JP2007237625A - Method for manufacturing glass-wool insulating material and glass-wool insulating material - Google Patents

Method for manufacturing glass-wool insulating material and glass-wool insulating material Download PDF

Info

Publication number
JP2007237625A
JP2007237625A JP2006065003A JP2006065003A JP2007237625A JP 2007237625 A JP2007237625 A JP 2007237625A JP 2006065003 A JP2006065003 A JP 2006065003A JP 2006065003 A JP2006065003 A JP 2006065003A JP 2007237625 A JP2007237625 A JP 2007237625A
Authority
JP
Japan
Prior art keywords
glass
insulating material
glass wool
wool
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006065003A
Other languages
Japanese (ja)
Inventor
Masakazu Hirashima
正和 平嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAG KK
MAG Co Ltd
Original Assignee
MAG KK
MAG Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAG KK, MAG Co Ltd filed Critical MAG KK
Priority to JP2006065003A priority Critical patent/JP2007237625A/en
Publication of JP2007237625A publication Critical patent/JP2007237625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a glass-wool insulating material best-suited for heat retention/acoustic absorption for high temperature facilities such as a hot water storage tank, because the material does not generate cracked gas of an organic matter even at a high temperature and also, can keep an early thickness, and a glass-wool insulating material manufactured by this method. <P>SOLUTION: First, a laminate is obtained by lapping an unwoven fabric each on both surfaces of a core made up of a sheet-like or a plate-like glass-wool molded without using a binder. Next, a part of glass fiber which forms the glass-wool core is entangled with the fiber constituting the unwoven fabric laminated on both surfaces of the core by needling the laminate. Then, the needling process is repeated a plurality of times to densify the glass-wool core. Thus, the insulating material which can be fabricated into a complicated shape such as a curved surface part, can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、貯湯タンク等、高温タンク用断熱・吸音材として好適なグラスウール断熱材の製造方法及びこの方法で製造されたグラスウール断熱材に関する。   The present invention relates to a method for producing a glass wool heat insulating material suitable as a heat insulating and sound absorbing material for a high-temperature tank such as a hot water storage tank, and a glass wool heat insulating material produced by this method.

貯湯タンク等、高温タンク用断熱・吸音材として、ガラス短繊維(グラスウール)を使用したものが市販されている。このようなグラスウールは、バインダーによって繊維同士を固定し、自身の形状を保持している。しかし、有機バインダーを使用したグラスウールは、高温部に施工するとバインダーの熱分解等によりガスが発生し、劣化、悪臭等の原因となっていた。また、無機バインダーを使用した場合は、グラスウールの脆性のため、貯湯タンク等の振動に対応できず劣化し易かった。   As heat insulation and sound absorbing materials for high-temperature tanks such as hot water storage tanks, those using short glass fibers (glass wool) are commercially available. Such glass wool fixes the fibers with a binder and maintains its own shape. However, when glass wool using an organic binder is applied to a high temperature part, gas is generated due to thermal decomposition of the binder, which causes deterioration, bad odor and the like. In addition, when an inorganic binder was used, glass wool was brittle, so that it could not cope with vibrations in a hot water storage tank or the like and was easily deteriorated.

一方、バインダーを使わずに成形した、ノーバインダー・グラスウールも製造されたが、形状を長期間維持することが困難であり、施工後に膨らんできて断熱・吸音機能が低下し、外見も悪くなるという問題があった。さらに、ノーバインダー・グラスウールをニードル加工して、ガラス繊維同士の絡み度を増すことで形状維持をはかった断熱材も市販されている。しかし、ガラス繊維同士の絡みだけで形状を長期間にわたって維持することは困難であり、形状維持のためニードル加工回数を増すと、今度はニードルによりガラス繊維の破断が生じてしまうという難点があった。   On the other hand, no-binder glass wool molded without using a binder was also produced, but it was difficult to maintain the shape for a long time, and it expanded after construction, and the heat insulation / sound absorption function decreased, and the appearance also deteriorated There was a problem. Furthermore, a heat-insulating material that maintains the shape by increasing the degree of entanglement between glass fibers by needle-processing no-binder glass wool is also commercially available. However, it is difficult to maintain the shape for a long time only by the entanglement between the glass fibers, and if the number of times of needle processing is increased to maintain the shape, there is a difficulty that the glass fiber breaks due to the needle this time. .

特許文献1には、ガラス繊維からなる中間層部と、中間層部の表裏両面に積層されたポリエステル系長繊維不織布層とからなり、かつニードルパンチ処理により表裏両面の不織布を構成するポリエステル系長繊維同士が交絡するとともに、該繊維が中間層部を構成するガラス繊維と絡み合うことによって一体化したアスファルトルーフィング用積層シートが開示されている。   Patent Document 1 discloses a polyester-based length comprising an intermediate layer portion made of glass fiber and a polyester-based long fiber nonwoven fabric layer laminated on both front and back surfaces of the intermediate layer portion, and constituting a nonwoven fabric on both front and back surfaces by needle punching. A laminated sheet for asphalt roofing is disclosed in which fibers are entangled and integrated with each other by entanglement of the fibers with glass fibers constituting the intermediate layer portion.

特開平11−268159号公報JP-A-11-268159

特許文献1に開示される技術では、表裏両面の不織布を構成するポリエステル系長繊維同士を交絡さなければならないため、断熱材の厚さが制限されるという問題がある。
また、熱圧接により各繊維間を熱圧着固定することも提案されているが、熱圧接では繊維同士の結合度合いをコントロールすることが困難である。
さらに、樹脂含浸によって繊維同士を固定することも提案されている。しかし、樹脂含浸を行うと既述の通り有機物の分解ガスが発生するため、高温部用断熱・吸音材として使用するには不適である。
The technique disclosed in Patent Document 1 has a problem that the thickness of the heat insulating material is limited because polyester-based long fibers constituting the nonwoven fabric on both the front and back surfaces must be entangled.
In addition, it has also been proposed to fix the fibers by thermocompression bonding by hot pressing, but it is difficult to control the degree of bonding between the fibers by hot pressing.
Furthermore, it has also been proposed to fix fibers by resin impregnation. However, when resin impregnation is performed, decomposition gas of organic matter is generated as described above, so that it is unsuitable for use as a heat insulation / sound absorbing material for high temperature parts.

本発明のグラスウール断熱材の製造方法は、バインダーを使用せずに成形したシート状または板状のグラスウールを芯材とし、芯材の両面に、それぞれ不織布を重ね合わせて積層体とし、この積層体をニードル加工することにより、グラスウール芯材を構成するガラス繊維の一部を、両面に積層された不織布を構成する繊維と絡み合わせる。   The method for producing a glass wool heat insulating material according to the present invention comprises a sheet or plate-shaped glass wool molded without using a binder as a core material, and a laminate by laminating nonwoven fabrics on both sides of the core material. By knitting, a part of the glass fiber constituting the glass wool core material is entangled with the fiber constituting the nonwoven fabric laminated on both sides.

前記ニードル加工を複数回繰り返し、グラスウール芯材を高密度化することにより、曲面部等の複雑形状に施工可能な断熱材を製造することができる。本発明のグラスウール断熱材は上記方法で製造したものであり、グラスウール芯材を構成するガラス繊維の一部が、両面に積層された不織布を構成する繊維と絡み合って形成されている。   By repeating the needle processing a plurality of times and densifying the glass wool core material, a heat insulating material that can be constructed in a complicated shape such as a curved surface portion can be manufactured. The glass wool heat insulating material of the present invention is manufactured by the above-described method, and a part of the glass fibers constituting the glass wool core material is entangled with the fibers constituting the nonwoven fabric laminated on both surfaces.

本発明の断熱材の製造方法により製造した断熱材は、ニードル加工により、グラスウール芯材を構成するガラス繊維の一部と、グラスウール芯材の両面を覆う不織布の繊維とが絡み合うため、製造時の厚さを長期にわたって保持することができる。また、バインダーを使用しないため高温部分に使用しても有機物分解ガスが発生せず、悪臭もない。さらに、両面に不織布が配置されているためガラス繊維が多少切れても、その飛散を防止することができる。   Since the heat insulating material manufactured by the method for manufacturing a heat insulating material of the present invention is intertwined with a portion of the glass fiber constituting the glass wool core material and the nonwoven fiber covering both surfaces of the glass wool core material by needle processing, The thickness can be maintained over a long period of time. In addition, since no binder is used, organic substance decomposition gas is not generated even if it is used in a high temperature part, and there is no odor. Furthermore, since the nonwoven fabric is arrange | positioned on both surfaces, even if glass fiber cuts a little, the scattering can be prevented.

また、ニードル加工を複数回行うことで、曲面部等の複雑形状箇所に適用可能な高密度断熱材を製造することができる。   Further, by performing the needle processing a plurality of times, it is possible to manufacture a high-density heat insulating material that can be applied to a complicated shape portion such as a curved surface portion.

以下に本発明の詳細を図によって説明する。図1は、本発明のグラスウール断熱材の一例を示す概要図である。断熱材1は、シート状または板状のグラスウール芯材2の両面に、それぞれ不織布3、3を重ね合わせて積層体とし、この積層体を複数本のニードル4によって、不織布3の一方から、不織布3、グラスウール芯材2、および裏面の不織布3をまとめて貫通させることにより製造する。   Details of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an example of the glass wool heat insulating material of the present invention. The heat insulating material 1 is formed by laminating non-woven fabrics 3 and 3 on both surfaces of a sheet-like or plate-like glass wool core material 2 to form a laminated body, and the laminated body is formed from a non-woven fabric 3 by one or more needles 4. 3, the glass wool core material 2 and the nonwoven fabric 3 on the back surface are collectively penetrated.

本発明で使用するグラスウール芯材2はホワイトウールとも呼ばれ、ガラス短繊維を綿状に成形したバインダーを含まない材料である。この条件を満たすグラスウール芯材2であれば、どのようなものでも使用可能であるが、例えば、平均径が1〜10μm、坪量500〜1,500g/mのものが好適に使用できる。 The glass wool core material 2 used in the present invention is also called white wool, and is a material that does not contain a binder in which short glass fibers are formed into a cotton shape. Any glass wool core material 2 satisfying this condition can be used, but for example, those having an average diameter of 1 to 10 μm and a basis weight of 500 to 1,500 g / m 3 can be suitably used.

また、不織布3についても特に制限はなく、天然、合成の有機繊維、無機繊維から適宜選択することができる。有機繊維は無機繊維と比較して耐熱性には劣るがグラスウールと絡み易いという利点もある。ニードル4についても特に制限はないが、不織布3の繊維と芯材2のガラス繊維とを適度に押し出し絡ませることができ、かつ、ガラス繊維を破断させない程度の先端形状と太さを有するものである必要がある。   Moreover, there is no restriction | limiting in particular also about the nonwoven fabric 3, It can select suitably from a natural, synthetic organic fiber, and an inorganic fiber. Organic fibers are inferior in heat resistance compared to inorganic fibers, but have the advantage of being easily entangled with glass wool. Although there is no restriction | limiting in particular also about the needle 4, It has a front-end | tip shape and thickness which can extrude the fiber of the nonwoven fabric 3 and the glass fiber of the core material 2 moderately, and do not break a glass fiber. There must be.

図2は、本発明の断熱材を構成するグラスウール芯材のガラス繊維と不織布の繊維との絡み状態を示す概念図である。ニードル加工により、グラスウール芯材2を構成するガラス繊維2aに不織布3の一部が押し込まれ、不織布3の繊維と絡み合っている。尚、不織布3の目付を増すと全体の厚みは薄くなることが判明した。例えば、目付20g/mのときの全体厚みは10mmであったが、目付40g/mのときの全体厚みは8mmとなった。これは不織布とグラスウールとの絡みつきが多くなるからと考えられる。 FIG. 2 is a conceptual diagram showing the entanglement state between the glass fiber of the glass wool core material and the non-woven fiber constituting the heat insulating material of the present invention. A part of the nonwoven fabric 3 is pushed into the glass fibers 2 a constituting the glass wool core material 2 by the needle processing, and is intertwined with the fibers of the nonwoven fabric 3. In addition, when the fabric weight of the nonwoven fabric 3 was increased, it became clear that the whole thickness became thin. For example, the overall thickness at a basis weight of 20 g / m 2 was 10 mm, but the overall thickness at a basis weight of 40 g / m 2 was 8 mm. This is considered because the entanglement between the nonwoven fabric and the glass wool increases.

図2ではグラスウール芯材2の片面の不織布3のみを示したが、図示しない他方の不織布3においても同様の絡みが生じ、その結果、グラスウール芯材2と不織布3、3が一体化される。なお、ニードル加工の回数は、1回で十分であるが、2回、またはそれ以上の回数のニードル加工を行えば断熱材の密度を高くすることができる。このような高密度化断熱材は、曲面部の断熱用として好適である。   Although only the nonwoven fabric 3 on one side of the glass wool core material 2 is shown in FIG. 2, the same entanglement occurs in the other nonwoven fabric 3 (not shown). As a result, the glass wool core material 2 and the nonwoven fabrics 3 and 3 are integrated. In addition, although the number of times of needle processing is enough, if the needle processing is performed twice or more times, the density of the heat insulating material can be increased. Such a densified heat insulating material is suitable for heat insulation of the curved surface portion.

本発明の断熱材を実施例によって、さらに詳細に説明する。
(実施例1)
坪量500g/mのシート状ホワイトウールを使用し、このホワイトウールの両面に不織布を重ねてニードル加工を1回行った。その結果、芯材厚さ(「初期厚さ」と呼ぶ)8mmの断熱・吸音材が出来上がった。この断熱・吸音材の厚さを30日後(経時厚さと呼ぶ)に測定したところ変化はなく、初期厚さが保持されていた。
The heat insulating material of the present invention will be described in more detail with reference to examples.
Example 1
A sheet-like white wool having a basis weight of 500 g / m 3 was used, and the nonwoven fabric was overlapped on both sides of the white wool, and needle processing was performed once. As a result, a heat insulating and sound absorbing material having a core material thickness (referred to as “initial thickness”) of 8 mm was completed. When the thickness of the heat insulating and sound absorbing material was measured after 30 days (referred to as the time-lapse thickness), there was no change and the initial thickness was maintained.

(実施例2、3)、(比較例1〜3)
坪量の異なるシート状ホワイトウールを使用した以外は実施例1と同様の操作を行い、実施例2および3の断熱材を成形した。また、不織布を使用しない以外は実施例と同様の操作を行い比較例1〜3の断熱材を成形した。これらの結果を表1に示す。
(Examples 2 and 3), (Comparative Examples 1 to 3)
Except having used the sheet-like white wool from which basic weight differs, operation similar to Example 1 was performed and the heat insulating material of Example 2 and 3 was shape | molded. Moreover, the operation similar to an Example was performed except not using a nonwoven fabric, and the heat insulating material of Comparative Examples 1-3 was shape | molded. These results are shown in Table 1.

表1に示す通り、不織布を使用した実施例の断熱・吸音材は初期厚さが保持されていたが、不織布を使用しない比較例のホワイトウールは経過厚さが初期厚さの1.5倍になっていた。   As shown in Table 1, the initial thickness of the heat insulating and sound absorbing material of the example using the nonwoven fabric was maintained, but the white wool of the comparative example not using the nonwoven fabric had an elapsed thickness of 1.5 times the initial thickness. It was.

(実施例4〜6)、(比較例4〜6)
ニードル加工を2回とした以外は、実施例1〜3および比較例1〜3と同様に操作を行ったところ、比較例4〜6のグラスウールは破断した。実施例4〜6の断熱・吸音材については表1に示す評価を行った。表1に示す通り、実施例4〜6の断熱・吸音材はニードル1回のものに比較して密度が高くなっていて経年厚さも変化がないため、曲部分等の複雑形状体への施工に適する。
(Examples 4 to 6), (Comparative Examples 4 to 6)
The glass wool of Comparative Examples 4 to 6 was broken when the same operation as in Examples 1 to 3 and Comparative Examples 1 to 3 was performed except that the needle processing was performed twice. The heat insulation and sound absorbing materials of Examples 4 to 6 were evaluated as shown in Table 1. As shown in Table 1, the heat insulating and sound absorbing materials of Examples 4 to 6 are higher in density than those of a single needle and have no change in thickness over time. Suitable for.

本発明のグラスウール断熱材の一例を示す概要図。The schematic diagram which shows an example of the glass wool heat insulating material of this invention. 本発明の断熱材を構成するグラスウール芯材のガラス繊維と不織布の繊維との絡み状態を示す概念図。The conceptual diagram which shows the entanglement state of the glass fiber of the glass wool core material which comprises the heat insulating material of this invention, and the fiber of a nonwoven fabric.

符号の説明Explanation of symbols

1…断熱材、2…グラスウール芯材、2a…ガラス繊維、3…不織布、4…ニードル、 DESCRIPTION OF SYMBOLS 1 ... Thermal insulation material, 2 ... Glass wool core material, 2a ... Glass fiber, 3 ... Nonwoven fabric, 4 ... Needle,

Claims (3)

バインダーを使用せずに成形したシート状または板状のグラスウールを芯材とし、この芯材の両面に不織布を重ね合わせて積層体とし、この積層体をニードル加工することにより、グラスウール芯材を構成するガラス繊維の一部を、前記両面に積層された不織布を構成する繊維と絡み合わせることを特徴とするグラスウール断熱材の製造方法。 A glass wool core material is formed by using a sheet or plate-shaped glass wool molded without using a binder as a core material, and laminating a nonwoven fabric on both sides of the core material to form a laminate, and then needle processing the laminate. A method for producing a glass wool heat insulating material, wherein a part of the glass fiber to be entangled with fibers constituting the nonwoven fabric laminated on both sides. 請求項1に記載の製造方法において、前記ニードル加工を複数回繰り返し、グラスウール芯材を高密度化することを特徴とするグラスウール断熱材の製造方法。 The manufacturing method of Claim 1 WHEREIN: The said needle process is repeated in multiple times, and the glass wool core material is densified, The manufacturing method of the glass wool heat insulating material characterized by the above-mentioned. 請求項1または2記載に記載の製造方法で製造したグラスウール断熱材であって、前記グラスウール芯材を構成するガラス繊維の一部が、両面に積層された不織布を構成する繊維と絡み合って形成されていることを特徴とするグラスウール断熱材。

It is a glass wool heat insulating material manufactured with the manufacturing method of Claim 1 or 2, Comprising: A part of glass fiber which comprises the said glass wool core material is formed intertwined with the fiber which comprises the nonwoven fabric laminated | stacked on both surfaces. Glass wool insulation characterized by

JP2006065003A 2006-03-10 2006-03-10 Method for manufacturing glass-wool insulating material and glass-wool insulating material Pending JP2007237625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065003A JP2007237625A (en) 2006-03-10 2006-03-10 Method for manufacturing glass-wool insulating material and glass-wool insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065003A JP2007237625A (en) 2006-03-10 2006-03-10 Method for manufacturing glass-wool insulating material and glass-wool insulating material

Publications (1)

Publication Number Publication Date
JP2007237625A true JP2007237625A (en) 2007-09-20

Family

ID=38583615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065003A Pending JP2007237625A (en) 2006-03-10 2006-03-10 Method for manufacturing glass-wool insulating material and glass-wool insulating material

Country Status (1)

Country Link
JP (1) JP2007237625A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110439A (en) * 1983-11-21 1985-06-15 株式会社クラレ Inorganic and organic composite heat-insulating material
JPH08134756A (en) * 1994-11-07 1996-05-28 Sekisui Chem Co Ltd Heat-insulating mat of inorganic fiber and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110439A (en) * 1983-11-21 1985-06-15 株式会社クラレ Inorganic and organic composite heat-insulating material
JPH08134756A (en) * 1994-11-07 1996-05-28 Sekisui Chem Co Ltd Heat-insulating mat of inorganic fiber and its production

Similar Documents

Publication Publication Date Title
Maity et al. A review of flax nonwovens: Manufacturing, properties, and applications
ATE394164T1 (en) SURFACE-BONDED INVOLVED FIBROUS WEB, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
CN103638747B (en) High dust holding filter material for filter bag
Patnaik Materials used for acoustic textiles
CN105474305A (en) Acoustic material and wire harness with acoustic material
CN109996914B (en) Sound-absorbing heat-insulating material
JP5571586B2 (en) Heat and flame retardant sound absorbing material and method for producing the same
JP2008223165A (en) Heat insulating and sound absorbing material
JP2007237625A (en) Method for manufacturing glass-wool insulating material and glass-wool insulating material
JP2001316961A (en) Sound-absorbing structural body
JP2011183236A (en) Method for manufacturing filter medium for heat-resistant filter having bulkiness, and heat-resistant filter using the filter medium
RU2428529C2 (en) Composite material
CN104424941A (en) Sound absorption material and preparation method thereof
JP6148615B2 (en) Interlaced laminate of fiber structure with metal fibers
Suardana et al. Hybrid acoustic panel: The effect of fiber volume fraction and panel thickness
US20220227100A1 (en) Nonwoven fibrous web
JP2005134769A (en) Soundproofing material
JP6751278B1 (en) Laminated sound absorbing material
US20220242089A1 (en) Flame-resistant foam and nonwoven fiberous web thereof
JP2010031404A (en) Sound absorbing, watertight nonwoven fabric
JP6251621B2 (en) Incombustible inorganic fiber mat
JP2008231596A (en) Fiber structure having excellent sound absorbency
JP2008089629A (en) Composite sound-absorbing material of inorganic fiber and organic fiber, and manufacturing method therefor
JP7142189B1 (en) SOUND ABSORBING MATERIAL AND METHOD FOR MANUFACTURING SOUND ABSORBING MATERIAL
JP4644860B2 (en) Thermal insulation and sound absorbing material for buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809