JP2007239650A - Controller for internal combustion engine - Google Patents

Controller for internal combustion engine Download PDF

Info

Publication number
JP2007239650A
JP2007239650A JP2006064271A JP2006064271A JP2007239650A JP 2007239650 A JP2007239650 A JP 2007239650A JP 2006064271 A JP2006064271 A JP 2006064271A JP 2006064271 A JP2006064271 A JP 2006064271A JP 2007239650 A JP2007239650 A JP 2007239650A
Authority
JP
Japan
Prior art keywords
flow rate
target
intake air
throttle
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006064271A
Other languages
Japanese (ja)
Inventor
Sakanori Nishimura
栄記 西村
Hideki Hagari
秀樹 葉狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006064271A priority Critical patent/JP2007239650A/en
Priority to DE102006043887A priority patent/DE102006043887B4/en
Publication of JP2007239650A publication Critical patent/JP2007239650A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/106Detection of demand or actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/37Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with temporary storage of recirculated exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10019Means upstream of the fuel injection system, carburettor or plenum chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10052Plenum chambers special shapes or arrangements of plenum chambers; Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/10386Sensors for intake systems for flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/0201Housings; Casings; Frame constructions; Lids; Manufacturing or assembling thereof
    • F02M35/021Arrangements of air flow meters in or on air cleaner housings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a throttle control means capable of ensuring high precision in control by setting throttle opening in accordance with an operation condition when controlling the throttle opening to obtain a target flow rate of intake air. <P>SOLUTION: This controller for the internal combustion engine is provided with a target effective opening area calculating means 11 for calculating target effective opening area of an intake system based on target flow rate of suction air, atmospheric pressure, pressure in the intake system, and intake air temperature and a throttle opening indicating means 15 storing correspondence of effective opening area of the intake system to the throttle opening in advance. The throttle opening indicating means 15 outputs target throttle opening corresponding to the target effective opening area calculated by the target effective opening area calculating means 11 based on storage. A throttle opening control means controls throttle opening based on the target throttle opening outputted from the throttle opening indicating means 15. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、内燃機関の制御装置に関し、更に詳しくは、目標吸入空気流量が得られるようにスロットル開度を制御するようにした内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine that controls a throttle opening so that a target intake air flow rate can be obtained.

近年、ドライバや車輌側からの駆動力の要求値として、車輌の制御に直接作用する物理量である内燃機関の出力軸トルクを用い、このトルクを内燃機関の出力の目標値として、内燃機関を制御する制御量である空気量や燃料量や点火時期を決定することで、良好な走行性能を得る技術が提案されている。更に、前記内燃機関を制御の制御量の中でも、内燃機関の出力軸トルクに最も影響の大きい制御量は、空気量であることは一般に知られており、この空気量を高精度に制御するための技術も提案されている。   In recent years, the output shaft torque of an internal combustion engine, which is a physical quantity that directly affects vehicle control, is used as a required driving force value from the driver or vehicle side, and the internal combustion engine is controlled using this torque as a target value for the output of the internal combustion engine. There has been proposed a technique for obtaining good running performance by determining an air amount, a fuel amount, and an ignition timing, which are control amounts to be controlled. Further, it is generally known that among the control amounts for controlling the internal combustion engine, the control amount that has the greatest influence on the output shaft torque of the internal combustion engine is the air amount. In order to control the air amount with high accuracy, This technology has also been proposed.

例えば、内燃機関のスロットルに連設したアクチュエータを駆動してスロットル開度を制御する内燃機関の制御装置において、内燃機関の目標トルクに対応した目標吸入空気流量を、スロットル前後の差圧と空気通過面積と流量係数とを基本とするオリフィスの流量式に適用し、スロットルの目標開口面積を求め、このスロットル目標開口面積を達成するスロットル開度を設定するようにした制御装置が提案されている。(例えば、特許文献1参照)   For example, in an internal combustion engine controller that controls the throttle opening by driving an actuator connected to the throttle of the internal combustion engine, the target intake air flow rate corresponding to the target torque of the internal combustion engine is changed to the differential pressure before and after the throttle and the air passage. There has been proposed a control device that is applied to an orifice flow rate equation based on an area and a flow coefficient, obtains a target opening area of the throttle, and sets a throttle opening degree that achieves the target opening area of the throttle. (For example, see Patent Document 1)

特許文献1に示された装置によれば、目標吸入空気流量を達成するスロットル開度をオリフィスの流量式に適用して算出すると、大気圧や吸気温度のような環境条件が変化した場合や排気ガスを吸気管に導入する場合(以下、EGRと称する)においても、良好に目標吸入空気流量を達成できるという効果があった。   According to the apparatus disclosed in Patent Document 1, when the throttle opening degree for achieving the target intake air flow rate is calculated by applying to the flow rate equation of the orifice, environmental conditions such as atmospheric pressure and intake air temperature change or exhaust Even when the gas is introduced into the intake pipe (hereinafter referred to as EGR), the target intake air flow rate can be satisfactorily achieved.

特開平11−229904号公報JP 11-229904 A

しかしながら、前記のような従来の装置では、運転状態に応じて開口面積が変化するスロットルにおいて、スロットルの形状や開口面積に大きく影響する流量係数を、内燃機関の回転数と、吸気管内圧(以下、インマニ圧と称する)と大気圧の圧力比より求めているが、スロットルの開度や開口面積が決まっていない状態では、正確に流量係数を設定することは困難であり、そのため、目標吸入空気流量を得るスロットル目標開口面積が正確に算出できず、目標吸入空気流量と実吸入空気流量の間にずれが生じてしまうという問題があった。更に、予め流量係数を求めてマップとして設定しておくことも容易なことではないといった問題があった。   However, in the conventional apparatus as described above, in the throttle whose opening area changes according to the operating state, the flow coefficient that greatly affects the shape and opening area of the throttle is determined based on the rotational speed of the internal combustion engine and the intake pipe internal pressure (hereinafter referred to as the intake pipe internal pressure). However, it is difficult to set the flow coefficient accurately when the throttle opening and the opening area are not determined. There was a problem that the target opening area of the throttle for obtaining the flow rate could not be accurately calculated, and a deviation occurred between the target intake air flow rate and the actual intake air flow rate. Furthermore, there is a problem that it is not easy to obtain the flow coefficient and set it as a map in advance.

この発明は、従来の装置に於ける前記のような問題点を解決するためになされたもので、スロットル開度を目標吸入空気流量が得られるように制御する際、環境条件や運転状態に関わらず目標吸入空気流量が得られる目標スロットル開度を設定することで、目標吸入空気流量の制御精度を確保することができる内燃機関の制御装置を提供することを目的としている。   The present invention has been made to solve the above-described problems in the conventional apparatus. When controlling the throttle opening so that the target intake air flow rate can be obtained, the present invention relates to environmental conditions and operating conditions. It is an object of the present invention to provide a control device for an internal combustion engine that can ensure the control accuracy of the target intake air flow rate by setting the target throttle opening at which the target intake air flow rate can be obtained.

この発明に係る内燃機関の制御装置は、内燃機関の出力軸トルクを制御目標とし、前記制御目標に基づいて前記内燃機関の吸入空気量を制御して前記内燃機関の出力を制御するようにした内燃機関の制御装置に於いて、前記内燃機関の吸気系に設けられたスロットルの開度を制御して前記吸気系の有効開口面積を制御するスロットル開度制御手段、前記スロットルの上流側の大気圧を検出する大気圧検出手段、前記スロットルの下流側の前記吸気系内の圧力を検出する吸気系内圧力検出手段、前記スロットルの大気側の吸気温度を検出する吸気温度検出手段、前記内燃機関の運転状態に基づいて算出された目標吸入空気流量と前記大気圧検出手段により検出された大気圧と前記吸気系内圧力検出手段により検出された吸気系内の圧力と前記吸気温度検出手段により検出された吸気温度とに基づいて前記吸気系の目標有効開口面積を算出する目標有効開口面積算出手段、前記吸気系の有効開口面積と前記スロットルの開度との対応を予め記憶したスロットル開度指示手段を備え、前記スロットル開度指示手段は、前記目標有効開口面積算出手段により算出された目標有効開口面積に対応する目標スロットル開度を前記記憶に基づいて出力し、前記スロットル開度制御手段は、前記スロットル開度指示手段から出力された目標スロットル開度に基づいて前記スロットルの開度を制御するようにしたものである。   The control apparatus for an internal combustion engine according to the present invention uses the output shaft torque of the internal combustion engine as a control target, and controls the intake air amount of the internal combustion engine based on the control target to control the output of the internal combustion engine. In the control device for an internal combustion engine, a throttle opening control means for controlling an effective opening area of the intake system by controlling an opening of a throttle provided in the intake system of the internal combustion engine, a large upstream side of the throttle An atmospheric pressure detecting means for detecting an atmospheric pressure; an intake system pressure detecting means for detecting a pressure in the intake system downstream of the throttle; an intake air temperature detecting means for detecting an intake air temperature on the atmosphere side of the throttle; and the internal combustion engine The target intake air flow rate calculated based on the operating state of the engine, the atmospheric pressure detected by the atmospheric pressure detecting means, the pressure in the intake system detected by the intake system internal pressure detecting means, and the intake air Target effective opening area calculating means for calculating the target effective opening area of the intake system based on the intake air temperature detected by the temperature detecting means, and correspondence between the effective opening area of the intake system and the opening of the throttle is stored in advance. The throttle opening degree instruction means outputs a target throttle opening degree corresponding to the target effective opening area calculated by the target effective opening area calculation means based on the memory, and the throttle opening degree instruction means The opening control means controls the throttle opening based on the target throttle opening output from the throttle opening instruction means.

又、この発明に係る内燃機関の制御装置は、前記スロットル開度指示手段は、前記吸気系の有効開口面積と前記スロットルの開度との対応を1対1の割合で記憶していることを特徴とするものである。   In the control device for an internal combustion engine according to the present invention, the throttle opening degree instruction means stores the correspondence between the effective opening area of the intake system and the opening degree of the throttle at a ratio of 1: 1. It is a feature.

更に、この発明に係る内燃機関の制御装置は、吸気温度と音速との対応を予め記憶した音速指示手段を備え、該音速指示手段は前記吸気温度検出手段により検出された吸気温度に対応する音速を前記記憶に基づいて出力し、前記目標有効開口面積算出手段は、前記音速指示手段から出力された前記音速を用いて前記目標有効開口面積を算出することを特徴とするものである。   The control device for an internal combustion engine according to the present invention further includes a sonic speed instruction means for storing a correspondence between the intake air temperature and the sonic speed in advance, and the sonic speed instruction means corresponds to the sonic speed corresponding to the intake air temperature detected by the intake air temperature detecting means. Is output based on the memory, and the target effective opening area calculating means calculates the target effective opening area using the sound speed output from the sound speed instructing means.

又、この発明に係る内燃機関の制御装置は、前記吸入系内の圧力と前記大気圧との比に対応する吸入空気の無次元流量を予め記憶した無次元流量指示手段を備え、該無次元流量指示手段は、前記吸気系内圧力検出手段により検出された吸気系内の圧力と前記大気圧検出手段により検出された大気圧との圧力比に対応する無次元流量を前記記憶に基づいて出力し、前記目標有効開口面積算出手段は、前記無次元流量指示手段から出力された無次元流量を用いて前記目標有効開口面積を算出することを特徴とするものである。
この発明に於いて、無次元流量とは、目標吸入空気量を、音速と目標有効開口面積との積で除算した値を言う。
The control device for an internal combustion engine according to the present invention further comprises dimensionless flow rate indicating means for storing in advance a dimensionless flow rate of intake air corresponding to a ratio between the pressure in the suction system and the atmospheric pressure. The flow rate instruction means outputs a dimensionless flow rate corresponding to the pressure ratio between the pressure in the intake system detected by the intake system internal pressure detection means and the atmospheric pressure detected by the atmospheric pressure detection means based on the memory The target effective opening area calculating means calculates the target effective opening area using the dimensionless flow rate output from the dimensionless flow rate indicating means.
In the present invention, the dimensionless flow rate means a value obtained by dividing the target intake air amount by the product of the sound speed and the target effective opening area.

更に、この発明に係る内燃機関の制御装置は、前記無次元流量指示手段を、前記圧力比が第1の所定値以下のときは、前記圧力比が前記第1の所定値に対応する無次元流量と同一の無次元流量を出力するよう構成したことを特徴とするものである。   Furthermore, the control apparatus for an internal combustion engine according to the present invention is configured such that the dimensionless flow rate indicating means is configured so that when the pressure ratio is equal to or less than a first predetermined value, the pressure ratio corresponds to the first predetermined value. It is configured to output a dimensionless flow rate that is the same as the flow rate.

又、この発明に係る内燃機関の制御装置は、前記無次元流量指示手段を、前記圧力比が前記第1の所定値より大きい第2の所定値以上のときは、前記第2の所定値に対応する無次元流量と同一の無次元流量を出力するよう構成したことを特徴とするものである。   Further, the control device for an internal combustion engine according to the present invention sets the dimensionless flow rate indicating means to the second predetermined value when the pressure ratio is not less than a second predetermined value larger than the first predetermined value. It is configured to output a dimensionless flow rate that is the same as the corresponding dimensionless flow rate.

又、この発明に係る内燃機関の制御装置は、前記圧力比が前記第2の所定値以上のときは、前記目標吸入空気流量が運転状態検出手段により検出された吸入空気流量より大きくなった場合に、前記目標吸入空気流量と前記検出された吸入空気流量との差に応じた補正値を前記スロットル開度指示手段から出力された目標スロットル開度に加算することを特徴とするものである。   In the control device for an internal combustion engine according to the present invention, when the pressure ratio is equal to or greater than the second predetermined value, the target intake air flow rate is greater than the intake air flow rate detected by the operating state detection means. In addition, a correction value corresponding to a difference between the target intake air flow rate and the detected intake air flow rate is added to the target throttle opening degree output from the throttle opening degree instruction means.

更に、この発明に係る内燃機関の制御装置は、前記大気圧検出手段と前記吸気系内圧検出手段と前記吸気温度検出手段のうちの少なくとも1つは、前記検出に代えて推定を行う推定手段により構成され、前記目標有効開口面積算出手段は、前記推定された値を用いて前記吸気管の目標有効開口面積を算出することを特徴とするものである。   Furthermore, in the control device for an internal combustion engine according to the present invention, at least one of the atmospheric pressure detection means, the intake system internal pressure detection means, and the intake air temperature detection means is estimated by an estimation means that performs estimation instead of the detection. The target effective opening area calculating means is configured to calculate a target effective opening area of the intake pipe using the estimated value.

この発明による内燃機関の制御装置によれば、内燃機関の運転状態に基づいて算出された目標吸入空気流量と前記大気圧検出手段により検出された大気圧と前記吸気系内圧力検出手段により検出された吸気系内の圧力と前記吸気温度検出手段により検出された吸気温度とに基づいて前記吸気系の目標有効開口面積を算出する目標有効開口面積算出手段、及び吸気管の有効開口面積とスロットルの開度との対応を予め記憶したスロットル開度指示手段を備え、前記スロットル開度指示手段は、前記目標有効開口面積算出手段により算出された目標有効開口面積に対応する目標スロットル開度を前記記憶に基づいて出力し、前記スロットル開度制御手段は、前記スロットル開度指示手段から出力された目標スロットル開度に基づいて前記スロットルの開度を制御するようにしたので、環境条件の変化やEGR導入等の運転状態の変化に関わらず目標吸入空気流量を達成するスロットル開度を設定でき、目標吸入空気流量の制御精度を高精度に確保することができる。   According to the control apparatus for an internal combustion engine according to the present invention, the target intake air flow rate calculated based on the operating state of the internal combustion engine, the atmospheric pressure detected by the atmospheric pressure detection means, and the intake system internal pressure detection means are detected. Target effective opening area calculating means for calculating a target effective opening area of the intake system based on the pressure in the intake system and the intake air temperature detected by the intake air temperature detecting means, and the effective opening area of the intake pipe and the throttle Throttle opening instruction means for storing the correspondence with the opening in advance, the throttle opening instruction means storing the target throttle opening corresponding to the target effective opening area calculated by the target effective opening area calculating means; The throttle opening control means is configured to output the slot based on the target throttle opening output from the throttle opening instruction means. The throttle opening that achieves the target intake air flow rate can be set regardless of changes in environmental conditions or changes in operating conditions such as the introduction of EGR, thereby improving the control accuracy of the target intake air flow rate. Accuracy can be ensured.

又、この発明による内燃機関の制御装置によれば、前記スロットル開度指示手段は、前記吸気系の有効開口面積と前記スロットルの開度との対応を1対1の割合で記憶しているので、その記憶内容の構成が容易となる。   According to the control apparatus for an internal combustion engine according to the present invention, the throttle opening instruction means stores the correspondence between the effective opening area of the intake system and the opening of the throttle at a ratio of 1: 1. The structure of the stored contents becomes easy.

更に、この発明による内燃機関の制御装置によれば、吸気温度と音速との対応を予め記憶した音速指示手段を備えているので、制御装置の演算の負担を少なくすることができる。   Furthermore, according to the control apparatus for an internal combustion engine according to the present invention, since the sonic speed instructing means for storing the correspondence between the intake air temperature and the sonic speed in advance is provided, the calculation burden of the control apparatus can be reduced.

又、この発明による内燃機関の制御装置によれば、吸入系内の圧力と前記大気圧との比に対応する吸入空気の無次元流量を予め記憶した無次元流量指示手段を備えているので、制御装置の演算の負担を少なくすることができる。   Further, according to the control apparatus for an internal combustion engine according to the present invention, since the non-dimensional flow rate indicating means for storing in advance the non-dimensional flow rate of the intake air corresponding to the ratio between the pressure in the intake system and the atmospheric pressure is provided. The calculation burden on the control device can be reduced.

又、この発明による内燃機関の制御装置によれば、前記無次元流量指示手段を、吸気系内の圧力と大気圧との圧力比が第1の所定値以下のときは、前記圧力比が前記第1の所定値に対応する無次元流量と同一の無次元流量を出力するよう構成したので、スロットルを通る空気の流量が飽和した場合にも内燃機関を適切に制御することができる。   Further, according to the control device for an internal combustion engine according to the present invention, the dimensionless flow rate indicating means is configured such that when the pressure ratio between the pressure in the intake system and the atmospheric pressure is equal to or less than a first predetermined value, the pressure ratio is Since the dimensionless flow rate that is the same as the dimensionless flow rate corresponding to the first predetermined value is output, the internal combustion engine can be appropriately controlled even when the flow rate of air passing through the throttle is saturated.

又、この発明による内燃機関の制御装置によれば、前記無次元流量指示手段を、前記圧力比が前記第1の所定値より大きい第2の所定値以上のときは、前記第2の所定値に対応する無次元流量と同一の無次元流量を出力するよう構成したので、吸入空気脈動による吸気管内の圧力の測定誤差の影響を少なくすることができる。   Further, according to the control device for an internal combustion engine according to the present invention, the dimensionless flow rate indicating means may be configured such that when the pressure ratio is equal to or larger than a second predetermined value greater than the first predetermined value, the second predetermined value is set. Therefore, the influence of the measurement error of the pressure in the intake pipe due to the intake air pulsation can be reduced.

更に、この発明による内燃機関の制御装置によれば、前記圧力比が前記第2の所定値以上のときは、前記目標吸入空気流量が運転状態検出手段により検出された吸入空気流量より大きくなった場合に、前記目標吸入空気流量と前記検出された吸入空気流量との差に応じた補正値を前記スロットル開度指示手段から出力された目標スロットル開度に加算するようにしたので、目標吸入空気量が実際の吸入空気量より大きくなった場合に、目標吸入空気量を実際の吸入空気量に近づけることができるため、スロットル全開相当の実際の吸入空気量、つまりスロットル全開の出力性能を確保することができる。   Further, according to the control device for an internal combustion engine according to the present invention, when the pressure ratio is equal to or greater than the second predetermined value, the target intake air flow rate is larger than the intake air flow rate detected by the operating state detecting means. In this case, since the correction value corresponding to the difference between the target intake air flow rate and the detected intake air flow rate is added to the target throttle opening output from the throttle opening instruction means, the target intake air When the amount becomes larger than the actual intake air amount, the target intake air amount can be brought close to the actual intake air amount, so that the actual intake air amount corresponding to the throttle fully opened, that is, the output performance of the throttle fully opened is ensured. be able to.

又、この発明による内燃機関の制御装置によれば、前記大気圧検出手段と前記吸気系内圧検出手段と前記吸気温度検出手段のうちの少なくとも1つは、前記検出に代えて推定を行う推定手段により構成され、前記目標有効開口面積算出手段は、前記推定された値を用いて前記吸気管の目標有効開口面積を算出するようにしたので、少なくとも前記検出手段の1つを省略することができ構成を簡単且つ安価にすることができる。   According to the control apparatus for an internal combustion engine according to the present invention, at least one of the atmospheric pressure detecting means, the intake system internal pressure detecting means, and the intake air temperature detecting means is an estimating means for performing estimation instead of the detection. Since the target effective opening area calculating means calculates the target effective opening area of the intake pipe using the estimated value, at least one of the detecting means can be omitted. The configuration can be simple and inexpensive.

実施の形態1
以下、図面を参照して、この発明の実施の形態1について詳細に説明する。
図1は、この発明の実施の形態1による内燃機関の制御装置を説明するための構成図である。図1に於いて、エアフローセンサ2は、所謂エンジンである内燃機関1の吸気系である吸気管の上流に設けられ、内燃機関1の吸入空気流量を測定する。更に、吸気温度を測定するための吸気温度検出手段としての吸気温度センサ3がエアフローセンサ2と一体に設けられている。なお、吸気温度センサ3はエアフローセンサ2と別体であっても良い。又、吸気温度を検出する吸気温度センサ3を設ける代わりに、吸気温度を推定する手段を用いてもよい。エアフローセンサ2の下流側に設けられたスロットル4は、電子的に制御されて内燃機関1の吸入空気流量を調整する。
Embodiment 1
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram for illustrating a control device for an internal combustion engine according to Embodiment 1 of the present invention. In FIG. 1, an air flow sensor 2 is provided upstream of an intake pipe that is an intake system of an internal combustion engine 1 that is a so-called engine, and measures an intake air flow rate of the internal combustion engine 1. Further, an intake air temperature sensor 3 as an intake air temperature detecting means for measuring the intake air temperature is provided integrally with the air flow sensor 2. The intake air temperature sensor 3 may be separate from the air flow sensor 2. Further, instead of providing the intake air temperature sensor 3 for detecting the intake air temperature, means for estimating the intake air temperature may be used. A throttle 4 provided on the downstream side of the air flow sensor 2 is electronically controlled to adjust the intake air flow rate of the internal combustion engine 1.

スロットル4の開度を測定するために、スロットルポジションセンサ5が設けられている。スロットル4の下流のサージタンク6には、サージタンク6の内部の圧力を測定する吸気系内圧力検出手段であるインマニ圧センサ7が設けられている。なお、吸気管内の圧力を測定するインマニ圧センサ7を設ける代わりに、インマニ圧を推定する手段を用いてもよい。サージタンク6には、EGRバルブ8が接続されている。   In order to measure the opening degree of the throttle 4, a throttle position sensor 5 is provided. A surge tank 6 downstream of the throttle 4 is provided with an intake manifold pressure sensor 7 which is an intake system internal pressure detection means for measuring the pressure inside the surge tank 6. Instead of providing the intake manifold pressure sensor 7 for measuring the pressure in the intake pipe, a means for estimating the intake manifold pressure may be used. An EGR valve 8 is connected to the surge tank 6.

図2は、この発明の実施の形態1による内燃機関の制御装置を示すブロック図である。図2に於いて、エアフローセンサ2で測定された吸入空気流量と、吸気温度センサ3で測定された吸気温度と、スロットルポジションセンサ5で測定されたスロットル4の開度と、インマニ圧センサ7で測定されたインマニ圧と、大気圧センサ10で測定された大気圧は、電子制御ユニット(以下、ECUと称する)9に入力される。なお、大気圧を測定する大気圧センサ10の代わりに、大気圧を推定する手段を用いてもよい。又、前記以外の各種センサ101からもECU9に測定値が入力される。   2 is a block diagram showing an internal combustion engine control apparatus according to Embodiment 1 of the present invention. In FIG. 2, the intake air flow rate measured by the air flow sensor 2, the intake air temperature measured by the intake air temperature sensor 3, the opening degree of the throttle 4 measured by the throttle position sensor 5, and the intake manifold pressure sensor 7 The measured intake manifold pressure and the atmospheric pressure measured by the atmospheric pressure sensor 10 are input to an electronic control unit (hereinafter referred to as ECU) 9. Instead of the atmospheric pressure sensor 10 that measures the atmospheric pressure, a means for estimating the atmospheric pressure may be used. In addition, measured values are input to the ECU 9 from various sensors 101 other than those described above.

ECU9は、入力された各種データに基づいて目標トルクを設定し、更に設定された目標トルクを達成する目標吸入空気流量を設定し、この目標吸入空気流量を達成するように、以下に説明するようにして目標有効開口面積を算出して目標スロットル開度を求める。そして、この目標スロットル開度を達成するように、スロットル4の開度を制御する。又、同時にインジェクタや点火コイルやEGRバルブ8を含む各種アクチュエータ102への指示値も算出する。   The ECU 9 sets a target torque based on various input data, sets a target intake air flow rate that achieves the set target torque, and will be described below so as to achieve the target intake air flow rate. The target effective opening area is calculated to obtain the target throttle opening. Then, the opening degree of the throttle 4 is controlled so as to achieve the target throttle opening degree. At the same time, the command values to the various actuators 102 including the injector, ignition coil, and EGR valve 8 are also calculated.

次に、目標吸入空気流量を達成するための目標スロットル開度が、ECU9によりどのようにして算出されるかについて説明する。所謂、絞り式流量計の体積流量算出式は、次に示す式(1)により表される。

Figure 2007239650
ここで、Qaを目標吸入空気量、a0を大気の音速、Cを流量係数、Atをスロットルの開口面積、Peをインマニ圧、Pを大気圧、kを比熱比とする。 Next, how the target throttle opening for achieving the target intake air flow rate is calculated by the ECU 9 will be described. The so-called throttle flow meter volume flow rate calculation formula is expressed by the following formula (1).
Figure 2007239650
Here, the target intake air amount Qa, the speed of sound atmosphere a 0, to C a flow coefficient, the opening area of the throttle of A t, P e the intake manifold pressure, the P 0 atmospheric pressure, and the specific heat ratio k.

又、無次元流量σを、次に示す式(2)で定義すると、

Figure 2007239650
式(1)は、次に示す式(3)のように表すことができる。
Figure 2007239650
Further, when the dimensionless flow rate σ is defined by the following equation (2),
Figure 2007239650
Expression (1) can be expressed as the following Expression (3).
Figure 2007239650

又、大気の音速a0は、Rをガス定数、T0を吸気温度とすると、次に示す式(4)で表される。

Figure 2007239650
The sound velocity a 0 in the atmosphere is expressed by the following equation (4), where R is a gas constant and T 0 is an intake air temperature.
Figure 2007239650

ここで、目標トルクを達成するために必要な目標吸入空気流量Qaと、大気の音速a0、無次元流量σが与えられた場合に、流量係数Cとスロットル開口面積Atの積で表される有効開口面積CAtは、式(3)を変形した次に示す式(5)により算出することができる。

Figure 2007239650
ECU9は、以上のようにして算出した目標有効開口面積CAtに基づいて、目標スロットル開度を算出し、スロットル4の開度を制御するものである。 Here, when the target intake air flow rate Qa required to achieve the target torque, speed of sound a 0 in the atmosphere, the dimensionless flow rate σ is given, represented by the product of the flow coefficient C and the throttle opening area A t that the effective opening area CA t can be calculated by the equation (5) shown in the following a modification of the equation (3).
Figure 2007239650
ECU9, based on the target effective opening area CA t calculated as described above, it calculates a target throttle opening degree, and controls the opening degree of the throttle 4.

図3は、この発明の実施の形態1による内燃機関の制御装置のスロットル制御部を示すブロック図である。このスロットル制御部は、ECU9内に構成されている。図3に於いて、目標有効開口面積算出手段である第1の指示部11は、目標吸入空気量Qaと大気中の音速a0と無次元流量σとからスロットル4の目標有効開口面積CAtを演算し、その演算結果を第5の指示部15に入力する。音速指示手段である第2の指示部12は、吸気温度センサ3により検出された吸気温度T0から大気中の音速a0を求め、これを第1の指示部11に入力する。 FIG. 3 is a block diagram showing a throttle control unit of the control apparatus for an internal combustion engine according to the first embodiment of the present invention. The throttle control unit is configured in the ECU 9. In FIG. 3, the first indicating unit 11 serving as a target effective opening area calculating means calculates a target effective opening area CA t of the throttle 4 from the target intake air amount Qa, the sound velocity a 0 in the atmosphere, and the dimensionless flow rate σ. And the calculation result is input to the fifth instruction unit 15. The second instruction unit 12, which is a sound speed instruction means, obtains the sound speed a 0 in the atmosphere from the intake air temperature T 0 detected by the intake air temperature sensor 3 and inputs this to the first instruction unit 11.

第3の指示部13は、大気圧センサ10が検出した大気圧P0とインマニ圧センサ7が検出したインマニ圧Peとの圧力比Pe/Pを判定する。無次元流量指示手段である第4の指示部14は、第3の指示部13からの圧力比Pe/Pに基づいて無次元流量σを算出し、これを第1の指示部11に入力する。スロットル開度指示手段である第5の指示部15は、第1の指示部11からの目標有効開口面積CAtに基づいて目標スロットル開度Atを算出し、これを出力する。ここに、無次元流量とは、目標吸入空気量を、音速と目標有効開口面積との積で除算した値を言う。第6の指示部16は、後述するように、インマニ圧Peと大気圧Pの圧力比Pe/Pが所定値2以上の時に、目標吸入空気量Qaが実際の吸入空気量より大きくなった場合には、目標吸入空気量Qaと実際の吸入空気量との差に応じた所定値を出力し、この所定値を目標スロットル開度に加算して目標スロットル開度Atを補正する。 The third instruction unit 13 determines the pressure ratio P e / P 0 of the intake manifold pressure P e of the atmospheric pressure P 0 and the intake manifold pressure sensor 7 that the atmospheric pressure sensor 10 has detected is detected. The fourth instruction unit 14, which is a dimensionless flow rate instruction means, calculates a dimensionless flow rate σ based on the pressure ratio Pe / P 0 from the third instruction unit 13, and supplies this to the first instruction unit 11. input. Fifth instruction unit 15 of a throttle opening instructing means calculates a target throttle opening degree A t based on the target effective opening area CA t from the first instruction unit 11, and outputs this. Here, the dimensionless flow rate means a value obtained by dividing the target intake air amount by the product of the sound speed and the target effective opening area. Instruction unit 16 of the sixth, as described later, when the pressure ratio P e / P 0 of the intake manifold pressure P e and the atmospheric pressure P 0 is a predetermined value or more 2, than the target intake air amount Qa is the actual intake air amount if it becomes larger, it outputs a predetermined value corresponding to the difference between the actual intake air amount and the target intake air volume Qa, and the corrected target throttle opening degree a t by adding the predetermined value to the target throttle opening To do.

次に、この発明の実施の形態1に係る内燃機関の制御装置の動作を説明する。図2及び図3に於いて、エアフローセンサ2で測定された実際の吸入空気流量と、吸気温度センサ3で測定された吸気温度T0と、スロットルポジションセンサ5で測定されたスロットル4の開度と、インマニ圧センサ7で測定されたインマニ圧Peと、大気圧センサ10で測定された大気圧Pとが、ECU9に入力される。ECU9は、これらの入力されたデータに基づいて、前述したように、内燃機関の目標トルクを設定し、この設定した目標トルクを達成する目標吸入空気流量Qaを設定する。 Next, the operation of the control apparatus for an internal combustion engine according to the first embodiment of the present invention will be described. 2 and 3, the actual intake air flow rate measured by the air flow sensor 2, the intake air temperature T 0 measured by the intake air temperature sensor 3, and the opening of the throttle 4 measured by the throttle position sensor 5. If the intake manifold pressure P e measured by the intake manifold pressure sensor 7, and the atmospheric pressure P 0 measured by the atmospheric pressure sensor 10 is input to the ECU 9. Based on these input data, the ECU 9 sets the target torque of the internal combustion engine as described above, and sets the target intake air flow rate Qa that achieves the set target torque.

ECU9内に設けられたスロットル制御部に於ける第1の指示部11は、式(5)を用いて、目標吸入空気量Qa、大気中の音速a0、無次元流量σから、目標吸入空気量Qaを達成するための目標有効開口面積CAtを算出する。このように、絞り式流量計の体積流量算出式を基に目標有効開口面積CAtを算出すので、環境条件の変化やEGR導入等の内燃機関の運転状態が変化した場合においても、良好に目標吸入空気量Qaを達成する目標有効開口面積CAtを算出することができる。 The first instruction unit 11 in the throttle control unit provided in the ECU 9 uses the equation (5) to calculate the target intake air from the target intake air amount Qa, the sound velocity a 0 in the atmosphere, and the dimensionless flow rate σ. calculating a target effective opening area CA t to achieve the amount Qa. Thus, since to calculate the target effective opening area CA t based on the volumetric flow rate calculation equation of the throttle flowmeter, even when the operating state of the internal combustion engine such as a change and EGR introduction of environmental conditions have changed, good it is possible to calculate the target effective opening area CA t to achieve the target intake air quantity Qa.

ところで、第1の指示部11の演算で必要となる大気中の音速a0は、式(4)を用いてECU9内で演算するとECU9に於ける演算の負荷が膨大となるため実用的ではない。そこで、実施の形態1では、ECU9内での演算負荷を抑えるために、第1の指示部11の演算前に予め大気の音速の理論値を算出して吸気温度T0と音速a0とのマップとして第2の指示部12に記憶させている。第2の指示部12は、この記憶したマップから吸気温度T0に対応する大気中の音速a0を算出し、この算出した音速a0を第1の指示部11に入力する。 By the way, if the sound speed a 0 in the atmosphere necessary for the calculation of the first instruction unit 11 is calculated in the ECU 9 using the equation (4), the calculation load in the ECU 9 becomes enormous, which is not practical. . Therefore, in the first embodiment, in order to suppress the calculation load in the ECU 9, a theoretical value of the atmospheric sound speed is calculated in advance before the calculation of the first instruction unit 11, and the intake air temperature T 0 and the sound speed a 0 are calculated. The map is stored in the second instruction unit 12 as a map. The second instruction unit 12 calculates a sound speed a 0 in the atmosphere corresponding to the intake air temperature T 0 from the stored map, and inputs the calculated sound speed a 0 to the first instruction unit 11.

更に、第1の指示部11に於ける演算で必要となる無次元流量σについても、式(2)を用いてECU9内で演算するのはECU9に於ける演算の負荷が膨大となるため実用的ではない。そこで、実施の形態1では、ECU9内での演算負荷を抑えるために、第1の指示部11の演算前に予め無次元流量σの理論値を算出し、この算出した無次元流量σと、インマニ圧Peと大気圧P0の圧力比Pe/Pとのマップとして第4の指示部14に記憶させている。第4の指示部14は、第3の指示部13により算出したインマニ圧Peと大気圧P0の圧力比Pe/Pを用いて、その記憶しているマップから無次元流量σを算出し、これを第1の指示部11に入力する。 Further, the dimensionless flow rate σ required for the calculation in the first instruction unit 11 is calculated in the ECU 9 using the equation (2) because the calculation load in the ECU 9 becomes enormous. Not right. Therefore, in the first embodiment, in order to suppress the calculation load in the ECU 9, a theoretical value of the dimensionless flow rate σ is calculated in advance before the calculation of the first instruction unit 11, and the calculated dimensionless flow rate σ, intake manifold and a map of pressure P e and the pressure ratio P e / P 0 of the atmospheric pressure P 0 is stored in the fourth instruction unit 14. The fourth instruction unit 14 uses the pressure ratio P e / P 0 of the intake manifold pressure P e and the atmospheric pressure P 0 calculated by the third instruction unit 13, the dimensionless flow rate σ the map that the stored This is calculated and input to the first instruction unit 11.

一般に、インマニ圧Peと大気圧P0の圧力比Pe/Pが、所定値1(空気の場合、約0.528)以下の場合、スロットル4を通る空気の流量が飽和(以下、チョークと称する)することが知られている。そして、このチョークが起きた場合には、式(2)により算出される無次元流量σは一定値になることも知られている。そこで、実施の形態1では、インマニ圧Peと大気圧Pの圧力比Pe/Pが所定値1以下の場合、第3の指示部13に於いてインマニ圧Peと大気圧Pの圧力比Pe/Pを所定値1として出力するようにしており、これによりチョークが起きた場合にも対応することができる。 In general, the pressure ratio P e / P 0 of the intake manifold pressure P e and the atmospheric pressure P 0 is a predetermined value 1 (for air, about 0.528) The following cases, the flow rate of air through the throttle 4 is saturated (hereinafter, the choke It is known). It is also known that when this choke occurs, the dimensionless flow rate σ calculated by the equation (2) becomes a constant value. Therefore, in the first embodiment, the intake manifold pressure P e and if pressure ratio P e / P 0 of the atmospheric pressure P 0 is equal to or less than the predetermined value 1, intake manifold pressure P e and the atmospheric pressure P at the third instruction unit 13 the pressure ratio P e / P 0 of 0 and to output a first predetermined value, thereby it is possible to cope with a case where the choke occurs.

なお、この場合、指示部13に於いてインマニ圧Peと大気圧Pの圧力比Pe/Pを所定値1とする代わりに、第4の指示部14に於いてインマニ圧Peと大気圧Pの圧力比Pe/Pで表される無次元流量σのマップ値を、インマニ圧Peと大気圧Pの圧力比Pe/Pが所定値1以下の部分では所定値1の場合と同値としてもよい。 In this case, the pressure ratio P e / P 0 of the intake manifold pressure P e and the atmospheric pressure P 0 at the instruction unit 13, instead of the predetermined value 1, intake manifold pressure P e at the fourth instruction unit 14 dimensionless the map value of the flow rate sigma, intake manifold pressure P e and the predetermined value of 1 or less part pressure ratio P e / P 0 of the atmospheric pressure P 0 which is represented by the pressure ratio P e / P 0 of the atmospheric pressure P 0 Then, it may be the same value as the predetermined value 1.

又、エアフローセンサ2は、インマニ圧Peと大気圧Pの圧力比Pe/Pがある程度大きくなると吸入空気脈動の影響を受けるため、実際の吸入空気流量と測定した吸入空気流量の間に誤差が発生する場合がある。更に、無次元流量σも、インマニ圧Peと大気圧Pの圧力比Pe/Pがある程度大きくなると、吸入空気脈動によるインマニ圧Peの測定誤差の影響が大きくなる場合がある。 Further, the air flow sensor 2, the pressure ratio P e / P 0 of the intake manifold pressure P e and the atmospheric pressure P 0 is influenced by the rather large the intake air pulsation, during the intake air flow rate and the measured actual intake air flow rate An error may occur. In addition, the dimensionless flow rate sigma, the pressure ratio P e / P 0 of the intake manifold pressure P e and the atmospheric pressure P 0 is increased to some extent, there is a case where the influence of the measurement error of the intake manifold pressure P e by the intake air pulsation is increased.

そこで、実施の形態1では、インマニ圧Peと大気圧Pの圧力比Pe/Pが所定値2以上の場合、第3の指示部13に於いてインマニ圧Peと大気圧Pの圧力比Pe/Pを所定値2として扱うことにより、吸入空気脈動の影響を少なくし、スロットル制御性を確保するようにしている。なお、第3の指示部13に於いてインマニ圧Peと大気圧Pの圧力比Pe/Pを所定値2とする代わりに、第4の指示部14に於いてインマニ圧Peと大気圧Pの圧力比Pe/Pで表される無次元流量σのマップ値を、インマニ圧Peと大気圧Pの圧力比Pe/Pが所定値2以上の部分では所定値2の場合と同値としてもよい。 Therefore, in the first embodiment, the intake manifold pressure P e and if pressure ratio P e / P 0 of the atmospheric pressure P 0 is a predetermined value or more 2, intake manifold pressure P e and the atmospheric pressure P at the third instruction unit 13 by handling the pressure ratio P e / P 0 of 0 as a predetermined value 2, to reduce the influence of the intake air pulsation, thereby ensuring the throttle controllability. Incidentally, the pressure ratio P e / P 0 of the intake manifold pressure P e and the atmospheric pressure P 0 at the third instruction unit 13 instead of the predetermined value 2, intake manifold pressure P e at the fourth instruction unit 14 dimensionless flow rate σ of the map values, intake manifold pressure P e and the pressure ratio P e / P 0 is a predetermined value 2 or more portions of the atmospheric pressure P 0 which is represented by the pressure ratio P e / P 0 of the atmospheric pressure P 0 Then, it may be the same value as the predetermined value 2.

第5の指示部15は、以上のようにして第1の指示部11により算出した目標有効開口面積CAtを用いて目標スロットル開度を算出しこれを出力する。その際、スロットル開度とエアフローセンサ2で測定した実際の吸入空気流量Qを用いて式(5)により算出された実際の有効開口面積の関係を、スロットル開度と有効開口面積が1対1で対応する2次元マップとして予め第5の指示部15に記憶しておき、このマップを用いることで目標有効開口面積CAtから目標スロットル開度を算出することができる。スロットル開度と有効開口面積の2次元マップを容易に作成することが可能であるため、このように2次元マップとして記憶しておけば大幅なセッティング工数の削減にもなる。 Fifth instruction unit 15 uses the target effective opening area CA t calculated by the first instruction unit 11 as described above calculates the target throttle opening degree and outputs the same. At that time, the relationship between the throttle opening and the effective opening area calculated by the equation (5) using the actual intake air flow rate Q measured by the air flow sensor 2 is shown as follows. in previously stored in the fifth instruction unit 15 as the corresponding two-dimensional map, it is possible to calculate the target throttle opening degree from the target effective opening area CA t by using this map. Since it is possible to easily create a two-dimensional map of the throttle opening and the effective opening area, if the two-dimensional map is stored in this way, setting man-hours can be greatly reduced.

次に、インマニ圧Peと大気圧Pの圧力比Pe/Pがほぼ1.0になると、スロットル開度を大きくしてもそれ以上の流量得られないことは一般に知られている。ところが、第3の指示部13又は第4の指示部14に於いて、インマニ圧Peと大気圧Pの圧力比Pe/Pが所定値2以上の時には流量制御性を確保するために、意図的に圧力比Pe/Pを所定値2としていたため、目標吸入空気量Qaが実際の吸入空気量より大きい場合でもインマニ圧Peと大気圧Pの圧力比Pe/Pは1.0より小さくなっていた。 Then at the pressure ratio P e / P 0 is approximately 1.0 of the intake manifold pressure P e and the atmospheric pressure P 0, is generally known that not be obtained more flow by increasing the throttle opening. However, in the third instruction unit 13 or the fourth instruction unit 14, since the pressure ratio P e / P 0 of the intake manifold pressure P e and the atmospheric pressure P 0 is when more than a predetermined value 2 to ensure the flow controllability in order to intentionally pressure ratio P e / P 0 was set to a predetermined value 2, the pressure ratio of the intake manifold pressure P e and the atmospheric pressure P 0, even if the target intake air quantity Qa is larger than the actual intake air quantity P e / P 0 was smaller than 1.0.

そこで、実施の形態1では、第6の指示部16に於いてインマニ圧Peと大気圧Pの圧力比Pe/Pが所定値2以上の時に、目標吸入空気量Qaが実際の吸入空気量より大きくなった場合には、目標吸入空気量Qaと実際の吸入空気量との差に応じた所定値3をスロットル開度に加算するようにしている。これにより、インマニ圧Peと大気圧Pの圧力比Pe/Pが所定値2以上に於いて、目標吸入空気量Qaが実際の吸入空気量より大きくなった場合に、目標吸入空気量Qaが実際の吸入空気量に近づくことができるため、スロットル全開相当の実際の吸入空気量、つまりスロットル全開の出力性能を確保することができる。 Therefore, in the first embodiment, when the pressure ratio P e / P 0 of the intake manifold pressure P e and the atmospheric pressure P 0 at the instruction unit 16 of the sixth predetermined value or more 2, the target intake air amount Qa is the actual When it becomes larger than the intake air amount, a predetermined value 3 corresponding to the difference between the target intake air amount Qa and the actual intake air amount is added to the throttle opening. Thus, intake manifold pressure P e and the pressure ratio P e / P 0 of the atmospheric pressure P 0 is at the 2 or more predetermined value, when the target intake air amount Qa is greater than the actual intake air amount, the target intake air Since the amount Qa can approach the actual intake air amount, the actual intake air amount corresponding to the throttle fully open, that is, the output performance of the throttle fully open can be ensured.

この発明の実施の形態1による内燃機関の制御装置を説明するための構成図である。It is a block diagram for demonstrating the control apparatus of the internal combustion engine by Embodiment 1 of this invention. この発明の実施の形態1による内燃機関の制御装置を示すブロック図である。1 is a block diagram showing a control device for an internal combustion engine according to Embodiment 1 of the present invention. FIG. 実施の形態1による内燃機関の制御装置のスロットル制御部を示すブロック図である。FIG. 2 is a block diagram showing a throttle control unit of the control device for an internal combustion engine according to the first embodiment.

符号の説明Explanation of symbols

1 内燃機関
2 エアフローセンサ
3 吸気温度センサ
4 スロットル
5 スロットルポジションセンサ
6 サージタンク
7 インマニ圧センサ
8 EGRバルブ
9 ECU
10 大気圧センサ
11 第1の指示部11
12 第2の指示部12
13 第3の指示部13
14 第4の指示部14
15 第5の指示部15
16 第6の指示部16
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Air flow sensor 3 Intake temperature sensor 4 Throttle 5 Throttle position sensor 6 Surge tank 7 Intake manifold pressure sensor 8 EGR valve 9 ECU
10 atmospheric pressure sensor 11 first indicator 11
12 Second instruction unit 12
13 Third instruction unit 13
14 Fourth instruction unit 14
15 Fifth instruction unit 15
16 Sixth instruction unit 16

Claims (8)

内燃機関の出力軸トルクを制御目標とし、前記制御目標に基づいて前記内燃機関の吸入空気量を制御して前記内燃機関の出力を制御するようにした内燃機関の制御装置に於いて、前記内燃機関の吸気系に設けられたスロットルの開度を制御して前記吸気系の有効開口面積を制御するスロットル開度制御手段、前記スロットルの上流側の大気圧を検出する大気圧検出手段、前記スロットルの下流側の前記吸気系内の圧力を検出する吸気系内圧力検出手段、前記スロットルの大気側の吸気温度を検出する吸気温度検出手段、前記内燃機関の運転状態に基づいて算出された目標吸入空気流量と前記大気圧検出手段により検出された大気圧と前記吸気系内圧力検出手段により検出された吸気系内の圧力と前記吸気温度検出手段により検出された吸気温度とに基づいて前記吸気系の目標有効開口面積を算出する目標有効開口面積算出手段、前記吸気系の有効開口面積と前記スロットルの開度との対応を予め記憶したスロットル開度指示手段を備え、前記スロットル開度指示手段は、前記目標有効開口面積算出手段により算出された目標有効開口面積に対応する目標スロットル開度を前記記憶に基づいて出力し、前記スロットル開度制御手段は、前記スロットル開度指示手段から出力された目標スロットル開度に基づいて前記スロットルの開度を制御することを特徴とする内燃機関の制御装置。   An internal combustion engine control apparatus that controls an output of the internal combustion engine by controlling an intake air amount of the internal combustion engine based on the control target based on an output shaft torque of the internal combustion engine. Throttle opening control means for controlling the effective opening area of the intake system by controlling the opening of the throttle provided in the intake system of the engine, the atmospheric pressure detecting means for detecting the atmospheric pressure upstream of the throttle, and the throttle Intake system pressure detecting means for detecting the pressure in the intake system on the downstream side, intake air temperature detecting means for detecting the intake air temperature on the atmosphere side of the throttle, target intake calculated based on the operating state of the internal combustion engine The air flow rate, the atmospheric pressure detected by the atmospheric pressure detecting means, the pressure in the intake system detected by the intake system internal pressure detecting means, and the intake air temperature detected by the intake air temperature detecting means Target effective opening area calculating means for calculating the target effective opening area of the intake system based on the above, throttle opening instruction means for storing in advance the correspondence between the effective opening area of the intake system and the opening of the throttle, The throttle opening instruction means outputs a target throttle opening corresponding to the target effective opening area calculated by the target effective opening area calculating means based on the memory, and the throttle opening control means is configured to output the throttle opening. A control apparatus for an internal combustion engine, wherein the throttle opening is controlled based on a target throttle opening output from a degree instruction means. 前記スロットル開度指示手段は、前記吸気系の有効開口面積と前記スロットルの開度との対応を1対1の割合で記憶していることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control of an internal combustion engine according to claim 1, wherein the throttle opening degree instruction means stores a correspondence between the effective opening area of the intake system and the opening degree of the throttle at a ratio of 1: 1. apparatus. 吸気温度と音速との対応を予め記憶した音速指示手段を備え、該音速指示手段は前記吸気温度検出手段により検出された吸気温度に対応する音速を前記記憶に基づいて出力し、前記目標有効開口面積算出手段は、前記音速指示手段から出力された前記音速を用いて前記目標有効開口面積を算出することを特徴とする請求項1又は2に記載の内燃機関の制御装置。   Sonic speed indicating means for storing the correspondence between the intake air temperature and the sound speed in advance is provided, the sound speed indicating means outputs a sound speed corresponding to the intake air temperature detected by the intake air temperature detecting means based on the storage, and the target effective opening 3. The control apparatus for an internal combustion engine according to claim 1, wherein the area calculating means calculates the target effective opening area using the sound speed output from the sound speed instruction means. 前記吸入管内の圧力と前記大気圧との比に対応する吸入空気の無次元流量を予め記憶した無次元流量指示手段を備え、該無次元流量指示手段は、前記吸気系内圧力検出手段により検出された吸気系内の圧力と前記大気圧検出手段により検出された大気圧との圧力比に対応する無次元流量を前記記憶に基づいて出力し、前記目標有効開口面積算出手段は、前記無次元流量指示手段から出力された無次元流量を用いて前記目標有効開口面積を算出することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の制御装置。   There is provided a dimensionless flow rate indicating means for storing in advance a dimensionless flow rate of the intake air corresponding to the ratio between the pressure in the suction pipe and the atmospheric pressure, and the dimensionless flow rate indicating means is detected by the intake system pressure detecting means. A non-dimensional flow rate corresponding to a pressure ratio between the pressure in the intake system and the atmospheric pressure detected by the atmospheric pressure detecting means is output based on the memory, and the target effective opening area calculating means is the dimensionless The control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the target effective opening area is calculated using a dimensionless flow output from the flow rate instruction means. 無次元流量指示手段は、前記圧力比が第1の所定値以下のときは、前記圧力比が前記第1の所定値に対応する無次元流量と同一の無次元流量を出力することを特徴とする請求項4に記載の内燃機関の制御装置。   The dimensionless flow rate indicating means outputs a dimensionless flow rate that is the same as the dimensionless flow rate corresponding to the first predetermined value when the pressure ratio is equal to or less than a first predetermined value. The control apparatus for an internal combustion engine according to claim 4. 無次元流量指示手段は、前記圧力比が前記第1の所定値より大きい第2の所定値以上のときは、前記第2の所定値に対応する無次元流量と同一の無次元流量を出力することを特徴とする請求項4又は5に記載の内燃機関の制御装置。   The dimensionless flow rate instruction means outputs a dimensionless flow rate that is the same as the dimensionless flow rate corresponding to the second predetermined value when the pressure ratio is greater than or equal to a second predetermined value that is greater than the first predetermined value. 6. The control device for an internal combustion engine according to claim 4, wherein the control device is an internal combustion engine. 前記圧力比が前記第2の所定値以上のときは、前記目標吸入空気流量が運転状態検出手段により検出された吸入空気流量より大きくなった場合に、前記目標吸入空気流量と前記検出された吸入空気流量との差に応じた補正値を前記スロットル開度指示手段から出力された目標スロットル開度に加算することを特徴とする請求項6に記載の内燃機関の制御装置。   When the pressure ratio is greater than or equal to the second predetermined value, the target intake air flow rate and the detected intake air flow when the target intake air flow rate is greater than the intake air flow rate detected by the operating state detecting means. 7. The control apparatus for an internal combustion engine according to claim 6, wherein a correction value corresponding to a difference from the air flow rate is added to a target throttle opening output from the throttle opening instruction means. 前記大気圧検出手段と前記吸気系内圧力検出手段と前記吸気温検出手段のうちの少なくとも1つは、前記検出に代えて推定を行う推定手段により構成され、前記目標有効開口面積算出手段は、前記推定された値を用いて前記吸気系の目標有効開口面積を算出することを特徴とする請求項1乃至7のいずれかに記載の内燃機関の制御装置。   At least one of the atmospheric pressure detection means, the intake system internal pressure detection means, and the intake air temperature detection means is configured by estimation means that performs estimation instead of the detection, and the target effective opening area calculation means includes: The control apparatus for an internal combustion engine according to any one of claims 1 to 7, wherein a target effective opening area of the intake system is calculated using the estimated value.
JP2006064271A 2006-03-09 2006-03-09 Controller for internal combustion engine Pending JP2007239650A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006064271A JP2007239650A (en) 2006-03-09 2006-03-09 Controller for internal combustion engine
DE102006043887A DE102006043887B4 (en) 2006-03-09 2006-09-19 Control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064271A JP2007239650A (en) 2006-03-09 2006-03-09 Controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007239650A true JP2007239650A (en) 2007-09-20

Family

ID=38336178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064271A Pending JP2007239650A (en) 2006-03-09 2006-03-09 Controller for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2007239650A (en)
DE (1) DE102006043887B4 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121315A (en) * 2007-11-14 2009-06-04 Mitsubishi Electric Corp Control device for internal combustion engine
DE102008057092A1 (en) 2008-05-20 2009-12-03 Mitsubishi Electric Corp. Control device for an internal combustion engine
CN111664016A (en) * 2020-06-22 2020-09-15 潍柴动力股份有限公司 Engine control method and system and electronic equipment
CN113944556A (en) * 2020-07-16 2022-01-18 大众汽车股份公司 Method for adjusting throttle, engine controller and vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2602031B2 (en) * 1987-10-14 1997-04-23 マツダ株式会社 Electronic control unit for internal combustion engine
JP3330234B2 (en) * 1994-07-29 2002-09-30 本田技研工業株式会社 Fuel injection control device for internal combustion engine
CZ292698A3 (en) * 1996-03-15 1999-05-12 Siemens Aktiengesellschaft Method of typical determination of fresh air amount being supplied into cylinders of internal combustion engine during external return of combustion products
JP3284395B2 (en) * 1996-04-25 2002-05-20 株式会社ユニシアジェックス Throttle valve control device for internal combustion engine
JP4089127B2 (en) * 2000-04-21 2008-05-28 トヨタ自動車株式会社 Control device for internal combustion engine
DE10257568A1 (en) * 2002-12-10 2004-07-01 Adam Opel Ag Method and device for controlling exhaust gas recirculation in internal combustion engines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121315A (en) * 2007-11-14 2009-06-04 Mitsubishi Electric Corp Control device for internal combustion engine
JP4536104B2 (en) * 2007-11-14 2010-09-01 三菱電機株式会社 Control device for internal combustion engine
DE102008057092A1 (en) 2008-05-20 2009-12-03 Mitsubishi Electric Corp. Control device for an internal combustion engine
US7831371B2 (en) 2008-05-20 2010-11-09 Mitsubishi Electric Corporation Control apparatus for an internal combustion engine
DE102008057092B4 (en) 2008-05-20 2020-06-25 Mitsubishi Electric Corp. Control device for an internal combustion engine
CN111664016A (en) * 2020-06-22 2020-09-15 潍柴动力股份有限公司 Engine control method and system and electronic equipment
CN113944556A (en) * 2020-07-16 2022-01-18 大众汽车股份公司 Method for adjusting throttle, engine controller and vehicle

Also Published As

Publication number Publication date
DE102006043887A1 (en) 2007-09-13
DE102006043887B4 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
US7441544B2 (en) Control device for internal combustion engine
JP4488318B2 (en) Internal combustion engine control device
JP4237214B2 (en) Internal combustion engine control device
CN107917004B (en) Control device for internal combustion engine
JP5754514B2 (en) Supercharged engine control device
JP2009108865A (en) Method and device for evaluating intake air flow rate in internal combustion engine
JP4395120B2 (en) Exhaust gas purification device for internal combustion engine
JP5854131B2 (en) Control device for an internal combustion engine with a supercharger
JP4356664B2 (en) Control device for internal combustion engine
JP5404946B1 (en) Control device and control method for internal combustion engine
JP2014214618A (en) Control device for internal combustion engine
JP2007239650A (en) Controller for internal combustion engine
JP2008106703A (en) Control device for internal combustion engine with turbocharger
JP6234531B1 (en) Internal combustion engine control device
US10240546B2 (en) Method and device for operating an internal combustion engine
JP5218166B2 (en) Control device for internal combustion engine
JP7030888B2 (en) Internal combustion engine controller
JP5381790B2 (en) Control device for internal combustion engine
JP2006132499A (en) Flow rate calculation device
JP4738463B2 (en) Control device for internal combustion engine
JP4661325B2 (en) Control device for internal combustion engine
JP2005083345A (en) Control device for internal combustion engine
JP4606482B2 (en) Engine control device
WO2021255988A1 (en) Internal combustion engine control device
JP2013155614A (en) Control device of turbocharged engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080909

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081107