JP2007239569A - Evaporated fuel treating device - Google Patents

Evaporated fuel treating device Download PDF

Info

Publication number
JP2007239569A
JP2007239569A JP2006062212A JP2006062212A JP2007239569A JP 2007239569 A JP2007239569 A JP 2007239569A JP 2006062212 A JP2006062212 A JP 2006062212A JP 2006062212 A JP2006062212 A JP 2006062212A JP 2007239569 A JP2007239569 A JP 2007239569A
Authority
JP
Japan
Prior art keywords
pressure
determination
fuel
fuel tank
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006062212A
Other languages
Japanese (ja)
Other versions
JP4655278B2 (en
Inventor
Ryoji Suzuki
良二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2006062212A priority Critical patent/JP4655278B2/en
Publication of JP2007239569A publication Critical patent/JP2007239569A/en
Application granted granted Critical
Publication of JP4655278B2 publication Critical patent/JP4655278B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To highly maintain the frequency of the times of diagnosis and detection by making compatible the quick diagnosis and detection of a large leak caused when a failure to close a fuel cap occurs with the diagnosis and detection of a very small leak such as a leak through a small gap to secure high accuracy by using a pump with a small discharge. <P>SOLUTION: This evaporated fuel treating device comprises a control means having an abnormality determination part for determining the presence or absence of an abnormality of an evaporated fuel control passage by diagnosing a change of pressure in a fuel tank. The control means closes a selector valve and a purge valve while predetermined requirements of diagnosis including the determination that the supply of oil into the fuel tank is present and that the internal combustion engine is being operated are established, stops a pressure reducing pump, maintains the state of the inside of the fuel tank for a predetermined time without bringing the state into a negative pressure, and compares the change of pressure in the fuel tank with a predetermined amount of change set beforehand by the abnormality determination part for performing a first determination to determine whether an abnormality is present or not. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は蒸発燃料処理装置に係り、特に、燃料キャップの締め忘れのような大規模なリークを早期に検出することができるとともに、小規模なリークも高い精度で検出することができる蒸発燃料処理装置に関する。   The present invention relates to an evaporative fuel processing apparatus, and in particular, an evaporative fuel processing that can detect a large-scale leak such as forgetting to tighten a fuel cap at an early stage and can also detect a small-scale leak with high accuracy. Relates to the device.

車両に搭載される内燃機関においては、燃料タンク等に発生する蒸発燃料が大気に漏洩することを防止するために、蒸発燃料処理装置を設けている。蒸発燃料処理装置は、内燃機関の吸気通路と燃料タンクとを接続する蒸発燃料制御通路の途中に活性炭等の吸着剤を収容したキャニスタを設け、このキャニスタに燃料タンクの蒸発燃料を一旦吸着保持させ、キャニスタに吸着保持された蒸発燃料を内燃機関の運転時に離脱(パージ)させ、吸気系に供給して燃焼させる。蒸発燃料処理装置には、装置内の蒸発燃料のリーク(漏れ)を診断する機能を備えているものがある。   In an internal combustion engine mounted on a vehicle, an evaporative fuel processing device is provided in order to prevent evaporative fuel generated in a fuel tank or the like from leaking into the atmosphere. The evaporative fuel processing apparatus is provided with a canister containing an adsorbent such as activated carbon in the middle of an evaporative fuel control path connecting an intake passage and a fuel tank of an internal combustion engine, and this canister temporarily adsorbs and holds evaporative fuel in the fuel tank. The evaporated fuel adsorbed and held in the canister is separated (purged) during operation of the internal combustion engine, and supplied to the intake system for combustion. Some evaporative fuel processing apparatuses have a function of diagnosing leaks of evaporative fuel in the apparatus.

従来の蒸発燃料処理装置には、パージを利用して吸気負圧により装置内を減圧し、装置内の圧力変動により蒸発燃料のリークを診断するものがある。
また、従来の蒸発燃料処理装置には、ポンプで装置内を加圧又は減圧し、装置内の圧力変動により蒸発燃料のリークを診断するものがある。
また、従来の蒸発燃料処理装置には、内燃機関の運転中にはパージを利用して吸気負圧により装置内を減圧して蒸発燃料のリークを診断し、内燃機関の停止中にはポンプで装置内を加圧又は減圧して蒸発燃料のリークを診断するものがある。
特許第3322119号公報 特許第3322194号公報 特許第3322213号公報 特開1999−210568号公報 特開2000−282967号公報 特開2002−256988号公報 特開2004−245112号公報 特開2004−353559号公報 特開2005−2915号公報 特開2005−2965号公報
Some conventional evaporative fuel processing apparatuses use a purge to depressurize the inside of the apparatus with negative intake pressure and diagnose evaporative fuel leaks based on pressure fluctuations within the apparatus.
Some conventional evaporative fuel treatment apparatuses use a pump to pressurize or depressurize the inside of the apparatus and diagnose evaporative fuel leaks by pressure fluctuations in the apparatus.
Further, the conventional evaporative fuel processing device uses a purge during operation of the internal combustion engine to depressurize the inside of the device by negative intake air pressure and diagnoses the evaporative fuel leak. When the internal combustion engine is stopped, a pump is used. There is one that diagnoses leakage of evaporated fuel by pressurizing or depressurizing the inside of the apparatus.
Japanese Patent No. 3322119 Japanese Patent No. 3322194 Japanese Patent No. 3322213 Japanese Patent Laid-Open No. 1999-210568 JP 2000-282967 A Japanese Patent Application Laid-Open No. 2002-256988 JP 2004-245112 A JP 2004-353559 A JP 2005-2915 A JP 2005-2965 A

ところで、内燃機関の蒸発燃料処理装置には、リーク診断の一つとして、電動式の減圧ポンプ、切換バルブ、基準オリフィス及び圧力センサを利用して、漏れを診断するものがある。
この蒸発燃料処理装置によるリーク診断においては、先ず、基準オリフィスを介した大気を減圧ポンプで吸引して圧力(基準圧)を測定し、次に、切換バルブを燃料タンクが減圧ポンプの吸引で減圧されるように切り換えて所定時間経過後の圧力(タンク内圧)を測定し、このタンク内圧を基準圧と比較することでリークの有無(基準オリフィス径相当以上のリークの有無)を判定している。
この蒸発燃料処理装置は、内燃機関の停止中の燃料蒸気が安定した状態でリーク診断を実行しているため、走行中にパージを利用して減圧する従来方式と比較すると、測定精度は高いが、吐出容量が小さいことから診断結果が得られるまで時間に要する問題がある。
このため、例えば給油時に燃料キャップを締め忘れ等の場合には、リーク故障と判定されるまでの間に、大量の蒸発燃料ガスが大気中に放出される(大リーク)こととなる。
By the way, there is an evaporative fuel processing apparatus for an internal combustion engine that uses one of an electric pressure reducing pump, a switching valve, a reference orifice, and a pressure sensor as one of leak diagnosis to diagnose the leak.
In the leak diagnosis by this evaporative fuel processing device, first, the pressure (reference pressure) is measured by sucking the atmosphere through the reference orifice with a decompression pump, and then the changeover valve is decompressed by the suction of the decompression pump. The pressure (tank internal pressure) after a lapse of a predetermined time is measured and the presence or absence of a leak (the presence or absence of a leak equivalent to the reference orifice diameter) is determined by comparing the tank internal pressure with a reference pressure. .
This evaporative fuel processing device performs a leak diagnosis while the fuel vapor is stable while the internal combustion engine is stopped. Since the discharge capacity is small, there is a problem that it takes time to obtain a diagnosis result.
For this reason, for example, when the fuel cap is forgotten to be tightened at the time of refueling, a large amount of evaporated fuel gas is released into the atmosphere (large leak) until it is determined that there is a leak failure.

上記不具合を解消するために、下記特許文献11に記載されるように、給油判定後にリーク診断を実施する蒸発燃料処理装置が提案されている。しかし、この蒸発燃料処理装置のリーク診断では、微小なリークを検出できる精度を確保できない問題がある。
特開2005−23796号公報
In order to solve the above problems, an evaporative fuel processing apparatus that performs a leak diagnosis after refueling determination has been proposed as described in Patent Document 11 below. However, the leak diagnosis of the evaporated fuel processing apparatus has a problem that it is not possible to ensure the accuracy with which minute leaks can be detected.
JP-A-2005-23796

また、蒸発燃料処理装置には、下記特許文献12に記載されるように、内燃機関の停止後にリークを診断するシステムに給油判定を追加しているものがある。しかし、この蒸発燃料処理装置の給油判定は、給油中にはリーク診断を実行させずに遅延させることで、高精度なリーク診断を確実に実行できるようにすることを目的としており、燃料タンクのキャップの締め忘れによるリークを積極的に診断するものではない。
特許第3412678号公報
Some evaporative fuel processing apparatuses add a fuel supply determination to a system that diagnoses a leak after the internal combustion engine is stopped, as described in Patent Document 12 below. However, the fuel supply determination of this evaporative fuel processing device is intended to ensure that a highly accurate leak diagnosis can be executed by delaying the fuel supply without performing the leak diagnosis during refueling. It does not actively diagnose leaks caused by forgetting to tighten the cap.
Japanese Patent No. 3421678

さらに、ポンプを利用したリーク診断は、パージを利用したリーク診断に対して、極小リークを高い頻度で監視することができるが、ポンプの吐出容量を大きくできないため、給油時の燃料キャップ締め忘れ等のような大リークと通常のリークとを区別することが困難な問題がある。
一方、パージを利用したリーク診断は、ポンプを利用したリーク診断に対して、内燃機関の運転中に診断を実行していることから、診断精度を要求される極小リーク診断は運転条件により限定されるため、高い頻度を満足することが困難である。しかし、パージを利用したリーク診断は、大容量の減圧が可能となるので、大リークと通常リークとの区別が容易となる。
Furthermore, the leak diagnosis using the pump can monitor the minimum leak more frequently than the leak diagnosis using the purge, but the pump discharge capacity cannot be increased, so forgetting to tighten the fuel cap when refueling, etc. There is a problem that it is difficult to distinguish a large leak and a normal leak.
On the other hand, in the leak diagnosis using purge, the diagnosis is executed during the operation of the internal combustion engine in contrast to the leak diagnosis using the pump. Therefore, the minimum leak diagnosis requiring diagnosis accuracy is limited by the operating conditions. Therefore, it is difficult to satisfy a high frequency. However, since the leak diagnosis using purge enables a large volume of pressure to be reduced, it is easy to distinguish between a large leak and a normal leak.

この発明は、燃料キャップ閉め忘れなどの大リークを迅速に診断検知することと、微細な漏れなどの極小リークを診断検知する高い精度を確保することとを、吐出容量の小さなポンプを利用してそれらを両立し、診断検知する頻度を高く維持することを目的とする。   This invention uses a pump with a small discharge capacity to quickly detect and detect large leaks such as forgetting to close the fuel cap and to ensure high accuracy to detect and detect extremely small leaks such as fine leaks. The purpose is to maintain a high frequency of diagnosis detection.

この発明は、内燃機関の吸気通路と燃料タンクとを接続する蒸発燃料制御通路の途中に設けられて蒸発燃料を吸着するキャニスタと、前記蒸発燃料制御通路の途中に設けられて蒸発燃料を前記内燃機関の吸気通路に供給可能なパージバルブと、前記燃料タンク内のタンク内圧を検出する内圧検出手段と、前記キャニスタを大気に開放可能とする大気開放通路と、この大気開放通路に設けられて前記大気開放通路を大気に連通する状態と連通しない状態とに切り換える切換バルブと、前記燃料タンク内を負圧状態にすることが可能な減圧ポンプと、前記燃料タンク内のタンク内圧の変化を診断することにより前記蒸発燃料制御通路の異常の有無を判定する異常判定部が備えられた制御手段とを備えた蒸発燃料処理装置において、前記制御手段は、前記燃料タンクの給油実施有りの判定と前記内燃機関の運転中であることとを含む所定の診断条件成立中に、前記切換バルブと前記パージバルブとを閉状態とし、かつ前記減圧ポンプを停止状態とし、前記燃料タンク内を負圧状態とせずにこれらの状態を予め設定した所定時間維持した後、前記異常判定部によって燃料タンク内のタンク内圧の変化を予め設定した所定の内圧変化量と比較して異常の有無を判定する第一の判定を行うことを特徴とする。   The present invention provides a canister for adsorbing evaporative fuel provided in the middle of an evaporative fuel control passage connecting an intake passage and a fuel tank of the internal combustion engine, and evaporating fuel provided in the middle of the evaporative fuel control passage. A purge valve that can be supplied to the intake passage of the engine, an internal pressure detecting means for detecting a tank internal pressure in the fuel tank, an air opening passage that allows the canister to be opened to the atmosphere, and the air opening passage provided in the air opening passage. A switching valve for switching the open passage between a state communicating with the atmosphere and a state not communicating with the atmosphere, a pressure reducing pump capable of bringing the inside of the fuel tank into a negative pressure state, and diagnosing a change in tank internal pressure within the fuel tank And a control means provided with an abnormality determination unit for determining whether or not there is an abnormality in the evaporated fuel control passage. While the predetermined diagnosis condition is satisfied, including determination that the fuel tank is refueled and that the internal combustion engine is operating, the switching valve and the purge valve are closed, and the pressure reducing pump is stopped. Then, after maintaining these states for a predetermined time without setting the inside of the fuel tank in a negative pressure state, the abnormality determination unit compares the change in the tank internal pressure in the fuel tank with a predetermined amount of change in the internal pressure. And performing a first determination for determining whether or not there is an abnormality.

この発明の蒸発燃料処理装置は、給油実施後の内燃機関の運転中に、パージを利用して燃料キャップ閉め忘れ等の大リークを迅速に診断検知することにより、減圧ポンプの少ない容量の影響や駆動停止状態の影響を受けずに、単純なリーク有無の判断を迅速に行うことができる。   The evaporative fuel processing apparatus of the present invention uses the purge to quickly diagnose and detect large leaks such as forgetting to close the fuel cap during operation of the internal combustion engine after refueling. A simple determination of the presence or absence of a leak can be quickly made without being affected by the drive stop state.

この発明の蒸発燃料処理装置は、給油実施後の内燃機関の運転中に、パージを利用して燃料キャップ閉め忘れ等の大リークを迅速に診断検知するものである。
以下図面に基づいて、この発明の実施例を説明する。
The fuel vapor processing apparatus according to the present invention quickly diagnoses and detects large leaks such as forgetting to close the fuel cap by using purge during operation of the internal combustion engine after refueling.
Embodiments of the present invention will be described below with reference to the drawings.

図1〜図8は、この発明の実施例を示すものである。図1は蒸発燃料処理装置のシステム構成図、図2はリーク診断切り換えのフローチャート、図3は大リーク診断のフローチャート、図4は大リーク診断のタイムチャート、図5は小リーク診断のフローチャート、図6は小リーク診断のタイムチャート、図7は基準圧力の測定時のリーク診断モジュールの動作を説明する図、図8は減圧時のリーク診断モジュールの動作を説明する図である。
図1において、1は車両に搭載される内燃機関、2は内燃機関1の吸気管、3は吸気管2で形成された吸気通路、4は吸気通路3内に設置されたスロットルバルブ、5は燃料を貯留する燃料タンク、6は蒸発燃料処理装置である。
蒸発燃料処理装置6は、スロットルバルブ4よりも下流側の吸気通路3と燃料タンク5の上部とを接続する蒸発燃料制御通路7を設け、この蒸発燃料制御通路7の途中に燃料タンク5内で発生する蒸発燃料を吸着するキャニスタ8を設けている。これより、蒸発燃料制御通路7は、燃料タンク5とキャニスタ8とを接続するエバポ通路9と、キャニスタ8と吸気通路3とを接続するパージ通路10とに形成される。
前記燃料タンク5は、箱形状のタンク本体11の上部に給油口12が設けられ、燃料キャップ13が着脱可能に設けられている。タンク本体11内には、燃料量を検出可能な燃料レベル検出手段である燃料レベルセンサ14を設けている。燃料レベルセンサ14は、燃料量に応じて上下動するフロート15の高さ位置に対応した電気信号を出力する。
前記キャニスタ8は、箱形状のキャニスタ本体16内に蒸発燃料を吸着保持する活性炭17を格納し、上部にエバポ通路9とパージ通路10とを接続している。エバポ通路9は、活性炭17に直接連通している。パージ通路10は、キャニスタ本体16内に形成された上部空間18に連通している。
前記パージ通路10の途中には、キャニスタ8の蒸発燃料を吸気通路3に供給可能なパージバルブ19を設けている。パージバルブ19は、例えば、0〜100%のデューティで動作制御され、デューティ0%で閉動作してパージ通路10を全閉状態にするとともに、デューティ100%で開動作してパージ通路10を全開状態にし、デューティ0%と100%との間ではパージ通路10の開閉状態を全閉状態から全開状態までの間で変化させ、キャニスタ8から離脱(パージ)されて吸気通路3に供給される蒸発燃料の量(パージ量)を制御する。
前記キャニスタ8の下部には、キャニスタ本体16を大気に開放可能とする大気開放通路20の基端側を連通している。大気開放通路20には、先端側に外部から導入される大気の塵埃を除去するエアフィルタ21を設けている。
1 to 8 show an embodiment of the present invention. FIG. 1 is a system configuration diagram of an evaporative fuel processing apparatus, FIG. 2 is a flowchart for switching a leak diagnosis, FIG. 3 is a flowchart for a large leak diagnosis, FIG. 4 is a time chart for a large leak diagnosis, and FIG. 6 is a time chart for small leak diagnosis, FIG. 7 is a diagram for explaining the operation of the leak diagnosis module at the time of measuring the reference pressure, and FIG. 8 is a diagram for explaining the operation of the leak diagnosis module at the time of decompression.
In FIG. 1, 1 is an internal combustion engine mounted on a vehicle, 2 is an intake pipe of the internal combustion engine 1, 3 is an intake passage formed by the intake pipe 2, 4 is a throttle valve installed in the intake passage 3, and 5 is A fuel tank 6 for storing fuel is an evaporative fuel processing device.
The evaporative fuel processing device 6 is provided with an evaporative fuel control passage 7 that connects the intake passage 3 downstream of the throttle valve 4 and the upper part of the fuel tank 5. A canister 8 is provided for adsorbing the generated evaporated fuel. Thus, the evaporated fuel control passage 7 is formed in an evaporation passage 9 that connects the fuel tank 5 and the canister 8, and a purge passage 10 that connects the canister 8 and the intake passage 3.
The fuel tank 5 is provided with a fuel filler port 12 at an upper portion of a box-shaped tank body 11 and a fuel cap 13 is detachably provided. A fuel level sensor 14 that is a fuel level detecting means capable of detecting the fuel amount is provided in the tank body 11. The fuel level sensor 14 outputs an electrical signal corresponding to the height position of the float 15 that moves up and down according to the amount of fuel.
The canister 8 stores activated carbon 17 that adsorbs and holds evaporated fuel in a box-shaped canister main body 16, and an evaporation passage 9 and a purge passage 10 are connected to the upper portion. The evaporation passage 9 communicates directly with the activated carbon 17. The purge passage 10 communicates with an upper space 18 formed in the canister body 16.
In the middle of the purge passage 10, a purge valve 19 capable of supplying the evaporated fuel of the canister 8 to the intake passage 3 is provided. The purge valve 19 is controlled to operate with a duty of 0 to 100%, for example, and closes the purge passage 10 with a duty of 0% to fully close the purge passage 10, and opens with a duty of 100% to fully open the purge passage 10. When the duty is between 0% and 100%, the open / close state of the purge passage 10 is changed from the fully closed state to the fully open state, and the vaporized fuel supplied to the intake passage 3 is released (purged) from the canister 8. The amount of purge (purge amount) is controlled.
The lower end of the canister 8 communicates with the base end side of the atmosphere opening passage 20 that allows the canister body 16 to be opened to the atmosphere. The air release passage 20 is provided with an air filter 21 for removing atmospheric dust introduced from the outside on the tip side.

この蒸発燃料処理装置6は、蒸発燃料処理装置6内のリーク診断を行う際に動作されるリーク診断モジュール22を設けている。
リーク診断モジュール22は、基端側をキャニスタ8に連通される大気開放通路20の途中に、この大気開放通路20を大気に連通する状態と連通しない状態とに切り換える切換バルブ23を設けている。これにより、大気開放通路20は、切換バルブ23よりもキャニスタ8側の第1開放通路24と、切換バルブ23よりもエアフィルタ21側の第2開放通路25とに形成される。第2開放通路25には、燃料タンク5内を負圧状態にすることが可能な電動式の減圧ポンプ26を設けている。
前記大気開放通路20には、切換バルブ23を迂回して、一端側が切換バルブ23よりもキャニスタ8側の第1開放通路24に連通するとともに、他端側が切換バルブ23と減圧ポンプ24との間の第2開放通路25に連通する第1バイパス通路27を設けている。
第1バイパス通路27の途中には、第2開放通路25側に燃料タンク5内のタンク内圧を検出可能な内圧検出手段である圧力センサ28を設け、この圧力センサ28よりも第1開放通路24側に圧力センサ28に作用する圧力を基準圧力に調整可能な基準オリフィス29を設けている。圧力センサ28は、タンク内圧に対応した電気信号を出力する。
また、前記大気開放通路20には、減圧ポンプ26を迂回して、一端側が減圧ポンプ26とエアフィルタ21との間の第2開放通路25に連通するとともに、他端側が切換バルブ23に連通する第2バイパス通路30を設けている。
前記切換バルブ23は、ソレノイド31とこのソレノイド31の励磁・非励磁によって動作される弁体32とを備え、弁体32に直線ポート33と斜線ポート34とを形成している。切換バルブ23は、ソレノイド31が非励磁状態(オフ)の場合(図7参照)に、斜線ポート34が第1開放通路24と第2バイパス通路30とを連通して大気開放通路20を開放するとともに、ソレノイド31が励磁状態(オン)の場合(図8参照)に、直線ポート33が第1・第2開放通路24・25を連通して大気開放通路20を閉鎖(減圧ポンプ26はオフ)する。
前記燃料レベルセンサ14とパージバルブ19と切換バルブ23と減圧ポンプ26と圧力センサ28とは、蒸発燃料処理装置6の制御手段35に接続されている。制御手段35は、内燃機関1の通常運転時に、大気開放通路20で取り入れた大気によりキャニスタ8に吸着された蒸発燃料を離脱させ、離脱させた蒸発燃料を吸気通路3にパージするように、パージバルブ19と切換バルブ23とを制御する。
The evaporative fuel processing apparatus 6 includes a leak diagnosis module 22 that is operated when performing a leak diagnosis in the evaporative fuel processing apparatus 6.
The leak diagnosis module 22 is provided with a switching valve 23 for switching the atmosphere open passage 20 between a state communicating with the atmosphere and a state not communicating with the atmosphere in the middle of the atmosphere open passage 20 communicated with the canister 8 on the base end side. Thus, the atmosphere opening passage 20 is formed in the first opening passage 24 closer to the canister 8 than the switching valve 23 and the second opening passage 25 closer to the air filter 21 than the switching valve 23. The second open passage 25 is provided with an electric decompression pump 26 that can bring the inside of the fuel tank 5 into a negative pressure state.
The atmosphere opening passage 20 bypasses the switching valve 23, and one end side communicates with the first opening passage 24 closer to the canister 8 than the switching valve 23, and the other end side is between the switching valve 23 and the decompression pump 24. A first bypass passage 27 communicating with the second open passage 25 is provided.
In the middle of the first bypass passage 27, a pressure sensor 28 which is an internal pressure detecting means capable of detecting the tank internal pressure in the fuel tank 5 is provided on the second opening passage 25 side. A reference orifice 29 that can adjust the pressure acting on the pressure sensor 28 to the reference pressure is provided on the side. The pressure sensor 28 outputs an electrical signal corresponding to the tank internal pressure.
The atmosphere opening passage 20 bypasses the decompression pump 26, and one end side communicates with the second opening passage 25 between the decompression pump 26 and the air filter 21, and the other end side communicates with the switching valve 23. A second bypass passage 30 is provided.
The switching valve 23 includes a solenoid 31 and a valve body 32 that is operated by exciting / de-energizing the solenoid 31, and a straight port 33 and a hatched port 34 are formed in the valve body 32. In the switching valve 23, when the solenoid 31 is in a non-excited state (off) (see FIG. 7), the hatched port 34 connects the first opening passage 24 and the second bypass passage 30 to open the atmosphere opening passage 20. At the same time, when the solenoid 31 is in the excited state (ON) (see FIG. 8), the straight port 33 communicates with the first and second open passages 24 and 25 to close the atmosphere open passage 20 (the decompression pump 26 is OFF). To do.
The fuel level sensor 14, the purge valve 19, the switching valve 23, the decompression pump 26 and the pressure sensor 28 are connected to the control means 35 of the evaporated fuel processing device 6. The control means 35 removes the evaporated fuel adsorbed by the canister 8 by the atmosphere taken in the atmosphere opening passage 20 during normal operation of the internal combustion engine 1 and purges the separated evaporated fuel into the intake passage 3. 19 and the switching valve 23 are controlled.

前記制御手段35には、圧力センサ28の検出する燃料タンク5内のタンク内圧の変化を診断することにより蒸発燃料制御通路7の異常の有無を判定する異常判定部36が備えられている。
前記制御手段35は、燃料タンク5の給油実施有りの判定と内燃機関1の運転中であることとを含む所定の診断条件成立中に、切換バルブ23とパージバルブ19とを閉状態とし、かつ減圧ポンプ26を停止状態とし、燃料タンク5内を負圧状態とせずにこれらの状態を予め設定した所定時間維持した後、異常判定部36によって燃料タンク5内のタンク内圧の変化を予め設定した所定の内圧変化量と比較して異常の有無を判定する第一の判定を行う。
また、前記制御手段35は、前記第一の判定が異常無しとならない場合に、切換バルブ23を閉状態としたままパージバルブ19を開状態とし、かつ減圧ポンプ26を停止状態とし、燃料タンク5内を負圧状態に遷移させてこれらの状態を予め設定した所定時間維持した後、異常判定部36によって燃料タンク5内のタンク内圧の変化を予め設定した所定の第二の内圧変化量と比較して異常の有無を判定する第二の判定を行う。
前記制御手段35は、前記第一の判定により異常なしとなった場合と、前記第二の判定により異常なしとなった場合とのいずれかの場合であって、かつ内燃機関1の停止状態を含む所定の診断条件成立中に、減圧ポンプ26を駆動状態とし、燃料タンク5内を負圧状態に遷移させてこれらの状態を予め設定した所定時間維持した後、異常判定部36によって燃料タンク5内のタンク内圧の変化を予め設定した所定の第三の内圧変化量と比較して異常の有無を判定する第三の判定を行う。
前記制御手段35は、大気圧に基づいて基準圧力を計測する一方、減圧ポンプ26を駆動状態とし、燃料タンク5内を負圧状態に遷移させてこれらの状態を予め設定した所定時間維持した後、異常判定部36によって燃料タンク5内のタンク内圧の変化値をその基準圧力と比較して減圧ポンプ26の異常の有無を判定する第四の判定を行う。
The control means 35 is provided with an abnormality determination unit 36 that determines whether or not there is an abnormality in the evaporated fuel control passage 7 by diagnosing a change in the tank internal pressure in the fuel tank 5 detected by the pressure sensor 28.
The control means 35 closes the switching valve 23 and the purge valve 19 and reduces the pressure while a predetermined diagnosis condition is satisfied, including determination that the fuel tank 5 is refueled and that the internal combustion engine 1 is operating. After the pump 26 is stopped and the fuel tank 5 is not in a negative pressure state and these states are maintained for a predetermined time set in advance, the abnormality determination unit 36 changes the tank internal pressure in the fuel tank 5 in advance. A first determination is made to determine whether or not there is an abnormality in comparison with the internal pressure change amount.
Further, when the first determination does not indicate that there is no abnormality, the control means 35 opens the purge valve 19 while keeping the switching valve 23 in the closed state, stops the pressure-reducing pump 26, and sets the inside of the fuel tank 5. Is changed to a negative pressure state and these states are maintained for a predetermined time, and then the change in the tank internal pressure in the fuel tank 5 is compared with a predetermined second internal pressure change amount by the abnormality determination unit 36. The second determination is made to determine whether there is an abnormality.
The control means 35 is either a case where there is no abnormality due to the first determination, or a case where there is no abnormality due to the second determination, and the control unit 35 determines whether the internal combustion engine 1 is stopped. While the predetermined diagnostic condition is satisfied, the decompression pump 26 is set in the driving state, the inside of the fuel tank 5 is changed to the negative pressure state, and these states are maintained for a predetermined time set in advance. A third determination for determining the presence or absence of abnormality is performed by comparing the change in the internal tank pressure with a predetermined third internal pressure change amount.
After the control means 35 measures the reference pressure based on the atmospheric pressure, the decompression pump 26 is driven, the fuel tank 5 is shifted to the negative pressure state, and these states are maintained for a predetermined time set in advance. Then, the abnormality determination unit 36 compares the change value of the tank internal pressure in the fuel tank 5 with the reference pressure, and performs a fourth determination for determining whether the pressure reducing pump 26 is abnormal.

次に、この実施例の作用を説明する。
蒸発燃料処理装置6は、図2に示すように、リーク診断切り換えの判定がスタートすると(A1)、内燃機関1の前回運転で大リーク故障があったか否かを判断する(A2)。
この判断(A2)がYESの場合は、第1リーク診断開始条件が成立したか否かを判断する(A3)。
この判断(A3)がNOの場合は、スタート(A1)にリターンする(A4)。この判断(A3)がYESの場合は、第1リーク診断を開始し(A5)、この第1リーク診断(A5)によって大リークと判定されたか否かを判断する(A6)。
この判断(A6)がYESの場合は、大リーク故障とし(A7)、プログラムを終了する(A8)。この判断(A6)がNOの場合は、後述する第2リーク診断開始条件が成立したか否かの判断(A11)に移行する。
一方、前記判断(A2)において、NOの場合は、内燃機関1の前回運転で小リーク故障があったか否かを判断する(A9)。
この判断(A9)がYESの場合は、後述判断(A11)に移行する。この判断(A9)がNOの場合は、内燃機関1の前回運転後に給油有りと判定されたか否かを判断する(A10)。
この判断(A10)がYESの場合は、前記判断(A3)を行う。この判断(A10)がNOの場合は、第2リーク診断開始条件が成立したか否かを判断する(A11)。
この判断(A11)がNOの場合は、スタート(A1)にリターンする(A12)。この判断(A11)がYESの場合は、第2リーク診断を開始し(A13)、この第2リーク診断(A13)によって小リークと判定されたか否かを判断する(A14)。
この判断(A14)がYESの場合は、小リーク故障とし(A15)、プログラムを終了する(A8)。この判断(A14)がNOの場合は、正常とし(A16)、プログラムを終了する(A8)。
Next, the operation of this embodiment will be described.
As shown in FIG. 2, the evaporative fuel processing device 6 determines whether or not there has been a large leak failure in the previous operation of the internal combustion engine 1 when the determination of the leakage diagnosis switching is started (A 1) (A 2).
If this determination (A2) is YES, it is determined whether or not the first leak diagnosis start condition is satisfied (A3).
If this determination (A3) is NO, the process returns to start (A1) (A4). If this determination (A3) is YES, the first leak diagnosis is started (A5), and it is determined whether or not the first leak diagnosis (A5) is determined to be a large leak (A6).
If this determination (A6) is YES, a major leak failure is assumed (A7) and the program is terminated (A8). When this determination (A6) is NO, the process proceeds to determination (A11) as to whether or not a second leak diagnosis start condition described later is satisfied.
On the other hand, if the determination (A2) is NO, it is determined whether or not there was a small leak failure in the previous operation of the internal combustion engine 1 (A9).
If this determination (A9) is YES, the process proceeds to determination (A11) described later. When this determination (A9) is NO, it is determined whether or not it is determined that there is refueling after the previous operation of the internal combustion engine 1 (A10).
When the determination (A10) is YES, the determination (A3) is performed. If this determination (A10) is NO, it is determined whether or not the second leak diagnosis start condition is satisfied (A11).
If this determination (A11) is NO, the process returns to start (A1) (A12). If this determination (A11) is YES, the second leak diagnosis is started (A13), and it is determined whether or not the second leak diagnosis (A13) is determined to be a small leak (A14).
If this determination (A14) is YES, a small leak failure is assumed (A15), and the program is terminated (A8). If this determination (A14) is NO, it is determined to be normal (A16) and the program is terminated (A8).

このように、この蒸発燃料処理装置6は、2種類のリーク診断を組み合わせている。つまり、給油判定時は、給油終了直後の所定条件の内燃機関運転中に燃料キャップ13の締め忘れ等の大リークの有無を診断(第1リーク診断)し、大リークが検出されない場合、及び給油有りが判定されていない場合は、蒸発燃料の発生が安定する、内燃機関停止後の所定時間経過後のソーク(SOAK)中に、微小リークまで診断できる高精度の診断(第2リーク診断)を実行させる。   Thus, this evaporative fuel processing device 6 combines two types of leak diagnosis. That is, at the time of refueling determination, the presence or absence of a large leak such as forgetting to tighten the fuel cap 13 is diagnosed during the operation of the internal combustion engine under a predetermined condition immediately after the end of refueling (first leak diagnosis). If the presence or absence is not determined, high-accuracy diagnosis (second leak diagnosis) can be performed during the soak (SOAK) after the elapse of a predetermined time after the internal combustion engine is stopped. Let it run.

燃料キャップ13の締め忘れ等の大リークの有無の診断(第1リーク診断)は、図3に示すように、給油が終了して診断がスタートすると(B1)、モニタ条件(診断条件)が成立するか否かを判断する(B2)。
この判断(B2)がNOの場合は、スタート(B1)にリターンする(B3)。この判断(B2)がYESの場合は、切換バルブ23をオン(閉)し(B4)、パージバルブ19をオフ(閉)し(B5)、減圧ポンプ26をオフ(停止状態)として蒸発燃料処理装置6内を閉鎖した状態で、第1の所定時間T1経過中の所定量△Pt1(内圧変化量)の圧力変化があったか否かを判断(第一の判定)する(B6)。
この判断(B6)がYESの場合(ケース1)は、正常(大リーク無し)とし(B7)、切換バルブ23をオフ(開)し(B8)、プログラムを終了する(B9)。この判断(B6)がNOの場合は、パージバルブ19をオン(開)し(B10)、第2の所定時間T2経過中の所定量△Pt2(第二の内圧変化量)の圧力変化があったか否かを判断(第二の判定)する(B11)。
この判断(B11)がYESの場合(ケース2)は、正常(大リーク無し)とし(B7)、切換バルブ23をオフ(開)し(B8)、終了する(B9)。この判断(B11)がNOの場合(ケース3)は、大リークの故障とし(B12)、切換バルブ23をオフ(開)し(B8)、プログラムを終了する(B9)。
As shown in FIG. 3, in the diagnosis of the presence or absence of a large leak such as forgetting to tighten the fuel cap 13 (first leak diagnosis), the monitoring condition (diagnosis condition) is satisfied when the diagnosis is started after the refueling is finished (B1). It is determined whether or not to perform (B2).
If this determination (B2) is NO, the process returns to start (B1) (B3). If this determination (B2) is YES, the switching valve 23 is turned on (closed) (B4), the purge valve 19 is turned off (closed) (B5), and the decompression pump 26 is turned off (stopped), thereby evaporating fuel processing apparatus. 6 is closed (first determination) as to whether or not there has been a pressure change of a predetermined amount ΔPt1 (internal pressure change amount) during the first predetermined time T1 (B6).
If this determination (B6) is YES (Case 1), it is normal (no major leak) (B7), the switching valve 23 is turned off (opened) (B8), and the program is terminated (B9). If this judgment (B6) is NO, the purge valve 19 is turned on (opened) (B10), and whether or not there has been a change in pressure of a predetermined amount ΔPt2 (second internal pressure change amount) during the second predetermined time T2. Is determined (second determination) (B11).
If this determination (B11) is YES (Case 2), it is assumed normal (no major leak) (B7), the switching valve 23 is turned off (opened) (B8), and the process ends (B9). If this determination (B11) is NO (Case 3), it is determined that there is a large leak failure (B12), the switching valve 23 is turned off (opened) (B8), and the program is terminated (B9).

この燃料キャップ13の締め忘れ等の大リークの有無の診断(第1リーク診断)は、図4に示すように、給油が終了して(t0)、診断条件が成立すると(t1)、切換バルブ23をオン、パージバルブ19をオフしてから(t2)、第1の所定時間T1が経過した時点(t3)までの蒸発燃料処理装置6内に圧力を検出し、所定量△Pt1の圧力変化があった場合(ケース1)は正常(大リーク無し)とする(第一の判定)。
正常と判定された場合は、診断条件を不成立とし、切換バルブ23をオフとし、パージバルブ19がオンとする(t4)。
一方、第1の所定時間T1の経過中に所定量△Pt1の圧力変化が無く、正常(異常無し)とならない場合は、診断条件を成立状態(破線)とし、且つ切換バルブ23をオン状態(破線)とし、パージバルブ19をオンとしてから(t4)、第2の所定時間T2が経過した時点(t5)までの蒸発燃料処理装置6内に圧力を検出し、所定量△Pt2の圧力変化があった場合(ケース2)は正常(大リーク無し)とし、所定量△Pt2の圧力変化が無い場合(ケース3)は異常(大リーク有り)とする(第二の判定)。
その後、切換バルブ23をオフし(t6)、診断条件を不成立とする(t7)。
As shown in FIG. 4, in the diagnosis of the presence or absence of a large leak such as forgetting to tighten the fuel cap 13 (first leak diagnosis), when refueling is completed (t0) and the diagnosis condition is satisfied (t1), the switching valve 23 is turned on, the purge valve 19 is turned off (t2), the pressure is detected in the evaporated fuel processing device 6 until the time (t3) when the first predetermined time T1 has passed, and the pressure change of a predetermined amount ΔPt1 is detected. If there is (case 1), it is normal (no major leak) (first determination).
If it is determined to be normal, the diagnosis condition is not satisfied, the switching valve 23 is turned off, and the purge valve 19 is turned on (t4).
On the other hand, if the pressure does not change by a predetermined amount ΔPt1 during the first predetermined time T1 and does not become normal (no abnormality), the diagnosis condition is satisfied (broken line) and the switching valve 23 is turned on ( The pressure is detected in the evaporated fuel processing device 6 from when the purge valve 19 is turned on (t4) until the time (t5) when the second predetermined time T2 has elapsed, and there is a change in pressure by a predetermined amount ΔPt2. In the case (case 2), it is normal (no large leak), and when there is no change in pressure by a predetermined amount ΔPt2 (case 3), it is abnormal (large leak) (second determination).
Thereafter, the switching valve 23 is turned off (t6), and the diagnosis condition is not satisfied (t7).

このように、この蒸発燃料処理装置6は、第1リーク診断において、先ず定常走行条件が成立中に、切換バルブ23を装置内が閉塞するようにオンに切り換えるとともにパージバルブ19をオフして全閉とし、第1の所定時間T1経過中の圧力変化を測定する。
この第1の所定時間T1経過中に所定量△Pt1の圧力変化があったときは、ほぼ密閉された蒸発燃料処理装置6内で蒸発燃料の発生等によって圧力が変化していると考えられるため、大リーク無しと判定する(第一の判定)。
第1の所定時間T1経過中に所定量△Pt1の圧力変化がない場合は、蒸発燃料処理装置6が密閉されていない(リーク発生)場合か、密閉されているならば蒸発燃料がほとんど発生していない場合のどちらかである。
これらを区別するために、パージバルブ19をオンして開き、蒸発燃料処理装置6内を減圧して、第2の所定時間T2経過中の圧力変化を測定する。
第2の所定時間T2経過中に所定量△Pt2の圧力変化が測定されない場合は、大リーク有りと判定し、MIL点灯等によってドライバーに即刻警報を発する。第2の所定時間T2経過中に所定量△Pt2の圧力変化が測定された場合は、大リークが発生していないと判定する(第二の判定)。
Thus, in the first leak diagnosis, the evaporative fuel processing device 6 first switches on the switching valve 23 so that the inside of the device is closed while the steady running condition is satisfied, and turns off the purge valve 19 to fully close it. Then, the pressure change during the first predetermined time T1 is measured.
If a pressure change of a predetermined amount ΔPt1 occurs during the first predetermined time T1, it is considered that the pressure is changed due to the generation of evaporated fuel or the like in the evaporated fuel processing device 6 which is almost sealed. It is determined that there is no major leak (first determination).
If there is no pressure change of the predetermined amount ΔPt1 during the first predetermined time T1, the evaporated fuel processing device 6 is not sealed (leakage occurs) or if it is sealed, almost no evaporated fuel is generated. If not either.
In order to distinguish between them, the purge valve 19 is turned on and opened, the inside of the evaporated fuel processing device 6 is depressurized, and the pressure change during the second predetermined time T2 is measured.
If the pressure change of the predetermined amount ΔPt2 is not measured during the second predetermined time T2, it is determined that there is a large leak, and an immediate alarm is issued to the driver by illuminating MIL or the like. When a pressure change of a predetermined amount ΔPt2 is measured during the second predetermined time T2, it is determined that a large leak has not occurred (second determination).

これにより、この蒸発燃料処理装置6は、第一の判定によって、給油実施後の内燃機関1の運転中に、パージを利用して燃料キャップ13の閉め忘れ等の大リークを迅速に診断検知することにより、減圧ポンプ26の少ない容量の影響や駆動停止状態の影響を受けずに、単純なリーク有無の判断を迅速に行うことができる。
また、この蒸発燃料処理装置6は、第二の判定によって、減圧ポンプ26の少ない容量(能力不足)の影響や駆動停止状態の影響を受けずに、大リークの判断を迅速に行うことができる。
As a result, the evaporative fuel processing device 6 quickly diagnoses and detects a large leak such as forgetting to close the fuel cap 13 by using the purge during the operation of the internal combustion engine 1 after refueling according to the first determination. As a result, it is possible to quickly determine whether there is a leak without being influenced by the small capacity of the decompression pump 26 or the influence of the drive stop state.
Further, the evaporative fuel processing device 6 can quickly determine the large leak without being affected by the small capacity (capacity shortage) of the decompression pump 26 or the drive stop state by the second determination. .

次に、小リークの診断(第2リーク診断)を説明する。第2リーク診断は、図2に示すように、第1リーク診断において第一の判定及び第2の判定により異常無しと判定された場合(大リーク無し)と判定された場合に行われる。
小リークの診断(第2リーク診断)は、内燃機関1の通常運転時(停止状態を含む)に、図5に示すように、リーク診断がウェイクアップ(起動)すると(C1)、モニタ条件(診断条件)が成立するか否かを判断する(C2)。このとき、蒸発燃料処理装置6は、パージバルブ19をオフ(全閉)し、切換バルブ23をオフ(開)し、減圧ポンプ26をオフ(停止状態)している。
この判断(C2)がNOの場合は、プログラムを終了する(C3)。この判断(C2)がYESの場合は、蒸発燃料処理装置6内の初期圧力P1を測定し(C4)、減圧ポンプ26をオンし(C5)、減圧ポンプ26オン後の第1の所定時間T1経過後に蒸発燃料処理装置6内の圧力(基準圧力)P2を測定し(C6)、基準圧力偏差△P1を演算(△P1=P1−P2)する(C7)。
このように、切換バルブ23がオフ(開)で、減圧ポンプ26をオンとした場合には、図7に示すように、大気開放通路20においては、基準圧力の測定状態となり、切換バルブ23が大気開放通路20を遮断し、切換バルブ23の斜線ポート34が第1バイパス通路24と第2バイパス通路30とを連通する。
前記演算(C7)された基準圧力偏差△P1が、DP1(第1の基準圧力判定値)未満であるか否かを判断(第四の判定)する(C8)。この判断(C8)がNOの場合は、減圧ポンプ26の高流量故障とし(C9)、減圧ポンプ26をオフとし(C10)、プログラムを終了する(C11)。
前記判断(C8)がYESの場合は、基準圧力偏差△P1がDP2(第2の基準圧力判定値)を超えているか否かを判断(第四の判定)する(C12)。この判断(C12)がNOの場合は、減圧ポンプ26の低流量故障とし(C13)、前記処理(C10)に移行する。
前記判断(C12)がYESの場合は、切換バルブ23をオン(閉)とし(C14)、切換バルブ23オン後の第2の所定時間T2の間に蒸発燃料処理装置6内の最大圧力P3を測定し(C15)、バルブ切換圧力偏差△P2を演算(△P2=P3−P2)し(C16)、基準圧力偏差△P2がDP3(第3の基準圧力判定値)を越えている否かを判断する(C17)。
このように、減圧ポンプ26がオンで、切換バルブ23をオン(閉)とした場合には、図8に示すように、大気開放通路20が開放し、減圧状態となり、切換バルブ23の直線ポート33が第1開放通路24と第2開放通路25とを連通する。
前記判断(C17)がNOの場合は、切換バルブ23の故障とし(C18)、減圧ポンプ26をオフとし、切換バルブ23をオフ(開)とし(C19)、プログラムを終了する(C20)。
一方、前記判断(C17)がYESの場合は、前記減圧中の蒸発燃料処理装置6内の圧力P4を測定し(C21)、リーク判定圧力偏差△P3を演算(△P3=P4−P2)し(C22)、切換バルブ23をオン(閉)後の経過時間が第3の所定時間T3未満であるか否かを判断する(C23)。
この判断(C23)がNOの場合は、小リークの故障とし(C24)、減圧ポンプ26をオフとし、切換バルブ23をオフ(開)とし(C25)、プログラムを終了する(C26)。
前記判断(C23)がYESの場合は、リーク判定圧力偏差△P3がLEAK(リーク判定値:第三の内圧変化量)未満であるか否かを判断(第三の判定)する(C27)。
この判断(C27)がNOの場合は、減圧中の蒸発燃料処理装置6内の圧力P4の測定(C21)にリターンする。この判断(C27)がYESの場合は、蒸発燃料処理装置6を正常とし(C28)、減圧ポンプ26をオフとし、切換バルブ23をオフ(開)とし(C25)、プログラムを終了する(C26)。
Next, the small leak diagnosis (second leak diagnosis) will be described. As shown in FIG. 2, the second leak diagnosis is performed when it is determined that there is no abnormality (no major leak) by the first determination and the second determination in the first leak diagnosis.
As shown in FIG. 5, during the normal operation of the internal combustion engine 1 (including the stop state), the small leak diagnosis (second leak diagnosis) is performed when the leak diagnosis wakes up (starts up) (C1) and the monitoring condition ( It is determined whether or not (diagnosis condition) is satisfied (C2). At this time, the evaporated fuel processing device 6 turns off the purge valve 19 (fully closed), turns off the switching valve 23 (opens), and turns off the decompression pump 26 (stopped state).
If this determination (C2) is NO, the program is terminated (C3). If this determination (C2) is YES, the initial pressure P1 in the evaporated fuel processing device 6 is measured (C4), the decompression pump 26 is turned on (C5), and the first predetermined time T1 after the decompression pump 26 is turned on. After the elapse of time, the pressure (reference pressure) P2 in the evaporated fuel processing device 6 is measured (C6), and the reference pressure deviation ΔP1 is calculated (ΔP1 = P1-P2) (C7).
As described above, when the switching valve 23 is off (open) and the pressure reducing pump 26 is turned on, the reference pressure is measured in the atmosphere opening passage 20 as shown in FIG. The atmosphere opening passage 20 is shut off, and the hatched port 34 of the switching valve 23 communicates the first bypass passage 24 and the second bypass passage 30.
It is determined (fourth determination) whether or not the calculated reference pressure deviation ΔP1 is less than DP1 (first reference pressure determination value) (C8). If this determination (C8) is NO, it is determined that the decompression pump 26 has a high flow rate failure (C9), the decompression pump 26 is turned off (C10), and the program is terminated (C11).
If the determination (C8) is YES, it is determined (fourth determination) whether or not the reference pressure deviation ΔP1 exceeds DP2 (second reference pressure determination value) (C12). When this determination (C12) is NO, it is determined that the pressure reduction pump 26 has a low flow rate failure (C13), and the process proceeds to the process (C10).
When the determination (C12) is YES, the switching valve 23 is turned on (closed) (C14), and the maximum pressure P3 in the evaporated fuel processing device 6 is set during the second predetermined time T2 after the switching valve 23 is turned on. Measure (C15), calculate valve switching pressure deviation ΔP2 (ΔP2 = P3-P2) (C16), and determine whether the reference pressure deviation ΔP2 exceeds DP3 (third reference pressure judgment value). Judgment is made (C17).
In this way, when the pressure reducing pump 26 is on and the switching valve 23 is turned on (closed), as shown in FIG. 33 communicates the first open passage 24 and the second open passage 25.
If the determination (C17) is NO, it is determined that the switching valve 23 has failed (C18), the pressure reducing pump 26 is turned off, the switching valve 23 is turned off (open) (C19), and the program is terminated (C20).
On the other hand, if the determination (C17) is YES, the pressure P4 in the evaporated fuel processing device 6 during the decompression is measured (C21), and the leak determination pressure deviation ΔP3 is calculated (ΔP3 = P4-P2). (C22), it is determined whether or not the elapsed time after the switching valve 23 is turned on (closed) is less than a third predetermined time T3 (C23).
If this determination (C23) is NO, it is determined that there is a small leak failure (C24), the decompression pump 26 is turned off, the switching valve 23 is turned off (open) (C25), and the program is terminated (C26).
If the determination (C23) is YES, it is determined (third determination) whether or not the leak determination pressure deviation ΔP3 is less than LEAK (leak determination value: third internal pressure change amount) (C27).
When this determination (C27) is NO, the process returns to the measurement (C21) of the pressure P4 in the evaporated fuel processing device 6 under reduced pressure. If this determination (C27) is YES, the evaporated fuel processing device 6 is made normal (C28), the decompression pump 26 is turned off, the switching valve 23 is turned off (open) (C25), and the program is terminated (C26). .

この小リークの診断(第2リーク診断)は、図6に示すように、パージバルブ19がオフ状態(全閉)で、リーク診断がオンし(t0)、減圧ポンプ26がオンになると(t1)、蒸発燃料処理装置6内の圧力が略零(0)の圧力値P1から負圧(−)側に強くなり始める。
減圧ポンプ26のオン(t1)後に第1の所定時間T1が経過し(t2)、蒸発燃料処理装置6内の圧力(負圧)が判定基準圧に達して圧力値P2になると、切換バルブ23がオフ(開)からオン(閉)に切り換えられる。減圧ポンプ26は、圧力値P2の変化から異常の有無を判定される(第四の判定)。
切換バルブ23がオン(閉)に切り換えられると(t2)、蒸発燃料処理装置6内の圧力(負圧)が圧力値P2から急激に弱まって、正圧(+)側の略零(0)近傍の圧力値P3になる。圧力値P3は、切換バルブ23のオン(閉)時から第2の所定時間T2の間における最大圧力である。切換バルブ23は、圧力値P3の変化から異常の有無を判定される。
前記切換バルブ23がオン(閉)に切り換えられてから(t2)、切換バルブ23がオン(閉)に維持されていると、蒸発燃料処理装置6内の圧力が圧力値P3から負圧(−)側に強くなり始める。
このとき、図6に実線で示すように、蒸発燃料処理装置6内の圧力が負圧(−)側へ急激に強くなり、第3の所定時間T3が経過する前に圧力が判定基準圧に達して圧力値P4になり(t4)、圧力値P4と圧力値P2との偏差△P3がLEAK(リーク判定値)未満となった場合は、蒸発燃料処理装置6を正常(リーク無し)と判定し(第三の判定)、リーク診断をオフし、切換バルブ23をオフし、減圧ポンプ26をオフにする。
切換バルブ23をオフし、減圧ポンプ26をオフにすると、蒸発燃料処理装置6内の圧力は、図6に実線で示すように、略零(0)の圧力値P1になる。
これに対して、図6に破線で示すように、蒸発燃料処理装置6内の圧力が負圧(−)側へ緩やかに強くなり、第3の所定時間T3が経過(t5)しても圧力が判定基準圧に達しない場合は、蒸発燃料処理装置6が異常(リーク有り)と判定し(第三の判定)、リーク診断をオフし、切換バルブ23をオフし、減圧ポンプ26をオフにする。
As shown in FIG. 6, this small leak diagnosis (second leak diagnosis) is performed when the purge valve 19 is off (fully closed), the leak diagnosis is turned on (t0), and the pressure reducing pump 26 is turned on (t1). Then, the pressure in the evaporated fuel processing device 6 starts to increase from the pressure value P1 of substantially zero (0) to the negative pressure (−) side.
When the first predetermined time T1 elapses after the pressure reducing pump 26 is turned on (t1) (t2) and the pressure (negative pressure) in the evaporated fuel processing device 6 reaches the determination reference pressure and becomes the pressure value P2, the switching valve 23 Is switched from off (open) to on (closed). The decompression pump 26 determines the presence or absence of abnormality from the change in the pressure value P2 (fourth determination).
When the switching valve 23 is switched on (closed) (t2), the pressure (negative pressure) in the evaporated fuel processing device 6 suddenly decreases from the pressure value P2, and is substantially zero (0) on the positive pressure (+) side. It becomes the pressure value P3 in the vicinity. The pressure value P3 is the maximum pressure during the second predetermined time T2 from when the switching valve 23 is turned on (closed). The switching valve 23 determines whether or not there is an abnormality from the change in the pressure value P3.
If the switching valve 23 is maintained on (closed) after the switching valve 23 is switched on (closed) (t2), the pressure in the evaporated fuel processing device 6 is changed from the pressure value P3 to a negative pressure (- ) Start to become stronger.
At this time, as indicated by a solid line in FIG. 6, the pressure in the evaporated fuel processing device 6 suddenly increases toward the negative pressure (−) side, and the pressure becomes the determination reference pressure before the third predetermined time T3 elapses. When the pressure value P4 is reached (t4) and the deviation ΔP3 between the pressure value P4 and the pressure value P2 is less than LEAK (leak judgment value), the evaporated fuel processing device 6 is judged to be normal (no leak). (Third determination), the leak diagnosis is turned off, the switching valve 23 is turned off, and the pressure reducing pump 26 is turned off.
When the switching valve 23 is turned off and the decompression pump 26 is turned off, the pressure in the evaporated fuel processing device 6 becomes a pressure value P1 of substantially zero (0) as shown by a solid line in FIG.
In contrast, as indicated by a broken line in FIG. 6, the pressure in the evaporated fuel processing device 6 gradually increases toward the negative pressure (−) side, and the pressure is maintained even after the third predetermined time T3 has elapsed (t5). Does not reach the determination reference pressure, it is determined that the evaporated fuel processing device 6 is abnormal (leak is present) (third determination), the leak diagnosis is turned off, the switching valve 23 is turned off, and the pressure reducing pump 26 is turned off. To do.

このように、この蒸発燃料処理装置6の制御手段35は、第一の判定により異常なしとなった場合と、第二の判定により異常なしとなった場合とのいずれかの場合であって、かつ内燃機関1の停止状態を含む所定の診断条件成立中に、減圧ポンプ26を駆動状態とし、燃料タンク58内を負圧状態に遷移させてこれらの状態を予め設定した所定時間維持した後、異常判定部36によって燃料タンク5内のタンク内圧の変化を予め設定した所定の第三の内圧変化量と比較して異常の有無を判定する第三の判定を行うことにより、基準オリフィス29の径に依存する所定の極小値以上の微小リークの判断を行うことができる。
また、制御手段35は、大気圧に基づいて基準圧力を計測する一方、減圧ポンプ26を駆動状態とし、燃料タンク5内を負圧状態に遷移させてこれらの状態を予め設定した所定時間維持した後、異常判定部36によって燃料タンク5内のタンク内圧の変化値をその基準圧力と比較して減圧ポンプ26の異常の有無を判定する第四の判定を行うことにより、減圧ポンプ26の駆動の信頼性を高めて、リーク診断の信頼性を向上することができる。
Thus, the control means 35 of the fuel vapor processing apparatus 6 is either a case where there is no abnormality by the first determination, or a case where there is no abnormality by the second determination, And while predetermined diagnostic conditions including the stop state of the internal combustion engine 1 are established, the decompression pump 26 is driven, the fuel tank 58 is changed to a negative pressure state, and these states are maintained for a preset predetermined time, The abnormality determination unit 36 compares the change in the tank internal pressure in the fuel tank 5 with a predetermined third internal pressure change amount to determine whether there is an abnormality, thereby determining the diameter of the reference orifice 29. It is possible to determine a minute leak of a predetermined minimum value or more depending on
Further, the control unit 35 measures the reference pressure based on the atmospheric pressure, sets the decompression pump 26 in the driving state, changes the inside of the fuel tank 5 to the negative pressure state, and maintains these states for a predetermined time set in advance. Thereafter, the abnormality determination unit 36 compares the change value of the tank internal pressure in the fuel tank 5 with the reference pressure, and performs a fourth determination for determining whether or not the pressure reduction pump 26 is abnormal. Reliability can be improved and the reliability of leak diagnosis can be improved.

この発明の蒸発燃料処理装置は、給油実施後の内燃機関の運転中に、パージを利用して燃料キャップ閉め忘れ等の大リークを迅速に診断検知するものであり、内燃機関を搭載した車両の蒸発燃料処理に適用することができる。   The evaporative fuel processing device of the present invention quickly diagnoses and detects large leaks such as forgetting to close the fuel cap by using purge during operation of the internal combustion engine after refueling. It can be applied to evaporative fuel processing.

蒸発燃料処理装置のシステム構成図である。It is a system configuration figure of an evaporative fuel processing device. リーク診断切り換えのフローチャートである。It is a flowchart of a leak diagnosis switching. 大リーク診断のフローチャートである。It is a flowchart of a large leak diagnosis. 大リーク診断のタイムチャートである。It is a time chart of a large leak diagnosis. 小リーク診断のフローチャートである。It is a flowchart of a small leak diagnosis. 小リーク診断のタイムチャートである。It is a time chart of a small leak diagnosis. 基準圧力の測定時のリーク診断モジュールの動作を説明する図である。It is a figure explaining operation | movement of the leak diagnosis module at the time of the measurement of a reference pressure. 減圧時のリーク診断モジュールの動作を説明する図である。It is a figure explaining operation | movement of the leak diagnosis module at the time of pressure reduction.

符号の説明Explanation of symbols

1 内燃機関
3 吸気通路
5 燃料タンク
6 蒸発燃料処理装置
7 蒸発燃料制御通路
8 キャニスタ
9 エバポ通路
10 パージ通路
19 パージバルブ
20 大気開放通路
23 切換バルブ
26 減圧ポンプ
27 第1バイパス通路
28 圧力センサ
29 基準オリフィス
30 第2バイパス通路
35 制御手段
36 異常判定部
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 3 Intake passage 5 Fuel tank 6 Evaporated fuel processing device 7 Evaporated fuel control passage 8 Canister 9 Evaporation passage 10 Purge passage 19 Purge valve 20 Atmospheric release passage 23 Switching valve 26 Pressure reduction pump 27 First bypass passage 28 Pressure sensor 29 Reference orifice 30 Second bypass passage 35 Control means 36 Abnormality determination unit

Claims (4)

内燃機関の吸気通路と燃料タンクとを接続する蒸発燃料制御通路の途中に設けられて蒸発燃料を吸着するキャニスタと、前記蒸発燃料制御通路の途中に設けられて蒸発燃料を前記内燃機関の吸気通路に供給可能なパージバルブと、前記燃料タンク内のタンク内圧を検出する内圧検出手段と、前記キャニスタを大気に開放可能とする大気開放通路と、この大気開放通路に設けられて前記大気開放通路を大気に連通する状態と連通しない状態とに切り換える切換バルブと、前記燃料タンク内を負圧状態にすることが可能な減圧ポンプと、前記燃料タンク内のタンク内圧の変化を診断することにより前記蒸発燃料制御通路の異常の有無を判定する異常判定部が備えられた制御手段とを備えた蒸発燃料処理装置において、前記制御手段は、前記燃料タンクの給油実施有りの判定と前記内燃機関の運転中であることとを含む所定の診断条件成立中に、前記切換バルブと前記パージバルブとを閉状態とし、かつ前記減圧ポンプを停止状態とし、前記燃料タンク内を負圧状態とせずにこれらの状態を予め設定した所定時間維持した後、前記異常判定部によって燃料タンク内のタンク内圧の変化を予め設定した所定の内圧変化量と比較して異常の有無を判定する第一の判定を行うことを特徴とする蒸発燃料処理装置。   A canister that is provided in the middle of an evaporative fuel control passage that connects an intake passage of the internal combustion engine and a fuel tank and adsorbs the evaporative fuel, and an evaporative fuel that is provided in the middle of the evaporative fuel control passage A purge valve that can be supplied to the fuel tank, an internal pressure detecting means that detects a tank internal pressure in the fuel tank, an air opening passage that allows the canister to be opened to the atmosphere, and an air opening passage that is provided in the air opening passage to A switching valve for switching between a state communicating with the fuel tank and a state not communicating with the fuel tank, a pressure reducing pump capable of bringing the inside of the fuel tank into a negative pressure state, and diagnosing a change in the tank internal pressure in the fuel tank, And an evaporative fuel processing apparatus including an abnormality determination unit that determines whether there is an abnormality in the control passage. During the establishment of predetermined diagnostic conditions including the determination that the refueling has been performed and the operation of the internal combustion engine being established, the switching valve and the purge valve are closed, and the pressure reducing pump is stopped, After maintaining these states for a predetermined time without setting the negative pressure state in the fuel tank, the abnormality determination unit compares the change in the tank internal pressure in the fuel tank with a predetermined internal pressure change amount that is abnormal. An evaporative fuel processing apparatus that performs a first determination for determining the presence or absence of fuel. 前記制御手段は、前記第一の判定が異常無しとならない場合に、前記切換バルブを閉状態としたまま前記パージバルブを開状態とし、かつ前記減圧ポンプを停止状態とし、前記燃料タンク内を負圧状態に遷移させてこれらの状態を予め設定した所定時間維持した後、前記異常判定部によって燃料タンク内のタンク内圧の変化を予め設定した所定の第二の内圧変化量と比較して異常の有無を判定する第二の判定を行うことを特徴とする請求項1に記載の蒸発燃料処理装置。   When the first determination does not indicate that there is no abnormality, the control means opens the purge valve while keeping the switching valve in a closed state, stops the pressure reducing pump, and sets a negative pressure in the fuel tank. After transitioning to a state and maintaining these states for a predetermined time set in advance, the abnormality determination unit compares the change in the tank internal pressure in the fuel tank with a predetermined second internal pressure change amount to determine whether there is an abnormality. The evaporated fuel processing apparatus according to claim 1, wherein a second determination is performed to determine 前記制御手段は、前記第一の判定により異常なしとなった場合と、第二の判定により異常なしとなった場合とのいずれかの場合であって、かつ前記内燃機関の停止状態を含む所定の診断条件成立中に、前記減圧ポンプを駆動状態とし、前記燃料タンク内を負圧状態に遷移させてこれらの状態を予め設定した所定時間維持した後、前記異常判定部によって燃料タンク内のタンク内圧の変化を予め設定した所定の第三の内圧変化量と比較して異常の有無を判定する第三の判定を行うことを特徴とする請求項2に記載の蒸発燃料処理装置。   The control means is a predetermined case that includes either a case where there is no abnormality by the first determination and a case where there is no abnormality by the second determination and includes a stop state of the internal combustion engine. The pressure reducing pump is in a driving state while the diagnosis condition is satisfied, the inside of the fuel tank is changed to a negative pressure state, and these states are maintained for a predetermined time, and then the tank in the fuel tank is set by the abnormality determination unit 3. The evaporative fuel processing apparatus according to claim 2, wherein a third determination for determining whether or not there is an abnormality is performed by comparing a change in the internal pressure with a predetermined third internal pressure change amount set in advance. 前記制御手段は、大気圧に基づいて基準圧力を計測する一方、前記減圧ポンプを駆動状態とし、前記燃料タンク内を負圧状態に遷移させてこれらの状態を予め設定した所定時間維持した後、前記異常判定部によって燃料タンク内のタンク内圧の変化値をその基準圧力と比較して前記減圧ポンプの異常の有無を判定する第四の判定を行うことを特徴とする請求項3に記載の蒸発燃料処理装置。   The control means measures the reference pressure based on the atmospheric pressure, while setting the decompression pump in a driving state, transitions the inside of the fuel tank to a negative pressure state, and maintains these states for a predetermined time, 4. The evaporation according to claim 3, wherein the abnormality determination unit performs a fourth determination for comparing the change value of the tank internal pressure in the fuel tank with the reference pressure to determine whether the pressure reducing pump is abnormal or not. Fuel processor.
JP2006062212A 2006-03-08 2006-03-08 Evaporative fuel processing equipment Expired - Fee Related JP4655278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062212A JP4655278B2 (en) 2006-03-08 2006-03-08 Evaporative fuel processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062212A JP4655278B2 (en) 2006-03-08 2006-03-08 Evaporative fuel processing equipment

Publications (2)

Publication Number Publication Date
JP2007239569A true JP2007239569A (en) 2007-09-20
JP4655278B2 JP4655278B2 (en) 2011-03-23

Family

ID=38585354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062212A Expired - Fee Related JP4655278B2 (en) 2006-03-08 2006-03-08 Evaporative fuel processing equipment

Country Status (1)

Country Link
JP (1) JP4655278B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281226A (en) * 2008-05-21 2009-12-03 Nissan Motor Co Ltd Leakage diagnosis device of evaporation fuel purge passage of vehicular internal combustion engine and leakage diagnosis method therefor
CN101514660B (en) * 2008-02-22 2012-06-13 通用汽车环球科技运作公司 Plug-in hybrid evap valve management to reduce valve cycling
WO2014061135A1 (en) * 2012-10-18 2014-04-24 三菱電機株式会社 Airtightness evaluation device and airtightness evaluation method
JP2014077401A (en) * 2012-10-11 2014-05-01 Denso Corp Method for detecting evaporative fuel leakage
CN109386407A (en) * 2017-08-03 2019-02-26 株式会社电装 Fuel steam processing device
CN114934853A (en) * 2022-06-16 2022-08-23 江铃汽车股份有限公司 Fuel leakage diagnosis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294052A (en) * 2000-04-11 2001-10-23 Toyota Motor Corp Abnormality diagnostic method and abnormality diagnostic device for fuel tank
JP2004300997A (en) * 2003-03-31 2004-10-28 Denso Corp Leakage diagnostic device for evaporated gas purging system
JP2005002965A (en) * 2003-06-16 2005-01-06 Hitachi Unisia Automotive Ltd Leak diagnostic device of evaporated fuel treating device
JP2005023796A (en) * 2003-06-30 2005-01-27 Suzuki Motor Corp Evaporated fuel control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294052A (en) * 2000-04-11 2001-10-23 Toyota Motor Corp Abnormality diagnostic method and abnormality diagnostic device for fuel tank
JP2004300997A (en) * 2003-03-31 2004-10-28 Denso Corp Leakage diagnostic device for evaporated gas purging system
JP2005002965A (en) * 2003-06-16 2005-01-06 Hitachi Unisia Automotive Ltd Leak diagnostic device of evaporated fuel treating device
JP2005023796A (en) * 2003-06-30 2005-01-27 Suzuki Motor Corp Evaporated fuel control device for internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514660B (en) * 2008-02-22 2012-06-13 通用汽车环球科技运作公司 Plug-in hybrid evap valve management to reduce valve cycling
JP2009281226A (en) * 2008-05-21 2009-12-03 Nissan Motor Co Ltd Leakage diagnosis device of evaporation fuel purge passage of vehicular internal combustion engine and leakage diagnosis method therefor
JP2014077401A (en) * 2012-10-11 2014-05-01 Denso Corp Method for detecting evaporative fuel leakage
US9303600B2 (en) 2012-10-11 2016-04-05 Denso Corporation Fuel vapor leakage detection method
WO2014061135A1 (en) * 2012-10-18 2014-04-24 三菱電機株式会社 Airtightness evaluation device and airtightness evaluation method
JPWO2014061135A1 (en) * 2012-10-18 2016-09-05 三菱電機株式会社 Airtightness diagnostic apparatus and airtightness diagnostic method
CN109386407A (en) * 2017-08-03 2019-02-26 株式会社电装 Fuel steam processing device
CN109386407B (en) * 2017-08-03 2022-01-18 株式会社电装 Fuel vapor treatment device
CN114934853A (en) * 2022-06-16 2022-08-23 江铃汽车股份有限公司 Fuel leakage diagnosis method
CN114934853B (en) * 2022-06-16 2023-09-15 江铃汽车股份有限公司 Fuel oil leakage diagnosis method

Also Published As

Publication number Publication date
JP4655278B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4607770B2 (en) Evaporative fuel processing equipment
JP4655278B2 (en) Evaporative fuel processing equipment
JP6508028B2 (en) Fuel evaporative gas purge system
WO2014050085A1 (en) Leak diagnosis device for evaporated fuel processing system
US11326559B2 (en) Leakage detector for fuel vapor treatment device
JP4419740B2 (en) In-tank canister system failure diagnosis apparatus and failure diagnosis method
JP3776811B2 (en) Failure diagnosis device for fuel vapor purge system
JP2004156493A (en) Evaporated fuel treatment device of internal combustion engine
JPWO2016207964A1 (en) Evaporative fuel processor diagnostic device
JP2005002965A (en) Leak diagnostic device of evaporated fuel treating device
JP2005098125A (en) Diagnostic equipment of air supply device
KR20200118298A (en) Method and system for diagnosing fault of dual purge system
JP4432615B2 (en) Evaporative fuel control device for internal combustion engine
JP4497293B2 (en) Evaporative fuel control device for internal combustion engine
JP4433174B2 (en) Evaporative fuel control device for internal combustion engine
JP2019078172A (en) Fuel residual estimation device and abnormality diagnosis device of fuel vapor tight system
JP2002364463A (en) Fault diagnostic device for evaporative fuel processing device
JP2008025469A (en) Evaporated fuel control device for internal combustion engine
JP6308266B2 (en) Abnormality diagnosis device for evaporative fuel treatment system
JP2019090383A (en) Blockage detection device and blockage detection method
JP4303537B2 (en) Pressure reducer
JP2020105958A (en) Leakage diagnostic device for evaporated fuel treatment device
JP2004293438A (en) Leak diagnosing device of evaporation gas purging system
JP2010071199A (en) Device and method for diagnosing failure of in-tank canister system
JP3746456B2 (en) Evaporative fuel processing mechanism diagnostic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees