JP2007239688A - Output control device for internal combustion engine - Google Patents

Output control device for internal combustion engine Download PDF

Info

Publication number
JP2007239688A
JP2007239688A JP2006065689A JP2006065689A JP2007239688A JP 2007239688 A JP2007239688 A JP 2007239688A JP 2006065689 A JP2006065689 A JP 2006065689A JP 2006065689 A JP2006065689 A JP 2006065689A JP 2007239688 A JP2007239688 A JP 2007239688A
Authority
JP
Japan
Prior art keywords
cylinder group
output
cylinder
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006065689A
Other languages
Japanese (ja)
Inventor
Shigeki Miyashita
茂樹 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006065689A priority Critical patent/JP2007239688A/en
Publication of JP2007239688A publication Critical patent/JP2007239688A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve accelerating responsiveness while suppressing the vibration of a vehicle. <P>SOLUTION: A plurality of cylinders are grouped into a first cylinder group 1a and a second cylinder group 1b, and an exhaust turbocharger 10 is provided in the second cylinder group 1b. During engine accelerating operation, the throttle opening of the second cylinder group 1b is first increased. Then, the throttle opening of the first cylinder group 1a is slowly increased with the elapse of a delay time. This improves accelerating responsiveness while suppressing the vibration of the vehicle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は内燃機関の出力制御装置に関する。   The present invention relates to an output control device for an internal combustion engine.

複数の気筒を一対の気筒群に分割し、これら気筒群の出力を互いに独立に制御するようにした内燃機関が公知である(特許文献1参照)。このような内燃機関では両方の気筒群が運転されるときには両方の気筒群のスロットル開度が互いに等しくされるのが一般的である。したがって、機関加速運転時には両方の気筒群のスロットル開度が同じ時期に同じ増加速度で増大され、すなわち一対の気筒群の出力増加が同期されるのが一般的である。   An internal combustion engine is known in which a plurality of cylinders are divided into a pair of cylinder groups, and the outputs of these cylinder groups are controlled independently of each other (see Patent Document 1). In such an internal combustion engine, when both cylinder groups are operated, the throttle opening degrees of both cylinder groups are generally equal to each other. Therefore, during engine acceleration operation, the throttle opening of both cylinder groups is generally increased at the same increase speed at the same time, that is, the output increase of a pair of cylinder groups is generally synchronized.

特開平4−342840号公報JP-A-4-342840

機関加速時の応答性のことを考えると機関出力の初期増加速度をできるだけ大きくするのが好ましい。しかしながら、出力の初期増加速度を過度に大きくすると車両前後方向の振動が増大する。したがって、車両振動が許容上限を越えないように出力の初期増加速度をそれほど高くすることができないのが現状である。   Considering the responsiveness during engine acceleration, it is preferable to increase the initial increase speed of the engine output as much as possible. However, if the initial increase rate of the output is excessively increased, vibration in the vehicle longitudinal direction increases. Therefore, at present, the initial increase rate of the output cannot be increased so much that the vehicle vibration does not exceed the allowable upper limit.

前記課題を解決するために本発明によれば、複数の気筒を出力を独立に制御可能な一対の気筒群に分割し、機関加速運転時には一方の気筒群の出力増加を他の気筒群の出力増加よりも遅らせるようにしている。   In order to solve the above-described problems, according to the present invention, a plurality of cylinders are divided into a pair of cylinder groups whose outputs can be controlled independently, and the output of one cylinder group is increased in the output of the other cylinder group during engine acceleration operation. I am trying to delay more than the increase.

車両振動を抑制しつつ加速応答性を高めることができる。   Acceleration response can be enhanced while suppressing vehicle vibration.

図1を参照すると、機関本体1は第1及び第2の気筒群又はバンク1a,1bを有する。第1の気筒群1aは1番気筒#1、3番気筒#3及び5番気筒#5を含んでなり、第2の気筒群1bは2番気筒#2、4番気筒#4及び6番気筒#6を含んでなる。図1に示される内燃機関の燃焼順序は例えば#1−#2−#3−#4−#5−#6である。なお、各気筒群1a,1bは少なくとも一つの気筒を含んでなる。   Referring to FIG. 1, the engine body 1 has first and second cylinder groups or banks 1a and 1b. The first cylinder group 1a includes the first cylinder # 1, the third cylinder # 3, and the fifth cylinder # 5, and the second cylinder group 1b includes the second cylinder # 2, the fourth cylinder # 4, and the sixth cylinder. Cylinder # 6 is included. The combustion order of the internal combustion engine shown in FIG. 1 is, for example, # 1- # 2- # 3- # 4- # 5- # 6. Each cylinder group 1a, 1b includes at least one cylinder.

各気筒群1a,1bの気筒2はそれぞれ対応する吸気枝管3及びサージタンク4a,4bに連結され、これらサージタンク4a,4bはそれぞれ対応する吸気ダクト5a,5bを介してエアクリーナ6a,6bに連結される。吸気ダクト5a内には上流側から順に、第1の気筒群1aの吸入空気量を検出するためのエアフローメータ7aと、アクチュエータ8aにより駆動されるスロットル弁9aとが配置される。一方、吸気ダクト5b内には上流側から順に、第2の気筒群1bの吸入空気量を検出するためのエアフローメータ7bと、排気ターボチャージャ10のコンプレッサ10cと、コンプレッサ10cにより過給された空気を冷却するための冷却装置11と、アクチュエータ8bにより駆動されるスロットル弁9bとが配置される。また、吸気枝管3にはそれぞれ対応する気筒2に燃料を供給するための燃料噴射弁12が取り付けられる。なお、排気ターボチャージャに代えて機関駆動式過給機を用いることもできる。   The cylinders 2 of the cylinder groups 1a and 1b are connected to the corresponding intake branch pipes 3 and surge tanks 4a and 4b, respectively. The surge tanks 4a and 4b are connected to the air cleaners 6a and 6b via the corresponding intake ducts 5a and 5b, respectively. Connected. In the intake duct 5a, an air flow meter 7a for detecting the intake air amount of the first cylinder group 1a and a throttle valve 9a driven by the actuator 8a are arranged in order from the upstream side. On the other hand, in the intake duct 5b, in order from the upstream side, an air flow meter 7b for detecting the intake air amount of the second cylinder group 1b, a compressor 10c of the exhaust turbocharger 10, and air supercharged by the compressor 10c. And a throttle valve 9b driven by an actuator 8b are arranged. In addition, a fuel injection valve 12 for supplying fuel to the corresponding cylinder 2 is attached to each intake branch pipe 3. An engine-driven supercharger can be used instead of the exhaust turbocharger.

一方、第1の気筒群1aの気筒2は排気マニホルド13a及び排気管14aを介して、第2の気筒群1bの気筒2は排気マニホルド13b及び排気管14bを介して、共通の排気管15にそれぞれ連結される。図1に示される実施例では、排気管14b内に排気ターボチャージャ10のタービン10tが配置され、これに対し排気管14a内にはタービンが配置されない。タービン10t上流及び下流の排気管14bは電気駆動式のウエストゲート弁16を介して互いに接続される。このウエストゲート弁16は通常は閉弁されている。また、排気管14a,14b内には小容量の触媒17a,17bがそれぞれ配置され、共通の排気管15内には大容量の触媒18が配置される。   On the other hand, the cylinder 2 of the first cylinder group 1a is connected to the common exhaust pipe 15 via the exhaust manifold 13a and the exhaust pipe 14a, and the cylinder 2 of the second cylinder group 1b is connected to the common exhaust pipe 15 via the exhaust manifold 13b and the exhaust pipe 14b. Each is connected. In the embodiment shown in FIG. 1, the turbine 10t of the exhaust turbocharger 10 is arranged in the exhaust pipe 14b, whereas no turbine is arranged in the exhaust pipe 14a. The exhaust pipes 14b upstream and downstream of the turbine 10t are connected to each other via an electrically driven wastegate valve 16. The waste gate valve 16 is normally closed. Further, small capacity catalysts 17a and 17b are arranged in the exhaust pipes 14a and 14b, respectively, and a large capacity catalyst 18 is arranged in the common exhaust pipe 15.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35及び出力ポート36を具備する。エアフローメータ7a,7bの出力電圧はそれぞれ対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル39にはアクセルペダル39の踏込み量DEPに比例した出力電圧を発生する踏み込み量センサ40が接続され、踏み込み量センサ40の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。アクセルペダル39の踏み込み量DEPは機関負荷を表している。また、サージタンク4a,4bにはサージタンク4a,4b内の圧力すなわち吸気圧を表す出力電圧を発生する吸気圧センサ41a,41bがそれぞれ取り付けられ、これら吸気圧センサ41a,41bの出力電圧は対応するAD変換器37を介して入力ポート35に入力される。サージタンク4a内の吸気圧Pm1は第1の気筒群1aの出力を表しており、サージタンク4b内の吸気圧Pm2は第2の気筒群1bの出力を表している。更に、入力ポート35には機関回転数Neを表す出力パルスを発生する回転数センサ42が接続される。出力ポート36は対応する駆動回路38を介してアクチュエータ8a,8b、燃料噴射弁12及びウエストゲート弁16にそれぞれ接続される。   The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35 and an output port 36. It comprises. The output voltages of the air flow meters 7a and 7b are input to the input port 35 via the corresponding AD converters 37, respectively. The accelerator pedal 39 is connected to a depression amount sensor 40 that generates an output voltage proportional to the depression amount DEP of the accelerator pedal 39, and the output voltage of the depression amount sensor 40 is input to the input port 35 via the corresponding AD converter 37. Is input. The depression amount DEP of the accelerator pedal 39 represents the engine load. The surge tanks 4a and 4b are respectively provided with intake pressure sensors 41a and 41b for generating an output voltage representing the pressure in the surge tanks 4a and 4b, that is, the intake pressure, and the output voltages of the intake pressure sensors 41a and 41b correspond. To the input port 35 via the AD converter 37. The intake pressure Pm1 in the surge tank 4a represents the output of the first cylinder group 1a, and the intake pressure Pm2 in the surge tank 4b represents the output of the second cylinder group 1b. Further, a rotational speed sensor 42 that generates an output pulse representing the engine rotational speed Ne is connected to the input port 35. The output port 36 is connected to the actuators 8a and 8b, the fuel injection valve 12 and the waste gate valve 16 through corresponding drive circuits 38, respectively.

図1に示される内燃機関では、例えば機関負荷が低いときには第1の気筒群1aの運転を停止しつつ第2の気筒群1bを運転する部分気筒運転が行われ、機関負荷が高くなると両方の気筒群を運転する全気筒運転が行われる。   In the internal combustion engine shown in FIG. 1, for example, when the engine load is low, partial cylinder operation is performed in which the second cylinder group 1b is operated while the operation of the first cylinder group 1a is stopped. All-cylinder operation for operating the cylinder group is performed.

第1の気筒群1aのスロットル弁9aの開度を第1スロットル開度θ1と称し、第2の気筒群1bのスロットル弁9bの開度を第2スロットル開度θ2と称すると、全気筒運転が行われるときには通常、第1スロットル開度θ1及び第2スロットル開度θ2は互いにほぼ等しくなるようにスロットル弁9a,9bが制御される。   When the opening of the throttle valve 9a of the first cylinder group 1a is referred to as a first throttle opening θ1, and the opening of the throttle valve 9b of the second cylinder group 1b is referred to as a second throttle opening θ2, all cylinder operation is performed. Normally, the throttle valves 9a and 9b are controlled so that the first throttle opening θ1 and the second throttle opening θ2 are substantially equal to each other.

一方、加速運転時には第1スロットル開度θ1と第2スロットル開度θ2とは互いに異ならされる。すなわち、図2に示されるようにアクセルペダル39の踏み込み量DEPが増大されると、第1スロットル開度θ1が直ちに増大される。次いで遅延時間tdだけ経過すると第2スロットル開度θ2が増加され始める。また、このとき第2スロットル開度θ2の増加速度Δθ2は第1スロットル開度θ1の増加速度Δθ1よりも小さくされる。すなわち、第1スロットル開度θ1は第2スロットル開度θ2よりも遅くかつゆっくりと増加される。   On the other hand, during acceleration operation, the first throttle opening θ1 and the second throttle opening θ2 are different from each other. That is, as shown in FIG. 2, when the depression amount DEP of the accelerator pedal 39 is increased, the first throttle opening θ1 is immediately increased. Next, when the delay time td has elapsed, the second throttle opening θ2 starts to increase. At this time, the increase speed Δθ2 of the second throttle opening θ2 is made smaller than the increase speed Δθ1 of the first throttle opening θ1. That is, the first throttle opening θ1 is increased more slowly and slowly than the second throttle opening θ2.

この場合、第2の気筒群1bの吸気圧Pm2すなわち出力がまず急激に増大する。次いで、いわゆるターボラグにより第2の気筒群1bの出力増加が抑制される時期に第1の気筒群1aの吸気圧Pm1すなわち出力が増大される。その結果、機関全体の出力が急激にかつ滑らかに増大する。したがって、加速応答性を高めることができ、同時に車両振動を抑制することができる。   In this case, the intake pressure Pm2, that is, the output of the second cylinder group 1b first increases rapidly. Next, the intake pressure Pm1 of the first cylinder group 1a, that is, the output is increased when the increase in the output of the second cylinder group 1b is suppressed by the so-called turbo lag. As a result, the output of the entire engine increases rapidly and smoothly. Therefore, acceleration responsiveness can be improved and vehicle vibration can be suppressed at the same time.

したがって、一般化して言うと、機関加速運転時には排気ターボチャージャ10が設けられていない第1の気筒群1aの出力増加を排気ターボチャージャ10が設けられている第2の気筒群1bの出力増加よりも遅らせるようにしているということになる。   Therefore, in general terms, during engine acceleration operation, the output increase of the first cylinder group 1a not provided with the exhaust turbocharger 10 is greater than the output increase of the second cylinder group 1b provided with the exhaust turbocharger 10. It means that it is trying to delay.

これに対して、機関加速運転時にも第1スロットル開度θ1及び第2スロットル開度θ2がほぼ等しくなるように制御すると、図3に示されるように、第2の気筒群1bにおけるターボラグの影響により機関全体の出力が振動する。その結果、車両が大きく振動することになる。排気ターボチャージャ10が設けられていない第1の気筒群1aの第1スロットル開度θ1をまず増大させ、次いで排気ターボチャージャ10が設けられている第2の気筒群1bの第2スロットル開度θ2を増大させた場合も、機関全体の出力が振動し、車両振動が大きくなることは明らかである。   On the other hand, if the first throttle opening θ1 and the second throttle opening θ2 are controlled so as to be substantially equal even during engine acceleration operation, the influence of the turbo lag in the second cylinder group 1b is obtained as shown in FIG. As a result, the output of the entire engine vibrates. As a result, the vehicle vibrates greatly. First throttle opening θ1 of the first cylinder group 1a not provided with the exhaust turbocharger 10 is first increased, and then second throttle opening θ2 of the second cylinder group 1b provided with the exhaust turbocharger 10 is provided. Obviously, the output of the entire engine vibrates and the vehicle vibration increases even when the engine is increased.

図4は上述した本発明による実施例の全気筒運転制御を実行するためのルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。図4を参照すると、まずステップ100では機関加速運転時であるか否かが判別される。機関加速運転時でないときには次いでステップ101に進み、通常制御が実行される。これに対し機関加速運転時のときには次いでステップ102に進み、上述した第2の気筒群1bの出力増加が第1の気筒群1aの出力増加に対して遅延される。   FIG. 4 shows a routine for executing the above-described all-cylinder operation control of the embodiment according to the present invention. This routine is executed by interruption every predetermined time. Referring to FIG. 4, first, at step 100, it is judged if the engine is being accelerated. If it is not during engine acceleration operation, the routine proceeds to step 101 where normal control is executed. On the other hand, at the time of engine acceleration operation, the routine proceeds to step 102 where the increase in output of the second cylinder group 1b is delayed with respect to the increase in output of the first cylinder group 1a.

上述した本発明による実施例では、出力増加を遅延させるために第1スロットル開度θ1の増加開始時期を第2スロットル開度θ2の増加開始時期よりも遅延させると共に第1スロットル開度θ1の増加速度Δθ1を第2スロットル開度θ2の増加速度Δθ2よりも低下させている。しかしながら、増加開始時期の遅延と増加速度の低下とのうちいずれか一方のみを行うようにしてもよい。   In the above-described embodiment according to the present invention, the increase start timing of the first throttle opening θ1 is delayed from the increase start timing of the second throttle opening θ2 and the first throttle opening θ1 is increased in order to delay the output increase. The speed Δθ1 is made lower than the increase speed Δθ2 of the second throttle opening θ2. However, only one of the delay of the increase start timing and the decrease of the increase speed may be performed.

また、上述した本発明による実施例ではスロットル開度を制御することにより出力制御を行うようにしている。しかしながら、空燃比ないし燃料供給量、点火時期又は吸排気弁の開弁時期を制御することなどにより出力制御を行うようにしてもよい。   Further, in the embodiment according to the present invention described above, output control is performed by controlling the throttle opening. However, output control may be performed by controlling the air-fuel ratio, the fuel supply amount, the ignition timing, or the intake / exhaust valve opening timing.

更に、複数の気筒を3つ以上の気筒群に分割した場合にも本発明を適用することができる。   Furthermore, the present invention can also be applied when a plurality of cylinders are divided into three or more cylinder groups.

内燃機関の全体図である。1 is an overall view of an internal combustion engine. 本発明による実施例を説明するためのタイムチャートである。It is a time chart for demonstrating the Example by this invention. 好ましくない例を説明するためのタイムチャートである。It is a time chart for demonstrating an unpreferable example. 本発明による実施例の全気筒運転制御ルーチンを実行するためのフローチャートである。It is a flowchart for performing the all-cylinder operation control routine of the Example by this invention.

符号の説明Explanation of symbols

1a 第1の気筒群
1b 第2の気筒群
5a,5b 吸気ダクト
9a,9b スロットル弁
10 排気ターボチャージャ
1a 1st cylinder group 1b 2nd cylinder group 5a, 5b Intake duct 9a, 9b Throttle valve 10 Exhaust turbocharger

Claims (5)

複数の気筒を出力を独立に制御可能な一対の気筒群に分割し、機関加速運転時には一方の気筒群の出力増加を他の気筒群の出力増加よりも遅らせるようにした内燃機関の出力制御装置。   An output control device for an internal combustion engine that divides a plurality of cylinders into a pair of cylinders whose outputs can be controlled independently, and delays the increase in output of one cylinder group from the increase in output of the other cylinder group during engine acceleration operation . 機関加速運転時には前記一方の気筒群の出力増加開始時期を前記他方の気筒群の出力増加開始時期よりも遅らせるようにした請求項1に記載の内燃機関の出力制御装置。   2. The output control device for an internal combustion engine according to claim 1, wherein an output increase start timing of the one cylinder group is delayed from an output increase start timing of the other cylinder group during engine acceleration operation. 機関加速運転時には前記一方の気筒群の出力増加速度を前記他方の気筒群の出力増加速度よりも小さくするようにした請求項1に記載の内燃機関の出力制御装置。   2. The output control apparatus for an internal combustion engine according to claim 1, wherein an output increase speed of the one cylinder group is made smaller than an output increase speed of the other cylinder group during engine acceleration operation. 前記他方の気筒群に排気駆動式過給機が設けられている請求項1から3までのいずれか一項に記載の内燃機関の出力制御装置。   The output control device for an internal combustion engine according to any one of claims 1 to 3, wherein an exhaust-drive supercharger is provided in the other cylinder group. 前記一対の気筒群が独立に制御可能なスロットル弁を具備し、スロットル開度を制御することによりそれぞれ対応する気筒群の出力を制御するようにした請求項1から4までのいずれか一項に記載の内燃機関の出力制御装置。   The pair of cylinder groups includes a throttle valve that can be controlled independently, and controls the output of the corresponding cylinder group by controlling the throttle opening degree. The output control apparatus of the internal combustion engine as described.
JP2006065689A 2006-03-10 2006-03-10 Output control device for internal combustion engine Pending JP2007239688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065689A JP2007239688A (en) 2006-03-10 2006-03-10 Output control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065689A JP2007239688A (en) 2006-03-10 2006-03-10 Output control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007239688A true JP2007239688A (en) 2007-09-20

Family

ID=38585460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065689A Pending JP2007239688A (en) 2006-03-10 2006-03-10 Output control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007239688A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7757489B2 (en) * 2004-07-15 2010-07-20 Volkswagen Aktiengesellschaft Engine configuration including an internal combustion engine
US20120023934A1 (en) * 2010-09-09 2012-02-02 Ford Global Technologies, Llc Method and system for a turbocharged engine
US20120023935A1 (en) * 2010-09-09 2012-02-02 Ford Global Technologies, Llc Method and system for a turbocharged engine
US20120023933A1 (en) * 2010-09-09 2012-02-02 Ford Global Technologies, Llc Method and system for a turbocharged engine
CN111336044A (en) * 2020-04-01 2020-06-26 广西玉柴机器股份有限公司 Air intake system of V-type engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7757489B2 (en) * 2004-07-15 2010-07-20 Volkswagen Aktiengesellschaft Engine configuration including an internal combustion engine
US20120023934A1 (en) * 2010-09-09 2012-02-02 Ford Global Technologies, Llc Method and system for a turbocharged engine
US20120023935A1 (en) * 2010-09-09 2012-02-02 Ford Global Technologies, Llc Method and system for a turbocharged engine
US20120023933A1 (en) * 2010-09-09 2012-02-02 Ford Global Technologies, Llc Method and system for a turbocharged engine
US8479511B2 (en) * 2010-09-09 2013-07-09 Ford Global Technologies, Llc Method and system for a turbocharged engine
US8511084B2 (en) * 2010-09-09 2013-08-20 Ford Global Technologies, Llc Method and system for a turbocharged engine
US8701409B2 (en) * 2010-09-09 2014-04-22 Ford Global Technologies, Llc Method and system for a turbocharged engine
US8713937B2 (en) 2010-09-09 2014-05-06 Ford Global Technologies, Llc Method and system for a turbocharged engine
CN111336044A (en) * 2020-04-01 2020-06-26 广西玉柴机器股份有限公司 Air intake system of V-type engine

Similar Documents

Publication Publication Date Title
JP4650321B2 (en) Control device
JP6135693B2 (en) Supercharged engine control device
WO2014013814A1 (en) Control device and control method for internal combustion engine
EP2267284A1 (en) Supercharger controller for internal-combustion engine
JP4483907B2 (en) Vehicle control method and vehicle control apparatus
JP2005127247A (en) Exhaust recirculation control device for internal combustion engine
JP2007239688A (en) Output control device for internal combustion engine
JP2008506071A (en) Device with internal combustion engine
US7225074B2 (en) Engine control system for an internal combustion engine having a plurality of cylinders
JP2018135872A (en) Exhaust system of internal combustion engine
JP2008190412A (en) Supercharger control device for internal combustion engine
WO2010119567A1 (en) Controller of internal combustion engine
JP6201439B2 (en) Control device and control method for internal combustion engine
JP4501761B2 (en) Control device for internal combustion engine
JP2009092055A (en) Control device for internal combustion engine
JP4438537B2 (en) Ignition timing control device for spark ignition internal combustion engine
JP5573701B2 (en) Internal combustion engine
JP5516349B2 (en) Control device for internal combustion engine
JP5472481B2 (en) Engine control device
JP2007247557A (en) Start control device for internal combustion engine
JP2009002186A (en) Supercharger control device of internal combustion engine
JP2020101165A (en) Internal combustion engine
JP6236893B2 (en) Exhaust gas recirculation device and exhaust gas recirculation method for an internal combustion engine with a turbocharger
JP2018076833A (en) Control system of internal combustion engine
JP2005325824A (en) Variable intake device for internal combustion engine