JP2007248330A - Moisture content meter - Google Patents

Moisture content meter Download PDF

Info

Publication number
JP2007248330A
JP2007248330A JP2006073860A JP2006073860A JP2007248330A JP 2007248330 A JP2007248330 A JP 2007248330A JP 2006073860 A JP2006073860 A JP 2006073860A JP 2006073860 A JP2006073860 A JP 2006073860A JP 2007248330 A JP2007248330 A JP 2007248330A
Authority
JP
Japan
Prior art keywords
moisture content
spectrum
moisture
correction coefficient
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006073860A
Other languages
Japanese (ja)
Inventor
Gen Matsuno
玄 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2006073860A priority Critical patent/JP2007248330A/en
Publication of JP2007248330A publication Critical patent/JP2007248330A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a moisture content meter capable of measuring the moisture content, without being affected by the fluctuations in the membrane thickness, or up-and-down ward fluctuation of a base line. <P>SOLUTION: The moisture content meter for operating the moisture content by measuring the spectrum of near-infrared ray which has previously been obtained with the reference spectrum of the measurement object it-self is characteristically comprises a correction coefficient operation means for obtaining the correction coefficient, so as to equate the measurement spectrum of the measurement object it-self to the reference spectrum; a correction moisture content operation means for operating the moisture content, while correcting the measured moisture content spectrum by using the correction coefficient obtained by the correcting coefficient operation means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、膜厚変動やベースラインの上下変動の影響を受けずに水分率を測定できる水分率計に関するものである。   The present invention relates to a moisture content meter capable of measuring a moisture content without being affected by fluctuations in film thickness or vertical fluctuations in a baseline.

水分率計に関連する先行技術文献としては次のようなものがある。   Prior art documents related to the moisture content meter include the following.

倉敷紡績株式会社ホームページ/事業部案内/エレクトロニクス事業部/製品紹介/商品一覧/R/RF-50ファイバー型水分計/仕様、[平成17年3月15日検索]インターネット<URL:http://www.kurabo.co.jp/el/rm/rf50_02.html。>Kurashiki Spinning Co., Ltd. Website / Business Division Information / Electronics Division / Product Introduction / Product List / R / RF-50 Fiber Type Moisture Meter / Specifications, [Search on March 15, 2005] Internet <URL: http: // www.kurabo.co.jp/el/rm/rf50_02.html. > 倉敷紡績株式会社ホームページ/事業部案内/エレクトロニクス事業部/製品紹介/商品一覧/R/RF-50ファイバー型水分計/赤外線の話/3-4赤外線膜厚系の測定原理、[平成17年3月15日検索]インターネット<URL:http://www.kurabo.co.jp/el/room/infrare/page3_4.html。>Kurashiki Spinning Co., Ltd. Home Page / Business Division Information / Electronics Division / Product Introduction / Product List / R / RF-50 Fiber Type Moisture Meter / Infrared Talk / 3-4 Infrared Film Thickness Measurement Principle, [2005 3 Search on May 15] Internet <URL: http://www.kurabo.co.jp/el/room/infrare/page3_4.html. >

図3は従来より一般に使用されている従来例の構成説明図である。
図において、赤外線光源1からの光は、光ファイバー2を通り、投光ユニット3のレンズ4を介して測定対象であるフィルムサンプル5に照射される。
フィルムサンプル5を透過した光は、受光ユニット6のレンズ7を介し、光ファイバー8を通過して、受光器9に入射される。
FIG. 3 is a diagram illustrating the configuration of a conventional example that is generally used.
In the figure, light from an infrared light source 1 passes through an optical fiber 2 and is irradiated onto a film sample 5 as a measurement target via a lens 4 of a light projecting unit 3.
The light transmitted through the film sample 5 passes through the optical fiber 8 through the lens 7 of the light receiving unit 6 and enters the light receiver 9.

図4は、図3の構成の装置で測定した、プラスチックフィルム5の近赤外吸収スペクトルの模式図である。
図4中、Aは、フィルム5中に含有する水分に起因する吸収ピーク、Cはフィルム5そのものの成分(炭化水素基)に起因する吸収ピークである。
図4では、同じフィルム5で水分率の違うサンプルの複数のスペクトルを重ね書きしてある。
吸光度(透過率の対数)は光路中に含まれる当該成分量に比例する性質がある。
FIG. 4 is a schematic diagram of the near-infrared absorption spectrum of the plastic film 5 measured with the apparatus having the configuration shown in FIG.
In FIG. 4, A is an absorption peak due to moisture contained in the film 5, and C is an absorption peak due to a component (hydrocarbon group) of the film 5 itself.
In FIG. 4, a plurality of spectra of samples having the same film 5 and different moisture contents are overwritten.
Absorbance (logarithm of transmittance) has a property proportional to the amount of the component contained in the optical path.

図3従来例では、フィルム5中の水分を測定する際にはA部のピーク高さを、膜厚を測定する際にはC部の吸光度(ピーク高さ)を測定し、それぞれ検量線を作成して水分率と膜厚を測定していた。
また、ベースラインの変動(上下動、傾き)の影響を軽減するために、ピーク両脇の点を含めて3波長の吸光度を測定し(水分率であればA点、B点、B‘点)、適当な演算式、例えば2A−B−B'で補正を行っていた。いわゆる、3波長方式である。
In the conventional example of FIG. 3, when measuring the moisture in the film 5, the peak height of the A part is measured, and when measuring the film thickness, the absorbance (peak height) of the C part is measured. The moisture content and film thickness were measured.
In addition, in order to reduce the influence of baseline fluctuations (vertical movement, inclination), the absorbance at three wavelengths including the points on both sides of the peak was measured (points A, B, and B ′ if moisture content) ), Correction was performed with an appropriate arithmetic expression, for example, 2ABB ′. This is a so-called three-wavelength method.

このような装置においては、以下の間題点がある。
水分率を測定する場合、膜厚変動や、光路に対するフィルムの角度変動(斜めに光が通る)などがあると、水分率が同じサンプルでも光路中に存在する水分量が変化し、指示が変動する。
3点の波数での吸光度情報しか使用していないため、フィルム表面の粗さやフィルム中の不純物などの影響で、ベースラインが高さや傾き以外の変動を受けた場合に指示が変動する。
Such an apparatus has the following problems.
When measuring the moisture content, if there are film thickness fluctuations or film angle fluctuations with respect to the optical path (light passes diagonally), the amount of moisture present in the optical path changes even for samples with the same moisture content, and the indication varies. To do.
Since only the absorbance information at three wave numbers is used, the instruction varies when the baseline is subjected to variations other than the height and inclination due to the roughness of the film surface and impurities in the film.

本発明の目的は、上記の課題を解決するもので、膜厚変動や、ベースラインの複雑な変動に対して影響を受けにくい水分率計を提供することにある。   An object of the present invention is to solve the above-described problems, and to provide a moisture meter that is less susceptible to film thickness fluctuations and complicated baseline fluctuations.

このような課題を達成するために、本発明では、請求項1の水分率計においては、
近赤外吸光スペクトルを測定して水分率を演算する水分率計において、あらかじめ測定対象自体の基準スペクトルを求めておき測定対象自体の測定スペクトルを前記基準スペクトルに合わせるように補正係数を求める補正係数演算手段と、この補正係数演算手段で求められた補正係数を用いて測定された水分のスペクトルを補正して水分率を演算する補正水分率演算手段とを具備したことを特徴とする。
In order to achieve such a problem, in the present invention, in the moisture content meter of claim 1,
In a moisture meter that calculates the moisture content by measuring the near-infrared absorption spectrum, a correction coefficient for obtaining a correction coefficient so that the reference spectrum of the measurement object itself is obtained in advance and the measurement spectrum of the measurement object itself is matched with the reference spectrum It is characterized by comprising a calculating means and a corrected moisture content calculating means for calculating a moisture content by correcting the moisture spectrum measured using the correction coefficient obtained by the correction coefficient calculating means.

本発明の請求項2の水分率計においては、請求項1記載の水分率計において、
前記補正係数演算手段は、補正後のスペクトルと基準スペクトルの差の二乗和が最小になるようにして前記補正係数を求めるようにしたことを特徴とする。
In the moisture content meter according to claim 2 of the present invention, in the moisture content meter according to claim 1,
The correction coefficient calculation means is characterized in that the correction coefficient is obtained so that the sum of squares of the difference between the corrected spectrum and the reference spectrum is minimized.

本発明の請求項3の水分率計においては、請求項1又は請求項2記載の水分率計において、
前記測定対象自体の測定スペクトルの測定値には前もって二次微分処理が行われたことを特徴とする。
In the moisture meter according to claim 3 of the present invention, in the moisture meter according to claim 1 or 2,
The measurement value of the measurement spectrum of the measurement object itself is preliminarily subjected to a second derivative process.

本発明の請求項4の水分率計においては、請求項1乃至請求項3の何れかに記載の水分率計において、
前記補正水分率演算手段は、水分率を演算する演算式として、多変量解析法で計算された演算式が用いられたことを特徴とする。
In the moisture meter according to claim 4 of the present invention, in the moisture meter according to any one of claims 1 to 3,
The corrected moisture content calculating means is characterized in that an arithmetic expression calculated by a multivariate analysis method is used as an arithmetic expression for calculating the moisture content.

本発明の請求項1によれば、次のような効果がある。
測定対象自体から補正係数を求めて、水分のスペクトルを補正するようにしたので、膜厚変動やベースラインの上下変動の影響を受けずに水分率を測定できる水分率計が得られる。
According to claim 1 of the present invention, there are the following effects.
Since the correction coefficient is obtained from the measurement object itself and the moisture spectrum is corrected, a moisture meter capable of measuring the moisture content without being affected by fluctuations in film thickness or vertical fluctuations in the baseline can be obtained.

本発明の請求項2によれば、次のような効果がある。
補正係数演算手段は、補正後のスペクトルと基準スペクトルの差の二乗和が最小になるようにして補正係数を求めるようにしたので、より正確な補正係数が求められる水分率計が得られる。
According to claim 2 of the present invention, there are the following effects.
Since the correction coefficient calculation means obtains the correction coefficient so that the sum of squares of the difference between the corrected spectrum and the reference spectrum is minimized, a moisture meter that can obtain a more accurate correction coefficient can be obtained.

本発明の請求項3によれば、次のような効果がある。
測定対象自体の測定スペクトルの測定値には、前もって二次微分処理が行われたので、ベースラインの上下動と傾きの影響が極めて少なく水分率を測定できる水分率計が得られる。
According to claim 3 of the present invention, there are the following effects.
Since the measurement value of the measurement spectrum of the measurement object itself has been subjected to second-order differential processing in advance, a moisture meter capable of measuring the moisture content is obtained with extremely little influence of vertical movement and inclination of the baseline.

本発明の請求項4によれば、次のような効果がある。
補正水分率演算手段は、水分率を演算する演算式として、多変量解析法で計算された演算式が用いられたので、測定対象自体の微妙な成分変化や周囲温度の変化等に由来する、ベースラインやスペクトル形状の複雑な変動の影響を最小にできる水分率計が得られる。
According to claim 4 of the present invention, there are the following effects.
Since the calculation formula calculated by the multivariate analysis method is used as the calculation formula for calculating the moisture content, the correction moisture rate calculation means is derived from a subtle component change of the measurement object itself, a change in the ambient temperature, etc. A moisture meter can be obtained that can minimize the effects of complex variations in baseline and spectral shape.

以下本発明を図面を用いて詳細に説明する。
図1は本発明の一実施例の要部構成説明図、図2は図1の動作説明図である。
図において、図3と同一記号の構成は同一機能を表す。
以下、図3との相違部分のみ説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating the configuration of the main part of one embodiment of the present invention, and FIG. 2 is a diagram illustrating the operation of FIG.
In the figure, configurations with the same symbols as in FIG. 3 represent the same functions.
Only the difference from FIG. 3 will be described below.

図1において、受光器10は、補正係数演算手段11と補正水分率演算手段12とを有する。
補正係数演算手段11は、あらかじめ測定対象自体の基準スペクトルA1を求めておき、測定対象自体の測定スペクトルA2を、基準スペクトルA1に合わせるように補正係数を求める。
In FIG. 1, the optical receiver 10 includes a correction coefficient calculation unit 11 and a corrected moisture percentage calculation unit 12.
The correction coefficient calculation means 11 obtains a reference spectrum A1 of the measurement object itself in advance, and obtains a correction coefficient so that the measurement spectrum A2 of the measurement object itself matches the reference spectrum A1.

補正水分率演算手段12は、補正係数演算手段11で求められた補正係数を用いて測定された水分のスペクトルA3を補正して水分率を演算する。
この場合は、補正係数演算手段11は、補正後のスペクトルと基準スペクトルA1の差の二乗和が最小になるようにして補正係数を求めるようにしている。
The corrected moisture content calculating means 12 calculates the moisture content by correcting the moisture spectrum A3 measured using the correction coefficient obtained by the correction coefficient calculating means 11.
In this case, the correction coefficient calculation means 11 obtains the correction coefficient so that the sum of squares of the difference between the corrected spectrum and the reference spectrum A1 is minimized.

また、測定対象自体の測定スペクトルの測定値A2には、前もって二次微分処理が行われている。
また、補正水分率演算手段12は、水分率を演算する演算式として、多変量解析法で計算された演算式が用いられている。
In addition, the second derivative process is performed in advance on the measurement value A2 of the measurement spectrum of the measurement object itself.
The corrected moisture content calculating means 12 uses an arithmetic expression calculated by the multivariate analysis method as an arithmetic expression for calculating the moisture content.

具体的には、水分等の測定対象成分の吸収波数領域(図2中のB−A−B‘)およびフィルムの主成分である炭化水素の吸収波数領域(図2中のD−C−B)の両方の領域を含む波数領域のスペクトルを測定する。
この段階で、必要に応じて、二次微分処理等の前処理を行い、ベースライン変動の影響等を極力取り除いても良い。
次に、フィルム主成分の吸収ピーク(図2中のD−C−B)の形状と大きさが、基準となるスペクトルに極力一致するように、スペクトル全体の補正を行う。
Specifically, the absorption wave number region of the component to be measured such as moisture (B-A-B 'in FIG. 2) and the absorption wave number region of the hydrocarbon that is the main component of the film (D-C-B in FIG. 2). ) Measure the spectrum in the wavenumber region including both regions.
At this stage, if necessary, pre-processing such as second-order differential processing may be performed to eliminate the influence of baseline fluctuations as much as possible.
Next, the entire spectrum is corrected so that the shape and size of the absorption peak (D-C-B in FIG. 2) of the main component of the film matches the reference spectrum as much as possible.

測定したスペクトル(図2中の細線)をa(i)、補正後のスペクトルをa’(i)、基準スペクトルをA(i)とする。(iは吸光度を測定する波数点に対応する添え字)
a’(i)=b×a(i)+c (b、cは定数) (式1)
で表せると仮定し、
The measured spectrum (thin line in FIG. 2) is a (i), the corrected spectrum is a ′ (i), and the reference spectrum is A (i). (I is a subscript corresponding to the wave number point at which absorbance is measured)
a ′ (i) = b × a (i) + c (b and c are constants) (Formula 1)
Assuming that

補正後のスペクトルと基準スペクトルのフィルム主成分の波数範囲での残差D〜B
D〜B=Σ{a’(i)−A(i)} (式2)
が最小になる条件で、定数b、cを求め、それから補正スペクトルa’(i)を求める。たとえば、補正前のスペクトル(図中細線)を、基準スペクトル(図中太線)とほぼ一致した形状(図中太線)となる。
Residuals D to B in the wave number range of the film main component of the corrected spectrum and the reference spectrum
D to B = Σ {a ′ (i) −A (i)} 2 (Formula 2)
The constants b and c are obtained under the condition that becomes minimum, and then the corrected spectrum a ′ (i) is obtained. For example, the spectrum (thin line in the figure) before correction has a shape (thick line in the figure) that substantially matches the reference spectrum (thick line in the figure).

上記の処理で、定数cはベースライン変動の影響、定数bは膜厚変動の影響をキャンセルする効果を有する。
基準スペクトルA1の範囲に水分の吸収ピークを含めないことにより、水分率そのものが変動した際に、膜厚補正の効果に誤差を生じることを防いでいる。
In the above processing, the constant c has the effect of canceling the influence of the baseline fluctuation, and the constant b has the effect of canceling the influence of the film thickness fluctuation.
By not including the moisture absorption peak in the range of the reference spectrum A1, it is possible to prevent an error in the effect of the film thickness correction when the moisture content itself fluctuates.

すなわち、これらの前処理により、当該サンプルを、膜厚や表面の散乱状態が一定の理想的な形状に加工してスペクトルを測定したのと同等のスペクトルを得ることができる。 たとえば基準スペクトルを、膜厚1mm、表面がなめらかな状態のサンプルのスペクトルにしておけば良い。   That is, by these pretreatments, a spectrum equivalent to that obtained by processing the sample into an ideal shape having a constant film thickness and surface scattering state and measuring the spectrum can be obtained. For example, the reference spectrum may be a spectrum of a sample having a thickness of 1 mm and a smooth surface.

測定スペクトルから水分率を計算するには、多変量解析法、たとえばPLS法(部分最小二乗法)を用いる。
すなわち、上記前処理を実施した水分率が既知のサンプルのスペクトルを複数本用意しておき、複数の波数での吸光度(または吸光度を微分した値)の線形結合B〜B’
In order to calculate the moisture content from the measurement spectrum, a multivariate analysis method such as a PLS method (partial least square method) is used.
That is, a plurality of spectra of samples having a known moisture content subjected to the above pretreatment are prepared, and linear combinations B to B ′ of absorbances (or values obtained by differentiating absorbances) at a plurality of wave numbers.

B〜B’=Σd(i)×a’(i)+d0 (式3)
で水分率が表せると仮定し、残差、すなわち(上式で計算した水分率値−真の水分率値)の二乗和が最小になるように、特定のアルゴリズムで係数d(i)、d0をあらかじめ求めておき、水分率未知の(前処理後)スペクトルを式3に当てはめることにより、未知サンプルの水分率を求めることができる。
B to B ′ = Σd (i) × a ′ (i) + d0 (Formula 3)
Assuming that the moisture content can be expressed by a specific algorithm, the coefficients d (i) and d0 are determined so that the residual, that is, the sum of squares of the (moisture content value calculated by the above equation−true water content value) is minimized. Is obtained in advance, and the moisture content of the unknown sample can be obtained by applying the unknown (after pretreatment) spectrum to Equation 3.

各種前処理を行い、波数として多数の(例えば50点)吸光度データを用いているため、ベースラインが複雑に曲がった形状に変化したりしても、影響を最小にするように検量線を作成することができる。
なお、この場合は、測定対象が炭化水素を主成分とする合成樹脂フィルムであり、測定対象自体の吸収波数域にCH基の第1倍音である5750cm−1を含み、水分の吸収波数域に、OH基の結合音である5200cm−1を含む。
Performs various pre-treatments and uses a large number of absorbance data (eg 50 points) as the wave number, so a calibration curve is created to minimize the impact even if the baseline changes to a complicated curved shape. can do.
In this case, the measurement target is a synthetic resin film containing hydrocarbon as a main component, the measurement target itself includes 5750 cm −1 , which is the first overtone of the CH group, in the absorption wave number range of moisture, , And 5200 cm −1 which is a bond sound of OH group.

この結果、
測定対象自体から補正係数を求めて、水分のスペクトルを補正するようにしたので、膜厚変動やベースラインの上下変動の影響を受けずに水分率を測定できる水分率計が得られる。
As a result,
Since the correction coefficient is obtained from the measurement object itself and the moisture spectrum is corrected, a moisture meter capable of measuring the moisture content without being affected by fluctuations in film thickness or vertical fluctuations in the baseline can be obtained.

補正係数演算手段11は、補正後のスペクトルと基準スペクトルの差の二乗和が最小になるようにして補正係数を求めるようにしたので、より正確な補正係数が求められる水分率計が得られる。   Since the correction coefficient calculation means 11 obtains the correction coefficient so that the sum of squares of the difference between the corrected spectrum and the reference spectrum is minimized, a moisture meter capable of obtaining a more accurate correction coefficient can be obtained.

測定対象自体の測定スペクトルの測定値には、前もって二次微分処理が行われたので、ベースラインの上下動と傾きの影響が極めて少なく水分率を測定できる水分率計が得られる。   Since the measurement value of the measurement spectrum of the measurement object itself has been subjected to second-order differential processing in advance, a moisture meter capable of measuring the moisture content is obtained with extremely little influence of vertical movement and inclination of the baseline.

補正水分率演算手段12は、水分率を演算する演算式として、多変量解析法で計算された演算式が用いられたので、測定対象自体の微妙な成分変化や周囲温度の変化等に由来する、ベースラインやスペクトル形状の複雑な変動の影響を最小にできる水分率計が得られる。   Since the arithmetic expression calculated by the multivariate analysis method is used as the arithmetic expression for calculating the moisture ratio, the corrected moisture percentage calculating means 12 is derived from a subtle component change of the measurement object itself, a change in ambient temperature, and the like. A moisture meter can be obtained that can minimize the effects of complex variations in baseline and spectral shape.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。
したがって本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形をも含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

本発明の一実施例の要部構成説明図である。It is principal part structure explanatory drawing of one Example of this invention. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG. 従来より一般に使用されている従来例の構成説明図である。It is structure explanatory drawing of the prior art example generally used conventionally. 図3の動作説明図である。It is operation | movement explanatory drawing of FIG.

符号の説明Explanation of symbols

1 赤外線光源
2 光ファイバー
3 投光ユニット
4 レンズ
5 フィルムサンプル
6 受光ユニット
7 レンズ
8 光ファイバー
9 受光器
10 受光器
11 補正係数演算手段
12 補正水分率演算手段
A1 基準スペクトル
A2 測定対象自体の測定スペクトル
A3 水分のスペクトル

DESCRIPTION OF SYMBOLS 1 Infrared light source 2 Optical fiber 3 Light projection unit 4 Lens 5 Film sample 6 Light reception unit 7 Lens 8 Optical fiber 9 Light receiver 10 Light receiver 11 Correction coefficient calculation means 12 Correction moisture rate calculation means A1 Reference spectrum A2 Measurement spectrum of measurement object itself A3 Water content Spectrum of

Claims (4)

近赤外吸光スペクトルを測定して水分率を演算する水分率計において、
あらかじめ測定対象自体の基準スペクトルを求めておき測定対象自体の測定スペクトルを前記基準スペクトルに合わせるように補正係数を求める補正係数演算手段と、
この補正係数演算手段で求められた補正係数を用いて測定された水分のスペクトルを補正して水分率を演算する補正水分率演算手段と
を具備したことを特徴とする水分率計。
In a moisture meter that calculates the moisture content by measuring the near infrared absorption spectrum,
A correction coefficient calculating means for obtaining a correction coefficient so as to obtain a reference spectrum of the measurement object in advance and align the measurement spectrum of the measurement object itself with the reference spectrum;
A moisture content meter comprising: a corrected moisture content computing means for computing a moisture content by correcting a moisture spectrum measured using the correction coefficient obtained by the compensation coefficient computing means.
前記補正係数演算手段は、補正後のスペクトルと基準スペクトルの差の二乗和が最小になるようにして前記補正係数を求めるようにしたこと
を特徴とする請求項1記載の水分率計。
The moisture content meter according to claim 1, wherein the correction coefficient calculation means obtains the correction coefficient so that the sum of squares of the difference between the corrected spectrum and the reference spectrum is minimized.
前記測定対象自体の測定スペクトルの測定値には前もって二次微分処理が行われたこと
を特徴とする請求項1又は請求項2記載の水分率計。
The moisture content meter according to claim 1 or 2, wherein a second derivative process is performed in advance on the measurement value of the measurement spectrum of the measurement object itself.
前記補正水分率演算手段は、水分率を演算する演算式として、多変量解析法で計算された演算式が用いられたこと
を特徴とする請求項1乃至請求項3の何れかに記載の水分率計。

The moisture according to any one of claims 1 to 3, wherein the corrected moisture content calculating means uses an arithmetic expression calculated by a multivariate analysis method as an arithmetic expression for calculating the moisture content. Rate meter.

JP2006073860A 2006-03-17 2006-03-17 Moisture content meter Pending JP2007248330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073860A JP2007248330A (en) 2006-03-17 2006-03-17 Moisture content meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073860A JP2007248330A (en) 2006-03-17 2006-03-17 Moisture content meter

Publications (1)

Publication Number Publication Date
JP2007248330A true JP2007248330A (en) 2007-09-27

Family

ID=38592790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073860A Pending JP2007248330A (en) 2006-03-17 2006-03-17 Moisture content meter

Country Status (1)

Country Link
JP (1) JP2007248330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069812A (en) * 2009-08-31 2011-04-07 Mitsui Chemicals Inc Measuring method, method for manufacturing solar cell module, measuring device, the solar cell module, and evaluation method of the solar cell module
JP2011169704A (en) * 2010-02-17 2011-09-01 Shimadzu Corp Data processor and program for the same
CN106767687A (en) * 2017-02-22 2017-05-31 河海大学 A kind of method of utilization remote sensing moisture measurement beach elevation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069812A (en) * 2009-08-31 2011-04-07 Mitsui Chemicals Inc Measuring method, method for manufacturing solar cell module, measuring device, the solar cell module, and evaluation method of the solar cell module
JP2011169704A (en) * 2010-02-17 2011-09-01 Shimadzu Corp Data processor and program for the same
CN106767687A (en) * 2017-02-22 2017-05-31 河海大学 A kind of method of utilization remote sensing moisture measurement beach elevation

Similar Documents

Publication Publication Date Title
Max et al. Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000tocm− 1
KR101727889B1 (en) Monitoring, detecting and quantifying chemical compounds in a gas sample stream
EP2131181B1 (en) Method for the determination of the total acid number and naphthenic acid number of petroleum, petroleum cuts and petroleum emulsions of water-in-oil type by mid-infrared spectroscopy
US7868296B2 (en) Spectroscopy having correction for broadband distortion for analyzing multi-component samples
Sáiz-Abajo et al. Prediction of organic acids and other quality parameters of wine vinegar by near-infrared spectroscopy. A feasibility study
JP6796016B2 (en) Spectral analyzer and spectroscopic analysis method
US9194797B2 (en) Method and system for detecting moisture in a process gas involving cross interference
JP6981817B2 (en) Spectroscopic analyzer and spectroscopic analysis method
Guo et al. Rapid quantitative analysis of adulterated rice with partial least squares regression using hyperspectral imaging system
RU2624337C1 (en) Method and device for intensity excursion adjustment in spectrometer
WO2007130295A2 (en) Method and apparatus for accurate calibration of a reflectometer by using a relative reflectance measurement
JP2007248330A (en) Moisture content meter
Cascant et al. Determination of sugars in depilatory formulations: A green analytical method employing infrared detection and partial least squares regression
US7751051B2 (en) Method for cross interference correction for correlation spectroscopy
Costa et al. Assessment of resin formulations and determination of the formaldehyde to urea molar ratio by near‐and mid‐infrared spectroscopy and multivariate data analysis
CN115791650A (en) Flue gas detection method and device
US20140104613A1 (en) Spectral calibration method
Christler et al. Technology transfer of a monitoring system to predict product concentration and purity of biopharmaceuticals in real‐time during chromatographic separation
Winning et al. Standardization of FT-IR instruments
JP4535975B2 (en) Data calibration method in surface plasmon resonance spectrum measuring apparatus
EP3063497A1 (en) Integrated computational element fabrication methods and systems
Saranwong et al. A simple method of instrument standardisation for a near infrared sorting machine: the utilisation of average spectra as input vectors
Jiménez-Márquez et al. Optoelectronic sensor for measuring ethanol content during grape must fermentation using NIR spectroscopy
JP7192602B2 (en) Calibration method for gas concentration measuring device
Smith et al. Optimisation of partial least squares regression calibration models in near-infrared spectroscopy: a novel algorithm for wavelength selection