedance of air and solid is greatly different, the ultrasonic wave incident on the acoustic separator hardly transmits to the air layer. Therefore, as shown in FIG. 7, ultrasonic echoes that pass through the acoustic separator can be reduced, and the signal-to-noise ratio can be increased.

以下、本発明の実施例を説明する。図6は、本発明の実施例を示す図であり、図7は、図6に示した実施例での音響隔離板下端部先端の形状を示す図である。図中、8は整流部、9は給水管をそれぞれ表す。   Examples of the present invention will be described below. FIG. 6 is a view showing an embodiment of the present invention, and FIG. 7 is a view showing the shape of the lower end of the acoustic separator in the embodiment shown in FIG. In the figure, 8 represents a rectification unit, and 9 represents a water supply pipe.

給水管9から給水された水は、整流部8で整流され、局部水浸部5へ流れ込む。超音波送信用振動子2と超音波受信用振動子3には、周波数1MHzの広帯域コンポジット振動子を用いた。音響隔離板下端部の形状を受信側の面は検査材表面と垂直として、送信側の面を受信側の面に対して、角度φ’が鋭角となるように定め、音響隔離板内部には空気層を持たせている(図7)。   The water supplied from the water supply pipe 9 is rectified by the rectification unit 8 and flows into the local water immersion unit 5. As the ultrasonic transmission vibrator 2 and the ultrasonic reception vibrator 3, a broadband composite vibrator having a frequency of 1 MHz was used. The shape of the lower end of the acoustic separator is set so that the surface on the receiving side is perpendicular to the surface of the inspection material, and the surface on the transmitting side is set to an acute angle with respect to the surface on the receiving side. An air layer is provided (FIG. 7).

図9は、上述で示した本実施例の探傷条件で行った探傷を説明する図である。φ1mmドリルホールの人工疵を持つ鋼片を探傷した結果を図9(A)に示し、この際に用いた音響隔離板下端部の形状を図9(B)に示す。図中、厚みd=約0.5mm、角度φ’=約30°、幅(奥行)W=20mmとし、音響隔離板下端部先端と検査材との距離は5mmとして探傷した。   FIG. 9 is a diagram for explaining flaw detection performed under the flaw detection conditions of the present embodiment described above. FIG. 9 (A) shows the result of flaw detection on a steel piece having a φ1 mm drill hole artificial rod, and FIG. 9 (B) shows the shape of the lower end portion of the acoustic separator used at this time. In the figure, the thickness d = about 0.5 mm, the angle φ ′ = about 30 °, the width (depth) W = 20 mm, and the distance between the lower end of the acoustic separator and the inspection material was 5 mm.

図8は、従来法で行った探傷を説明する図である。従来法でφ1mmドリルホールの人工疵を持つ鋼片を探傷した結果を図8(A)に示し、このとき、用いた音響隔離板下端部の形状を図8(B)に示す。図中、d=2mm、W=20mmである。音響隔離板下端部先端と検査材との距離は5mmとしている。
図9(A)と図8(A)との対比によって、本発明により音響隔離板下端部と検査材との間で生じる乱反射が抑制され、従来法よりも信号対ノイズ比が優れていることが十分に分かる。また、浅い位置に存在する欠陥の信号は、従来は乱反射によるノイズの強度が欠陥信号以上で、時間的に重なると検出できず、不感帯となっていたが、本発明ではノイズ低減により、浅い位置にある欠陥も検出できるようになり、深さに関する不感帯も減少した。
FIG. 8 is a diagram for explaining flaw detection performed by a conventional method. FIG. 8A shows the result of flaw detection of a steel piece having a φ1 mm drill hole artificial scissors in the conventional method, and FIG. 8B shows the shape of the lower end portion of the acoustic separator used at this time. In the figure, d = 2 mm and W = 20 mm. The distance between the lower end of the acoustic separator and the inspection material is 5 mm.
9 (A) and FIG. 8 (A), the irregular reflection that occurs between the lower end of the acoustic separator and the inspection material is suppressed by the present invention, and the signal-to-noise ratio is superior to the conventional method. Is fully understood. In addition, a defect signal existing in a shallow position has conventionally been detected as a dead zone because the noise intensity due to diffuse reflection is higher than the defect signal and overlapped in time. Defects in the depth can be detected and the dead zone related to depth is reduced.

二振動子垂直探傷法の構造と検査材の欠陥を探傷した際の伝播経路を示す図である。It is a figure which shows the propagation path at the time of flaw-detecting the structure of a two-element vertical flaw detection method, and the defect of a test | inspection material. 特許文献1に記載の技術と欠陥を探傷した際の超音波の伝播経路を示す図である。It is a figure which shows the propagation path of the ultrasonic wave at the time of flaw-detecting the technique and defect of patent document 1. 本発明を実施するための装置概要を示す図である。It is a figure which shows the apparatus outline for implementing this invention. 音響隔離板の下端部先端の形状例を示す図である。It is a figure which shows the example of a shape of the lower end part tip of an acoustic separator. 空気層を設けた音響隔離板の例を示す図であるIt is a figure which shows the example of the acoustic separator provided with the air layer. 本発明の実施例を示す図である。It is a figure which shows the Example of this invention. 実施例での音響隔離板下端部先端の形状を示す図である。It is a figure which shows the shape of the acoustic-separation board lower end part front end in an Example. 従来法で行った探傷を説明する図である。It is a figure explaining the flaw detection performed by the conventional method. 本実施例の探傷条件で行った探傷を説明する図である。It is a figure explaining the flaw detection performed on the flaw detection conditions of a present Example.

符号の説明Explanation of symbols

1 検査材
2 超音波送信用振動子
3 超音波受信用振動子
4 音響隔離板
5 局部水浸部
6 探触子ホルダー
7 空気層
8 整流部
9 給水管
DESCRIPTION OF SYMBOLS 1 Test material 2 Ultrasonic wave transmission vibrator 3 Ultrasonic wave reception vibrator 4 Acoustic separator 5 Local water immersion part 6 Probe holder 7 Air layer 8 Rectification part 9 Water supply pipe

Claims (4)

送信用振動子から検査材に超音波を送信し、前記検査材で反射した超音波を受信する受信用振動子との間に音響隔離板を設置した超音波計測装置において、
前記音響隔離板を、その検査材側先端部で反射する超音波が受信用振動子に入らない形状とすることを特徴とする超音波計測装置。
In the ultrasonic measuring device in which an acoustic separator is installed between the transmitting transducer and the receiving transducer that transmits the ultrasonic wave from the transmitting transducer to the testing material and receives the ultrasonic wave reflected by the testing material,
An ultrasonic measuring apparatus, wherein the acoustic separator has a shape that prevents ultrasonic waves reflected by the inspection material side tip from entering the receiving transducer.
前記
音響隔離板の検査材側先端部で、送信用振動子側の面と受信用振動子側の面とのなす角を鋭角とすることを特徴とする請求項1記載の超音波計測装置。
The ultrasonic measurement apparatus according to claim 1, wherein an angle formed by a surface on a transmitting transducer side and a surface on a receiving transducer side is an acute angle at a test material side tip of the acoustic separator.
前記音響隔離板の検査材側先端部で、検査材表面と略平行となる面の厚さを超音波の波長以下とすることを特徴とする請求項1または2に記載の超音波計測装置。 3. The ultrasonic measurement apparatus according to claim 1, wherein a thickness of a surface that is substantially parallel to the surface of the inspection material is set to be equal to or less than a wavelength of the ultrasonic wave at the inspection material side tip of the acoustic separator. 前記音響隔離板の内部に空気層を設けることを特徴とする請求項1ないし3のいずれかに記載の超音波計測装置。














The ultrasonic measurement apparatus according to claim 1, wherein an air layer is provided inside the acoustic separator.














JP2006076368A 2006-03-20 2006-03-20 Ultrasonic measuring apparatus Pending JP2007248427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076368A JP2007248427A (en) 2006-03-20 2006-03-20 Ultrasonic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076368A JP2007248427A (en) 2006-03-20 2006-03-20 Ultrasonic measuring apparatus

Publications (1)

Publication Number Publication Date
JP2007248427A true JP2007248427A (en) 2007-09-27

Family

ID=38592866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076368A Pending JP2007248427A (en) 2006-03-20 2006-03-20 Ultrasonic measuring apparatus

Country Status (1)

Country Link
JP (1) JP2007248427A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392187A (en) * 1977-01-25 1978-08-12 Nippon Steel Corp Detecting element for surface wave process ultrasonic flaw detection
JPS5692854U (en) * 1979-12-17 1981-07-23
JPS6168559A (en) * 1984-09-12 1986-04-08 ドミニク エ−.パガノ Ultrasonic inspection method and device
JPS62199670U (en) * 1986-06-10 1987-12-19
JPH0538563U (en) * 1991-10-25 1993-05-25 株式会社トキメツク Dual element probe
JPH05164747A (en) * 1991-12-17 1993-06-29 Sumitomo Metal Ind Ltd Ultrasonic flaw detection and probe device therefor
JP2002318223A (en) * 2001-04-24 2002-10-31 Mitsubishi Electric Corp Ultrasonic probe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392187A (en) * 1977-01-25 1978-08-12 Nippon Steel Corp Detecting element for surface wave process ultrasonic flaw detection
JPS5692854U (en) * 1979-12-17 1981-07-23
JPS6168559A (en) * 1984-09-12 1986-04-08 ドミニク エ−.パガノ Ultrasonic inspection method and device
JPS62199670U (en) * 1986-06-10 1987-12-19
JPH0538563U (en) * 1991-10-25 1993-05-25 株式会社トキメツク Dual element probe
JPH05164747A (en) * 1991-12-17 1993-06-29 Sumitomo Metal Ind Ltd Ultrasonic flaw detection and probe device therefor
JP2002318223A (en) * 2001-04-24 2002-10-31 Mitsubishi Electric Corp Ultrasonic probe

Similar Documents

Publication Publication Date Title
US8104347B2 (en) Ultrasonic inspection method and device for plastics walls
JP5237923B2 (en) Adhesion evaluation apparatus and method
US9958417B2 (en) Non-traversing tube inspection system
JP5420525B2 (en) Apparatus and method for ultrasonic inspection of small diameter tube
CN110554088A (en) Air coupling ultrasonic detection method for defects
US20210278373A1 (en) Ultrasonic probe
JP2009058238A (en) Method and device for defect inspection
JP2012215520A (en) Ultrasonic measuring method and device for surface crack depth
JP2017161513A (en) Ultrasonic flaw detecting device, and ultrasonic flaw detecting method
CA3128495A1 (en) A method and device for non-destructive testing of a plate material
JP2008070283A (en) Ultrasonic guide wave non-destructive inspection method and apparatus
Ambrozinski et al. Application of air-coupled ultrasonic transducers for damage assessment of composite panels
KR101767422B1 (en) Seperable Ultrasonic Transducer with Enhanced Space Resolution
JP2007248427A (en) Ultrasonic measuring apparatus
WO2018135242A1 (en) Inspection method
WO2019150953A1 (en) Ultrasonic probe
KR20120015027A (en) Longitudinal wave transducer wedge to maintain couplant layer and longitudinal wave transducer using the same
Chang et al. Development of non-contact air coupled ultrasonic testing system for reinforced concrete structure
JP2009156834A (en) Method for measuring depth of crack-like defect
WO2018147036A1 (en) Ultrasound probe
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
Hesse et al. Defect detection in rails using ultrasonic surface waves
RU2816862C1 (en) Method for ultrasonic inspection of obstructed sections of fiberglass articles
US8375795B2 (en) Non-destructive inspection of high-pressure lines
JP2003090829A (en) Non-destructive inspection method of composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106