JP2007237138A - Oxygen-enriching membrane, oxygen-enriching device, and oxygen-enriching method - Google Patents

Oxygen-enriching membrane, oxygen-enriching device, and oxygen-enriching method Download PDF

Info

Publication number
JP2007237138A
JP2007237138A JP2006067032A JP2006067032A JP2007237138A JP 2007237138 A JP2007237138 A JP 2007237138A JP 2006067032 A JP2006067032 A JP 2006067032A JP 2006067032 A JP2006067032 A JP 2006067032A JP 2007237138 A JP2007237138 A JP 2007237138A
Authority
JP
Japan
Prior art keywords
oxygen
membrane
magnetic field
permeable membrane
selective permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006067032A
Other languages
Japanese (ja)
Inventor
Shigenobu Tsutazumi
重伸 傳住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2006067032A priority Critical patent/JP2007237138A/en
Publication of JP2007237138A publication Critical patent/JP2007237138A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen-enriching membrane which is excellent in oxygen-enrichment efficiency, and also provide an oxygen-enriching device and an oxygen-enriching method. <P>SOLUTION: The oxygen-enriching membrane is provided with; an oxygen-selectively-permeable membrane such as a silicone membrane and a silicone polycarbonate membrane; and a magnetic field generation means which forms a magnetic field in the oxygen-selectively-permeable membrane to attract a paramagnetic body. As a magnetic field generation means, for example, magnetic particles 4 dispersed in the oxygen-selectively-permeable membrane 3 can be cited. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸素富化膜、酸素富化装置及び酸素富化方法に関する。   The present invention relates to an oxygen enriched film, an oxygen enrichment apparatus, and an oxygen enrichment method.

高分子膜における気体の透過機構は、高分子膜への気体の溶解と、高分子膜中の気体の濃度差による拡散によって説明することができる。気体の透過係数は、溶解度係数と拡散係数の積となるため、溶解度係数が大きくて拡散係数も大きいほど、時間当たりの気体の透過量は大きくなる。溶解度係数及び拡散係数は気体の種類によって異なるため、この差を利用した酸素富化膜が実用化されている。酸素富化膜では酸素の透過係数が窒素の透過係数よりも大きくされており、酸素富化膜を境として圧力差を設けた場合、高圧側から低圧側に移動する単位時間当たりの酸素の量が、窒素のそれよりも多くなる。このため、酸素富化膜から低圧側へ放出されるガス中の酸素濃度は、高圧側に供給されるガス中の酸素濃度よりも大きくなる。   The gas permeation mechanism in the polymer membrane can be explained by the dissolution of the gas in the polymer membrane and the diffusion due to the concentration difference of the gas in the polymer membrane. Since the gas permeability coefficient is the product of the solubility coefficient and the diffusion coefficient, the larger the solubility coefficient and the larger the diffusion coefficient, the larger the amount of gas permeation per hour. Since the solubility coefficient and the diffusion coefficient differ depending on the type of gas, oxygen-enriched films using this difference have been put into practical use. In the oxygen-enriched membrane, the oxygen permeability coefficient is larger than the nitrogen permeability coefficient, and when there is a pressure difference across the oxygen-enriched film, the amount of oxygen per unit time that moves from the high-pressure side to the low-pressure side But more than that of nitrogen. For this reason, the oxygen concentration in the gas released from the oxygen-enriched film to the low pressure side is higher than the oxygen concentration in the gas supplied to the high pressure side.

しかしながら、酸素と窒素では分子の大きさや形状等が似ているため、拡散係数はそれほど差がないことが多く、このことが高性能な酸素富化膜を開発することを困難としている。また、酸素富化膜中でガスが拡散する速度は遅いため、極めて薄い酸素富化膜を用いたり、供給ガスの圧力を高くしたり、酸素の溶解度係数の大きい膜と酸素の拡散係数が大きい膜とを組み合わせたハイブリッド膜としたりして、処理量の増大化が図られている。   However, since oxygen and nitrogen are similar in molecular size, shape, etc., the diffusion coefficient is often not so different, which makes it difficult to develop a high-performance oxygen-enriched film. Also, since the gas diffusion rate in the oxygen-enriched film is slow, use an extremely thin oxygen-enriched film, increase the pressure of the supply gas, or a film with a large oxygen solubility coefficient and a large oxygen diffusion coefficient The throughput is increased by using a hybrid membrane combined with the membrane.

一方、ガス中の酸素を富化させる別の方法として、酸素の常磁性を利用し、磁界によって酸素を吸引し、酸素濃度を高める酸素富化装置も提案されている。例えば特許文献1では、図6に示す超伝導現象を利用した酸素富化装置が記載されている。この装置は、超伝導材料のフィラメント90を有する気体通過可能な内管91と、内管91の外周に配設された超伝導コイル92とが外管93の中に収められた二重管構造とされている。この酸素富化装置では、超伝導コイル92に電流を流すことによってフィラメント90を磁化しながら、内管61内に酸素を含むガスが供給される。フィラメント90ではマイスナー効果によってフィラメント90間の空間に強力な磁界が発生し、これにより常磁性を有する酸素が選択的にフィラメント90間に吸引され、外管91側に酸素が富化されたガスが放出される。
特開平1−228563号公報
On the other hand, as another method for enriching oxygen in a gas, an oxygen enrichment apparatus has been proposed that uses the paramagnetism of oxygen to attract oxygen by a magnetic field and increase the oxygen concentration. For example, Patent Document 1 describes an oxygen enrichment apparatus that utilizes the superconducting phenomenon shown in FIG. This apparatus has a double-tube structure in which an inner tube 91 having a filament 90 made of a superconductive material and allowing gas to pass through, and a superconductive coil 92 disposed on the outer periphery of the inner tube 91 are housed in an outer tube 93. It is said that. In this oxygen enrichment apparatus, a gas containing oxygen is supplied into the inner tube 61 while magnetizing the filament 90 by passing a current through the superconducting coil 92. In the filament 90, a strong magnetic field is generated in the space between the filaments 90 by the Meissner effect, whereby paramagnetic oxygen is selectively attracted between the filaments 90, and oxygen-enriched gas is generated on the outer tube 91 side. Released.
JP-A-1-228563

しかし、上述したように極めて薄い酸素富化膜を用いたり、酸素の溶解度係数の大きい膜と酸素の拡散係数が大きい膜とを組み合わせたハイブリッド膜としたりするには、膜の製造が困難であったり複雑となったりする。そして、ひいては、酸素富化膜の製造コストが高騰化することとなる。また、供給ガスの圧力を高くするためには、酸素富化膜を多孔性素材で補強するなどの機械的強度を高める工夫が必要となり、装置も大掛かりとなる。   However, as described above, it is difficult to manufacture a membrane in order to use a very thin oxygen-enriched film or to form a hybrid film in which a film having a large oxygen solubility coefficient and a film having a large oxygen diffusion coefficient are combined. It becomes complicated. As a result, the manufacturing cost of the oxygen-enriched film increases. Further, in order to increase the pressure of the supply gas, it is necessary to devise measures for increasing the mechanical strength such as reinforcing the oxygen-enriched membrane with a porous material, and the apparatus becomes large.

一方、上記酸素の常磁性を利用した酸素富化装置では、酸素が磁界によって吸引される力はさほど強くはないため、超伝導現象を利用する等して強力な磁界を発生させなければ、大きな酸素富化能力を得ることができない。このため装置が大掛かりとなり、製造コストも高くなる。   On the other hand, in the oxygen enrichment device using the paramagnetism of oxygen, the force with which oxygen is attracted by a magnetic field is not so strong. The oxygen enrichment ability cannot be obtained. For this reason, an apparatus becomes large and a manufacturing cost also becomes high.

本発明は、上記従来の実情に鑑みなされたものであり、酸素富化の効率の高い酸素富化膜、酸素富化装置、及び酸素富化方法を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and an object to be solved is to provide an oxygen-enriched film, an oxygen-enriching apparatus, and an oxygen-enriching method with high oxygen enrichment efficiency.

本発明の第1の局面の酸素富化膜は、酸素選択透過膜と、該酸素選択透過膜の中に磁界を形成して常磁性体を引き付けるための磁界発生手段とを備えることを特徴とする。
この酸素富化膜では、酸素選択透過膜を用いているため、酸素選択透過膜を境として圧力差を設けた場合、圧力差がドライビングフォースとなって空気中の酸素が窒素よりもより多く低圧側へ拡散移動する。このとき、磁界発生手段が酸素選択透過膜の中に磁界を形成し、常磁性体である酸素を引き付けるため、磁界が存在しない場合に比べて、酸素の溶解度係数が大きくなるので、酸素の透過速度が速くなる。このため、酸素富化膜を境に圧力差を設けた場合、酸素富化の効率がより高くなる。
An oxygen-enriched membrane according to a first aspect of the present invention includes an oxygen selective permeable membrane, and a magnetic field generating means for forming a magnetic field in the oxygen selective permeable membrane and attracting a paramagnetic substance. To do.
Since this oxygen-enriched membrane uses an oxygen selective permeable membrane, when a pressure difference is provided across the oxygen selective permeable membrane, the pressure difference becomes a driving force and the oxygen in the air is lower than nitrogen. Diffusion moves to the side. At this time, since the magnetic field generating means forms a magnetic field in the oxygen selective permeable membrane and attracts oxygen, which is a paramagnetic substance, the oxygen solubility coefficient is larger than when no magnetic field is present. Increases speed. For this reason, when a pressure difference is provided at the boundary of the oxygen-enriched film, the efficiency of oxygen enrichment becomes higher.

酸素選択透過膜としては、シリコーン膜、シリコーンポリカーボネート膜等を用いることができる。これらの酸素選択透過膜は多孔体によって支持されていてもよい。また、磁界発生手段としては、酸素選択透過膜の中に磁性粒子を分散させたり、酸素選択透過膜の一面側に超伝導コイルを近づけ、電流を流すことによって酸素選択透過膜中に強力な磁界を発生させたり、酸素選択透過膜の一面側に強力な永久磁石を近づけたりして、酸素選択透過膜の中に磁界を形成し、常磁性体たる酸素を引き付けることができる。   As the oxygen selective permeable membrane, a silicone membrane, a silicone polycarbonate membrane or the like can be used. These oxygen selective permeable membranes may be supported by a porous body. As a magnetic field generating means, a strong magnetic field is generated in the oxygen selective permeable membrane by dispersing magnetic particles in the oxygen selective permeable membrane, or bringing a superconducting coil close to one surface of the oxygen selective permeable membrane and passing an electric current. Or a strong permanent magnet is brought close to one surface of the oxygen selective permeable membrane to form a magnetic field in the oxygen selective permeable membrane to attract oxygen as a paramagnetic substance.

第2の局面の酸素富化膜によれば、磁界発生手段は前記酸素選択透過膜の中に分散された磁性粒子であることとした。酸素選択透過膜に分散させた磁性粒子は常磁性体である酸素を吸引するため、高圧側に存在する酸素を酸素選択透過膜中に引っ張り込むことにより、より速く酸素選択透過膜中に溶解する。また、磁性粒子の近傍では磁力線が密となり、大きな力で酸素が吸引されるため、酸素濃度が高くなる。このため、酸素選択透過膜の溶解度係数が高くなり、溶解度係数と拡散係数の積である透過係数も大きくなり、酸素富化の効率が高くなる。   According to the oxygen-enriched film of the second aspect, the magnetic field generating means is magnetic particles dispersed in the oxygen selective permeable film. Since the magnetic particles dispersed in the oxygen selective permeable membrane attracts oxygen, which is a paramagnetic substance, the oxygen present in the high pressure side is pulled into the oxygen selective permeable membrane, so that it dissolves faster in the oxygen selective permeable membrane. . In addition, the magnetic field lines are close in the vicinity of the magnetic particles, and oxygen is attracted by a large force, so that the oxygen concentration becomes high. For this reason, the solubility coefficient of the oxygen selective permeable membrane is increased, the permeability coefficient that is the product of the solubility coefficient and the diffusion coefficient is also increased, and the efficiency of oxygen enrichment is increased.

第3の局面の酸素富化膜によれば、磁性粒子の表面は分散処理がされていることとした。磁性粒子間の凝集を防ぐため、磁性粒子の表面を親水性あるいは疎水性(親油性)のいずれかの処理を施すことが望ましい。酸素選択透過膜はシリコーン膜やシリコーンポリカーボネート膜等、疎水性である場合が多いので、通常親水性の性質を有する磁性粒子の表面を分散処理にて疎水性の処理を施すことが有効である。このため、磁性粒子の表面が疎水処理されていれば、酸素富化膜中で磁性粒子をより均一に分散させることが可能となる。このため、酸素富化膜中における磁性粒子による磁界形成がより緻密なものとなり、酸素富化の効果がさらに高められる。   According to the oxygen-enriched film of the third aspect, the surface of the magnetic particles is subjected to a dispersion treatment. In order to prevent aggregation between the magnetic particles, it is desirable that the surface of the magnetic particles be subjected to either hydrophilic treatment or hydrophobic treatment (lipophilicity). Since oxygen selective permeable membranes are often hydrophobic, such as silicone membranes and silicone polycarbonate membranes, it is effective to subject the surfaces of magnetic particles having hydrophilic properties to a hydrophobic treatment by dispersion treatment. For this reason, if the surface of the magnetic particles is subjected to a hydrophobic treatment, the magnetic particles can be more uniformly dispersed in the oxygen-enriched film. For this reason, the magnetic field formation by the magnetic particles in the oxygen-enriched film becomes more precise, and the effect of oxygen enrichment is further enhanced.

疎水性の表面処理としては、界面活性剤、撥水剤、シランカップリング剤等を用いることができる。第4の局面の酸素富化膜として、磁性粒子を界面活性剤で処理すれば、界面活性剤の親水基が磁性粒子側に配向し、疎水基が外側に配向する。このため、疎水性の酸素選択透過膜とのなじみがよくなり、磁性粒子を酸素選択透過膜中に均一に分散させることができる。また、シランカップリング剤を用いて疎水処理を行えば、磁性粒子の表面にシランカップリング剤のシラノール基を介して疎水基を化学結合させることができる。このため、疎水性の効果が低下し難くなる。表面処理剤の疎水基としてフッ素置換されたアルキル基を有するものは、特に疎水性が高くて好適である。   As the hydrophobic surface treatment, a surfactant, a water repellent, a silane coupling agent, or the like can be used. When the magnetic particles are treated with a surfactant as the oxygen-enriched film of the fourth aspect, the hydrophilic group of the surfactant is oriented to the magnetic particle side and the hydrophobic group is oriented to the outside. For this reason, the compatibility with the hydrophobic oxygen selective permeable membrane is improved, and the magnetic particles can be uniformly dispersed in the oxygen selective permeable membrane. In addition, if a hydrophobic treatment is performed using a silane coupling agent, a hydrophobic group can be chemically bonded to the surface of the magnetic particle via the silanol group of the silane coupling agent. For this reason, it becomes difficult to reduce the hydrophobic effect. Those having a fluorine-substituted alkyl group as the hydrophobic group of the surface treatment agent are particularly preferred because of their high hydrophobicity.

本発明の酸素富化膜を用いて酸素富化装置を製造することができる。すなわち、本発明の酸素富化装置は、酸素選択透過膜と該酸素選択透過膜の中に磁界を形成して常磁性体を引き付けるための磁界発生手段とが設けられた酸素富化膜と、該酸素富化膜の一面側と他面側との間に圧力差を設けるための差圧手段とを備えることを特徴とする。   An oxygen enrichment apparatus can be manufactured using the oxygen enrichment film of the present invention. That is, the oxygen enrichment apparatus of the present invention includes an oxygen enrichment membrane provided with an oxygen selective permeation membrane and a magnetic field generating means for attracting a paramagnetic substance by forming a magnetic field in the oxygen selective permeation membrane, And a differential pressure means for providing a pressure difference between the one surface side and the other surface side of the oxygen-enriched film.

この酸素富化装置では、磁界発生手段が酸素選択透過膜の中に磁界を形成して常磁性体である酸素を引き付ける。このため、差圧手段によって酸素富化膜を境に圧力差を設けた場合、酸素選択透過膜中における酸素の移動が磁界によって促進される。このため、酸素選択透過膜中の酸素は磁界が存在しない場合より多量に移動し、酸素富化の効率が高くなる。   In this oxygen enrichment apparatus, the magnetic field generating means forms a magnetic field in the oxygen selective permeable membrane and attracts oxygen, which is a paramagnetic material. For this reason, when a pressure difference is provided across the oxygen-enriched membrane by the differential pressure means, the movement of oxygen in the oxygen selective permeable membrane is promoted by the magnetic field. For this reason, oxygen in the oxygen selective permeable membrane moves in a larger amount than when no magnetic field is present, and the efficiency of oxygen enrichment is increased.

また、本発明の酸素富化方法は、酸素選択透過膜の中に常磁性体を引き付ける磁界を形成し、該酸素選択透過膜の一面側と他面側との間に圧力差を設け、該酸素選択透過膜の高圧側の一面に酸素を含む原料ガスを供給することを特徴とする。
この酸素富化方法では、酸素選択透過膜の中に常磁性体を引き付ける磁界が形成されるため、常磁性体である酸素を引き付けることができる。このため、差圧手段によって酸素富化膜を境に圧力差を設けた場合、酸素選択透過膜中における酸素の移動が磁界によって促進される。このため、酸素選択透過膜中の酸素は磁界が存在しない場合より多量に移動し、酸素富化の効率が高くなる。
In the oxygen enrichment method of the present invention, a magnetic field that attracts a paramagnetic substance is formed in the oxygen selective permeable membrane, and a pressure difference is provided between the one surface side and the other surface side of the oxygen selective permeable membrane, A source gas containing oxygen is supplied to one surface on the high pressure side of the oxygen selective permeable membrane.
In this oxygen enrichment method, a magnetic field that attracts a paramagnetic substance is formed in the oxygen selective permeable membrane, and therefore oxygen that is a paramagnetic substance can be attracted. For this reason, when a pressure difference is provided across the oxygen-enriched membrane by the differential pressure means, the movement of oxygen in the oxygen selective permeable membrane is promoted by the magnetic field. For this reason, oxygen in the oxygen selective permeable membrane moves in a larger amount than when no magnetic field is present, and the efficiency of oxygen enrichment is increased.

以下、本発明を具体化した実施形態1及び実施形態2について、図面を参照しつつ説明する。   Embodiments 1 and 2 embodying the present invention will be described below with reference to the drawings.

(実施形態1)
<酸素富化膜の調製>
(キャスティング法)
酸素選択透過膜の基剤としては、シリコーンやシリコーンポリカーボネートを用いることができる。これらの基剤を有機溶媒に溶解し、さらに磁性粒子を加え、撹拌混合して磁性粒子分散液とする。磁性粒子としてはネオジム磁石等の希土類磁石の微粉末、マグネタイト微粉末、Mn−Zn系複合フェライト等のフェライト系磁石の微粉末等を用いることができる。また、図1に示すように、磁性粒子1に界面活性剤2が吸着したものが媒体中に分散されている市販の磁性流体(株式会社シグマハイケミカル製の磁性流体)を用いることも可能である。
こうして得られた磁性粒子分散液をガラス基板やフッ素樹脂板の上に薄く延ばし、有機溶媒を蒸発させることによって、図2に示すように、磁性粒子3が基剤4に分散した酸素富化膜とする。このとき、ガラス基板やフッ素樹脂板を回転させながらキャスティングするスピンコート法を適用すれば、薄くて均一な酸素富化膜とすることができる。
(カレンダー加工法)
上記キャスティング法に替え、カレンダー加工による製膜も可能である。すなわち、熱可塑性の酸素選択透過膜の基剤と、上記種々の磁性粒子とをプラスチック成型用の押し出し機に投入し、加熱溶融しながら練り込み、カレンダー加工によって酸素富化膜とする。
(Embodiment 1)
<Preparation of oxygen-enriched membrane>
(Casting method)
Silicone or silicone polycarbonate can be used as the base of the oxygen selective permeable membrane. These bases are dissolved in an organic solvent, magnetic particles are further added, and the mixture is stirred and mixed to obtain a magnetic particle dispersion. As the magnetic particles, rare earth magnet fine powder such as neodymium magnet, magnetite fine powder, fine powder of ferrite magnet such as Mn-Zn composite ferrite, and the like can be used. In addition, as shown in FIG. 1, it is also possible to use a commercially available magnetic fluid (magnetic fluid manufactured by Sigma High Chemical Co., Ltd.) in which a surfactant 2 adsorbed on magnetic particles 1 is dispersed in a medium. is there.
The magnetic particle dispersion thus obtained is thinly spread on a glass substrate or a fluororesin plate, and the organic solvent is evaporated, whereby the oxygen-enriched film in which the magnetic particles 3 are dispersed in the base 4 as shown in FIG. And At this time, by applying a spin coating method in which a glass substrate or a fluororesin plate is cast while being rotated, a thin and uniform oxygen-enriched film can be obtained.
(Calendar processing method)
Instead of the above casting method, film formation by calendering is also possible. That is, the base material of the thermoplastic oxygen permselective membrane and the above-mentioned various magnetic particles are put into an extruder for plastic molding, kneaded while being heated and melted, and made into an oxygen-enriched membrane by calendering.

<酸素富化装置>
上記のようにして得られた酸素富化膜を用いて、図3に示す酸素富化装置5が組み立てられる。この酸素富化装置5は、酸素富化膜6を境として、空気供給室7と減圧室8とが備えられている。空気供給室7には流入管7aと流出管7bとが接続されており、流入管7aは図示しない送風機に接続されている。流出室8には、酸素が富化されたガスを外部に取り出すための富化ガス流出管8aが接続されており、富化ガス流出管8aは図示しない減圧ポンプに接続されている。
<Oxygen enrichment device>
The oxygen enrichment apparatus 5 shown in FIG. 3 is assembled using the oxygen enriched film obtained as described above. The oxygen enrichment device 5 includes an air supply chamber 7 and a decompression chamber 8 with the oxygen enrichment film 6 as a boundary. An inflow pipe 7a and an outflow pipe 7b are connected to the air supply chamber 7, and the inflow pipe 7a is connected to a blower (not shown). The outflow chamber 8 is connected to an enriched gas outflow pipe 8a for taking out oxygen-enriched gas to the outside. The enriched gas outflow pipe 8a is connected to a decompression pump (not shown).

以上のように構成された実施形態1の酸素富化装置では、送風機を駆動することにより、空気が流入管7aを介して空気供給室7に送られ、流出管7bから排出される。このとき、同時に減圧ポンプを駆動して減圧室8を減圧する。これにより、空気供給室7と減圧室8との間で圧力差が生じ、この圧力差がドライビングフォースとなって酸素富化膜6の中を酸素や窒素が拡散移動する。ここで、酸素富化膜6はシリコーンやシリコーンポリカーボネート等の酸素選択透過性の基剤を用いているため、酸素の方が窒素よりも多量に減圧室8側に移動し、減圧室8側に酸素が富化されたガスが放出される。さらに、酸素富化膜6中には磁性粒子が分散されているため、常磁性である酸素は磁性粒子3によって酸素富化膜6中に引き込まれる。このため、酸素の酸素富化膜6中への溶解速度が速くなる。また、磁性粒子3の近傍には密な磁力線が生じるため、酸素が吸引される力が大きくなり、本来の酸素の溶解度係数よりも大きくなり、よりたくさんの酸素が酸素富化膜6中に溶解する。このため、時間当たりの酸素の移動量は磁性粒子3が存在しない場合よりも大きくなる。こうして、減圧室8には酸素が富化されたガスが放出され、富化ガス流出管8aから流出する。また、空気供給室7側では窒素成分が多くなったガスが流出管7bから排出される。   In the oxygen enricher of Embodiment 1 configured as described above, air is sent to the air supply chamber 7 via the inflow pipe 7a and discharged from the outflow pipe 7b by driving the blower. At this time, the decompression pump is simultaneously driven to decompress the decompression chamber 8. As a result, a pressure difference is generated between the air supply chamber 7 and the decompression chamber 8, and this pressure difference becomes a driving force to diffuse and move oxygen and nitrogen in the oxygen-enriched film 6. Here, since the oxygen-enriched membrane 6 uses an oxygen selective permeable base material such as silicone or silicone polycarbonate, oxygen moves to the decompression chamber 8 side in a larger amount than nitrogen, and to the decompression chamber 8 side. A gas enriched in oxygen is released. Further, since magnetic particles are dispersed in the oxygen-enriched film 6, paramagnetic oxygen is drawn into the oxygen-enriched film 6 by the magnetic particles 3. For this reason, the dissolution rate of oxygen into the oxygen-enriched film 6 is increased. In addition, since dense lines of magnetic force are generated in the vicinity of the magnetic particles 3, the force with which oxygen is attracted increases, becomes larger than the original oxygen solubility coefficient, and more oxygen is dissolved in the oxygen-enriched film 6. To do. For this reason, the amount of movement of oxygen per time is larger than when the magnetic particles 3 are not present. Thus, the oxygen-enriched gas is released into the decompression chamber 8 and flows out from the enriched gas outflow pipe 8a. On the air supply chamber 7 side, the gas with an increased nitrogen component is discharged from the outflow pipe 7b.

(実施形態2)
<酸素富化膜の調製>
実施形態2の酸素富化膜は、シリコーンやシリコーンポリカーボネート等の酸素選択透過性を有する基剤を有機溶媒に溶解し、さらに磁性体である鉄粉を加え、撹拌混合して鉄粉を含有した分散液とする。そして実施形態1の場合と同様のキャスティング法により、鉄粉が分散した酸素富化膜本体を得る。さらに、図4に示すように、酸素富化膜本体9の一面側に超伝導コイル10を配設し、これを酸素富化膜11とする。
(Embodiment 2)
<Preparation of oxygen-enriched membrane>
The oxygen-enriched membrane of Embodiment 2 was dissolved in a base material having oxygen selective permeability such as silicone and silicone polycarbonate in an organic solvent, further added with iron powder as a magnetic material, and mixed with stirring to contain iron powder. A dispersion is obtained. Then, an oxygen-enriched membrane body in which iron powder is dispersed is obtained by the same casting method as in the first embodiment. Further, as shown in FIG. 4, a superconducting coil 10 is disposed on one surface side of the oxygen-enriched film body 9, and this is used as an oxygen-enriched film 11.

<酸素富化装置>
図5に示すように、超伝導コイル10が配設された酸素富化膜11を、実施形態1の酸素富化装置における酸素富化膜6(図3参照)の替わりに設置する。その他の構成は実施形態1の酸素富化装置と同様であり、同一の構成については同一の符号を付して詳細な説明を省略する。
<Oxygen enrichment device>
As shown in FIG. 5, an oxygen-enriched film 11 provided with a superconducting coil 10 is installed in place of the oxygen-enriched film 6 (see FIG. 3) in the oxygen-enriched apparatus of the first embodiment. Other configurations are the same as those of the oxygen enrichment apparatus of the first embodiment, and the same configurations are denoted by the same reference numerals and detailed description thereof is omitted.

以上のように構成された実施形態2の酸素富化装置では、超伝導コイル10に電流を流すことによって極めて強力な磁界が発生し、これにより酸素富化膜本体9に分散されている鉄粉が磁化される。このため、実施形態1の酸素富化膜6と同様、酸素選択透過膜中に磁性粉体が分散された状態となり、しかもその磁界は実施形態1の場合よりもさらに強力となる。このため、実施形態1よりもさらに酸素富化効率の良い酸素富化装置となる。   In the oxygen enrichment device of the second embodiment configured as described above, an extremely strong magnetic field is generated by passing a current through the superconducting coil 10, and thereby the iron powder dispersed in the oxygen enriched film body 9. Is magnetized. For this reason, similarly to the oxygen-enriched film 6 of the first embodiment, the magnetic powder is dispersed in the oxygen selective permeation film, and the magnetic field is further stronger than that of the first embodiment. For this reason, it becomes an oxygen enrichment apparatus with better oxygen enrichment efficiency than Embodiment 1.

この発明は上記発明の実施の態様及び実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

磁性流体中の磁性粒子の模式図である。It is a schematic diagram of the magnetic particle in a magnetic fluid. 実施形態1の酸素富化膜の模式断面図である。2 is a schematic cross-sectional view of an oxygen-enriched film according to Embodiment 1. FIG. 実施形態1の酸素富化装置の模式断面図である。1 is a schematic cross-sectional view of an oxygen enrichment apparatus according to Embodiment 1. FIG. 実施形態2の酸素富化膜の模式断面図である。6 is a schematic cross-sectional view of an oxygen-enriched film according to Embodiment 2. FIG. 実施形態2の酸素富化装置の模式断面図である。3 is a schematic cross-sectional view of an oxygen enrichment apparatus according to Embodiment 2. FIG. 超伝導現象を利用した従来の酸素富化装置の模式断面図である。It is a schematic cross section of the conventional oxygen enrichment apparatus using a superconducting phenomenon.

符号の説明Explanation of symbols

4…基剤(酸素選択透過膜)
1,3…磁性粒子(磁界発生手段)
2…界面活性剤
9…酸素富化膜本体
10…超伝導コイル(磁界発生手段)
7…空気供給室(差圧手段)
8…減圧室(差圧手段)
4 ... Base (Oxygen selective permeable membrane)
1, 3 ... Magnetic particles (magnetic field generating means)
2 ... Surfactant 9 ... Oxygen-rich film body 10 ... Superconducting coil (magnetic field generating means)
7. Air supply chamber (differential pressure means)
8 ... decompression chamber (differential pressure means)

Claims (6)

酸素選択透過膜と、
該酸素選択透過膜の中に磁界を形成して常磁性体を引き付けるための磁界発生手段と、
を備えることを特徴とする酸素富化膜。
An oxygen selective permeable membrane;
A magnetic field generating means for forming a magnetic field in the oxygen selective permeable membrane and attracting a paramagnetic material;
An oxygen-enriched film comprising:
前記磁界発生手段は前記酸素選択透過膜の中に分散された磁性粒子であることを特徴とする請求項1に記載の酸素富化膜。   2. The oxygen-enriched film according to claim 1, wherein the magnetic field generating means is magnetic particles dispersed in the oxygen selective permeable film. 前記磁性粒子の表面は分散処理がされていることを特徴とする請求項3に記載の酸素富化膜。   The oxygen-enriched film according to claim 3, wherein the surface of the magnetic particles is subjected to a dispersion treatment. 前記分散処理は界面活性剤によってなされていることを特徴とする請求項4に記載の酸素富化膜。   The oxygen-enriched film according to claim 4, wherein the dispersion treatment is performed with a surfactant. 酸素選択透過膜と該酸素選択透過膜の中に磁界を形成して常磁性体を引き付けるための磁界発生手段とが設けられた酸素富化膜と、
該酸素富化膜の一面側と他面側との間に圧力差を設けるための差圧手段と、
を備えることを特徴とする酸素富化装置。
An oxygen-enriched membrane provided with an oxygen selective permeable membrane and a magnetic field generating means for attracting a paramagnetic substance by forming a magnetic field in the oxygen selective permeable membrane;
Differential pressure means for providing a pressure difference between the one surface side and the other surface side of the oxygen-enriched film;
An oxygen enrichment device comprising:
酸素選択透過膜の中に常磁性体を引き付ける磁界を形成し、該酸素選択透過膜の一面側と他面側との間に圧力差を設け、該酸素選択透過膜の高圧側の一面に酸素を含む原料ガスを供給することを特徴とする酸素富化方法。   A magnetic field that attracts a paramagnetic substance is formed in the oxygen selective permeable membrane, a pressure difference is provided between one surface side and the other surface side of the oxygen selective permeable membrane, and oxygen is applied to one surface of the oxygen selective permeable membrane on the high pressure side. An oxygen enrichment method characterized by supplying a source gas containing
JP2006067032A 2006-03-13 2006-03-13 Oxygen-enriching membrane, oxygen-enriching device, and oxygen-enriching method Pending JP2007237138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006067032A JP2007237138A (en) 2006-03-13 2006-03-13 Oxygen-enriching membrane, oxygen-enriching device, and oxygen-enriching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006067032A JP2007237138A (en) 2006-03-13 2006-03-13 Oxygen-enriching membrane, oxygen-enriching device, and oxygen-enriching method

Publications (1)

Publication Number Publication Date
JP2007237138A true JP2007237138A (en) 2007-09-20

Family

ID=38583202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006067032A Pending JP2007237138A (en) 2006-03-13 2006-03-13 Oxygen-enriching membrane, oxygen-enriching device, and oxygen-enriching method

Country Status (1)

Country Link
JP (1) JP2007237138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8846256B2 (en) 2011-09-05 2014-09-30 Ngk Insulators, Ltd. Selectively oxygen-permeable substrate, metal-air battery positive electrode and metal-air battery
CN107983163A (en) * 2017-11-27 2018-05-04 桐乡佳车科技有限公司 A kind of field controllable cation exchange membrane preparation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112022A (en) * 1981-12-25 1983-07-04 Ube Ind Ltd Oxygen separation membrane
JPS6268534A (en) * 1985-09-19 1987-03-28 Adeka Argus Chem Co Ltd Dispersant for metal magnetic powder
JPS63201622A (en) * 1987-02-17 1988-08-19 Canon Inc Image stabilization optical system and attachment
JPH03146119A (en) * 1989-11-02 1991-06-21 Tdk Corp Liquid membrane and substance separation using the membrane
JPH0481638A (en) * 1990-07-24 1992-03-16 Chichibu Cement Co Ltd Apparatus for controlling temperature of fluid sample by thermostatic tank
JPH06135889A (en) * 1992-10-26 1994-05-17 Tokuyama Soda Co Ltd Linear aliphatic carboxylic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112022A (en) * 1981-12-25 1983-07-04 Ube Ind Ltd Oxygen separation membrane
JPS6268534A (en) * 1985-09-19 1987-03-28 Adeka Argus Chem Co Ltd Dispersant for metal magnetic powder
JPS63201622A (en) * 1987-02-17 1988-08-19 Canon Inc Image stabilization optical system and attachment
JPH03146119A (en) * 1989-11-02 1991-06-21 Tdk Corp Liquid membrane and substance separation using the membrane
JPH0481638A (en) * 1990-07-24 1992-03-16 Chichibu Cement Co Ltd Apparatus for controlling temperature of fluid sample by thermostatic tank
JPH06135889A (en) * 1992-10-26 1994-05-17 Tokuyama Soda Co Ltd Linear aliphatic carboxylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8846256B2 (en) 2011-09-05 2014-09-30 Ngk Insulators, Ltd. Selectively oxygen-permeable substrate, metal-air battery positive electrode and metal-air battery
CN107983163A (en) * 2017-11-27 2018-05-04 桐乡佳车科技有限公司 A kind of field controllable cation exchange membrane preparation method

Similar Documents

Publication Publication Date Title
Li et al. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane
Gray A review of magnetic composite polymers applied to microfluidic devices
Yin et al. Versatile bifunctional magnetic‐fluorescent responsive janus supraballs towards the flexible bead display
Madaeni et al. Separation of nitrogen and oxygen gases by polymeric membrane embedded with magnetic nano‐particle
JP5283013B2 (en) Gas-liquid mixing device
CN108854854B (en) Functional fluid door control system
Malic et al. Polymer-based microfluidic chip for rapid and efficient immunomagnetic capture and release of Listeria monocytogenes
WO2007004690A1 (en) Magnetic fluid sealing device
Stephens et al. Analytical methods for separating and isolating magnetic nanoparticles
KR102202909B1 (en) Composition for 3 dimensional printing
JP2007237138A (en) Oxygen-enriching membrane, oxygen-enriching device, and oxygen-enriching method
Asmatulu et al. A ferrofluid guided system for the rapid separation of the non-magnetic particles in a microfluidic device
JP2007250291A (en) Fuel cell and oxygen supply device for fuel cell
JP2009072649A (en) Nanobubble solution, method and device of manufacturing nanobubble solution, and method of utilizing nanobubble solution
JP2005118731A (en) Oxygen enrichment device
JP2008018338A (en) Oxygen-enriched membrane and its manufacturing method
JP2009172519A (en) Filter apparatus, waterproof case with filter apparatus installed, and removing method of hematite caught by porous film
Yang et al. Biosensing based on magnetically induced self-assembly of particles in magnetic colloids
KR20010033478A (en) Magnetic liquid and method and device for the production thereof
US9321661B2 (en) Magnetic particle control system and a method for controlling magnetic particle using thereof
Lenz et al. Formation of single micro‐and nanowires with extreme aspect ratios in microfluidic channels
JP2006212616A (en) Simultaneous arrangement method of different kind of fine particle by magnetic field
JPS59109205A (en) Multiple-unit membrane for oxygen separation
Xu et al. Magnetic field assisted programming of particle shapes and patterns
Ulbricht Smart Polymeric Membranes with Magnetic Nanoparticles for Switchable Separation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004