JP2007238406A - Flaky nitrogen-doped titanium oxide exhibiting photocatalytic performance in visible light - Google Patents

Flaky nitrogen-doped titanium oxide exhibiting photocatalytic performance in visible light Download PDF

Info

Publication number
JP2007238406A
JP2007238406A JP2006065671A JP2006065671A JP2007238406A JP 2007238406 A JP2007238406 A JP 2007238406A JP 2006065671 A JP2006065671 A JP 2006065671A JP 2006065671 A JP2006065671 A JP 2006065671A JP 2007238406 A JP2007238406 A JP 2007238406A
Authority
JP
Japan
Prior art keywords
titania
titanium oxide
organic
photocatalyst
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006065671A
Other languages
Japanese (ja)
Other versions
JP4862183B2 (en
Inventor
Hiroteru Matsumoto
太輝 松本
Yasushi Murakami
泰 村上
Nobuo Ii
伸夫 井伊
Kenji Kitamura
健二 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
National Institute for Materials Science
Original Assignee
Shinshu University NUC
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, National Institute for Materials Science filed Critical Shinshu University NUC
Priority to JP2006065671A priority Critical patent/JP4862183B2/en
Publication of JP2007238406A publication Critical patent/JP2007238406A/en
Application granted granted Critical
Publication of JP4862183B2 publication Critical patent/JP4862183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing anatase-type titanium oxide for a photocatalyst from which a titanium oxide photocatalyst to be driven at extremely high efficiency in visible light can be expected to be obtained. <P>SOLUTION: The method for manufacturing titanium oxide for the photocatalyst comprises the steps of: putting in a vessel a mixed solution containing an organic substance having coordination power with titanium alkoxide and a catalyst; circulating a humidified gas in the vessel to continuously supply moisture of the amount required to hydrolysis and a polycondensation reaction and produce a titania/organic complex having a layered structure and an organic ligand coordinated between titania layers; immersing the titania/organic complex in ammonia water to substitute the organic ligand between titania layers for a hydroxy group by a ligand exchange reaction, simultaneously introduce ammonium into the space between titania layers of the layered structure and produce a complex of titania and ammonium; and circulating a gaseous mixture of oxygen with an inert gas, the mixing ratio of which is controlled, in the produced complex and heating the gaseous mixture-circulated complex to dope titania with nitrogen by pyrolysis of ammonium and crystallize the nitrogen-doped titania into anatase-type titania. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、可視光照射下において、高い光触媒能を示すアナターゼ結晶型の光触媒用酸化チタン、およびその製造方法に関するものである。   The present invention relates to anatase crystal-type titanium oxide for photocatalyst exhibiting high photocatalytic activity under visible light irradiation, and a method for producing the same.

光触媒は光の照射によって自身の中で電荷分離を生じ、生成した電子またはホール、あるいはその双方を他の物質に与えることによって、相手を酸化したり還元したりする、すなわち、光によって様々な酸化還元反応を誘起する物質である。   A photocatalyst causes charge separation within itself upon irradiation with light, and oxidizes or reduces the partner by giving the generated electrons and / or holes to other substances. It is a substance that induces a reduction reaction.

近年、光触媒が環境浄化用途、防汚・防曇・殺菌用途、さらには水分解による水素製造やグッレッツェルセル(非特許文献1)に代表される光−電気エネルギー変換デバイスの材料としても注目されており、その高い光触媒能や製造コストの面から、酸化チタンが最も広く一般的に使われている。   In recent years, photocatalysts have been attracting attention as materials for environmental purification applications, antifouling / antifogging / sterilization applications, hydrogen production by water decomposition, and photo-electric energy conversion devices represented by Gretzel cells (Non-patent Document 1). Titanium oxide is the most widely used because of its high photocatalytic ability and production cost.

酸化チタンが光照射によって電荷分離を生じるのは、光半導体としての特性を有するためであり、そのバンドギャップは約3.2eVである。したがって、通常の酸化チタンはこのバンドギャップのエネルギーに相当する380nm以下の紫外領域の光照射によってのみ励起し、光触媒として駆動することが可能である。   Titanium oxide causes charge separation by light irradiation because it has characteristics as an optical semiconductor, and its band gap is about 3.2 eV. Therefore, ordinary titanium oxide can be excited only by light irradiation in the ultraviolet region of 380 nm or less corresponding to the energy of this band gap, and can be driven as a photocatalyst.

光触媒の実用的な用途を考えると、その駆動にはもっぱら太陽光や室内光が用いられることになる。しかしながら、従来の酸化チタン光触媒が利用可能な紫外領域の光は、地上の太陽光スペクトルの3〜5%にしかすぎず、高い効率での光触媒の駆動には限界があった。また、蛍光灯をはじめとする室内光には紫外領域の光がほとんど含まれないため、光触媒がほとんど駆動しなかった。   Considering the practical use of the photocatalyst, sunlight and indoor light are used exclusively for driving. However, the ultraviolet light that can be used by the conventional titanium oxide photocatalyst is only 3 to 5% of the sunlight spectrum on the ground, and there is a limit to driving the photocatalyst with high efficiency. Moreover, since indoor light including fluorescent lamps hardly contains ultraviolet light, the photocatalyst was hardly driven.

したがって、酸化チタン光触媒の利用できる光の波長をより長波長側に持っていくことができれば、太陽光の主成分である可視光を利用できるようになり、太陽光下での高い効率での光触媒の駆動が期待できる。また、太陽光の届かない環境であっても室内光で光触媒を駆動することが可能になる。   Therefore, if the wavelength of light that can be used by the titanium oxide photocatalyst can be brought to the longer wavelength side, the visible light that is the main component of sunlight can be used, and the photocatalyst with high efficiency under sunlight Can be expected to drive. In addition, the photocatalyst can be driven by room light even in an environment where sunlight does not reach.

可視光で駆動可能な酸化チタン光触媒として、窒素をドープした酸化チタンが報告されている(非特許文献2、特許文献1〜6)。酸化チタンの酸素原子の一部を窒素原子に置換することによって、酸化チタンのバンドギャップが狭くなり、紫外光に加え、より波長の長い可視域の光によっても励起して電荷分離を生じ、光触媒能が発現するといわれている。   Titanium oxide doped with nitrogen has been reported as a titanium oxide photocatalyst that can be driven by visible light (Non-patent Documents 2 and 6). By substituting some of the oxygen atoms of titanium oxide with nitrogen atoms, the band gap of titanium oxide is narrowed, and in addition to ultraviolet light, excitation is caused by light in the visible range with a longer wavelength, resulting in charge separation and photocatalysis. Noh is said to develop.

これまで報告されている窒素ドープ型酸化チタンは、通常の酸化チタンを、窒素あるいはアンモニア気流中、500〜800℃といった高温で数時間加熱処理することによって得られている。このような高温かつ窒素濃度の高い条件は、バンドギャップを変化させるのに十分な量の窒素を酸化チタンに導入するために不可欠であった。   The nitrogen-doped titanium oxide reported so far is obtained by heat-treating ordinary titanium oxide at a high temperature of 500 to 800 ° C. for several hours in a nitrogen or ammonia stream. Such a high temperature and high nitrogen concentration condition has been indispensable for introducing a sufficient amount of nitrogen into the titanium oxide to change the band gap.

しかしながら、このような高温での加熱処理過程は、光触媒の活性を低下させる原因となる。光触媒反応は触媒表面での反応であるため、高い活性を発現させるためには高い比表面積が求められるが、長時間の高温加熱処理プロセスは光触媒の緻密化を引き起こし、比表面積を低下させる。   However, the heat treatment process at such a high temperature causes a decrease in the activity of the photocatalyst. Since the photocatalytic reaction is a reaction on the surface of the catalyst, a high specific surface area is required to develop a high activity, but a high-temperature heat treatment process for a long time causes densification of the photocatalyst and reduces the specific surface area.

酸化チタンの光触媒活性はその結晶性に大きく左右され、一般的には準安定型であるアナターゼ型が最も高活性であるとされているが(非特許文献3)、高温での加熱処理過程を経ることによって、酸化チタンの最も安定な結晶型であるルチル型へと転移をする。   The photocatalytic activity of titanium oxide is greatly influenced by its crystallinity, and generally the metastable type anatase type is said to have the highest activity (Non-patent Document 3). By passing, it changes to the rutile type, which is the most stable crystal type of titanium oxide.

以上のように、酸化チタンは、窒素をドープすることによって太陽光の主成分である可視光でも駆動できるようになる一方、従来の窒素をドープする方法では、窒素ドープに必要な高温加熱処理過程が、酸化チタン本来の光触媒能を低下させてしまうため、太陽光下で高い効率で駆動できる酸化チタン光触媒を得ることは困難であった。   As described above, titanium oxide can be driven by visible light, which is the main component of sunlight, by doping nitrogen, while the conventional nitrogen doping method requires a high-temperature heat treatment process necessary for nitrogen doping. However, since the original photocatalytic ability of titanium oxide is reduced, it has been difficult to obtain a titanium oxide photocatalyst that can be driven with high efficiency under sunlight.

WO01/010552号公報WO01 / 010552 gazette 特開2002−255554号公報JP 2002-255554 A 特開2002−361097号公報JP 2002-361997 A 特開2003−190809号公報JP 2003-190809 A 特開2003−340288号公報JP 2003-340288 A 特開2004−97868号公報JP 2004-97868 A B. O’Regan, M. Graetzel, Nature 1991,353, 737B. O’Regan, M. Graetzel, Nature 1991,353, 737 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269 K. Kato, A. Tsuzuki, H. Taoda, Y. Torii, T. Kato, Y. Butsugani, J. Mater. Sci. 1994, 29, 5911K. Kato, A. Tsuzuki, H. Taoda, Y. Torii, T. Kato, Y. Butsugani, J. Mater. Sci. 1994, 29, 5911

酸化チタンは、光触媒として紫外光でしか活性化しないが、窒素をドープすることによって可視光でも駆動できるようになる。従来の方法では、窒素ドープに必要な高温加熱処理過程が、酸化チタン本来の光触媒能を低下させてしまうため、可視光照射下で高い効率で駆動できる酸化チタン光触媒を得ることは困難であった。   Titanium oxide is activated only by ultraviolet light as a photocatalyst, but can be driven even by visible light by doping with nitrogen. In the conventional method, since the high-temperature heat treatment process necessary for nitrogen doping reduces the original photocatalytic ability of titanium oxide, it was difficult to obtain a titanium oxide photocatalyst that can be driven with high efficiency under visible light irradiation. .

そこで本発明では、高い比表面積を有する酸化チタンに、緻密化やルチル転移を伴わないような穏和な条件で可視光域の光吸収が発現するのに十分な量の窒素をドープし、可視光照射下で極めて高い効率で駆動する酸化チタン光触媒が得られるものと期待できるアナターゼ結晶型の光触媒用酸化チタンの製造方法を提供することを目的とする。   Therefore, in the present invention, titanium oxide having a high specific surface area is doped with a sufficient amount of nitrogen so that light absorption in the visible light region is exhibited under a mild condition that does not involve densification and rutile transition, An object of the present invention is to provide a method for producing a titanium oxide for photocatalyst of anatase crystal type that can be expected to provide a titanium oxide photocatalyst that can be driven with extremely high efficiency under irradiation.

前記の目的を達成するためになされた本発明を適用する請求項1に係る発明の光触媒用酸化チタンの製造方法は、チタンアルコキシドと配位子を有する有機物と触媒とを含む混合溶液を容器中に入れ、その容器中に加湿した気体を流通させることにより、加水分解と重縮合反応に必要な水分を連続的に供給することによって得られた、層状構造を有し層間に有機配位子が配位しているチタニア/有機複合体を、アンモニア水に浸漬することによって、層間の有機配位子を配位子交換反応によって水酸基に置換し、同時にアンモニウムを層状構造のチタニアの層間に導入することによって得られたチタニアとアンモニウムの複合体を、酸素と不活性ガスの混合比を制御した混合ガス流通化で加熱して、アンモニウムの熱分解により窒素をチタニアにドープすると共にアナターゼに結晶化させることを特徴とする。   The method for producing titanium oxide for photocatalyst of the invention according to claim 1 to which the present invention made to achieve the above-mentioned object is applied, comprises mixing a mixed solution containing a titanium alkoxide, an organic substance having a ligand, and a catalyst in a container. And having a layered structure obtained by continuously supplying moisture necessary for hydrolysis and polycondensation reaction by circulating a humidified gas in the container, and an organic ligand is interposed between the layers. By immersing the coordinating titania / organic complex in aqueous ammonia, the organic ligands between the layers are replaced with hydroxyl groups by a ligand exchange reaction, and at the same time, ammonium is introduced between the titania layers of the layered structure. The titania-ammonium complex obtained by heating was heated in a mixed gas flow where the mixing ratio of oxygen and inert gas was controlled, and nitrogen was titrated by thermal decomposition of ammonium. Wherein the anatase to crystallized while doped.

同じく請求項2に係る発明の光触媒用酸化チタンの製造方法は、請求項1に記載の方法であって、前記チタンアルコキシドが式1で示されるチタンアルコキシドであり、単独あるいは複数を混合して用いることを特徴とする。

Figure 2007238406
(式1)で、Rは炭素数1〜6のアルキル基であり、それぞれのアルキル基R、R、R、Rは同種であっても異種であっても良い。
具体的なチタンアルコキシドとしてはチタンエトキシド、チタンメトキシド、チタンイソプロポキシド、チタン−n−ブトキシド等が挙げられる。 Similarly, the method for producing titanium oxide for photocatalyst of the invention according to claim 2 is the method according to claim 1, wherein the titanium alkoxide is a titanium alkoxide represented by the formula 1, and is used alone or in combination. It is characterized by that.
Figure 2007238406
(Equation 1), R is an alkyl group having 1 to 6 carbon atoms, each alkyl group R 1, R 2, R 3 , R 4 may be different, even the same species.
Specific titanium alkoxides include titanium ethoxide, titanium methoxide, titanium isopropoxide, titanium-n-butoxide and the like.

請求項3に係る発明の光触媒用酸化チタンの製造方法は、請求項1に記載の方法であって、前記配位子を有する有機物が炭素数3〜24のアルキル基を有する脂肪族カルボン酸または炭素数6〜30のアリール基を有する芳香族カルボン酸であることを特徴とする。具体的には、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、ドコサヘキサエン酸、エイコサペンタエン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸等が挙げられる。   The method for producing titanium oxide for photocatalyst of the invention according to claim 3 is the method according to claim 1, wherein the organic substance having the ligand has an aliphatic carboxylic acid having an alkyl group having 3 to 24 carbon atoms, or It is an aromatic carboxylic acid having an aryl group having 6 to 30 carbon atoms. Specifically, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, isostearic acid, oleic acid, linoleic acid Examples include acids, linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, gallic acid and the like.

請求項4に係る発明の光触媒用酸化チタンの製造方法は、請求項1に記載の方法であって、炭素数3〜24のアルキル基を有する脂肪族カルボン酸または炭素数6〜30のアリール基を有する芳香族カルボン酸と炭素数3〜24のアルキル基を有する脂肪族アミンまたは炭素数6〜30のアリール基を有する芳香族アミンを混合したものであることを特徴とする。具体的にはプロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、ドコサヘキサエン酸、エイコサペンタエン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸等のカルボン酸と、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、トリメチルアミン、ベンジルアミン、アニリン、メチルアニリン、ジメチルアニリン等のアミンを混合したもの等が挙げられる。   The method for producing titanium oxide for photocatalyst of the invention according to claim 4 is the method according to claim 1, wherein the aliphatic carboxylic acid having an alkyl group having 3 to 24 carbon atoms or an aryl group having 6 to 30 carbon atoms is used. And an aliphatic amine having an alkyl group having 3 to 24 carbon atoms or an aromatic amine having an aryl group having 6 to 30 carbon atoms. Specifically, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, isostearic acid, oleic acid, linoleic acid , Linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, gallic acid and other carboxylic acids, propylamine, butylamine, pentylamine, hexylamine, heptylamine, Amines such as octylamine, nonylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, heptadecylamine, octadecylamine, trimethylamine, benzylamine, aniline, methylaniline, dimethylaniline Those were mixed, and the like.

請求項5に係る発明の光触媒用酸化チタンの製造方法は、請求項1に記載の方法であって、該アンモニア水が0から100℃で浸漬されることを特徴とする。   A method for producing titanium oxide for a photocatalyst according to a fifth aspect of the present invention is the method according to the first aspect, wherein the ammonia water is immersed at 0 to 100 ° C.

請求項6に係る発明の薄片状チタニアに有機配位子が配位し、規則的な層状構造を形成するチタニア/有機複合体の製造方法は、チタニア/有機複合体の製造方法は、チタンアルコキシドと有機物を含む混合溶液を容器中に入れ、その容器中に加湿した気体を流通させることにより水分を連続的に供給することによってチタンアルコキシドの加水分解と重縮合反応を起こさせることを特徴とする。   The method for producing a titania / organic composite in which an organic ligand is coordinated to the flaky titania of the invention according to claim 6 to form a regular layered structure is a titanium alkoxide. It is characterized by causing a hydrolysis and polycondensation reaction of titanium alkoxide by continuously supplying water by putting a mixed solution containing water and an organic substance in a container and circulating a humidified gas in the container. .

本発明を適用するアナターゼ結晶型の光触媒用酸化チタンは、チタンアルコキシドと脂肪族カルボン酸を疎水性の有機溶媒に溶解させ、加湿した気体から徐々に水分を取り込んで反応させることを特徴とするゾル−ゲル法により反応させて得られた、層状構造チタニアの層間にカルボキシラートを配位させたチタニア/カルボキシラート複合体を酸化チタン光触媒の前駆体としている。そのため、チタニアのサイズ、形状、組織構造といった形態を前駆体の段階で設計することが可能である。チタニアの生成過程と窒素ドープの過程が完全に独立している。窒素ドープの過程で酸化雰囲気にすることで、比較的低温の処理が可能となった。そのため、サイズが微少で、比表面積が大きいといった光触媒に好ましい形態をチタニアの生成過程を構築し、さらにその形態を維持したまま、窒素ドープによる可視光駆動特性を酸化チタンに付与できる。従来の酸化チタン光触媒に比較して遙かに高性能、高効率な可視光応答型光触媒を得ることができる。   Anatase crystal type titanium oxide for photocatalyst to which the present invention is applied is characterized in that a titanium alkoxide and an aliphatic carboxylic acid are dissolved in a hydrophobic organic solvent, and water is gradually taken in and reacted from a humidified gas. -A titania / carboxylate complex obtained by reacting by a gel method and having a carboxylate coordinated between layers of a layered structure titania is used as a precursor of a titanium oxide photocatalyst. Therefore, it is possible to design the form such as the size, shape and tissue structure of titania at the precursor stage. The titania formation process and the nitrogen doping process are completely independent. By using an oxidizing atmosphere in the nitrogen doping process, processing at a relatively low temperature became possible. Therefore, it is possible to construct a titania generation process with a preferable form for a photocatalyst having a small size and a large specific surface area, and to impart visible light driving characteristics to the titanium oxide by nitrogen doping while maintaining the form. Compared with conventional titanium oxide photocatalysts, it is possible to obtain a visible light responsive photocatalyst that is far higher in performance and efficiency.

本発明のアナターゼ結晶型の光触媒用酸化チタンは、高温加熱処理過程による緻密化、組織構造の破壊、ルチル転移といった酸化チタン光触媒の光触媒能を低下させる現象を伴うことなく、実用性に富んだ簡易で穏和な化学的手法によって、十分な量の窒素をドープしている。そのため、酸化チタンの薄片状を維持することで十分なかさ高さ、大きな比表面積を持つから、可視光に対する光触媒として適切なものである。ひいては、太陽光のエネルギーを高効率に利用したり、室内光を利用することができる。   The anatase crystal type titanium oxide for photocatalyst of the present invention has a practical and simple process without the phenomenon of reducing the photocatalytic ability of the titanium oxide photocatalyst such as densification, destruction of structure and rutile transition due to high temperature heat treatment process. A moderate amount of nitrogen is doped with a sufficient amount of nitrogen. Therefore, it is suitable as a photocatalyst for visible light because it has a sufficient bulkiness and a large specific surface area by maintaining the flake shape of titanium oxide. As a result, the energy of sunlight can be used with high efficiency, or indoor light can be used.

さらに本発明によるアナターゼ結晶型の光触媒用酸化チタンの製造方法、極めて簡便かつ穏和な条件での操作であるため工業的な生産性とコストの面からも、その意義が大きい。   Furthermore, since the method for producing anatase crystal-type titanium oxide for photocatalyst according to the present invention and the operation under extremely simple and mild conditions are significant from the viewpoint of industrial productivity and cost.

発明を実施するための好ましい形態Preferred form for carrying out the invention

ゾル−ゲル法によって合成した層状構造を有するチタニア/有機複合体をアンモニア水に浸漬することによって、有機配位子を配位子交換反応によって水酸基に置換すると同時にアンモニウムをチタニアの層状構造の層間に導入してチタニア/アンモニウム複合体とする。このチタニア/アンモニウム複合体を300〜500℃の温度範囲で加熱処理することにより、窒素がドープされた可視光駆動可能な酸化チタン光触媒が得られる。   By immersing a titania / organic composite having a layered structure synthesized by the sol-gel method in aqueous ammonia, the organic ligand is replaced with a hydroxyl group by a ligand exchange reaction, and at the same time, ammonium is placed between the layers of the titania layered structure. Introduced into titania / ammonium complex. By heating the titania / ammonium complex in a temperature range of 300 to 500 ° C., a titanium oxide photocatalyst capable of driving visible light doped with nitrogen is obtained.

層状のチタニア/有機複合体はチタニアに水酸基と交換可能な有機配位子が配位した物質であれば様々なものを用いることが可能であるが、有機配位子との分子レベルでの複合化が期待できるチタンアルコキシドを溶液中で反応させるゾル−ゲル法で合成することが特に望ましい。チタンアルコキシドの例としては、チタンエトキシド、チタンメトキシド、チタンイソプロポキシド、チタン−n−ブトキシドなどあらゆるチタンアルコキシドを用いることができる。   As the layered titania / organic complex, various substances can be used as long as the titania is coordinated with an organic ligand capable of exchanging with a hydroxyl group. It is particularly desirable to synthesize by a sol-gel method in which a titanium alkoxide that can be expected to be converted is reacted in a solution. As an example of the titanium alkoxide, any titanium alkoxide such as titanium ethoxide, titanium methoxide, titanium isopropoxide, titanium-n-butoxide can be used.

ゾル−ゲル法に用いる溶媒は様々な有機溶媒を用いることができるが、チタンアルコキシドの高い反応性の制御、およびアンモニア水への浸潰操作後の生成物の分離操作の容易さといった観点から、水との相溶性の低い疎水溶媒を用いることが望ましい。   Although various organic solvents can be used as the solvent used in the sol-gel method, from the viewpoint of controlling the high reactivity of titanium alkoxide and the ease of separating the product after the immersion in aqueous ammonia, It is desirable to use a hydrophobic solvent having low compatibility with water.

層状のチタニア/有機複合体をゾル−ゲル法によって得るためには、二次元的な成長によって薄片状のチタニアが成長しなければならない。このような反応を行うためには反応に必要な水分を少量ずつ連続的に供給する必要があり、加湿した不活性ガスを反応容器中に流通させ、加湿した不活性ガスから徐々に水分を取り込み反応させる手法が有効である。不活性ガスは溶液と反応を起こさないものであれば特に限定されないが、価格、入手のしやすさ、加湿の容易さといった観点から、窒素やアルゴンが特に好ましい。   In order to obtain a layered titania / organic composite by the sol-gel method, flaky titania must be grown by two-dimensional growth. In order to carry out such a reaction, it is necessary to continuously supply the moisture necessary for the reaction little by little. The humidified inert gas is circulated in the reaction vessel, and the moisture is gradually taken in from the humidified inert gas. A reaction method is effective. The inert gas is not particularly limited as long as it does not react with the solution, but nitrogen and argon are particularly preferable from the viewpoints of price, availability, and ease of humidification.

不活性ガスの加湿の度合いは反応を制御する目的で様々に変化させることができるが、湿度が低すぎる場合水分の導入が不十分で反応を十分に進行させることができず、高すぎる場合は反応容器内での凝結等が生じ、少量ずつの水分導入が難しくなることから、反応容器中での相対湿度が10%から80%程度になるよう調整されることが望ましい。   The degree of humidification of the inert gas can be changed in various ways for the purpose of controlling the reaction. However, when the humidity is too low, the introduction of moisture is insufficient and the reaction cannot proceed sufficiently. It is desirable to adjust the relative humidity in the reaction vessel to be about 10% to 80% because condensation or the like in the reaction vessel occurs and it becomes difficult to introduce water in small amounts.

以上のような条件で薄片状のチタニアを成長させるためには、重縮合反応を促進するために、酸と塩基の中和によって生じた塩を重縮合促進の触媒として導入することが不可欠である。塩は特定のものに限定されないが、弱酸と弱塩基の中和によって生じたものが有効であり、また疎水溶媒への溶解性の観点から、アルキルカルボン酸とアルキルアミンの中和によって得られた塩を用いることが特に好ましい。   In order to grow flaky titania under the above conditions, in order to accelerate the polycondensation reaction, it is essential to introduce a salt produced by neutralization of acid and base as a catalyst for promoting polycondensation. . The salt is not limited to a specific one, but the salt produced by neutralization of a weak acid and a weak base is effective. From the viewpoint of solubility in a hydrophobic solvent, the salt was obtained by neutralization of an alkylcarboxylic acid and an alkylamine. It is particularly preferred to use a salt.

チタニア/有機複合体を得るために、チタンアルコキシドの溶液中に、複合体を形成する有機物を混合してから反応を行う。混合する有機物は、チタニアに配位して、チタニア/有機複合体を構築すると同時に、後のアンモニア水での処理時に水酸基と交換可能でなくてはならない。   In order to obtain a titania / organic composite, an organic substance that forms the composite is mixed in a titanium alkoxide solution, and then the reaction is performed. The organic matter to be mixed must be coordinated with titania to form a titania / organic composite, and at the same time be exchangeable with hydroxyl groups during subsequent treatment with aqueous ammonia.

このような物質としては各種のカルボン酸が挙げられる。カルボン酸とチタンアルコキシドを混合することによって、図1(A)に模式的に示すようにチタンアルコキシドにカルボキシラート(カルボン酸イオン)が配位する。この後、溶液に加湿した不活性ガスから水分を導入することによって、加水分解、及び重縮合反応が生じ、チタニアにカルボキシラートが配位したチタニア/カルボキシラート複合体を含む高粘度のゾルを得ることができる。   Examples of such substances include various carboxylic acids. By mixing carboxylic acid and titanium alkoxide, carboxylate (carboxylic acid ion) is coordinated to titanium alkoxide as schematically shown in FIG. Thereafter, by introducing moisture from an inert gas humidified into the solution, hydrolysis and polycondensation reactions occur, and a high-viscosity sol containing a titania / carboxylate complex in which carboxylate is coordinated to titania is obtained. be able to.

カルボン酸は特定のものに限定されないが層状構造が形成されるための相互作用が十分に生じるためには炭素数が3以上のアルキル基を有する脂肪族カルボン酸であるか、ベンゼン環を含むアリール基を有する芳香族カルボン酸であることが好ましく、また、疎水溶媒への溶解性の観点からアルキル基またはアリール基の炭素数が22以下であることが好ましく、なおかつ枝分かれを有することがより好ましい。このようなカルボン酸の一例としてイソステアリン酸があげられる。また、複数のカルボン酸を混合して用いても良い。   The carboxylic acid is not limited to a specific one, but is an aliphatic carboxylic acid having an alkyl group having 3 or more carbon atoms or an aryl containing a benzene ring in order to cause sufficient interaction for forming a layered structure. An aromatic carboxylic acid having a group is preferable, and from the viewpoint of solubility in a hydrophobic solvent, the alkyl group or aryl group preferably has 22 or less carbon atoms, and more preferably has a branch. An example of such a carboxylic acid is isostearic acid. A plurality of carboxylic acids may be mixed and used.

図1(B)に、このようにして得られる層状チタニア/カルボキシラート複合体の構造を模式的に示す。薄片状のチタニアシートの表面にカルボキシラートが配位し、カルボキシラート同士の疎水的な相互作用によってチタニアシートが自己組織化し層状構造を形成する。   FIG. 1B schematically shows the structure of the layered titania / carboxylate complex thus obtained. A carboxylate is coordinated on the surface of a flaky titania sheet, and the titania sheet is self-organized by a hydrophobic interaction between the carboxylates to form a layered structure.

得られたチタニア/カルボキシラート複合体をアンモニア水で処理することによって、配位しているカルボキシラートを水酸基に置換すると同時に、図1(C)に模式的に示すように、アンモニウムをチタニアの層状構造の層間に導入する。カルボキシラートを完全に除去すること、また充分な量のアンモニウムを導入するといった観点から、用いるアンモニア水は室温から100℃未満の濃アンモニア水が好ましい。温度が100℃以上ではアンモニア水からアンモニアが気化してしまうため好ましくない。   By treating the obtained titania / carboxylate complex with aqueous ammonia, the coordinated carboxylate is replaced with a hydroxyl group, and at the same time, as schematically shown in FIG. Introduce between layers of structure. From the viewpoints of completely removing the carboxylate and introducing a sufficient amount of ammonium, the aqueous ammonia used is preferably concentrated aqueous ammonia from room temperature to less than 100 ° C. A temperature of 100 ° C. or higher is not preferable because ammonia is vaporized from aqueous ammonia.

アンモニア水処理後の物質を乾燥した後、酸素と不活性ガスの混合比を制御した混合ガス流通化で加熱してアンモニウムの分解により窒素をチタニアにドープするとともに、アナターゼに結晶化させる。その結果、窒素がドープされ、図1(D)に模式的に示すような可視光で駆動可能な薄片状酸化チタン光触媒を得ることができる。加熱温度は低すぎるとアナターゼへの結晶化が不十分なうえ、窒素が充分に酸化チタンの格子に取り込まれない。一方、高すぎると緻密化やルチルへの結晶化が生じる上、取り込んだ窒素を放出してしまうため、やはり好ましくない。以上のような観点から、加熱処理温度は300〜500℃程度が特に好ましい。さらに好ましくは350〜450℃である。   After the ammonia water treatment substance is dried, it is heated by circulating a mixed gas in which the mixing ratio of oxygen and inert gas is controlled, and nitrogen is doped into titania by decomposition of ammonium and crystallized into anatase. As a result, a flaky titanium oxide photocatalyst that is doped with nitrogen and can be driven with visible light as schematically shown in FIG. 1D can be obtained. If the heating temperature is too low, crystallization into anatase is insufficient and nitrogen is not sufficiently taken into the lattice of titanium oxide. On the other hand, if it is too high, densification and crystallization into rutile occur, and the incorporated nitrogen is released. From the above viewpoint, the heat treatment temperature is particularly preferably about 300 to 500 ° C. More preferably, it is 350-450 degreeC.

以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these examples.

(実施例1)
窒素雰囲気下、チタンテトライソプロポキシド(50mmol)とイソステアリン酸(25mmol)を混合し、o−キシレンにて全量60mLに希釈した。一方、イソステアリン酸(5mmol)とn−ヘキシルアミン(5mmol)を混合し、o−キシレンにて全量40mLに希釈して重縮合を促進させるための塩触媒溶液とした。両者を混合後、上部に二つの小孔をあけた容器に入れ、一方の小孔から10℃で水分を飽和させた加湿窒素を流通させ、反応容器を40℃に保持したまま溶液をかくはんし、反応を進行させた。このような反応条件では反応容器内の相対湿度が約17%に保持される。以上のような反応を4日間行い、チタニア/イソステアレート複合体からなるゾルを得た。
Example 1
Under a nitrogen atmosphere, titanium tetraisopropoxide (50 mmol) and isostearic acid (25 mmol) were mixed and diluted to a total volume of 60 mL with o-xylene. On the other hand, isostearic acid (5 mmol) and n-hexylamine (5 mmol) were mixed and diluted with o-xylene to a total volume of 40 mL to obtain a salt catalyst solution for promoting polycondensation. After mixing the two, put them in a container with two small holes in the upper part, circulate humid nitrogen saturated with water at 10 ° C from one small hole, and stir the solution while keeping the reaction container at 40 ° C. The reaction was allowed to proceed. Under such reaction conditions, the relative humidity in the reaction vessel is maintained at about 17%. The reaction as described above was carried out for 4 days to obtain a sol composed of a titania / isostearate complex.

得られた複合体ゾルは、薄片状のチタニアが十分に成長しているため、粘性の高いゾルとなった。   The obtained composite sol was a highly viscous sol because flaky titania was sufficiently grown.

チタニア/イソステアレート複合体からなる複合体ゾルを、濃アンモニア水(28重量%)と混合し、60℃で2時間撹拌した。撹拌後、分液ロートにて水相部分を取り出し、生成物の遠心分離とアンモニア水による洗浄を5回繰り返し、この固形物を120℃で乾燥しチタニア/アンモニウム複合体を得た。   A composite sol composed of a titania / isostearate composite was mixed with concentrated aqueous ammonia (28 wt%) and stirred at 60 ° C. for 2 hours. After stirring, the aqueous phase portion was taken out with a separatory funnel, the product was centrifuged and washed with aqueous ammonia five times, and the solid was dried at 120 ° C. to obtain a titania / ammonium complex.

得られたチタニア/アンモニウム複合体を、酸素(20%)と窒素の混合ガス流通下、400℃で2時間加熱処理したところ、複合体は黄色に呈色した。可視光域における分光吸収を調べたところ、通常の酸化チタンには見られない可視光域(400〜500nm)の強い吸収が発現した。X線回折分光分析(XRD)を測定したところ、アナターゼ酸化チタンに帰属されるピークのみが観察され、アナターゼ結晶型の酸化チタンであることが確認できた。   When the obtained titania / ammonium complex was heat-treated at 400 ° C. for 2 hours under a mixed gas flow of oxygen (20%) and nitrogen, the complex was colored yellow. When spectral absorption in the visible light region was examined, strong absorption in the visible light region (400 to 500 nm) that was not found in ordinary titanium oxide was expressed. When X-ray diffraction spectroscopy (XRD) was measured, only the peak attributed to anatase titanium oxide was observed, confirming that it was anatase crystal type titanium oxide.

このアナターゼ結晶型の酸化チタンの比表面積を窒素吸着BET(多分子層吸着式)によって測定したところ比表面積は150m2g-1であった。また熱分解による元素分析を行ったところ、約0.04重量%の窒素がドープされていた。 When the specific surface area of this anatase crystal type titanium oxide was measured by nitrogen adsorption BET (multimolecular layer adsorption type), the specific surface area was 150 m 2 g −1 . Further, when elemental analysis by thermal decomposition was performed, about 0.04% by weight of nitrogen was doped.

このアナターゼ結晶型の酸化チタンの触媒機能について調べた。塩酸でpH=3に調整した0.05mMメチレンブルー水溶液に、得られた酸化チタンを0.1重量%懸濁させ、遮光して12時間撹拌した。この懸濁液を石英セルに入れ酸素をバブリングしながら、直径5mmの青色LED20個を用いて可視光(470nm)を照射した。メチレンブルーの分解量から可視光照射下での光触媒能を評価したところ、図2に示すように、顕著な分解が観察され、高い光触媒能を示した。   The catalytic function of this anatase crystal type titanium oxide was investigated. 0.1 wt% of the obtained titanium oxide was suspended in 0.05 mM methylene blue aqueous solution adjusted to pH = 3 with hydrochloric acid, and stirred for 12 hours in the dark. The suspension was placed in a quartz cell and irradiated with visible light (470 nm) using 20 blue LEDs having a diameter of 5 mm while bubbling oxygen. When the photocatalytic ability under irradiation of visible light was evaluated from the amount of decomposition of methylene blue, as shown in FIG. 2, remarkable decomposition was observed, indicating high photocatalytic ability.

(比較例1)
実施例1のチタニア/アンモニウム複合体の合成の際に必要な水分導入を、空気中の水分を徐々に取り込むことによって行った。その余は実施例1と同様とした。XRDを測定したところ、実施例1とほとんど同様なアナターゼ酸化チタンに帰属されるピークのみが観察され、両者の結晶性に大きな差異は認められなかった。得られた酸化チタンには可視光域の強い吸収が観察される一方、比表面積は8m2g-1と小さく、可視光照射下での光触媒能は実施例1に比較して低かった(図2参照)。
(Comparative Example 1)
The introduction of moisture necessary for the synthesis of the titania / ammonium complex of Example 1 was performed by gradually taking in moisture in the air. The rest was the same as in Example 1. When XRD was measured, only the peak attributed to anatase titanium oxide almost the same as in Example 1 was observed, and no significant difference was observed in the crystallinity between the two. While the obtained titanium oxide exhibited strong absorption in the visible light region, the specific surface area was as small as 8 m 2 g −1, and the photocatalytic ability under visible light irradiation was lower than that in Example 1 (FIG. 2).

(実施例2)
実施例1における加熱処理時に流通させる混合ガスの酸素の濃度を0%(窒素100%)とした。その余は実施例1と同様とした。XRDを測定したところ、アナターゼ酸化チタンに帰属されるピークのみが観察され、アナターゼ結晶型の酸化チタンであることが確認できた。得られた酸化チタンの比表面積は167m2g-1であった。実施例1と同様可視光照射下での光触媒能を評価したところ、図2に示すように、顕著な分解が観察され、高い光触媒能を示した。ドープされた窒素量は約0.05重量%であった。
(Example 2)
The oxygen concentration of the mixed gas circulated during the heat treatment in Example 1 was set to 0% (nitrogen 100%). The rest was the same as in Example 1. When XRD was measured, only the peak attributed to anatase titanium oxide was observed, confirming that it was anatase crystal type titanium oxide. The specific surface area of the obtained titanium oxide was 167 m 2 g −1 . When the photocatalytic ability under irradiation with visible light was evaluated in the same manner as in Example 1, remarkable decomposition was observed as shown in FIG. 2, and high photocatalytic ability was exhibited. The amount of nitrogen doped was about 0.05% by weight.

(比較例2)
実施例2における加熱処理時に流通させる混合ガスの酸素の濃度を20%とした。その余は実施例2と同様とした(実施例1に同じ)。XRDを測定したところ、実施例2とほとんど同様なアナターゼ酸化チタンに帰属されるピークのみが観察され、両者の結晶性に大きな差異は認められなかった。得られた酸化チタンの比表面積は150m2g-1であり、実施例2と同程度であったが、ドープされた窒素量は約0.04重量%であり実施例2に比較して減少していた。可視光照射下での光触媒能は実施例2に比較して低かった(図2参照)。
(Comparative Example 2)
The oxygen concentration of the mixed gas circulated during the heat treatment in Example 2 was set to 20%. The rest was the same as in Example 2 (same as Example 1). When XRD was measured, only the peak attributed to anatase titanium oxide almost the same as in Example 2 was observed, and no great difference was observed in the crystallinity between the two. The specific surface area of the obtained titanium oxide was 150 m 2 g −1 , which was about the same as that of Example 2, but the amount of doped nitrogen was about 0.04% by weight and decreased compared to Example 2. Was. The photocatalytic ability under visible light irradiation was lower than that of Example 2 (see FIG. 2).

(実施例3)
実施例1における加熱処理時に流通させる混合ガスの酸素の濃度を30%とし、加熱処理温度を350℃とした。その余は実施例1と同様とした。XRDを測定したところ、アナターゼ酸化チタンに帰属されるピークのみが観察され、アナターゼ結晶型の酸化チタンであることが確認できた。得られた酸化チタンの比表面積は247m2g-1であった。実施例1と同様可視光照射下での光触媒能を評価したところ、図2に示すように、顕著な分解が観察され、高い光触媒能を示した。ドープされた窒素量は約0.05重量%であった。
(Example 3)
The oxygen concentration of the mixed gas circulated during the heat treatment in Example 1 was 30%, and the heat treatment temperature was 350 ° C. The rest was the same as in Example 1. When XRD was measured, only the peak attributed to anatase titanium oxide was observed, confirming that it was anatase crystal type titanium oxide. The specific surface area of the obtained titanium oxide was 247 m 2 g −1 . When the photocatalytic ability under irradiation with visible light was evaluated in the same manner as in Example 1, remarkable decomposition was observed as shown in FIG. 2, and high photocatalytic ability was exhibited. The amount of nitrogen doped was about 0.05% by weight.

(比較例3)
実施例3における加熱処理時に流通させる混合ガスの酸素の濃度を20%とした。その余は実施例3と同様とした。XRDを測定したところ、実施例3とほとんど同様なアナターゼ酸化チタンに帰属されるピークのみが観察され、両者の結晶性に大きな差異は認められなかった。得られた酸化チタンの比表面積は248m2g-1であり、実施例2と同程度であったが、ドープされた窒素量は約0.07重量%であり実施例3に比較して増大していたが、可視光照射下での光触媒能は実施例3に比較して低かった(図2参照)。
(Comparative Example 3)
The oxygen concentration of the mixed gas circulated during the heat treatment in Example 3 was set to 20%. The rest was the same as in Example 3. When XRD was measured, only the peak attributed to anatase titanium oxide almost the same as in Example 3 was observed, and no significant difference was observed in the crystallinity between the two. The obtained titanium oxide had a specific surface area of 248 m 2 g −1 , which was about the same as that of Example 2, but the amount of doped nitrogen was about 0.07% by weight and increased compared to Example 3. However, the photocatalytic ability under visible light irradiation was lower than that in Example 3 (see FIG. 2).

(比較例4)
実施例3における加熱処理時に流通させる混合ガスの酸素の濃度をさらに低く0%(窒素のみ)とした。その余は実施例3と同様とした。XRDを測定したところ、実施例3とほとんど同様なアナターゼ酸化チタンに帰属されるピークのみが観察され、両者の結晶性に大きな差異は認められなかった。得られた酸化チタンの比表面積は258m2g-1であり、実施例2と同程度であったが、ドープされた窒素量は約0.11重量%であり実施例3に比較してさらに増大していたが、可視光照射下での光触媒能は実施例3に比較してさらに低かった(図2参照)。
(Comparative Example 4)
The oxygen concentration of the mixed gas circulated during the heat treatment in Example 3 was further reduced to 0% (nitrogen only). The rest was the same as in Example 3. When XRD was measured, only the peak attributed to anatase titanium oxide almost the same as in Example 3 was observed, and no significant difference was observed in the crystallinity between the two. The obtained titanium oxide had a specific surface area of 258 m 2 g −1 , which was the same as in Example 2, but the doped nitrogen amount was about 0.11% by weight, which was more than that in Example 3. Although it increased, the photocatalytic ability under visible light irradiation was lower than that in Example 3 (see FIG. 2).

本発明を適用する光触媒用酸化チタンの製造手順を示す模式図である。It is a schematic diagram which shows the manufacturing procedure of the titanium oxide for photocatalysts which applies this invention.

実施例、比較例の酸化チタンに可視光を照射して光触媒能を評価した結果を示すグラフである。It is a graph which shows the result of having irradiated visible light to the titanium oxide of an Example and a comparative example, and evaluating the photocatalytic ability.

Claims (6)

チタンアルコキシドと配位子を有する有機物と触媒とを含む混合溶液を容器中に入れ、その容器中に加湿した気体を流通させることにより、加水分解と重縮合反応に必要な水分を連続的に供給することによって得られた、層状構造を有し層間に有機配位子が配位しているチタニア/有機複合体を、アンモニア水に浸漬することによって、層間の有機配位子を配位子交換反応によって水酸基に置換し、同時にアンモニウムを層状構造のチタニアの層間に導入することによって得られたチタニアとアンモニウムの複合体を、酸素と不活性ガスの混合比を制御した混合ガス流通化で加熱して、アンモニウムの熱分解により窒素をチタニアにドープすると共にアナターゼに結晶化させることを特徴とする光触媒用酸化チタンの製造方法。   A mixed solution containing titanium alkoxide, an organic substance having a ligand and a catalyst is placed in a container, and the moisture necessary for hydrolysis and polycondensation reaction is continuously supplied by circulating a humidified gas in the container. By immersing the titania / organic composite, which has a layered structure and the organic ligand is coordinated between layers, in ammonia water, The composite of titania and ammonium obtained by substitution with hydroxyl groups by reaction and simultaneous introduction of ammonium into the layered layer of titania is heated in a mixed gas flow where the mixing ratio of oxygen and inert gas is controlled. A method for producing titanium oxide for a photocatalyst, characterized in that nitrogen is doped into titania by thermal decomposition of ammonium and crystallized into anatase. 前記チタンアルコキシドが式1で示されるチタンアルコキシドであり、単独あるいは複数を混合して用いることを特徴とする請求項1に記載の光触媒用酸化チタンの製造方法。
Figure 2007238406
(式1)で、Rは炭素数1〜6のアルキル基であり、それぞれのアルキル基R、R、R、Rは同一であっても異なってもよい。
The method for producing titanium oxide for photocatalyst according to claim 1, wherein the titanium alkoxide is a titanium alkoxide represented by the formula 1, and is used alone or in combination.
Figure 2007238406
In (Formula 1), R is an alkyl group having 1 to 6 carbon atoms, and each alkyl group R 1 , R 2 , R 3 , R 4 may be the same or different.
前記配位子を有する有機物が炭素数3〜24のアルキル基を有する脂肪族カルボン酸または炭素数6〜30のアリール基を有する芳香族カルボン酸であることを特徴とする請求項1に記載の光触媒用酸化チタンの製造方法。   The organic substance having the ligand is an aliphatic carboxylic acid having an alkyl group having 3 to 24 carbon atoms or an aromatic carboxylic acid having an aryl group having 6 to 30 carbon atoms. A method for producing titanium oxide for photocatalysts. 該触媒が、炭素数3〜24のアルキル基を有する脂肪族カルボン酸または炭素数6〜30のアリール基を有する芳香族カルボン酸と炭素数3〜24のアルキル基を有する脂肪族アミンまたは炭素数6〜30のアリール基を有する芳香族アミンを混合したものであることを特徴とする請求項1に記載の酸化チタンの光触媒用製造方法。   The catalyst is an aliphatic carboxylic acid having an alkyl group having 3 to 24 carbon atoms or an aromatic carboxylic acid having an aryl group having 6 to 30 carbon atoms and an aliphatic amine having an alkyl group having 3 to 24 carbon atoms or carbon number. The method for producing a titanium oxide photocatalyst according to claim 1, wherein an aromatic amine having 6 to 30 aryl groups is mixed. 該アンモニア水が0から100℃で浸漬されることを特徴とする請求項1に記載の酸化チタンの光触媒用製造方法。   The method for producing a titanium oxide photocatalyst according to claim 1, wherein the aqueous ammonia is immersed at 0 to 100 ° C. チタンアルコキシドと有機物を含む混合溶液を容器中に入れ、その容器中に加湿した気体を流通させることにより水分を連続的に供給することによってチタンアルコキシドの加水分解と重縮合反応させることを特徴とする薄片状チタニアに有機配位子が配位し、規則的な層状構造を形成するチタニア/有機複合体の製造方法。   A mixed solution containing titanium alkoxide and an organic substance is put in a container, and moisture is continuously supplied to the container to cause hydrolysis and polycondensation reaction of titanium alkoxide. A method for producing a titania / organic composite in which an organic ligand is coordinated to flaky titania to form a regular layered structure.
JP2006065671A 2006-03-10 2006-03-10 Method for producing titanium oxide for photocatalyst and method for producing titania / organic composite Expired - Fee Related JP4862183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065671A JP4862183B2 (en) 2006-03-10 2006-03-10 Method for producing titanium oxide for photocatalyst and method for producing titania / organic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065671A JP4862183B2 (en) 2006-03-10 2006-03-10 Method for producing titanium oxide for photocatalyst and method for producing titania / organic composite

Publications (2)

Publication Number Publication Date
JP2007238406A true JP2007238406A (en) 2007-09-20
JP4862183B2 JP4862183B2 (en) 2012-01-25

Family

ID=38584300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065671A Expired - Fee Related JP4862183B2 (en) 2006-03-10 2006-03-10 Method for producing titanium oxide for photocatalyst and method for producing titania / organic composite

Country Status (1)

Country Link
JP (1) JP4862183B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072595A1 (en) * 2006-12-13 2008-06-19 Kawamura Institute Of Chemical Research Method for production of doped titanium oxide, doped titanium oxide, and visible light-responsive photocatalyst comprising the doped titanium oxide
WO2013061482A1 (en) * 2011-10-28 2013-05-02 国立大学法人信州大学 Titanium oxide particles for photocatalysts and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102490364B1 (en) * 2021-04-28 2023-01-26 케모웨이브 주식회사 Titanium-organic framework photocatalyst for adsorption and decomposition of volatile organic compound, manufacturing method thereof and method for removing volatile organic compound using titanium-organic framework photocatalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331225A (en) * 2000-01-31 2002-11-19 Kankyo Device Kenkyusho:Kk Visible light-responsive material and its manufacturing process
JP2004000988A (en) * 1999-08-05 2004-01-08 Toyota Central Res & Dev Lab Inc Photocatalytic substance, photocatalytic body and manufacturing method for them
JP2006075794A (en) * 2004-09-13 2006-03-23 National Institute For Materials Science Manufacturing method of flaky titanium oxide for absorbing visible light
JP2006083029A (en) * 2004-09-17 2006-03-30 Kyoto Univ Nanocrystal of metal oxide, and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000988A (en) * 1999-08-05 2004-01-08 Toyota Central Res & Dev Lab Inc Photocatalytic substance, photocatalytic body and manufacturing method for them
JP2002331225A (en) * 2000-01-31 2002-11-19 Kankyo Device Kenkyusho:Kk Visible light-responsive material and its manufacturing process
JP2006075794A (en) * 2004-09-13 2006-03-23 National Institute For Materials Science Manufacturing method of flaky titanium oxide for absorbing visible light
WO2006030780A1 (en) * 2004-09-13 2006-03-23 National Institute For Materials Science Process for producing flaky titanium oxide capable of absorbing visible light
JP2006083029A (en) * 2004-09-17 2006-03-30 Kyoto Univ Nanocrystal of metal oxide, and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072595A1 (en) * 2006-12-13 2008-06-19 Kawamura Institute Of Chemical Research Method for production of doped titanium oxide, doped titanium oxide, and visible light-responsive photocatalyst comprising the doped titanium oxide
US8017542B2 (en) 2006-12-13 2011-09-13 Kawamura Institute Of Chemical Research Method for production of doped titanium oxide, doped titanium oxide, and visible light-responsive photocatalyst comprising the doped titanium oxide
WO2013061482A1 (en) * 2011-10-28 2013-05-02 国立大学法人信州大学 Titanium oxide particles for photocatalysts and method for producing same
JP2013095622A (en) * 2011-10-28 2013-05-20 Shinshu Univ Titanium oxide particle for photocatalyst and method for producing the same

Also Published As

Publication number Publication date
JP4862183B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
Ai et al. Efficient visible light photocatalytic oxidation of NO on aerosol flow-synthesized nanocrystalline InVO4 hollow microspheres
Xiao et al. CNTs threaded (001) exposed TiO 2 with high activity in photocatalytic NO oxidation
Ge et al. Synthesis and characterization of TiO2 photocatalytic thin films prepared from refluxed PTA sols
Huang et al. Low temperature synthesis and photocatalytic properties of highly oriented ZnO/TiO2− xNy coupled photocatalysts
Ekthammathat et al. Synthesis and characterization of CeVO4 by microwave radiation method and its photocatalytic activity
Ge et al. Fabrication and characterization of nano TiO2 thin films at low temperature
CN106732504A (en) The preparation method and application of Graphene optically catalytic TiO 2 composite
JP2001031422A (en) Mesoporous titanium oxide form and its production
Bogatu et al. Ultrasound assisted sol-gel TiO2 powders and thin films for photocatalytic removal of toxic pollutants
Najafidoust et al. The role of Diethanolamine as stabilizer in controlling morphology, roughness and photocatalytic activity of ZnO coatings in sonophotodegradation of methylene blue
Sudapalli et al. Hierarchical self-assembly of 0D/2D β-Bi2O3 crossandra flower morphology exhibits excellent photocatalytic activity against bromophenol dyes
JP4862183B2 (en) Method for producing titanium oxide for photocatalyst and method for producing titania / organic composite
US7651675B2 (en) Process for producing flaky titanium oxide capable of absorbing visible light
CN103332738A (en) Controllable short-process preparation method of nano titanium dioxide
Kinoshita et al. Effect of precursor structure on mixed-crystal phase titanium oxide synthesized by sol-gel reaction in supercritical carbon dioxide
Bao et al. Preparation of TiO2 photocatalyst by hydrothermal method from aqueous peroxotitanium acid gel
CN101444726B (en) Method of preparing high-performance TiO2 nanometer photocatalystic material
Verma et al. Synthesis, characterization and sun light-driven photocatalytic activity of zinc oxide nanostructures
Jin et al. Unveiling temperature-modified electrospun TiO2 nanofibers with size-driven microstructure evolution and enhanced photocatalytic effect
CN112774703A (en) Elemental red phosphorus-loaded titanium dioxide composite catalyst for efficient photocatalytic decomposition of water to produce hydrogen
Iqbal et al. Novel study to correlate efficient photocatalytic activity of WO3 and Cr doped TiO2 leading to enhance the shelf-life of the apple
Li et al. Facile solvothermal synthesis of BiOCl/ZnO heterostructures with enhanced photocatalytic activity
CN110639611B (en) Polyethylene glycol thermal reduction grafting modified graphene photocatalyst and preparation and application thereof
Li et al. Photocatalytic degradation of rhodamine B under visible light irradiation by TiO2 doped layered zirconium phosphates
JP3136339B2 (en) Titanium oxide photocatalyst and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees