JP2007237735A - Manufacturing method for expanded molded article made of thermoplastic resin - Google Patents

Manufacturing method for expanded molded article made of thermoplastic resin Download PDF

Info

Publication number
JP2007237735A
JP2007237735A JP2007022854A JP2007022854A JP2007237735A JP 2007237735 A JP2007237735 A JP 2007237735A JP 2007022854 A JP2007022854 A JP 2007022854A JP 2007022854 A JP2007022854 A JP 2007022854A JP 2007237735 A JP2007237735 A JP 2007237735A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
sheet
resin foam
vacuum chamber
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007022854A
Other languages
Japanese (ja)
Inventor
Akinobu Sakamoto
昭宣 坂本
Akira Uotani
晃 魚谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Plastech Co Ltd
Sumitomo Chemical Co Ltd
Original Assignee
Sumika Plastech Co Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Plastech Co Ltd, Sumitomo Chemical Co Ltd filed Critical Sumika Plastech Co Ltd
Priority to JP2007022854A priority Critical patent/JP2007237735A/en
Publication of JP2007237735A publication Critical patent/JP2007237735A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an expanded molded article made of a thermoplastic resin which has a good appearance. <P>SOLUTION: This method is used for manufacturing an expanded molded body 7 made of a thermoplastic resin by using an expanded sheet 1 made of the thermoplastic resin, and includes five processes. In a first process (1), the expanded sheet 1 made of the thermoplastic resin is arranged on either one of hot plates of a pair of the hot plates. In a second process (2), a distance between both hot plates is kept to be one which does not compress the expanded sheet 1 made of the thermoplastic resin, and the expanded sheet 1 made of the thermoplastic resin is heated and softened by the pair of the hot plates. In a third process (3), the expanded sheet 1 made of the thermoplastic resin is arranged on one surface of a vacuum chamber 5. In a fourth process (4), after sealing the vacuum chamber 5, the expanded sheet 1 made of the thermoplastic resin is expanded until coming into contact with a surface facing the sheet arranged surface of the vacuum chamber 5 while performing vacuumization, and cooled. In a fifth process (5), the inside of the vacuum chamber 5 is returned to a normal pressure, and the expanded molded body 7 made of the thermoplastic resin is taken out. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱可塑性樹脂製発泡シートを用いる熱可塑性樹脂製発泡成形体の製造方法に関する。 The present invention relates to a method for producing a thermoplastic resin foam-molded article using a thermoplastic resin foam sheet.

熱可塑性樹脂製発泡シートはその軽量性、断熱性等から包材、建材、自動車材等の広い用途で使用されている。熱可塑性樹脂製発泡シートは平板状のまま使用されることもあるが、用途によっては打ち抜き加工、熱罫線加工や真空成形加工等が施されて使用されることが多い。
熱可塑性樹脂製発泡シートを真空成形する方法としては、真空成形可能な雌雄型の金型による発泡ポリプロピレン系樹脂シートの両面真空成形方法であって、前記発泡ポリプロピレン系樹脂シートとして発泡倍率が1.2〜5.5倍の範囲にあるポリプロピレン系樹脂発泡シートを中心層とし、その両面に熱可塑性樹脂フィルムをそれぞれ積層、接着した積層発泡シートを使用し、160℃以上190℃以下の範囲の温度に加熱した一対の熱板にて、前記積層発泡シートを圧縮加熱して軟化せしめた後、金型の間隙を該積層発泡シートの加熱軟化後の厚みの1.0〜2.5倍に調整した真空成形可能な雌雄型の金型を使用し、両面より真空に減圧しながら成形する積層発泡シートの両面真空成形方法が知られている(特許文献1参照)。
Thermoplastic resin foam sheets are used in a wide range of applications such as packaging materials, building materials, and automobile materials because of their light weight and heat insulation properties. The thermoplastic resin foam sheet may be used in the form of a flat plate, but depending on the application, it is often used after being subjected to punching, thermal ruled line processing, vacuum forming or the like.
A method for vacuum forming a foamed sheet made of thermoplastic resin is a double-sided vacuum forming method for a foamed polypropylene resin sheet using a male and female mold capable of vacuum forming, and the foaming ratio of the foamed polypropylene resin sheet is 1. The temperature is in the range of 160 ° C. or more and 190 ° C. or less, using a laminated foam sheet in which a polypropylene resin foam sheet in the range of 2 to 5.5 times is used as a central layer, and a thermoplastic resin film is laminated and bonded to both sides. After compressing and heating the laminated foamed sheet with a pair of heated plates heated to 1 mm, the gap between the molds is adjusted to 1.0 to 2.5 times the thickness of the laminated foamed sheet after heating and softening. There is known a double-sided vacuum forming method for a laminated foamed sheet using a male and female mold capable of vacuum forming and forming while reducing the pressure from both sides to a vacuum (see Patent Document 1).

特公平5−84729号公報Japanese Patent Publication No. 5-84729

しかしながら、前記真空成形方法では積層発泡シートを熱板で圧縮加熱するため、積層発泡シート表面の熱可塑性樹脂フィルムが熱板に融着しやすく、真空成形するための型への移送が困難であったり、真空成形して得られる発泡体の外観が不良となることがあった。 However, in the vacuum forming method, the laminated foamed sheet is compressed and heated with a hot plate, so the thermoplastic resin film on the surface of the laminated foamed sheet is easily fused to the hot plate, and it is difficult to transfer it to a mold for vacuum forming. In some cases, the appearance of the foam obtained by vacuum forming may be poor.

本発明の目的は、熱可塑性樹脂製発泡シートを真空成形して熱可塑性樹脂製発泡成形体を製造する方法において、製造工程における真空成形装置への移送が容易であり、かつ外観良好な熱可塑性樹脂製発泡成形体を製造することができる、熱可塑性樹脂製発泡成形体の製造方法を提供することにある。 An object of the present invention is a method for producing a thermoplastic resin foamed molded article by vacuum forming a thermoplastic resin foamed sheet, which can be easily transferred to a vacuum molding apparatus in the production process, and has a good appearance. An object of the present invention is to provide a method for producing a foamed molded article made of thermoplastic resin, which can produce a foamed molded article made of resin.

すなわち本発明は、熱可塑性樹脂製発泡シートを用いて熱可塑性樹脂製発泡成形体を製造する方法であって、以下(1)〜(5)の工程を含む熱可塑性樹脂製発泡成形体の製造方法である。
(1)略平行に設置された一対の熱板のうち、一方の熱板上に、熱可塑性樹脂製発泡シートを配置する工程
(2)両熱板間の距離を前記熱可塑性樹脂製発泡シートを圧縮しない距離に維持し、該一対の熱板により前記熱可塑性樹脂製発泡シートを加熱軟化する工程
(3)工程(2)で加熱軟化された熱可塑性樹脂製発泡シートを、真空チャンバーの一つの面上に配置する工程
(4)前記真空チャンバーを密閉した後、減圧しながら前記熱可塑性樹脂発泡シートを真空チャンバーのシート配置面と対向する面に接触するまで発泡させて冷却する工程
(5)前記真空チャンバー内を常圧にした後、該真空チャンバー内から熱可塑性樹脂製発泡成形体を取り出す工程
That is, the present invention is a method for producing a thermoplastic resin foam-molded article using a thermoplastic resin foam sheet, which comprises the following steps (1) to (5). Is the method.
(1) A step of arranging a thermoplastic resin foam sheet on one of the pair of heat plates installed substantially in parallel. (2) The distance between the two heat plates is determined by the thermoplastic resin foam sheet. The thermoplastic resin foam sheet heated and softened in the step (3) and the process (2) is heated in the vacuum chamber with the pair of hot plates. (4) After sealing the vacuum chamber, cooling the foamed foamed thermoplastic resin sheet until it comes into contact with the surface facing the sheet placement surface of the vacuum chamber (5) ) After taking the inside of the vacuum chamber to normal pressure, taking out the thermoplastic resin foam molded body from the inside of the vacuum chamber

本発明の熱可塑性樹脂製発泡成形体の製造方法によれば、製造工程における真空成形装置への移送が容易であり、かつ外観良好な熱可塑性樹脂製発泡成形体を製造することができる。 According to the method for producing a thermoplastic resin foam molded article of the present invention, it is possible to produce a thermoplastic resin foam molded article that can be easily transferred to a vacuum molding apparatus in the production process and has a good appearance.

まず、本発明で用いる熱可塑性樹脂製発泡シートに関して説明する。
本発明で用いる熱可塑性樹脂製発泡シートを構成する熱可塑性樹脂としては特に限定されるものではなく、公知の樹脂を用いることができ、例えば低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレンや直鎖状低密度ポリエチレン等のエチレン系樹脂やプロピレン系樹脂等のオレフィン系樹脂等が挙げられる。また、熱可塑性樹脂は1種類であってもよく、2種類以上の樹脂を併用してもよい。
First, the thermoplastic resin foam sheet used in the present invention will be described.
The thermoplastic resin constituting the thermoplastic resin foam sheet used in the present invention is not particularly limited, and a known resin can be used, for example, low density polyethylene, medium density polyethylene, high density polyethylene or linear chain And olefin resins such as propylene resins, and the like. Further, one type of thermoplastic resin may be used, or two or more types of resins may be used in combination.

特に耐熱性や剛性の観点から、発泡シートを構成する樹脂の50重量%以上がプロピレン系樹脂からなることが好ましい。プロピレン系樹脂としては、例えばプロピレン単独重合体、プロピレンと少量のエチレンおよび/またはα−オレフィン等のコモノマーとの共重合体、またはこれらに非晶性のエチレン・α−オレフィン共重合体が分散している重合体などが挙げられる。発泡性の観点から、発泡シートを構成するプロピレン系樹脂全体の5重量%以上が、190℃におけるメルトテンション(MT(190))と230℃におけるメルトフローレート(MFR(230))とが下式1を満足するプロピレン系重合体であることが好ましい。
MT(190)≧7.52×MFR(230)(-0.576) [式1]
In particular, from the viewpoint of heat resistance and rigidity, it is preferable that 50% by weight or more of the resin constituting the foamed sheet is made of a propylene-based resin. Examples of the propylene resin include a propylene homopolymer, a copolymer of propylene and a small amount of a comonomer such as ethylene and / or α-olefin, or an amorphous ethylene / α-olefin copolymer dispersed therein. And the like. From the viewpoint of foamability, 5% by weight or more of the entire propylene-based resin constituting the foamed sheet has a melt tension (MT (190)) at 190 ° C. and a melt flow rate (MFR (230)) at 230 ° C. A propylene polymer satisfying 1 is preferable.
MT (190) ≧ 7.52 × MFR (230) (−0.576) [Formula 1]

230℃におけるメルトフローレート(MFR(230))とは、JIS K7210に従って、温度230℃、荷重2.16kgfで測定される値である(単位 g/10分)。190℃におけるメルトテンション(MT(190))とは、市販のメルトテンションテスターを用いて、サンプル量5g、加熱温度190℃、加熱時間5分間、ピストン降下速度5.7mm/分で、長さ8mm、直径2mmのオリフィスからストランドを押し出し、該ストランドを直径50mmのローラーを用いて巻取速度100rpmで巻き取ったときの張力である(単位 g)。 The melt flow rate at 230 ° C. (MFR (230)) is a value measured in accordance with JIS K7210 at a temperature of 230 ° C. and a load of 2.16 kgf (unit: g / 10 minutes). Melt tension at 190 ° C. (MT (190)) means a commercially available melt tension tester with a sample amount of 5 g, a heating temperature of 190 ° C., a heating time of 5 minutes, a piston lowering speed of 5.7 mm / min, and a length of 8 mm. The tension when a strand is extruded from an orifice having a diameter of 2 mm and the strand is wound at a winding speed of 100 rpm using a roller having a diameter of 50 mm (unit: g).

前記式1を満足するプロピレン系重合体としては、特開昭62−121704号公報や、特開平11−228629号公報に開示されているような分岐状プロピレン系樹脂や高分子量成分を含有する直鎖状プロピレン系樹脂が挙げられる。 Examples of the propylene polymer satisfying the formula 1 include a branched propylene resin or a high molecular weight component as disclosed in JP-A-62-1121704 and JP-A-11-228629. A chain propylene-based resin is exemplified.

分岐状プロピレン系樹脂としては、特開昭62−121704号公報に開示されたような直鎖状プロピレン系樹脂に放射線を照射して得られる樹脂を挙げることができる。このような分岐状プロピレン系樹脂は、株式会社サンアロマよりPF814、SD632として上市されている。
また、直鎖状プロピレン系樹脂としては、特開平11−228629号公報に開示されたような超高分子量成分を導入したプロピレン系重合体(T)、すなわち極限粘度が5dl/g以上の結晶性プロピレン系重合体部分(A)を製造する工程および極限粘度が3dl/g未満の結晶性プロピレン系重合体部分(B)を製造する工程を含む重合方法により得られ、極限粘度が3dl/g未満であり、結晶性プロピレン系重合体部分(A)の割合が0.05重量%以上35重量%未満であるプロピレン系重合体(T)が挙げられる。
Examples of the branched propylene-based resin include resins obtained by irradiating a linear propylene-based resin as disclosed in JP-A No. 62-121704. Such branched propylene-based resins are marketed as PF814 and SD632 by Sun Aroma Co., Ltd.
Further, as the linear propylene-based resin, a propylene-based polymer (T) introduced with an ultrahigh molecular weight component as disclosed in JP-A-11-228629, that is, a crystallinity having an intrinsic viscosity of 5 dl / g or more. Obtained by a polymerization method comprising a step of producing a propylene-based polymer portion (A) and a step of producing a crystalline propylene-based polymer portion (B) having an intrinsic viscosity of less than 3 dl / g, and an intrinsic viscosity of less than 3 dl / g And a propylene polymer (T) in which the proportion of the crystalline propylene polymer portion (A) is 0.05% by weight or more and less than 35% by weight.

使用する熱可塑性樹脂製発泡シートの発泡倍率や独立気泡率は特に限定されるものではないが、発泡倍率(X1)は1.2〜5.0倍であることが好ましく、独立気泡率(Y1)は80〜100%であることが好ましい。このような熱可塑性樹脂製発泡シートは、真空成形中に破泡するおそれが少ないため、真空成形によって発泡倍率や独立気泡率の高い熱可塑性樹脂製発泡成形体を得ることができる。特に、前記式1を満足するプロピレン系重合体を5〜20重量%と比較的少量を含むプロピレン系樹脂の場合、発泡倍率(X1)は1.5〜2.5倍、独立気泡率(Y1)は90〜100%が好ましい。 The expansion ratio and closed cell ratio of the thermoplastic resin foam sheet to be used are not particularly limited, but the expansion ratio (X1) is preferably 1.2 to 5.0 times, and the closed cell ratio (Y1 ) Is preferably 80 to 100%. Since such a thermoplastic resin foam sheet is less likely to break during vacuum molding, a thermoplastic resin foam molded article having a high expansion ratio and high closed cell ratio can be obtained by vacuum molding. In particular, in the case of a propylene-based resin containing 5 to 20% by weight of a propylene-based polymer that satisfies the above formula 1, the expansion ratio (X1) is 1.5 to 2.5 times, and the closed cell ratio (Y1 ) Is preferably 90 to 100%.

使用する熱可塑性樹脂製発泡シートの厚みは特に限定されるものではないが、通常1〜10mmである。また、発泡シートは単層であってもよいし、発泡層を少なくとも1層以上含む複数の層からなる多層構成であってもよい。層構成としては例えば2種2層(非発泡層/発泡層)、2種3層(非発泡層/発泡層/非発泡層)や3種5層(非発泡層/非発泡層/発泡層/非発泡層/非発泡層)等を例示できる。   The thickness of the thermoplastic resin foam sheet to be used is not particularly limited, but is usually 1 to 10 mm. In addition, the foam sheet may be a single layer or may have a multilayer structure composed of a plurality of layers including at least one foam layer. As the layer structure, for example, 2 types 2 layers (non-foamed layer / foamed layer), 2 types 3 layers (non-foamed layer / foamed layer / non-foamed layer) and 3 types 5 layers (non-foamed layer / non-foamed layer / foamed layer) / Non-foamed layer / non-foamed layer) and the like.

熱可塑性樹脂製発泡シートの製法は特に限定されるものではなく、押出発泡法、バッチ発泡法、ビーズ型発泡法、電子線架橋や化学架橋発泡法等の公知の製法を採用することができるが、生産性やリサイクル性の観点から押出発泡法が好ましい。
押出発泡法では、樹脂と発泡剤等とを押出機中で溶融混練して溶融樹脂組成物とし、該溶融樹脂組成物を樹脂流路を通って押出機に接続したダイ内へと送る。該ダイ内で広幅化された溶融樹脂組成物は、ダイ出口から大気中に押出されるとともに発泡する。押出発泡された平板状の溶融シートを冷却し、切断機によって所望のサイズに切断し、発泡シートを製造する。ダイ形状としては、Tダイやサーキュラーダイを使用することができる。
多層構成の発泡シートの場合、前述の発泡シートに公知の貼合技術で非発泡層などを貼合して多層構成としてもよいが、生産性の観点から公知の多層ダイを用いた多層共押出発泡法を採用することが好ましい。
The production method of the thermoplastic resin foam sheet is not particularly limited, and a known production method such as an extrusion foaming method, a batch foaming method, a bead type foaming method, an electron beam crosslinking method or a chemical crosslinking foaming method may be employed. From the viewpoint of productivity and recyclability, the extrusion foaming method is preferred.
In the extrusion foaming method, a resin, a foaming agent, and the like are melt-kneaded in an extruder to obtain a molten resin composition, and the molten resin composition is sent through a resin flow path into a die connected to the extruder. The molten resin composition widened in the die is extruded into the atmosphere from the die outlet and foamed. The extruded and foamed flat molten sheet is cooled and cut into a desired size by a cutting machine to produce a foamed sheet. As the die shape, a T die or a circular die can be used.
In the case of a foam sheet having a multilayer structure, a non-foamed layer or the like may be bonded to the above-mentioned foam sheet by a known bonding technique to form a multilayer structure, but from the viewpoint of productivity, a multilayer coextrusion using a known multilayer die It is preferable to employ a foaming method.

一般的な熱可塑性樹脂発泡シートは、単一の層から構成されている発泡シートであっても、その表面には薄い非発泡の層、いわゆるスキン層が形成されている。これは、発泡シート表面がその内部に比べて早く冷却されるためである。例えば押出成形で発泡シートを製造する場合、押出機から押出された直後の発泡シートは、その両表面および端面にスキン層が形成されるが、通常は発泡シートを引き取る際に端部を切り落として使用するため、端部を切り落とした後の発泡シートは、両表面のみにスキン層が形成されていることになる。
本発明で使用する熱可塑性樹脂製発泡シートは、少なくとも両表面にスキン層が形成されていればよいが、端面も含めた全ての面にスキン層が形成されていることが好ましい。端面を含めた全ての面にスキン層が形成された発泡シートを用いることにより、端部まで独立気泡率の高い熱可塑性樹脂製発泡成形体を容易に製造することができる。
Even if a general thermoplastic resin foam sheet is a foam sheet composed of a single layer, a thin non-foamed layer, a so-called skin layer, is formed on the surface thereof. This is because the surface of the foam sheet is cooled faster than the inside. For example, when producing a foam sheet by extrusion molding, the foam layer immediately after being extruded from the extruder has skin layers formed on both surfaces and end faces, but usually the edges are cut off when the foam sheet is taken up. In order to use, the foam sheet after cutting off the end portion has skin layers formed only on both surfaces.
The foamed sheet made of thermoplastic resin used in the present invention only needs to have skin layers formed on at least both surfaces, but it is preferable that skin layers are formed on all surfaces including end surfaces. By using a foam sheet in which a skin layer is formed on all surfaces including the end surface, it is possible to easily produce a foamed product made of a thermoplastic resin having a high closed cell ratio up to the end portion.

発泡シートの製造に用いる発泡剤は特に限定されるものではなく、公知の物理発泡剤や化学発泡剤を単独、または複数を組み合わせて用いることができる。
物理発泡剤としては、炭酸ガス、窒素ガス、空気、プロパン、ブタン、ペンタン、ヘキサン、ジクロルエタン、ジクロロジフルオロメタン、ジクロロモノフルオロメタン、トリクロロモノフルオロメタンなどを用いることができ、窒素ガス、炭酸ガス、空気等の安全性の高い無機ガスを用いることが好ましい。
発泡シートを構成する樹脂がプロピレン系樹脂の場合、安全性およびプロピレン系樹脂への溶解性の観点から、炭酸ガスを用いることが好ましい。炭酸ガスを用いる場合は、7.4MPa以上かつ31℃以上の超臨界状態で樹脂へ注入することが、樹脂への拡散、溶解性の観点から好ましい。
The foaming agent used for manufacture of a foam sheet is not specifically limited, A well-known physical foaming agent and a chemical foaming agent can be used individually or in combination.
As the physical foaming agent, carbon dioxide gas, nitrogen gas, air, propane, butane, pentane, hexane, dichloroethane, dichlorodifluoromethane, dichloromonofluoromethane, trichloromonofluoromethane, etc. can be used, such as nitrogen gas, carbon dioxide gas, It is preferable to use a highly safe inorganic gas such as air.
When the resin constituting the foamed sheet is a propylene resin, it is preferable to use carbon dioxide gas from the viewpoints of safety and solubility in the propylene resin. When carbon dioxide gas is used, it is preferable to inject it into the resin in a supercritical state of 7.4 MPa or more and 31 ° C. or more from the viewpoint of diffusion into the resin and solubility.

化学発泡剤としては、クエン酸、クエン酸ナトリウム、ステアリン酸などの有機酸、重曹、アゾジカルボンアミド、トリレンジイソシアネート、4,4’ジフェニルメタンジイソシアネートなどのイソシアネート化合物、アゾビスブチロニトリル、バリウム・アゾジカルボキシレート、ジアゾアミノベンゼン、トリヒドラジノトリアジンなどのアゾ、ジアゾ化合物、ベンゼン・スルホニル・ヒドラジド、P,P’−オキシビス(ベンゼンスルホニル・ヒドラジド)、トルエン・スルホニル・ヒドラジドなどのヒドラジン誘導体、N,N’−ジニトロソ・ペンタメチレン・テトラミン、N,N’−ジメチル−N,N’−ジニトロソ・テレフタルアミドなどのニトロソ化合物、P−トルエン・スルホニル・セミカルバジド、4,4’オキシビスベンゼンスルホニルセミカルバジドなどのセミカルバジド化合物、アジ化合物、トリアゾール化合物などを使用することができる。特に、重曹、クエン酸、アゾジカルボンアミドのいずれかを用いることが好ましい。 Chemical foaming agents include organic acids such as citric acid, sodium citrate and stearic acid, baking soda, azodicarbonamide, tolylene diisocyanate, isocyanate compounds such as 4,4'diphenylmethane diisocyanate, azobisbutyronitrile, barium azo Azo, such as dicarboxylate, diazoaminobenzene, trihydrazinotriazine, diazo compounds, benzene sulfonyl hydrazide, P, P'-oxybis (benzenesulfonyl hydrazide), hydrazine derivatives such as toluene sulfonyl hydrazide, N, Nitroso compounds such as N′-dinitroso / pentamethylene / tetramine, N, N′-dimethyl-N, N′-dinitroso / terephthalamide, P-toluene / sulfonyl / semicarbazide, 4,4′oxybisbe Semicarbazide compounds such as Zen semicarbazide, azide compounds, etc. can be used triazole compound. In particular, it is preferable to use any of sodium bicarbonate, citric acid, and azodicarbonamide.

化学発泡剤を使用する場合には、分解温度や分解速度を調整するために発泡助剤を併用してもよい。例えば、アゾジカルボンアミド単体では分解温度が約200℃と高いため、低温で加工する場合には発泡助剤として酸化亜鉛、ステアリン酸亜鉛、尿素などを少量添加して使用することができる。 When a chemical foaming agent is used, a foaming aid may be used in combination to adjust the decomposition temperature and decomposition rate. For example, since the decomposition temperature of azodicarbonamide alone is as high as about 200 ° C., a small amount of zinc oxide, zinc stearate, urea or the like can be added as a foaming aid when processing at low temperatures.

物理発泡剤を用いる場合には、気泡核剤を併用してもよい。気泡核剤としては、タルク、シリカ、珪藻土、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、ケイ酸カルシウム、ゼオライト、マイカ、クレー、ワラストナイト、ハイドロタルサイト、酸化マグネシウム、酸化亜鉛、ステアリン酸亜鉛、ステアリン酸カルシウム、PMMA等のポリマービーズ、合成アルミノシリケートや上記の化学発泡剤等を使用することができる。 When a physical foaming agent is used, a cell nucleating agent may be used in combination. Cell nucleating agents include talc, silica, diatomaceous earth, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, calcium silicate, zeolite, mica, clay, wollastonite, hydrotalcite In addition, polymer beads such as magnesium oxide, zinc oxide, zinc stearate, calcium stearate, PMMA, synthetic aluminosilicate, the above chemical foaming agents, and the like can be used.

単層または多層構成の発泡シートの各層には、必要に応じて各種の低分子型あるいは高分子型の添加剤を配合してもよい。例えば、導電剤、帯電防止剤、難燃剤、充填剤、酸化防止剤、銅害防止剤、耐候剤、紫外線吸収剤、滑剤、顔料、発泡剤、接着性改良剤等が用いられる。多層の場合、とりわけ最外層には用途に応じた添加剤を配合することにより、用途に応じた機能を付与することができる。 Various layers of a low molecular type or high molecular type additive may be blended in each layer of the foam sheet having a single layer or a multilayer structure, if necessary. For example, a conductive agent, an antistatic agent, a flame retardant, a filler, an antioxidant, a copper damage inhibitor, a weathering agent, an ultraviolet absorber, a lubricant, a pigment, a foaming agent, an adhesion improver and the like are used. In the case of a multilayer, the function according to a use can be provided especially by mix | blending the additive according to a use with the outermost layer.

つぎに、熱可塑性樹脂製発泡成形体の製造工程(1)〜(5)について説明する。
工程(1)は、略平行に設置された一対の熱板のうち、一方の熱板上に、熱可塑性樹脂製発泡シートを配置する工程である。
一対の熱板は、それぞれ平板状であり、互いに向かい合う面が略平行になるように設置する。略平行とは、厳密に平行である必要はなく、熱板間の距離の場所による差として0.1mm以内であればよい。
Next, the production steps (1) to (5) of the thermoplastic resin foam molded article will be described.
Step (1) is a step of disposing a thermoplastic resin foam sheet on one of the pair of hot plates installed in parallel.
The pair of hot plates are each flat and are installed so that the surfaces facing each other are substantially parallel. The term “substantially parallel” does not need to be strictly parallel, and may be within 0.1 mm as a difference depending on the location of the distance between the hot plates.

熱板の寸法や形状は特に限定されるものではないが、所望の熱可塑性樹脂製発泡成形体の寸法や形状を勘案して適宜選択すればよい。例えば、形状として正方形、長方形や円形などが挙げられるが、正方形の場合は200〜2000mm角の範囲のものが一般的である。
熱板の表面は、熱可塑性樹脂製発泡シートとの剥離性を考慮してテフロン(登録商標)やアルマイトなどの公知の表面処理を施すことが好ましい。
The size and shape of the hot plate are not particularly limited, but may be appropriately selected in consideration of the size and shape of a desired thermoplastic resin foamed molded article. Examples of the shape include a square, a rectangle, and a circle. In the case of a square, a shape in a range of 200 to 2000 mm square is common.
The surface of the hot plate is preferably subjected to a known surface treatment such as Teflon (registered trademark) or alumite in consideration of releasability from the thermoplastic resin foam sheet.

工程(2)は、両熱板間の距離(T12)を、前記熱可塑性樹脂製発泡シートを圧縮しない距離に維持し、該一対の熱板により前記熱可塑性樹脂製発泡シートを加熱軟化する工程である。ここで、熱可塑性樹脂製発泡シートが反りなどの変形で一方の熱板と一部分であれば接触してもかまわない。工程(2)では、熱板間の距離(T12)を熱可塑性樹脂製発泡シートの厚み(T1)より長く、すなわち前記熱可塑性樹脂製発泡シートを圧縮しない距離に維持した状態で(T12>T1)、熱可塑性樹脂製発泡シートを加熱し軟化する。T12がT1以下である場合(T12≦T1)、熱可塑性樹脂製発泡シートが熱板により圧縮加熱されてしまうため、該熱可塑性樹脂製発泡シートの表面が熱板に融着し外観を損ないやすく、工程(3)の真空チャンバーへの移送も困難となりやすい。また、発泡シートの気泡構造も圧縮加熱によって破壊しやすくなるため、発泡倍率および独立気泡率の高い発泡成形体は得られにくい。 Step (2) is a step of maintaining the distance (T12) between the two hot plates at a distance that does not compress the thermoplastic resin foam sheet, and heating and softening the thermoplastic resin foam sheet with the pair of hot plates. It is. Here, the thermoplastic resin foam sheet may be in contact with the one hot plate if it is partly deformed by warpage or the like. In step (2), the distance (T12) between the hot plates is longer than the thickness (T1) of the thermoplastic resin foam sheet, that is, in a state where the thermoplastic resin foam sheet is maintained at a distance not compressed (T12> T1). ), Heat and soften the foam sheet made of thermoplastic resin. When T12 is equal to or less than T1 (T12 ≦ T1), the thermoplastic resin foam sheet is compressed and heated by the hot plate, and thus the surface of the thermoplastic resin foam sheet is likely to be fused to the hot plate and the appearance is easily damaged. The transfer to the vacuum chamber in step (3) tends to be difficult. In addition, since the cell structure of the foamed sheet is easily destroyed by compression heating, it is difficult to obtain a foamed molded product having a high expansion ratio and a closed cell ratio.

T1に対するT12の比率(T12/T1)は1.1〜1.4倍であることが好ましく、1.2〜1.4倍がさらに好ましい。T1に対するT12の比率が大きくなると、熱可塑性樹脂製発泡シートの加熱時間が長くなる傾向があり、T1に対するT12の比率が小さくなると、発泡シートと熱板との距離の制御が困難となる傾向がある。 The ratio of T12 to T1 (T12 / T1) is preferably 1.1 to 1.4 times, and more preferably 1.2 to 1.4 times. When the ratio of T12 to T1 increases, the heating time of the thermoplastic resin foam sheet tends to increase, and when the ratio of T12 to T1 decreases, the control of the distance between the foam sheet and the hot plate tends to be difficult. is there.

ところで、前記比率が1.2〜1.4倍のように熱可塑性樹脂製発泡シートの片面が熱板に接触し、もう片面は熱板と接触しない場合、発泡シートの両面で加熱状況が異なり好ましくないように思われる。
本発明者らは鋭意検討を行ったところ、加熱初期は発泡シートの実際の温度が両面で確かに異なり、熱板と接触している面の方が温度が高くなりやすいことを確認している。しかしながら、加熱が進むにつれて、両面の温度は速やかに漸近、一致し、以降はあたかも両面から接触、圧縮加熱しているのと同じ加熱状況となる。
By the way, when one side of the thermoplastic resin foam sheet is in contact with the hot plate and the other side is not in contact with the hot plate so that the ratio is 1.2 to 1.4 times, the heating situation is different on both sides of the foam sheet. Seems unfavorable.
As a result of intensive studies, the present inventors have confirmed that the actual temperature of the foam sheet is certainly different on both sides in the initial stage of heating, and that the surface in contact with the hot plate tends to be higher in temperature. . However, as the heating progresses, the temperatures on both sides are asymptotically and coincidentally, and thereafter, the heating situation is the same as if contact and compression heating are performed from both sides.

熱板の移動方法は特に限定されるものではないが、一方の熱板を固定し、もう一方の熱板をエアシリンダーや油圧シリンダーもしくは電動モーターを用いて移動させる方法、または、両方の熱板を同様にして移動させる方法が挙げられるが前者が一般的である。
熱板間の距離の調整方法も特に限定されるものではないが、一方の熱板の周辺に所望厚みのスペーサーを設置する方法、電動モーターで熱板を移動させるとともに位置を精密に制御する方法などが挙げられる。
The method of moving the hot plate is not particularly limited, but one hot plate is fixed and the other hot plate is moved using an air cylinder, hydraulic cylinder or electric motor, or both hot plates. The former is generally used, although there is a method of moving in the same manner.
The method of adjusting the distance between the hot plates is not particularly limited, but a method of installing a spacer with a desired thickness around one hot plate, a method of moving the hot plate with an electric motor and precisely controlling the position Etc.

一対の熱板の各々の温度は異なっていてもよいが、通常は同じ温度になるように制御する。ここで熱板の温度とは、熱板における熱可塑性樹脂製発泡シートと接触する部分の温度である。
熱板の温度は特に限定されるものではなく、発泡シートを構成する熱可塑性樹脂によって適宜選択すればよい。熱可塑性樹脂が結晶性樹脂である場合は、熱板の温度を前記樹脂の融点近傍に設定することが好ましい。熱板の温度が融点よりも高すぎると破泡しやすく、発泡倍率や独立気泡率の高い発泡成形体が得られにくい。また、熱板の温度が融点よりも低く結晶化温度付近では弾性が強すぎ、発泡倍率の高い発泡成形体は得られにくい。熱板の温度は、熱可塑性樹脂製発泡シートを構成する熱可塑性樹脂の融点±1.0℃の範囲内とすることが好ましい。発泡シートが2種類以上の熱可塑性樹脂から構成される場合は、重量として主成分である熱可塑性樹脂の融点を基準とする。
発泡シートを構成する熱可塑性樹脂が非結晶性樹脂である場合や、結晶性樹脂と非結晶性樹脂の併用である場合は、破泡しにくい粘弾性を有し、所望の発泡倍率まで変形しうる粘弾性を示す温度範囲となるように、熱板の温度を設定すればよい。例えば、非結晶性樹脂としてポリスチレン系樹脂の場合は140〜170℃の温度範囲が好ましい。発泡シートに非晶性樹脂が含まれる場合、熱板の最適温度の範囲は、発泡シートが結晶性樹脂から構成される場合よりも広くなる傾向がある。
温度制御可能な熱板の構造としては、オイル等の媒体温調器と熱板を断熱配管で接続し、熱板内に張り巡らされた流路内に媒体を均一温度、高流量で循環させる構造、または、加熱ヒーター構造において加熱線を緻密に面内に配線し、多数の区画に分割して各区画でPID方式などによる制御をする構造などが挙げられる。これら設備構造の決定のためにコンピューターを用いた伝熱計算、シミュレーションを行うことも好ましい。また、加熱設備の周囲は断熱材などで覆うなど、環境温度の均一化を行うことも好ましい。
ただし、熱板の端部は周囲環境への放熱のため、温度が低下しやすいことは避けられないため、熱板の寸法は前記温度範囲内を保てる寸法を考慮して決定することが好ましい。
The temperature of each of the pair of hot plates may be different, but is usually controlled to be the same temperature. Here, the temperature of the hot plate is the temperature of the portion of the hot plate that contacts the foamed sheet made of thermoplastic resin.
The temperature of the hot plate is not particularly limited and may be appropriately selected depending on the thermoplastic resin constituting the foamed sheet. When the thermoplastic resin is a crystalline resin, the temperature of the hot plate is preferably set in the vicinity of the melting point of the resin. If the temperature of the hot plate is too higher than the melting point, bubbles are easily broken, and it is difficult to obtain a foamed molded article having a high expansion ratio and closed cell ratio. In addition, when the temperature of the hot plate is lower than the melting point and near the crystallization temperature, the elasticity is too strong and it is difficult to obtain a foamed molded article with a high expansion ratio. The temperature of the hot plate is preferably in the range of the melting point ± 1.0 ° C. of the thermoplastic resin constituting the thermoplastic resin foam sheet. When the foamed sheet is composed of two or more types of thermoplastic resins, the melting point of the thermoplastic resin, which is the main component, is used as a reference as a weight.
When the thermoplastic resin constituting the foamed sheet is an amorphous resin or a combination of a crystalline resin and an amorphous resin, the foamed sheet has viscoelasticity that resists foam breakage and deforms to the desired expansion ratio. What is necessary is just to set the temperature of a hot plate so that it may become the temperature range which shows viscoelasticity which can be obtained. For example, in the case of a polystyrene resin as the non-crystalline resin, a temperature range of 140 to 170 ° C. is preferable. When the foamed sheet contains an amorphous resin, the optimum temperature range of the hot plate tends to be wider than when the foamed sheet is made of a crystalline resin.
The temperature controllable hot plate is connected to a medium temperature controller such as oil and a hot plate with a heat insulating pipe, and the medium is circulated at a uniform temperature and a high flow rate in a flow path stretched in the hot plate. Examples include a structure or a structure in which a heating wire is densely arranged in a plane in a heater structure, divided into a large number of sections, and controlled by a PID method or the like in each section. It is also preferable to perform heat transfer calculation and simulation using a computer for determining these equipment structures. It is also preferable to make the ambient temperature uniform, for example, by covering the periphery of the heating facility with a heat insulating material or the like.
However, it is inevitable that the temperature of the end portion of the hot plate tends to decrease because of heat dissipation to the surrounding environment. Therefore, the size of the hot plate is preferably determined in consideration of the size that can keep the temperature range.

加熱時間は、熱可塑性樹脂製発泡シートの厚み方向における温度が熱板の前記温度範囲内に到達するように適宜調整すればよく、発泡シートを構成する樹脂の種類やその発泡倍率、厚み等によって異なる。例えば発泡倍率が同じでも厚みが厚くなると加熱時間も長くなる。発泡シートの両面および厚み方向の中芯部に熱電対を取り付け温度測定を行い、温度と時間の関係を予め調べておくことが好ましい。
なお、発泡シートは通常は室温の状態であるが、加熱時間の短縮のために予熱しておいてもよい。
The heating time may be adjusted as appropriate so that the temperature in the thickness direction of the thermoplastic resin foam sheet reaches the temperature range of the hot plate, depending on the type of resin constituting the foam sheet, the foaming ratio, the thickness, etc. Different. For example, even if the expansion ratio is the same, the heating time becomes longer as the thickness increases. It is preferable to attach a thermocouple to both sides of the foam sheet and the core in the thickness direction, measure the temperature, and examine the relationship between temperature and time in advance.
The foam sheet is usually at room temperature, but may be preheated to shorten the heating time.

工程(3)は、工程(2)で加熱軟化された熱可塑性樹脂製発泡シートを、真空チャンバーの一つの面上に配置する工程である。
真空チャンバーは、底面と該底面の周囲を取り囲む壁面とからなる収納部と、該収納部と対をなす蓋部とからなる、密閉可能な構造である。蓋部は、真空チャンバーの底面と対向する面である。熱可塑性樹脂製発泡シートは、通常真空チャンバーの底面上に配置する。すなわち、真空チャンバー底面がシート配置面となる。真空チャンバーの形状は特に限定されるものではなく、所望の熱可塑性樹脂製発泡成形体が得られる形状であればよい。真空チャンバーは、通常アルミニウムや鉄等から構成される。
真空チャンバーの収納部および蓋部の各々には冷却水などを循環させ、約10〜90℃の範囲で温度制御することが好ましい。各々の温度は発泡成形体の反りを低減するために別々に調整することが好ましい。また、発泡成形体との剥離性を考慮してテフロン(登録商標)やアルマイトなどの表面処理することも好ましい。さらに、収納部と蓋部が接触する端部には、密閉性を向上させるためにシリコンラバーなどのゴム状のシール部材を用いることが好ましい。
真空チャンバーのシート配置面と、該シート配置面と対向する面との距離は、得られる発泡成形体の厚みとする。すなわち、シート配置面と、該シート配置面と対向する面との距離が、所望の熱可塑性樹脂製発泡成形体の厚みと等しい真空チャンバーを用いる。シート配置面と、該シート配置面と対向する面との距離は、通常熱可塑性樹脂製発泡シートの厚みの1.1〜3.0倍とする。前記距離を長くするほど、得られる発泡成形体の独立気泡率は低下しやすい傾向がある。前記距離が長すぎる場合には、シート配置面と、該シート配置面との間にスペーサーを設置してもよい。また、シート配置面または該シート配置面が、壁部の内側と摺動する構造の真空チャンバーを用い、所望の熱可塑性樹脂製発泡成形体の厚みにあわせて、シート配置面と、該シート配置面との距離を調整することもできる。
Step (3) is a step of disposing the thermoplastic resin foam sheet softened by heating in step (2) on one surface of the vacuum chamber.
The vacuum chamber is a sealable structure composed of a storage portion including a bottom surface and a wall surface surrounding the periphery of the bottom surface, and a lid portion that is paired with the storage portion. The lid is a surface facing the bottom surface of the vacuum chamber. The thermoplastic resin foam sheet is usually disposed on the bottom surface of the vacuum chamber. That is, the bottom surface of the vacuum chamber is the sheet placement surface. The shape of the vacuum chamber is not particularly limited as long as the desired thermoplastic resin foamed molded article can be obtained. The vacuum chamber is usually made of aluminum or iron.
It is preferable to circulate cooling water or the like in each of the storage portion and the lid portion of the vacuum chamber and control the temperature in the range of about 10 to 90 ° C. Each temperature is preferably adjusted separately in order to reduce warpage of the foamed molded product. It is also preferable to treat the surface with Teflon (registered trademark) or alumite in consideration of releasability from the foamed molded product. Furthermore, it is preferable to use a rubber-like sealing member such as silicon rubber at the end where the storage portion and the lid portion come into contact in order to improve the sealing performance.
The distance between the sheet placement surface of the vacuum chamber and the surface facing the sheet placement surface is the thickness of the foamed molded article to be obtained. That is, a vacuum chamber is used in which the distance between the sheet arrangement surface and the surface facing the sheet arrangement surface is equal to the thickness of the desired thermoplastic resin foam molded article. The distance between the sheet placement surface and the surface facing the sheet placement surface is usually 1.1 to 3.0 times the thickness of the thermoplastic resin foam sheet. As the distance is increased, the closed cell ratio of the obtained foamed molded product tends to decrease. When the distance is too long, a spacer may be installed between the sheet arrangement surface and the sheet arrangement surface. In addition, using a vacuum chamber having a structure in which the sheet arrangement surface or the sheet arrangement surface slides on the inside of the wall portion, the sheet arrangement surface and the sheet arrangement are adjusted in accordance with the desired thickness of the thermoplastic resin foamed molded article. The distance from the surface can also be adjusted.

工程(4)は、前記真空チャンバーを密閉した後、減圧しながら前記熱可塑性樹脂発泡シートを真空チャンバーのシート配置面と対向する面に接触するまで発泡させて冷却する工程である。真空チャンバーは、真空ポンプと接合されている。工程(4)では、真空チャンバーを密閉した後、真空ポンプとの接合弁を開けてチャンバー内を真空吸引し、減圧しながら熱可塑性樹脂製発泡シートが真空チャンバーのシート配置面と対向する面、すなわち蓋部に接触するまで発泡させる。さらに減圧を維持することにより、前記熱可塑性樹脂製発泡成形体は冷却固化され、所望の熱可塑性樹脂製発泡成形体に賦形される。
工程(4)で熱可塑性樹脂製発泡シートを所望の形状に賦形するためには、工程(2)で加熱した熱可塑性樹脂製発泡シートの温度が下がらないうちに、工程(4)で減圧し、賦形する必要がある。工程(4)では、熱可塑性樹脂製発泡シートの表面温度が熱板の温度から5℃以内である間に、真空チャンバー内を減圧にして賦形することが好ましい。
In step (4), after sealing the vacuum chamber, the thermoplastic resin foam sheet is foamed and cooled until it comes into contact with the surface facing the sheet placement surface of the vacuum chamber while reducing the pressure. The vacuum chamber is joined with a vacuum pump. In the step (4), after sealing the vacuum chamber, the joint valve with the vacuum pump is opened to suck the inside of the chamber under vacuum, and the foamed sheet made of thermoplastic resin faces the sheet placement surface of the vacuum chamber while reducing the pressure. That is, foaming is performed until it comes into contact with the lid. Further, by maintaining the reduced pressure, the thermoplastic resin foam-molded product is cooled and solidified, and shaped into a desired thermoplastic resin foam-molded product.
In order to shape the thermoplastic resin foam sheet into a desired shape in step (4), the pressure is reduced in step (4) before the temperature of the thermoplastic resin foam sheet heated in step (2) is lowered. And need to be shaped. In the step (4), it is preferable that the inside of the vacuum chamber is reduced in pressure while the surface temperature of the thermoplastic resin foam sheet is within 5 ° C. from the temperature of the hot plate.

真空ポンプの排気能力は、真空チャンバーに占める空気を短時間で排気できる能力のものであって、前記真空チャンバーの大きさによっては真空タンクを具備させ排気を速やかに行うことが、得られる熱可塑性樹脂製発泡成形体の発泡倍率と独立気泡率の向上の観点から好ましい。また、前記真空チャンバー内の圧力は真空に近いほど、発泡倍率向上の観点から好ましい。例えば、前記真空チャンバー内の絶対圧力は0.01MPa以下、減圧速度としては0.01MPa/s以上が好ましい。
発泡シートを真空チャンバー蓋部に接触させて冷却固化させる時間としては特に限定されるものではなく、真空チャンバー蓋部と底面との距離と発泡成形体の厚みに差異が生じず、形状が安定する時間であればよい。例えば、20秒〜数分程度である。
The pumping capacity of the vacuum pump is capable of exhausting the air in the vacuum chamber in a short time. Depending on the size of the vacuum chamber, it is possible to provide a vacuum tank to quickly exhaust the thermoplastic that can be obtained. It is preferable from the viewpoint of improving the expansion ratio and closed cell ratio of the resin foam molding. Moreover, the pressure in the vacuum chamber is preferably closer to vacuum from the viewpoint of improving the expansion ratio. For example, the absolute pressure in the vacuum chamber is preferably 0.01 MPa or less, and the pressure reduction rate is preferably 0.01 MPa / s or more.
The time for bringing the foamed sheet into contact with the vacuum chamber lid and cooling and solidifying is not particularly limited, and there is no difference in the distance between the vacuum chamber lid and the bottom and the thickness of the foamed molded product, and the shape is stable. If it is time. For example, it is about 20 seconds to several minutes.

工程(5)は、真空チャンバー内を常圧にした後、該真空チャンバー内から熱可塑性樹脂製発泡成形体を取り出す工程である。取出工程(5)では、真空ポンプとの接合弁を閉じてパージ弁を開けて真空チャンバー内を常圧にした後、熱可塑性樹脂製発泡成形体を取り出す。 The step (5) is a step of taking out the thermoplastic resin foam molded article from the vacuum chamber after the inside of the vacuum chamber is brought to normal pressure. In the take-out step (5), the joint valve with the vacuum pump is closed and the purge valve is opened to bring the inside of the vacuum chamber to normal pressure, and then the thermoplastic resin foam molded article is taken out.

本発明で得られる熱可塑性樹脂製発泡成形体は、包装、通函、仕切り板、食品容器、文具、建材、自動車内装材等に使用することができる。 The foamed molded product made of thermoplastic resin obtained in the present invention can be used for packaging, boxing, partition plates, food containers, stationery, building materials, automobile interior materials and the like.

また、本発明で得られる熱可塑性樹脂製発泡成形体には、通常、発泡シートの表面に施される、コロナ処理、オゾン処理や帯電防止剤塗布などの表面処理を必要に応じて行うこともできる。 In addition, the thermoplastic resin foam molded article obtained in the present invention may be subjected to surface treatment such as corona treatment, ozone treatment or antistatic agent application, which is usually applied to the surface of the foam sheet. it can.

本発明で得られる熱可塑性樹脂製発泡成形体の表面には、用途に応じてシートやフィルム等の表皮材を積層貼合してもよい。積層用のシートやフィルム等の表皮材としては用途に応じて公知のものを使用することができ、例えば、アルミニウムや鉄等の金属、熱可塑性樹脂、紙、合成紙等から構成される薄板が挙げられる。熱可塑性樹脂もしくは麻等の植物素材やガラス等の無機材料からなる不織布や織布を積層してもよい。また、用いる薄板表面にエンボスや印刷などの加飾が施されていてもよい。発泡体を表皮材として積層貼合してもよい。 A surface material such as a sheet or a film may be laminated and bonded to the surface of the thermoplastic resin foam molded article obtained in the present invention, depending on the application. As a skin material such as a sheet or film for lamination, known materials can be used depending on the application. For example, a thin plate made of metal such as aluminum or iron, thermoplastic resin, paper, synthetic paper, etc. Can be mentioned. You may laminate the nonwoven fabric and woven fabric which consist of plant materials, such as a thermoplastic resin or hemp, and inorganic materials, such as glass. Moreover, decoration, such as embossing and printing, may be given to the thin plate surface to be used. You may laminate and laminate a foam as a skin material.

例えば熱可塑性樹脂製発泡成形体を食品包装用に使用する場合には、10〜100μm厚みのプロピレン系樹脂製フィルムやガスバリア樹脂製フィルムを積層して用いることが好ましい。ガスバリア樹脂としては、エチレン・ビニルアルコール共重合体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリアミドなどを使用することができる。なお、これらガスバリア樹脂は単独または混合して使用してもよいし、ガスバリア樹脂からなるフィルムを2種類以上積層して使用してもよい。 For example, when a thermoplastic resin foam molded article is used for food packaging, it is preferable to use a 10-100 μm-thick propylene-based resin film or a gas barrier resin film laminated. As the gas barrier resin, an ethylene / vinyl alcohol copolymer, polyvinylidene chloride, polyvinyl alcohol, polyamide or the like can be used. These gas barrier resins may be used alone or in combination, or two or more films made of gas barrier resins may be laminated and used.

熱可塑性樹脂製発泡成形体を自動車内装材用に用いる場合には、不織布、織布、カーペット等を積層することが好ましい。他に包装用途、例えば、箱の仕切り板として使用する場合には、内容物保護のために緩衝シートを積層してもよい。 When the thermoplastic resin foam molded article is used for an automobile interior material, it is preferable to laminate a nonwoven fabric, a woven fabric, a carpet or the like. In addition, when using as a partition for packaging purposes, for example, a box, a buffer sheet may be laminated to protect the contents.

熱可塑性樹脂製発泡成形体への表皮材の積層方法は特に限定されることはなく、例えば、接着剤を発泡成形体の表面に塗布して積層する方法、接着樹脂製フィルムがラミネートされた表皮材を用い、該接着樹脂製フィルム面を加熱溶融させて発泡成形体と積層する方法、ヒーターや熱風などを用いて表皮材と発泡成形体との積層面を溶融させて積層する方法、溶融樹脂を表皮材と発泡成形体との間に押出しラミネートして積層する方法等が挙げられる。 The method of laminating the skin material on the thermoplastic resin foam molded body is not particularly limited. For example, a method of applying an adhesive on the surface of the foam molded body and laminating, or a skin on which an adhesive resin film is laminated. A method of heating and melting the adhesive resin film surface using a material and laminating the foam molded body, a method of melting and laminating the laminated surface of the skin material and the foam molded body using a heater or hot air, etc., a molten resin And a method of extruding and laminating between the skin material and the foamed molded body.

本発明で得られる熱可塑性樹脂製発泡成形体あるいは表皮材積層発泡成形体に、さらに真空成形等の熱成形を施すことも可能である。熱成形としては、真空成形や熱罫線加工等、公知の方法により熱成形することができる。 The thermoplastic resin foam molded article or skin material laminated foam molded article obtained in the present invention can be further subjected to thermoforming such as vacuum molding. As thermoforming, thermoforming can be performed by a known method such as vacuum forming or heat ruled line processing.

以下、プロピレン系樹脂製発泡シートを用いた平板状発泡成形体の製造方法に関する、実施例および比較例により本発明をさらに説明するが、本発明はこれにより何ら限定されるものではない。 Hereinafter, although the present invention will be further described with reference to examples and comparative examples relating to a method for producing a flat foam molded article using a propylene-based resin foam sheet, the present invention is not limited thereto.

(1)MFR(230)
JIS K7210に従い、温度230℃、荷重2.16kgfで測定した。単位はg/10分。
(1) MFR (230)
According to JIS K7210, measurement was performed at a temperature of 230 ° C. and a load of 2.16 kgf. The unit is g / 10 minutes.

(2)MT(190)
東洋精機社製メルトテンションテスターMT−501D3型を用いて、サンプル量5g、加熱温度190℃、加熱時間5分間、ピストン降下速度5.7mm/分で、長さ8mm、直径2mmのオリフィスからストランドを押し出し、該ストランドを直径50mmのローラーを用いて巻取速度100rpmで巻き取ったときの張力を、メルトテンション(MT)として測定した(単位=g)。
(2) MT (190)
Using a melt tension tester MT-501D3 manufactured by Toyo Seiki Co., Ltd., a strand is drawn from an orifice having a length of 8 mm and a diameter of 2 mm at a sample amount of 5 g, a heating temperature of 190 ° C., a heating time of 5 minutes, a piston lowering speed of 5.7 mm / min. The tension when the strand was rolled up at a winding speed of 100 rpm using a roller having a diameter of 50 mm was measured as melt tension (MT) (unit: g).

(3)発泡倍率X(X1、X2)
JIS K7112に記載されている水中置換法による測定方法を使用し発泡シートまたは発泡成形体の密度ρ(水)を求める。次に、発泡シートを構成するプロピレン系樹脂の樹脂密度ρ(PP)を用いて下式2により発泡倍率X(X1、X2)を計算した(単位は無次元)。なお、ρ(PP)として以下0.90g/cm3を用いた。
X(X1、X2)=ρ(PP)/ρ(水) [式2]
ρ(PP):樹脂密度(g/cm3
ρ(水):発泡シートまたは発泡成形体の密度(g/cm3
(3) Foaming ratio X (X1, X2)
The density ρ (water) of the foamed sheet or foamed molded product is determined using a measurement method based on an underwater substitution method described in JIS K7112. Next, the expansion ratio X (X1, X2) was calculated by the following formula 2 using the resin density ρ (PP) of the propylene-based resin constituting the foamed sheet (the unit is dimensionless). In addition, 0.90 g / cm 3 was used as ρ (PP) below.
X (X1, X2) = ρ (PP) / ρ (water) [Formula 2]
ρ (PP): Resin density (g / cm 3 )
ρ (water): density of foamed sheet or foamed molded product (g / cm 3 )

(4)独立気泡率Y(Y1、Y2)
ASTM−D2856に記載されているエアーピクノメーター法による測定方法を使用し発泡シートまたは発泡成形体の密度ρ(エア)を求め、下式3により独立気泡率Y(Y1、Y2)を計算した(単位は%)。
Y(Y1、Y2)
=(ρ(PP)/ρ(エア)−1)/(ρ(PP)/ρ(水)−1)×100 [式3]
(4) Closed cell ratio Y (Y1, Y2)
The density ρ (air) of the foamed sheet or foamed molded product was obtained using the measurement method by the air pycnometer method described in ASTM-D2856, and the closed cell ratio Y (Y1, Y2) was calculated by the following formula 3 ( Units%).
Y (Y1, Y2)
= (Ρ (PP) / ρ (air) -1) / (ρ (PP) / ρ (water) -1) × 100 [Formula 3]

(5)剥離強度
50mm幅にサンプリングしたテフロン(登録商標)製フィルムと発泡成形体間の剥離強度を、引張試験機を用いて剥離方向180°、剥離速度50mm/minで測定を行い求めた。単位はN/50mm幅。
(5) Peel strength The peel strength between a Teflon (registered trademark) film sampled to a width of 50 mm and the foamed molded product was measured and measured using a tensile tester at a peel direction of 180 ° and a peel rate of 50 mm / min. The unit is N / 50mm width.

[参考例]プロピレン系樹脂製発泡シートの作製
プロピレン系樹脂製発泡シートとして非発泡層/発泡層/非発泡層の2種3層のプロピレン系樹脂製多層発泡シートを作製した。
発泡層を構成する樹脂として、下記式1を満足するプロピレン系重合体PP1、一般用のプロピレン系樹脂PP2及びPP3、直鎖状低密度ポリエチレンPE1の4種類を使用した。
式1を満足するプロピレン系重合体PP1として株式会社サンアロマ製PF814を用いた。PF814のMFR(230)は3.0g/10分、MT(190)は47gであり、式1の右辺は4.0であるので、式1を満足していた。
MT(190)≧7.52×MFR(230)(-0.576) [式1]
一般用のプロピレン系樹脂PP2として住友化学株式会社製ノーブレンAW191を、同じくPP3として住友化学株式会社製ノーブレンY101を用いた。AW191及びY101はともにMFR(230)が11g/10分、MT(190)が0.9gであり、式1の右辺1.89のため式1は満足していなかった。
また、直鎖状低密度ポリエチレンPE1として住友化学株式会社製エクセレンFX、CX3502を用いた。なお、CX3502のMFRは190℃で同様に測定して4g/10分であった。
上記のPP1を10重量%、PP2を65重量%、PP3を15重量%、PE1を10重量%として配合し、ここで主成分となるプロピレン系樹脂はPP2となり、この融点は164.7℃であった。
[Reference Example] Production of propylene-based resin foamed sheet As the propylene-based resin foamed sheet, a propylene-based resin multilayer foamed sheet of two types and three layers of non-foamed layer / foamed layer / non-foamed layer was produced.
As the resin constituting the foam layer, four types of propylene polymer PP1, which satisfies the following formula 1, general propylene resins PP2 and PP3, and linear low density polyethylene PE1 were used.
PF814 manufactured by Sun Aroma Co., Ltd. was used as the propylene-based polymer PP1 that satisfies Formula 1. Since MFR (230) of PF814 is 3.0 g / 10 min, MT (190) is 47 g, and the right side of Formula 1 is 4.0, Formula 1 was satisfied.
MT (190) ≧ 7.52 × MFR (230) (−0.576) [Formula 1]
Nobrene AW191 manufactured by Sumitomo Chemical Co., Ltd. was used as a general propylene-based resin PP2, and Noblen Y101 manufactured by Sumitomo Chemical Co., Ltd. was used as PP3. In both AW191 and Y101, MFR (230) was 11 g / 10 min, MT (190) was 0.9 g, and since the right side of Formula 1 was 1.89, Formula 1 was not satisfied.
In addition, Excellen FX and CX3502 manufactured by Sumitomo Chemical Co., Ltd. were used as the linear low density polyethylene PE1. The MFR of CX3502 was 4 g / 10 min as measured at 190 ° C. in the same manner.
The above-mentioned PP1 is blended at 10% by weight, PP2 at 65% by weight, PP3 at 15% by weight, and PE1 at 10% by weight. The main propylene resin is PP2, and its melting point is 164.7 ° C. there were.

非発泡層を構成する樹脂として、一般用のプロピレン系樹脂PP4を90重量%、高分子型帯電防止剤を10重量%で配合したものを使用した。一般用のプロピレン系樹脂PP4としては住友化学株式会社製ノーブレンAS171Lを用いた。AS171LのMFR(230)は1g/10分であった。高分子型帯電防止剤としては三洋化成工業株式会社製ペレスタット300を用いた。 As the resin constituting the non-foamed layer, 90% by weight of a general-purpose propylene resin PP4 and 10% by weight of a polymer antistatic agent were used. As general-purpose propylene-based resin PP4, Nobrene AS171L manufactured by Sumitomo Chemical Co., Ltd. was used. The MFR (230) of AS171L was 1 g / 10 min. As the polymer type antistatic agent, Pelestat 300 manufactured by Sanyo Chemical Industries, Ltd. was used.

気泡核剤マスターバッチとして、平均粒径が4.48μm、密度が1.65g/cm3であるアゾジカルボンアミドを用い、エチレン系樹脂のベース樹脂に対して濃度が30重量%であるマスターバッチを用いた。 As the cell nucleating agent master batch, an azodicarbonamide having an average particle diameter of 4.48 μm and a density of 1.65 g / cm 3 was used, and a master batch having a concentration of 30% by weight with respect to the base resin of the ethylene-based resin. Using.

発泡層用押出機として先端にギアポンプを設けた104mmφ同方向回転2軸押出機(L/D=32、Lはスクリュー有効長さ、Dはスクリュー径)を、非発泡層用押出機として75mmφ単軸押出機(L/D=32)を使用し、ダイ出口流路幅が1600mmであるマルチマニホールド方式の多層Tダイを使用した。   A 104 mmφ co-rotating twin screw extruder (L / D = 32, L is the effective screw length, D is the screw diameter) with a gear pump at the tip as the foam layer extruder, and a 75 mmφ single unit as the non-foam layer extruder. A multi-manifold type multilayer T die having a die exit channel width of 1600 mm was used using a shaft extruder (L / D = 32).

前記発泡層用樹脂100重量%に対して気泡核剤マスターバッチを0.3PHR配合したものを、定量フィーダーを経て発泡層用押出機ホッパーに投入して押出機中で溶融混錬を行い、溶融が進んだ位置(L/D=20)で液化炭酸ガス0.15PHRをダイヤフラム式定量ポンプを用いて高圧で注入した。溶融樹脂と炭酸ガスを十分溶融混練したのち、180℃に調整し、吐出量160Kg/hでギアポンプを用いて安定してマルチマニホールド方式多層Tダイ内に導入した。
前記非発泡層用樹脂を定量フィーダーを経て非発泡層用押出機ホッパーに投入して押出機中で溶融混錬を行い、200℃に調整し、吐出量80Kg/hでマルチマニホールド方式多層Tダイ内に導入した。
ダイ出口から押出された平板状の多層溶融シートをダイ直後に設置した約60℃に冷却温調された多数の210φロールにより冷却成形し、ニップロールを備えた引取機で引取ったのち、切断機にて所定寸法に切断した。
得られた発泡シートの発泡倍率X1は1.9倍、独立気泡率Y1は98%、厚みT1は2.00mm、非発泡層の厚みは175μmであった。
A foam nucleating agent master batch of 0.3 PHR blended with 100% by weight of the foam layer resin is introduced into a foam layer extruder hopper through a quantitative feeder, melted and kneaded in the extruder, and melted. In a position (L / D = 20) in which liquefaction has advanced, liquefied carbon dioxide gas 0.15PHR was injected at a high pressure using a diaphragm metering pump. After sufficiently melting and kneading the molten resin and carbon dioxide, the temperature was adjusted to 180 ° C., and the mixture was stably introduced into the multi-manifold multi-layer T-die using a gear pump at a discharge rate of 160 kg / h.
The non-foamed layer resin is fed into a non-foamed layer extruder hopper through a quantitative feeder, melt kneaded in the extruder, adjusted to 200 ° C., and a multi-manifold multi-layer T-die with a discharge rate of 80 kg / h. Introduced in.
A flat multilayer molten sheet extruded from the die exit is cooled and formed by a large number of 210φ rolls adjusted to a cooling temperature of about 60 ° C. installed immediately after the die, and taken by a take-up machine equipped with a nip roll, and then a cutting machine And cut into predetermined dimensions.
The resulting foamed sheet had an expansion ratio X1 of 1.9, an independent cell ratio Y1 of 98%, a thickness T1 of 2.00 mm, and a non-foamed layer thickness of 175 μm.

[実施例1]
図2(a)に示すような平行に設置された一対の熱板のうち、下に設置された熱板上に前記プロピレン系樹脂製発泡シートを配置し加熱軟化させた。ここで、工程(2)における熱板への発泡シートの融着状況を定量化するため、各熱板表面には厚み0.19mmのテフロン(登録商標)フィルムを配置しこれを熱板の一部と見なして、このフィルム間を熱板間の距離T12とした。T12を2.62mm、T12/T1を1.31とし、熱板の温度は発泡シートの主成分であるプロピレン系樹脂PP2の融点165.0±1.0℃の範囲内の165.0℃として80秒間加熱した。
加熱軟化させたプロピレン系樹脂製発泡シートをその両表面にテフロン(登録商標)フィルムを貼付したまま、図2(b)に示すような真空チャンバーの底面上に配置した。真空チャンバー底面と、該底面と対向する面、すなわち真空チャンバー蓋部との距離T2は4.6mmに設定した。
前記真空チャンバーを密閉した後、真空ポンプとの接合弁を開けて、減圧速度0.018MPa/sで完全真空(絶対圧力0)まで減圧しながら、前記熱可塑性樹脂発泡シートを真空チャンバーのシート配置面と対向する面に接触するまで発泡させて冷却固化し、平板状に賦形した。真空チャンバー蓋部および底面の温度は20℃、減圧から冷却固化までの時間は60秒とした。
真空ポンプとの接合弁を閉じて、パージ弁を開けて常圧(0.1MPa)にした後、真空チャンバー内より平板状の発泡成形体を取り出した。テフロン(登録商標)フィルムは発泡成形体から自然に剥がれ、その剥離強度は実質0であった。
得られた発泡成形体の発泡倍率X2は4.0倍、独立気泡率Y2は90%、厚みは4.2mmであった。
[Example 1]
Of the pair of heat plates installed in parallel as shown in FIG. 2 (a), the propylene-based resin foam sheet was placed on the heat plate placed below and softened by heating. Here, in order to quantify the state of fusion of the foam sheet to the hot plate in the step (2), a Teflon (registered trademark) film having a thickness of 0.19 mm is arranged on each hot plate surface, and this is used as one of the hot plates. The distance between the films was defined as a distance T12 between the hot plates. T12 is 2.62 mm, T12 / T1 is 1.31, and the temperature of the hot plate is 165.0 ° C. within the melting point of 165.0 ± 1.0 ° C. of the propylene-based resin PP2, which is the main component of the foam sheet. Heated for 80 seconds.
The heat-softened propylene-based resin foam sheet was placed on the bottom surface of the vacuum chamber as shown in FIG. 2B with the Teflon (registered trademark) film adhered to both surfaces. A distance T2 between the bottom surface of the vacuum chamber and the surface facing the bottom surface, that is, the vacuum chamber lid portion was set to 4.6 mm.
After sealing the vacuum chamber, the joint valve with the vacuum pump is opened, and the thermoplastic resin foam sheet is placed in the vacuum chamber while the pressure is reduced to a complete vacuum (absolute pressure 0) at a pressure reduction rate of 0.018 MPa / s. It foamed until it contacted the surface which opposes a surface, it solidified by cooling, and it shape | molded in flat form. The temperature of the vacuum chamber lid and bottom surface was 20 ° C., and the time from decompression to cooling solidification was 60 seconds.
After closing the joint valve with the vacuum pump and opening the purge valve to normal pressure (0.1 MPa), the flat foamed molded article was taken out from the vacuum chamber. The Teflon (registered trademark) film naturally peeled off from the foamed molded product, and the peel strength was substantially zero.
The obtained foamed molded article had an expansion ratio X2 of 4.0, a closed cell ratio Y2 of 90%, and a thickness of 4.2 mm.

[実施例2〜4、比較例1〜3]
T12を変更した以外は実施例1と同様に行い、結果を表1にまとめた。これらの結果を見て判るように、T12/T1が1より大きく圧縮加熱しない場合、テフロン(登録商標)フィルム(熱板)との剥離性が良好で発泡倍率および独立気泡率の高い発泡成形体を得ることができた。一方、T12/T1が1以下で圧縮加熱する場合、テフロン(登録商標)フィルム(熱板)との剥離性が悪く発泡倍率および独立気泡率も低い発泡成形体しか得られなかった。
[Examples 2 to 4, Comparative Examples 1 to 3]
The procedure was the same as in Example 1 except that T12 was changed, and the results are summarized in Table 1. As can be seen from these results, when T12 / T1 is greater than 1 and is not compressed and heated, the foamed molded article has good exfoliation from Teflon (registered trademark) film (hot plate) and high expansion ratio and closed cell ratio. Could get. On the other hand, when T12 / T1 was 1 or less and compression heating was performed, only a foamed molded article having poor exfoliation from the Teflon (registered trademark) film (hot plate) and low expansion ratio and closed cell ratio was obtained.

Figure 2007237735
Figure 2007237735

熱可塑性樹脂製発泡シートの図Diagram of foam sheet made of thermoplastic resin 本発明の熱可塑性樹脂製発泡成形体の製造方法の概略図 (a):工程(1)、(2)を示す概略図 (b):工程(3)を示す概略図 (c):工程(4)を示す概略図Schematic diagram of a method for producing a thermoplastic resin foam molded article of the present invention (a): Schematic diagram showing steps (1) and (2) (b): Schematic diagram showing step (3) (c): Step ( Schematic diagram showing 4)

符号の説明Explanation of symbols

1:熱可塑性樹脂製発泡シート
2:熱可塑性樹脂製発泡シートの厚み
31:熱板(1)
32:熱板(2)
4:熱板間の距離
5:真空チャンバー
51:シート配置面と対向する面(真空チャンバー蓋部)
52:シート配置面(真空チャンバー底面)
6:真空チャンバーのシート配置面と該シート配置面と対向する面との距離
7:熱可塑性樹脂製発泡成形体
8:真空ポンプとの接合弁
9:パージ弁
1: Thermoplastic resin foam sheet 2: Thermoplastic resin foam sheet thickness 31: Hot plate (1)
32: Hot plate (2)
4: Distance between hot plates 5: Vacuum chamber 51: Surface facing sheet placement surface (vacuum chamber lid)
52: Sheet placement surface (bottom surface of vacuum chamber)
6: Distance between the sheet placement surface of the vacuum chamber and the surface facing the sheet placement surface 7: Foam molded body made of thermoplastic resin 8: Joint valve with vacuum pump 9: Purge valve

Claims (6)

熱可塑性樹脂製発泡シートを用いて熱可塑性樹脂製発泡成形体を製造する方法であって、以下(1)〜(5)の工程を含む熱可塑性樹脂製発泡成形体の製造方法。
(1)略平行に設置された一対の熱板のうち、一方の熱板上に、熱可塑性樹脂製発泡シートを配置する工程
(2)両熱板間の距離を前記熱可塑性樹脂製発泡シートを圧縮しない距離に維持し、該一対の熱板により前記熱可塑性樹脂製発泡シートを加熱軟化する工程
(3)工程(2)で加熱軟化された熱可塑性樹脂製発泡シートを、真空チャンバーの一つの面上に配置する工程
(4)前記真空チャンバーを密閉した後、減圧しながら前記熱可塑性樹脂発泡シートを真空チャンバーのシート配置面と対向する面に接触するまで発泡させて冷却する工程
(5)前記真空チャンバー内を常圧にした後、該真空チャンバー内から熱可塑性樹脂製発泡成形体を取り出す工程
A method for producing a thermoplastic resin foam-molded article using a thermoplastic resin foam sheet, comprising the following steps (1) to (5):
(1) A step of arranging a thermoplastic resin foam sheet on one of the pair of heat plates installed substantially in parallel. (2) The distance between the two heat plates is determined by the thermoplastic resin foam sheet. The thermoplastic resin foam sheet heated and softened in the step (3) and the process (2) is heated in the vacuum chamber with the pair of hot plates. (4) After sealing the vacuum chamber, cooling the foamed foamed thermoplastic resin sheet until it comes into contact with the surface facing the sheet placement surface of the vacuum chamber (5) ) After taking the inside of the vacuum chamber to normal pressure, taking out the thermoplastic resin foam molded body from the inside of the vacuum chamber
前記工程(2)において、熱板間の距離を、熱可塑性樹脂製発泡シートの厚みの1.1〜1.4倍に維持して熱可塑性樹脂製発泡シートを加熱軟化することを特徴とする請求項1に記載の熱可塑性樹脂製発泡成形体の製造方法。 In the step (2), the distance between the hot plates is maintained at 1.1 to 1.4 times the thickness of the thermoplastic resin foam sheet, and the thermoplastic resin foam sheet is heated and softened. The manufacturing method of the thermoplastic resin foam molding of Claim 1. 熱可塑性樹脂製発泡シートを構成する熱可塑性樹脂がプロピレン系樹脂であることを特徴とする請求項1または2に記載の熱可塑性樹脂製発泡成形体の製造方法。 The thermoplastic resin foam molded body according to claim 1 or 2, wherein the thermoplastic resin constituting the thermoplastic resin foam sheet is a propylene resin. 前記プロピレン系樹脂が、190℃におけるメルトテンション(MT(190))と230℃におけるメルトフローレート(MFR(230))とが下式1を満足するプロピレン系重合体を5重量%以上含むことを特徴とする請求項3記載の熱可塑性樹脂製発泡成形体の製造方法。
MT(190)≧7.52×MFR(230)(-0.576) [式1]
The propylene-based resin contains 5% by weight or more of a propylene-based polymer in which a melt tension (MT (190)) at 190 ° C. and a melt flow rate (MFR (230)) at 230 ° C. satisfy the following formula 1. The method for producing a thermoplastic resin foam molded article according to claim 3.
MT (190) ≧ 7.52 × MFR (230) (−0.576) [Formula 1]
一対の熱板における熱可塑性樹脂製発泡シートと接触する部分の温度が、前記熱可塑性樹脂製発泡シートの融点±1.0℃の範囲内であることを特徴とする請求項1〜4何れかに記載の熱可塑性樹脂製発泡成形体の製造方法。 The temperature of the part which contacts a thermoplastic resin foam sheet in a pair of hot plates is in the range of melting | fusing point +/- 1.0 degreeC of the said thermoplastic resin foam sheet, The any one of Claims 1-4 characterized by the above-mentioned. The manufacturing method of the foaming molding made from a thermoplastic resin of description. 熱可塑性樹脂製発泡シートの発泡倍率(X1)が1.2〜5.0倍、独立気泡率(Y1)が80〜100%であることを特徴とする請求項1〜5何れかに記載の熱可塑性樹脂製発泡成形体の製造方法。 The expansion ratio (X1) of the foamed sheet made of a thermoplastic resin is 1.2 to 5.0 times, and the closed cell ratio (Y1) is 80 to 100%. A method for producing a thermoplastic resin foam-molded article.
JP2007022854A 2006-02-10 2007-02-01 Manufacturing method for expanded molded article made of thermoplastic resin Pending JP2007237735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022854A JP2007237735A (en) 2006-02-10 2007-02-01 Manufacturing method for expanded molded article made of thermoplastic resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006033541 2006-02-10
JP2007022854A JP2007237735A (en) 2006-02-10 2007-02-01 Manufacturing method for expanded molded article made of thermoplastic resin

Publications (1)

Publication Number Publication Date
JP2007237735A true JP2007237735A (en) 2007-09-20

Family

ID=38583706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022854A Pending JP2007237735A (en) 2006-02-10 2007-02-01 Manufacturing method for expanded molded article made of thermoplastic resin

Country Status (1)

Country Link
JP (1) JP2007237735A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584729B2 (en) * 1988-07-11 1993-12-03 Sekisui Plastics
JPH09227707A (en) * 1996-02-23 1997-09-02 Tonen Chem Corp Production of polypropylene resin foam
JP2002331572A (en) * 2001-05-08 2002-11-19 Chisso Corp Molding method for foamed polypropylene resin sheet, and foamed molded body
JP2003094504A (en) * 2001-09-25 2003-04-03 Sumitomo Chem Co Ltd Method for manufacturing multilayered foamed sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584729B2 (en) * 1988-07-11 1993-12-03 Sekisui Plastics
JPH09227707A (en) * 1996-02-23 1997-09-02 Tonen Chem Corp Production of polypropylene resin foam
JP2002331572A (en) * 2001-05-08 2002-11-19 Chisso Corp Molding method for foamed polypropylene resin sheet, and foamed molded body
JP2003094504A (en) * 2001-09-25 2003-04-03 Sumitomo Chem Co Ltd Method for manufacturing multilayered foamed sheet

Similar Documents

Publication Publication Date Title
US9156228B2 (en) Method for producing a multi-layer plastic film
JP2005519178A (en) Polypropylene foam and foam core structure
JP2010083144A (en) Method of producing hollow body, and hollow body
JP7342178B2 (en) Microcell foam sheet and fabrication process and use
JP5642957B2 (en) Resin foam sheet
JP3804528B2 (en) Method for producing multilayer foam sheet
JP2007204590A (en) Polypropylene resin foam and method of producing the same
JP2002316351A (en) Method for manufacturing multi-layered expanded sheet
JP2008239635A (en) Antistatic resin composition and multilayer sheet made of thermoplastic resin
JP4539238B2 (en) Vacuum forming method for thermoplastic resin foam sheet
JP2003094504A (en) Method for manufacturing multilayered foamed sheet
JP2007237735A (en) Manufacturing method for expanded molded article made of thermoplastic resin
JP3994730B2 (en) Non-foamed layer resin, multilayer foamed sheet, and method for producing the same
JP4379110B2 (en) Propylene resin multilayer foam sheet and method for producing the same
JP2012030477A (en) Method of manufacturing hollow body
JP2008238442A (en) Method for manufacturing thermoplastic resin-made foam molding
JP2009241408A (en) Method of processing foamed laminate
JP2008143125A (en) Manufacturing method of thermoplastic resin foam molded body
JP4569238B2 (en) Vacuum forming method for thermoplastic resin foam sheet
JP2008105390A (en) Manufacturing method of thermoplastic resin foam molded body
JP4032990B2 (en) Multi-layer foam sheet manufacturing apparatus and multi-layer foam sheet manufacturing method
JP7310392B2 (en) Foam sheet manufacturing method
JP2008207548A (en) Method for manufacturing thermoplastic resin molding
JP4890280B2 (en) Method for producing thermoplastic resin molded article
JP2010179560A (en) Foam-molding mold and method of manufacturing thermoplastic resin-made foamed body

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508