JP2007233031A - Optical ferrule - Google Patents

Optical ferrule Download PDF

Info

Publication number
JP2007233031A
JP2007233031A JP2006054465A JP2006054465A JP2007233031A JP 2007233031 A JP2007233031 A JP 2007233031A JP 2006054465 A JP2006054465 A JP 2006054465A JP 2006054465 A JP2006054465 A JP 2006054465A JP 2007233031 A JP2007233031 A JP 2007233031A
Authority
JP
Japan
Prior art keywords
adhesive
optical fiber
coating
optical
optical ferrule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006054465A
Other languages
Japanese (ja)
Inventor
Masahiro Nakamura
雅弘 中村
Yoshihiro Takahashi
儀浩 高橋
Yoshinori Kondo
吉則 近藤
Masayuki Norimoto
昌之 法本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilot Precision KK
SWCC Showa Device Technology Co Ltd
Original Assignee
Pilot Precision KK
SWCC Showa Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Precision KK, SWCC Showa Device Technology Co Ltd filed Critical Pilot Precision KK
Priority to JP2006054465A priority Critical patent/JP2007233031A/en
Publication of JP2007233031A publication Critical patent/JP2007233031A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical ferrule that has high reliability for a long period of time by minimizing the effect of an adhesive. <P>SOLUTION: The optical ferrule is for housing a coated optical fiber 10 whose coating is removed at the end, with the optical fiber 11 exposed by a prescribed length. The ferrule is composed of a flange section 15 and a zirconia section 16 which are connected to each other and integrated. In the flange section 15, the coating 12 of the coated optical fiber is fixed with an adhesive 25 inside a coating housing hole 18 while, in the zirconia section 16, the optical fiber 11 is fixed with the adhesive 25 inside the optical fiber housing hole 17. The part being a gap between the coating housing hole 18 and the coating 12 of the coated optical fiber 10 and filled with the adhesive 25, is set to have a thickness of 0.01-0.2 mm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はフェルール内部に固定された光ファイバの信頼性を向上させた光フェルールに関する。   The present invention relates to an optical ferrule that improves the reliability of an optical fiber fixed inside the ferrule.

光通信用光ファイバの接続部には、光フェルールが使用されている。光ファイバの端部はセラミック製や金属製の光フェルール内部に接着剤により固定される。ところが、その接着剤が、光フェルールの信頼性に悪影響を及ぼすことがある。その原因は、接着剤の硬化歪みが光ファイバに加わるためという研究がなされている(非特許文献1)。
2002年電子情報通信学会エレクトロニクスソサイエティ大会「FBGを使った歪み解析による高信頼性光コネクタの検討」(予稿集211頁)
An optical ferrule is used for the connection portion of the optical fiber for optical communication. The end of the optical fiber is fixed with an adhesive inside a ceramic or metal optical ferrule. However, the adhesive may adversely affect the reliability of the optical ferrule. The cause is research that the hardening distortion of an adhesive agent is added to an optical fiber (nonpatent literature 1).
2002 IEICE Electronics Society Conference “Study of high-reliability optical connector by strain analysis using FBG” (Preliminary Proceedings 211)

ここで、従来の技術には、次のような解決すべき課題があった。
光フェルールに光ファイバ心線の端末を固定するには、長期的に安定で信頼性のある手段が望ましい。従って、従来からエポキシ樹脂系接着剤による固定が一般的に採用されていた。しかしながら、その硬化時に発生する歪みは全体的に不均一であって、光ファイバへの影響に大きなばらつきがある。また、常温硬化性の接着剤でもこの現象を十分に抑えることは難しい。本発明は以上の点に着目してなされたもので、接着剤の影響を最小限に止めて、長期的に信頼性の高い光フェルールを提供することを目的とする。
Here, the conventional technique has the following problems to be solved.
In order to fix the end of the optical fiber core to the optical ferrule, a long-term stable and reliable means is desirable. Therefore, fixing with an epoxy resin adhesive has been generally employed. However, the distortion generated during the curing is not uniform as a whole, and the influence on the optical fiber varies greatly. In addition, it is difficult to sufficiently suppress this phenomenon even with a room temperature curable adhesive. The present invention has been made paying attention to the above points, and an object of the present invention is to provide a long-term highly reliable optical ferrule while minimizing the influence of an adhesive.

本発明の各実施例においては、それぞれ次のような構成により上記の課題を解決する。
〈構成1〉
端部において被覆を除去されて、所定長の光ファイバを露出させた光ファイバ心線を収容するものであって、相互に連結一体化されたフランジ部とセラミックスリーブとを備え、上記フランジ部では、被覆収納孔の内部で上記光ファイバ心線の被覆が接着剤で固定され、上記セラミックスリーブでは、光ファイバ収納孔の内部で上記光ファイバが接着剤で固定され、上記被覆収納孔と上記光ファイバ心線の被覆との間隙であって、上記接着剤を充填した部分の厚みを、0.2mm以下で0.01mm以上としたことを特徴とする光フェルール。
In each embodiment of the present invention, the above-described problems are solved by the following configurations.
<Configuration 1>
An optical fiber core wire having a predetermined length of the optical fiber exposed by removing the coating at the end portion is accommodated, and includes a flange portion and a ceramic sleeve that are connected and integrated with each other. The coating of the optical fiber core wire is fixed with an adhesive inside the coating housing hole. In the ceramic sleeve, the optical fiber is fixed with an adhesive inside the optical fiber housing hole, and the coating housing hole and the optical fiber are fixed. An optical ferrule characterized in that the thickness of the portion filled with the adhesive is not less than 0.2 mm and not less than 0.01 mm, which is a gap between the coating of the fiber core wire.

被覆収納孔に充填された接着剤を十分に薄くすることにより、光ファイバの被覆に応力が加わって光ファイバの伝送特性に影響を及ぼすのを防止できる。   By sufficiently thinning the adhesive filled in the coating accommodation hole, it is possible to prevent stress from being applied to the coating of the optical fiber and affecting the transmission characteristics of the optical fiber.

〈構成2〉
構成1に記載の光フェルールにおいて、上記接着剤を充填した部分の厚みは、0.02mm以上であることを特徴とする光フェルール。
<Configuration 2>
The optical ferrule according to Configuration 1, wherein the thickness of the portion filled with the adhesive is 0.02 mm or more.

接着剤を充填する隙間をある程度以上にして、均一な充填を可能にした。   The gap for filling the adhesive is set to a certain level or more to enable uniform filling.

〈構成3〉
構成1に記載の光フェルールにおいて、上記接着剤を充填した部分の厚みは、0.08mm以下であることを特徴とする光フェルール。
<Configuration 3>
The optical ferrule according to Configuration 1, wherein the thickness of the portion filled with the adhesive is 0.08 mm or less.

接着剤の厚みを0.08mm以下にすると、通常の光ファイバ心線の被覆に対して与える機械的応力はほぼ無視できる程度まで減少する。そのため、光ファイバに対する長手方向の引っ張り力や圧縮力による歪みが、フランジ部とセラミックスリーブの間に集中するのを防ぐことができる。   When the thickness of the adhesive is 0.08 mm or less, the mechanical stress applied to the coating of a normal optical fiber core wire is reduced to a level that can be almost ignored. Therefore, it is possible to prevent distortion due to the longitudinal tensile force or compressive force with respect to the optical fiber from being concentrated between the flange portion and the ceramic sleeve.

〈構成4〉
構成1に記載の光フェルールにおいて、硬化後に被覆より硬い材質の接着剤であることを特徴とする光フェルール。
<Configuration 4>
The optical ferrule according to Configuration 1, wherein the optical ferrule is an adhesive that is harder than the coating after curing.

硬化後に光ファイバの被覆より硬くなるから、本発明の採用による効果が大きい。   Since it becomes harder than the coating of the optical fiber after curing, the effect of adopting the present invention is great.

〈構成5〉
構成1に記載の光フェルールにおいて、上記接着剤は、エポキシ樹脂系接着剤であることを特徴とする光フェルール。
<Configuration 5>
The optical ferrule according to Configuration 1, wherein the adhesive is an epoxy resin adhesive.

エポキシ樹脂系接着剤は、硬化時に伸縮し、硬化後に光ファイバの被覆より硬くなるから、本発明の採用による効果が大きい。   Since the epoxy resin adhesive expands and contracts during curing and becomes harder than the coating of the optical fiber after curing, the effect of adopting the present invention is great.

〈構成6〉
構成1に記載の光フェルールにおいて、上記接着剤は、上記フランジ部の被覆収納孔と被覆との間隙を全て埋めるように流し込まれていることを特徴とする光フェルール。
<Configuration 6>
2. The optical ferrule according to Configuration 1, wherein the adhesive is poured so as to fill all gaps between the covering housing hole and the covering of the flange portion.

フランジ部の被覆収納孔と被覆との間隙を全て埋めるように均一に構成すると、接着剤から被覆に伝わる応力が不均一になるのを防止できる。   If it is configured uniformly so as to fill all the gaps between the cover housing hole and the cover of the flange portion, it is possible to prevent the stress transmitted from the adhesive to the cover from becoming uneven.

以下、本発明の実施の形態を実施例ごとに詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail for each example.

図1は、本発明による光フェルールの組み立て図である。
光ファイバ心線10は、その端部において被覆12を除去されて、所定長の光ファイバ11を露出させている。また、光フェルールは、フランジ部15とジルコニア(酸化ジルコニウム)部16を備える。フランジ部15は、被覆収納孔18の内部で光ファイバ心線10の被覆12を固定する機能を持つ。ジルコニア部16は、光ファイバ収納孔17の内部で光ファイバ11を固定する機能を持つ。ジルコニア部16の接続端面23は、他の光フェルールと突き合わせによる光ファイバ11の光接続部を構成する。ジルコニア部16の右端部は、フランジ部15の受孔22にはめ込まれ、フランジ部15とジルコニア部16とが連結一体化される。ジルコニア部16はセラミック製のスリーブであって、光ファイバと近似した熱的機械的特性を有するものである。
FIG. 1 is an assembly view of an optical ferrule according to the present invention.
The optical fiber core wire 10 has the coating 12 removed at the end thereof to expose the optical fiber 11 having a predetermined length. The optical ferrule includes a flange portion 15 and a zirconia (zirconium oxide) portion 16. The flange portion 15 has a function of fixing the coating 12 of the optical fiber core wire 10 inside the coating housing hole 18. The zirconia portion 16 has a function of fixing the optical fiber 11 inside the optical fiber housing hole 17. The connection end face 23 of the zirconia portion 16 constitutes an optical connection portion of the optical fiber 11 that is abutted with another optical ferrule. The right end portion of the zirconia portion 16 is fitted into the receiving hole 22 of the flange portion 15, and the flange portion 15 and the zirconia portion 16 are connected and integrated. The zirconia portion 16 is a ceramic sleeve and has thermal mechanical properties similar to those of an optical fiber.

ジルコニア部16の光ファイバ収納孔17には、光ファイバ11が接着剤25で固定される。フランジ部15の被覆収納孔18にも、被覆12が接着剤25で固定される。フランジ部15の被覆収納孔18の右端部では、光ファイバ心線10の被覆12をフランジ部15に固定するように接着剤26が付けられている。ジルコニア部16のテーパ孔21にも接着剤を満たす。   The optical fiber 11 is fixed to the optical fiber housing hole 17 of the zirconia portion 16 with an adhesive 25. The covering 12 is also fixed to the covering housing hole 18 of the flange portion 15 with an adhesive 25. An adhesive 26 is attached to the right end portion of the sheath housing hole 18 of the flange portion 15 so as to fix the sheath 12 of the optical fiber core wire 10 to the flange portion 15. The taper hole 21 of the zirconia portion 16 is also filled with an adhesive.

本発明では、光ファイバ11に対して加わる応力を十分に低くする。実施例では、光ファイバ11の被覆12の外径が0.25mmのものと、0.4mmのものとを使用した。フランジ部15に設けた被覆収納孔18は、0.4mmと0.5mmのものを使用した。比較例として内径0.9mmの被覆収納孔18を持つフランジ部15に、被覆12を有する外径0.4mmの光ファイバ心線10を挿入した。なお、ジルコニア部16に挿入する光ファイバ11の外径は125μm、ジルコニア部16の光ファイバ収納孔17の内径は126μmである。ジルコニア部16側の設計は、実施例も比較例も同様にした。   In the present invention, the stress applied to the optical fiber 11 is made sufficiently low. In the examples, the outer diameter of the coating 12 of the optical fiber 11 is 0.25 mm and 0.4 mm. The coating accommodation holes 18 provided in the flange portion 15 were 0.4 mm and 0.5 mm. As a comparative example, an optical fiber core wire 10 having an outer diameter of 0.4 mm having a coating 12 was inserted into a flange portion 15 having a coating housing hole 18 having an inner diameter of 0.9 mm. The outer diameter of the optical fiber 11 inserted into the zirconia portion 16 is 125 μm, and the inner diameter of the optical fiber accommodation hole 17 of the zirconia portion 16 is 126 μm. The design of the zirconia portion 16 side was the same in the examples and comparative examples.

図2は、比較実験のために製造した比較例の光フェルールの縦断面図である。
図のように、ジルコニア部16の構造は本発明のものも従来のものも変わらない。フランジ部5の被覆収納孔内径が被覆12の外径に対して十分に大きく選定されている。フランジ部5の被覆収納孔には、被覆12を取り巻くように接着剤6が充填されている。この構造では、接着剤6が硬化するときに発生する歪みが被覆12の周囲に強く加わる。接着剤6の体積が被覆12に比べて大きいので、被覆12は緩衝材として機能しない。また、解析の結果によれば、ジルコニア部16とフランジ部5では光ファイバに圧縮歪みが加わり、その境界部分には引っ張り歪みが加わることがわかった。従って、ジルコニア部16とフランジ部5の境界部分に応力が集中して、光ファイバ11が断線することもある。また、使用環境によっては、外気温の変化による接着剤6の熱伸縮の応力も無視できない。
FIG. 2 is a longitudinal sectional view of a comparative optical ferrule manufactured for a comparative experiment.
As shown in the figure, the structure of the zirconia portion 16 is the same as that of the present invention and the conventional one. The inner diameter of the cover housing hole of the flange portion 5 is selected to be sufficiently larger than the outer diameter of the cover 12. The covering housing hole of the flange portion 5 is filled with an adhesive 6 so as to surround the covering 12. In this structure, distortion generated when the adhesive 6 is cured is strongly applied around the coating 12. Since the volume of the adhesive 6 is larger than that of the coating 12, the coating 12 does not function as a cushioning material. Moreover, according to the result of the analysis, it was found that in the zirconia portion 16 and the flange portion 5, compressive strain is applied to the optical fiber, and tensile strain is applied to the boundary portion. Therefore, stress concentrates on the boundary portion between the zirconia portion 16 and the flange portion 5, and the optical fiber 11 may be disconnected. Further, depending on the use environment, the thermal expansion and contraction stress of the adhesive 6 due to a change in the outside air temperature cannot be ignored.

図3は、光フェルールの特性試験装置の説明図である。
以上の試料を、次の構成の測定器で測定して評価した。この測定器は、光ファイバ心線10の一端から広帯域光源により測定光を入力する。この測定光は、光ファイバ11内部の歪み等を原因とする散乱により、光フェルール1で反射して入力端に戻る。この測定光をサーキュレータ31を経由させて、スペクトルアナライザ32に受け入れる。そして、その光の強度を測定する。これは、上記非特許文献1でも紹介されたFBG法である。
FIG. 3 is an explanatory diagram of an optical ferrule characteristic testing apparatus.
The above samples were measured and evaluated with a measuring instrument having the following configuration. This measuring device inputs measurement light from one end of the optical fiber core wire 10 by a broadband light source. The measurement light is reflected by the optical ferrule 1 and returned to the input end due to scattering caused by distortion or the like inside the optical fiber 11. This measurement light is received by the spectrum analyzer 32 via the circulator 31. Then, the intensity of the light is measured. This is the FBG method introduced in Non-Patent Document 1 above.

図4は、比較例の光フェルールの特性試験結果の説明図である。
図中のグラフにおいて、横軸は測定に使用した光の波長(nm)、縦軸は光の反射率(%)である。また、実線は接着剤が硬化後の特性で、破線は、接着剤が硬化前の特性である。フランジ部5の被覆収納孔18に被覆12を挿入して、その間隙に接着剤25を充填し、接着剤25を硬化させると、硬化時の体積変化により生じた応力が被覆12を通じて光ファイバ11に及ぶ。被覆12は若干弾力性のある材料であるが、フランジ部5は固い材料であるから接着剤25による応力は全て被覆12に加わり、光ファイバ11に対して強くかつ不均一な圧力を加える。被覆12が接着剤25よりも機械的強度が低いと、被覆12は大きく歪み、その圧力を光ファイバ11に加える。従来のように、被覆収納孔18と被覆12の間に接着剤25が大量にあると、被覆12は光ファイバ11を機械的に保護できなくなる。
FIG. 4 is an explanatory view of the characteristic test result of the optical ferrule of the comparative example.
In the graph in the figure, the horizontal axis represents the wavelength (nm) of light used for measurement, and the vertical axis represents the light reflectance (%). Moreover, the solid line is the characteristic after the adhesive is cured, and the broken line is the characteristic before the adhesive is cured. When the coating 12 is inserted into the coating housing hole 18 of the flange portion 5, the gap 25 is filled with the adhesive 25, and the adhesive 25 is cured, the stress generated by the volume change at the time of curing causes the optical fiber 11 through the coating 12. It extends to. The coating 12 is a slightly elastic material, but since the flange portion 5 is a hard material, all the stress due to the adhesive 25 is applied to the coating 12 and applies a strong and non-uniform pressure to the optical fiber 11. If the coating 12 has a lower mechanical strength than the adhesive 25, the coating 12 is greatly distorted and applies its pressure to the optical fiber 11. As in the prior art, if there is a large amount of adhesive 25 between the coating housing hole 18 and the coating 12, the coating 12 cannot mechanically protect the optical fiber 11.

図のグラフで、接着剤が硬化する前の特性は、波長1550nm付近にピークを持つのみであって、他の波長に対しては伝送特性に影響を与えないレベルにある。しかしながら、接着材が硬化した後は、波長1545nm以上の広範囲にわたって、大幅に光反射量が増加している。グラフ中で、Aの反射ピークは、主としてフランジ部5における反射によるものである。Bの反射ピークは、主としてジルコニア部16における反射によるものである。Cの反射ピークは、主として両者の境界のテーパ孔21における反射によるものである。実験によれば、光ファイバに伸び歪みを与えると、反射ピークが長波長側にシフトする。一方、光ファイバに圧縮歪みを与えると反射ピークが短波長側にシフトする。   In the graph of the figure, the characteristic before the adhesive is cured has only a peak in the vicinity of the wavelength of 1550 nm, and is at a level that does not affect the transmission characteristics for other wavelengths. However, after the adhesive is cured, the amount of light reflection is greatly increased over a wide range of wavelengths of 1545 nm or more. In the graph, the reflection peak of A is mainly due to reflection at the flange portion 5. The reflection peak of B is mainly due to reflection at the zirconia portion 16. The reflection peak of C is mainly due to reflection at the tapered hole 21 at the boundary between the two. According to experiments, when an elongation strain is applied to the optical fiber, the reflection peak shifts to the long wavelength side. On the other hand, when compressive strain is applied to the optical fiber, the reflection peak shifts to the short wavelength side.

図5は本発明の光フェルールの特性試験結果の説明図である。
図のように、接着材が硬化した後は、波長1547nmと1549nmの部分に反射のピークがあるが、その他の部分では、図4の場合と比較して大幅に特性が改善されている。グラフ中で、Aの反射ピークは、主としてフランジ部15における反射によるものである。Bの反射ピークがは、主としてジルコニア部16における反射によるものである。両者の境界のテーパ孔21における反射によるものがほとんど消滅している。
FIG. 5 is an explanatory view of the characteristic test result of the optical ferrule of the present invention.
As shown in the figure, after the adhesive is cured, there are reflection peaks at the wavelengths of 1547 nm and 1549 nm, but the characteristics are greatly improved in the other portions as compared with the case of FIG. In the graph, the reflection peak of A is mainly due to the reflection at the flange portion 15. The reflection peak of B is mainly due to reflection at the zirconia portion 16. Most of the reflection due to the reflection in the tapered hole 21 at the boundary between them has disappeared.

図6は、原因解析のための説明図である。
図6の(a)は本発明の光フェルールの、テーパ孔21の近傍の縦断面図である。
図のように、光ファイバ11とジルコニア部16の間及び被覆12と、フランジ部15の間に存在する接着剤25の層の厚みが十分に薄いので、接着剤25の硬化時に発生する応力が十分小さい。矢印X1とX2とは光ファイバ11や被覆12に加わる応力の方向と大きさを表したベクトルである。このように、光ファイバ11や被覆12には半径方向に比較的小さい圧縮力が加わる。しかし、光ファイバ11に引っ張り力を加えるような、過大な長手方向の圧縮は発生していない。一方、(b)は従来の光フェルールの対応する部分の縦断面図である。図のように、接着剤6が大きな厚みを持つので、光ファイバ11に過大な長手方向の圧縮力が生じやすくなる。従って、図の矢印Y1とY2のように、比較的大きく、図の右方向に向いた応力が境界部分の光ファイバ11に加わる。図の(a)と(b)の差が、その特性に顕著に表れた。
FIG. 6 is an explanatory diagram for cause analysis.
FIG. 6A is a longitudinal sectional view of the vicinity of the tapered hole 21 of the optical ferrule of the present invention.
As shown in the figure, since the thickness of the layer of the adhesive 25 existing between the optical fiber 11 and the zirconia portion 16 and between the coating 12 and the flange portion 15 is sufficiently thin, the stress generated when the adhesive 25 is cured is reduced. Small enough. Arrows X1 and X2 are vectors representing the direction and magnitude of stress applied to the optical fiber 11 and the coating 12. Thus, a relatively small compressive force is applied to the optical fiber 11 and the coating 12 in the radial direction. However, excessive longitudinal compression that applies a tensile force to the optical fiber 11 has not occurred. On the other hand, (b) is a longitudinal sectional view of a corresponding portion of a conventional optical ferrule. As shown in the figure, since the adhesive 6 has a large thickness, an excessive longitudinal compressive force is easily generated in the optical fiber 11. Therefore, as shown by the arrows Y1 and Y2 in the figure, a relatively large stress directed in the right direction in the figure is applied to the optical fiber 11 in the boundary portion. The difference between (a) and (b) in the figure was noticeable in the characteristics.

以上のとおり、本発明では、被覆12の外径と被覆収納孔18の内径との差を十分に小さくして、接着剤25の厚みを薄くした。特性試験の結果、被覆12の外径が0.25mmの場合も0.4mmの場合も、共に接着剤25の厚みが0.2mmを超えると、光ファイバ11の特性に大きく悪影響を及ぼすことがわかった。また、実験によれば、接着剤25の厚さを、0.08mm以下にすると、さらに応力による影響を弱めることができた。   As described above, in the present invention, the difference between the outer diameter of the coating 12 and the inner diameter of the coating housing hole 18 is made sufficiently small, and the thickness of the adhesive 25 is reduced. As a result of the characteristic test, in both cases where the outer diameter of the coating 12 is 0.25 mm and 0.4 mm, if the thickness of the adhesive 25 exceeds 0.2 mm, the characteristics of the optical fiber 11 may be greatly adversely affected. all right. Further, according to experiments, when the thickness of the adhesive 25 is set to 0.08 mm or less, the influence of stress can be further reduced.

以上の結果、厚さ0.01mm以上0.2mm以下の厚みで気泡等が存在しないように、接着剤25で光ファイバ11の被覆12をフランジ部15に固定することにより、光フェルールの機械的な特性と、光ファイバ11の伝送特性の双方を実用的な範囲に最適化できることが実証された。なお、被覆12の外径精度や被覆12のヤング率を考慮すると、接着剤25の厚みは0.02mm以上あったほうが、フランジ部15の加工精度を低く抑えて、歩留りを良くすることができる。一方、被覆12は、フランジ部15の中心に強固に接着固定しなければならないため、接着剤25を均一に被覆12に塗布して接着処理をするには、少なくとも接着剤25の厚さが0.01mm以上ほしい。接着剤25は、フランジ部15の被覆収納孔18と被覆12との間隙を全て埋めるように流し込まれることが好ましい。さもないと、接着剤25に気泡や亀裂が入り、フランジ部15と被覆12との間の接着力が弱まる。しかも、部分的に被覆12の外周に付いた接着剤25が被覆12に不均一な圧力を加えるから、光ファイバ11にマイクロベンドが加わり特性を悪化させる。   As a result of the above, the optical ferrule is mechanically fixed by fixing the coating 12 of the optical fiber 11 to the flange portion 15 with the adhesive 25 so that there is no bubble or the like with a thickness of 0.01 mm to 0.2 mm. It has been proved that both the optical characteristics and the transmission characteristics of the optical fiber 11 can be optimized within a practical range. In consideration of the outer diameter accuracy of the coating 12 and the Young's modulus of the coating 12, the thickness of the adhesive 25 is 0.02 mm or more, and the processing accuracy of the flange portion 15 can be suppressed to improve the yield. . On the other hand, since the coating 12 must be firmly bonded and fixed to the center of the flange portion 15, at least the thickness of the adhesive 25 is 0 in order to uniformly apply the adhesive 25 to the coating 12 and perform the bonding process. I want more than 01mm. The adhesive 25 is preferably poured so as to fill all the gaps between the covering housing hole 18 of the flange portion 15 and the covering 12. Otherwise, bubbles or cracks will enter the adhesive 25 and the adhesive force between the flange portion 15 and the coating 12 will be weakened. In addition, since the adhesive 25 partially attached to the outer periphery of the coating 12 applies nonuniform pressure to the coating 12, microbends are applied to the optical fiber 11 to deteriorate the characteristics.

また、接着剤25にはエポキシ樹脂系接着剤を使うことが好ましい。さらに、被覆より固い接着剤25を使用することから、その接着剤25の伸縮力が光ファイバ11に及ぶ。硬化後に被覆より柔軟な材質の接着剤25では、こうした問題は発生しない。しかし、それでは、光ファイバ心線に加わる張力に耐えることができない。従って、被覆より高い硬度の接着剤が好ましい。   The adhesive 25 is preferably an epoxy resin adhesive. Furthermore, since the adhesive 25 that is harder than the coating is used, the stretching force of the adhesive 25 reaches the optical fiber 11. Such a problem does not occur in the adhesive 25 that is softer than the coating after curing. However, it cannot withstand the tension applied to the optical fiber core wire. Accordingly, an adhesive having a higher hardness than the coating is preferred.

図7は、光ファイバの歪み発生にのみ着目して実施例と比較例の特性判定をした結果を示す説明図である。
この実験では、被覆外径が0.25mm、光ファイバ外径が125μmの心線と、被覆外径が0.4mm、光ファイバ外径が250μmの心線を使用した。被覆樹脂は紫外線硬化型樹脂であり、光ファイバはいずれも、GI型の石英ファイバである。また、フランジ部15はステンレス製、接着剤はエポキシ樹脂系である。評価は、接着剤の硬化直後の特性を測定するとともに、ヒートサイクル試験(−60°C〜85°Cの温度範囲で20サイクル)を行って、光ファイバの破断や著しい特性劣化が生じるか否かを確認した。さらに、光ファイバ心線に張力を加えて、引き抜き力の試験を行った。接着剤の厚みが0.3mm以上の比較例では、基準回数以下のヒートサイクルにより光ファイバの破断が発生した。一方、接着剤の厚みが0.005mm以下の比較例では、引き抜き力が弱くなり、光ファイバが破断するものがあった。
FIG. 7 is an explanatory diagram showing the result of the characteristic determination of the example and the comparative example focusing only on the occurrence of distortion of the optical fiber.
In this experiment, a core wire having a coating outer diameter of 0.25 mm and an optical fiber outer diameter of 125 μm and a core wire having a coating outer diameter of 0.4 mm and an optical fiber outer diameter of 250 μm were used. The coating resin is an ultraviolet curable resin, and the optical fibers are all GI type quartz fibers. The flange 15 is made of stainless steel, and the adhesive is epoxy resin. In the evaluation, the characteristics immediately after curing of the adhesive are measured, and a heat cycle test (20 cycles in a temperature range of −60 ° C. to 85 ° C.) is performed to determine whether or not the optical fiber is broken or markedly deteriorated. I confirmed. Further, a pulling force test was performed by applying tension to the optical fiber core wire. In the comparative example in which the thickness of the adhesive was 0.3 mm or more, the optical fiber was broken by the heat cycle of the reference number or less. On the other hand, in the comparative example in which the thickness of the adhesive is 0.005 mm or less, the pulling force becomes weak and the optical fiber is broken.

本発明による光フェルールの組み立て図である。It is an assembly drawing of the optical ferrule by this invention. 比較実験のために製造した比較例の光フェルールの縦断面図である。It is a longitudinal cross-sectional view of the optical ferrule of the comparative example manufactured for the comparative experiment. 光フェルールの特性試験装置の説明図である。It is explanatory drawing of the characteristic test apparatus of an optical ferrule. 比較例の光フェルールの特性試験結果の説明図である。It is explanatory drawing of the characteristic test result of the optical ferrule of a comparative example. 本発明の光フェルールの特性試験結果の説明図である。It is explanatory drawing of the characteristic test result of the optical ferrule of this invention. 原因解析のための説明図で、(a)は本発明の光フェルールの、テーパ孔の近傍の縦断面図、(b)は従来の光フェルールの対応する部分の縦断面図である。It is explanatory drawing for a cause analysis, (a) is a longitudinal cross-sectional view of the vicinity of a taper hole of the optical ferrule of this invention, (b) is a longitudinal cross-sectional view of the corresponding part of the conventional optical ferrule. 光ファイバの歪み発生にのみ着目して実施例と比較例の特性判定をした結果を示す説明図である。It is explanatory drawing which shows the result of having performed the characteristic determination of the Example and the comparative example paying attention only to distortion generation of an optical fiber.

符号の説明Explanation of symbols

10 光ファイバ心線
11 光ファイバ
12 被覆
15 フランジ部
16 ジルコニア部
17 光ファイバ収納孔
18 被覆収納孔
21 テーパ孔
22 受孔
23 接続端面
25 接着剤
DESCRIPTION OF SYMBOLS 10 Optical fiber core wire 11 Optical fiber 12 Cover 15 Flange part 16 Zirconia part 17 Optical fiber storage hole 18 Cover storage hole 21 Tapered hole 22 Receiving hole 23 Connection end surface 25 Adhesive

Claims (6)

端部において被覆を除去されて、所定長の光ファイバを露出させた光ファイバ心線を収容するものであって、
相互に連結一体化されたフランジ部とセラミックスリーブとを備え、
前記フランジ部では、被覆収納孔の内部で前記光ファイバ心線の被覆が接着剤で固定され、
前記セラミックスリーブでは、光ファイバ収納孔の内部で前記光ファイバが接着剤で固定され、
前記被覆収納孔と前記光ファイバ心線の被覆との間隙であって、前記接着剤を充填した部分の厚みを、0.2mm以下で0.01mm以上としたことを特徴とする光フェルール。
The optical fiber core wire, in which the coating is removed at the end to expose the optical fiber of a predetermined length,
It has a flange part and a ceramic sleeve that are connected and integrated with each other,
In the flange portion, the coating of the optical fiber core wire is fixed with an adhesive inside the coating housing hole,
In the ceramic sleeve, the optical fiber is fixed with an adhesive inside the optical fiber housing hole,
An optical ferrule characterized in that a thickness of a gap between the coating housing hole and the coating of the optical fiber core wire and filled with the adhesive is 0.2 mm or less and 0.01 mm or more.
請求項1に記載の光フェルールにおいて、
前記接着剤を充填した部分の厚みは、0.02mm以上であることを特徴とする光フェルール。
The optical ferrule according to claim 1,
The thickness of the part with which the said adhesive agent was filled is 0.02 mm or more, The optical ferrule characterized by the above-mentioned.
請求項1に記載の光フェルールにおいて、
前記接着剤を充填した部分の厚みは、0.08mm以下であることを特徴とする光フェルール。
The optical ferrule according to claim 1,
The thickness of the part with which the said adhesive agent was filled is 0.08 mm or less, The optical ferrule characterized by the above-mentioned.
請求項1に記載の光フェルールにおいて、
硬化後に被覆より硬い材質の接着剤であることを特徴とする光フェルール。
The optical ferrule according to claim 1,
An optical ferrule that is an adhesive that is harder than the coating after curing.
請求項1に記載の光フェルールにおいて、
前記接着剤は、エポキシ樹脂系接着剤であることを特徴とする光フェルール。
The optical ferrule according to claim 1,
The optical ferrule, wherein the adhesive is an epoxy resin adhesive.
請求項1に記載の光フェルールにおいて、
前記接着剤は、前記フランジ部の被覆収納孔と被覆との間隙を全て埋めるように流し込まれていることを特徴とする光フェルール。
The optical ferrule according to claim 1,
The optical ferrule is characterized in that the adhesive is poured so as to fill all the gaps between the coating housing hole and the coating of the flange portion.
JP2006054465A 2006-03-01 2006-03-01 Optical ferrule Pending JP2007233031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054465A JP2007233031A (en) 2006-03-01 2006-03-01 Optical ferrule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054465A JP2007233031A (en) 2006-03-01 2006-03-01 Optical ferrule

Publications (1)

Publication Number Publication Date
JP2007233031A true JP2007233031A (en) 2007-09-13

Family

ID=38553692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054465A Pending JP2007233031A (en) 2006-03-01 2006-03-01 Optical ferrule

Country Status (1)

Country Link
JP (1) JP2007233031A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198906U (en) * 1985-05-30 1986-12-12
JPS62192708A (en) * 1986-02-19 1987-08-24 Fujikura Ltd Optical fiber fitting structure of light connector
JPH01216303A (en) * 1988-02-24 1989-08-30 Nippon Telegr & Teleph Corp <Ntt> Ferrule for optical connector
JPH0380209A (en) * 1989-08-24 1991-04-05 Nippon Telegr & Teleph Corp <Ntt> Perrule for polarization maintaining optical fiber
JPH07225330A (en) * 1994-02-10 1995-08-22 Sumitomo Electric Ind Ltd Optical unit for optical composite overhead earth wire
JPH10307240A (en) * 1997-05-06 1998-11-17 Furukawa Electric Co Ltd:The Optical fiber core
JP2000284155A (en) * 1999-03-30 2000-10-13 Furukawa Electric Co Ltd:The Optical fiber
JP2001215186A (en) * 1994-05-31 2001-08-10 Kanagawa Acad Of Sci & Technol Optical fiber and method of manufacturing the same
JP2003098379A (en) * 2001-09-20 2003-04-03 Sumitomo Electric Ind Ltd Optical connector ferrule, optical connector, and coated optical fiber with optical connector
JP2004231478A (en) * 2003-01-31 2004-08-19 Fujikura Ltd Refraction index distribution lens and its production method
JP2005189805A (en) * 2003-12-05 2005-07-14 Yonezawa Densen Kk Ferrule with optical fiber
JP2005275328A (en) * 2004-02-24 2005-10-06 Nippon Telegr & Teleph Corp <Ntt> Method for assembling single core optical connector, and assembling tool therefor
JP2006337520A (en) * 2005-05-31 2006-12-14 Yonezawa Densen Kk Manufacturing method of ferrule with optical fiber

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198906U (en) * 1985-05-30 1986-12-12
JPS62192708A (en) * 1986-02-19 1987-08-24 Fujikura Ltd Optical fiber fitting structure of light connector
JPH01216303A (en) * 1988-02-24 1989-08-30 Nippon Telegr & Teleph Corp <Ntt> Ferrule for optical connector
JPH0380209A (en) * 1989-08-24 1991-04-05 Nippon Telegr & Teleph Corp <Ntt> Perrule for polarization maintaining optical fiber
JPH07225330A (en) * 1994-02-10 1995-08-22 Sumitomo Electric Ind Ltd Optical unit for optical composite overhead earth wire
JP2001215186A (en) * 1994-05-31 2001-08-10 Kanagawa Acad Of Sci & Technol Optical fiber and method of manufacturing the same
JPH10307240A (en) * 1997-05-06 1998-11-17 Furukawa Electric Co Ltd:The Optical fiber core
JP2000284155A (en) * 1999-03-30 2000-10-13 Furukawa Electric Co Ltd:The Optical fiber
JP2003098379A (en) * 2001-09-20 2003-04-03 Sumitomo Electric Ind Ltd Optical connector ferrule, optical connector, and coated optical fiber with optical connector
JP2004231478A (en) * 2003-01-31 2004-08-19 Fujikura Ltd Refraction index distribution lens and its production method
JP2005189805A (en) * 2003-12-05 2005-07-14 Yonezawa Densen Kk Ferrule with optical fiber
JP2005275328A (en) * 2004-02-24 2005-10-06 Nippon Telegr & Teleph Corp <Ntt> Method for assembling single core optical connector, and assembling tool therefor
JP2006337520A (en) * 2005-05-31 2006-12-14 Yonezawa Densen Kk Manufacturing method of ferrule with optical fiber

Similar Documents

Publication Publication Date Title
US6883976B2 (en) Optical fiber ferrule assembly and optical module and optical connector using the same
JP4915243B2 (en) Optical connector
Lin et al. Packaging methods of fiber-Bragg grating sensors in civil structure applications
US7306382B2 (en) Mechanical splice optical fiber connector
JP6390513B2 (en) Pigtail fiber module
JP2008287191A (en) Optical fiber, end face sealing method of optical fiber, connecting structure of optical fiber, and optical connector
JP2012194004A (en) Optical fiber characteristic measuring method
CN101311758A (en) Optical fiber, optical fiber connection structure and optical connector
WO2011145466A1 (en) Optical collimator and optical connector using same
Njegovec et al. Microbend point and distributed fiber optic corrosion sensing
JP2007233031A (en) Optical ferrule
JP4918777B2 (en) Optical waveguide connection structure
US6292615B1 (en) Optical fiber feedthrough
JPH1172641A (en) Mechanical splicing part
Suhir Fiber optics engineering: physical design for reliability
JP4657327B2 (en) Connector fixing structure to optical fiber core
JP6469961B2 (en) Optical device, fiber laser, and optical device manufacturing method
WO2016186054A1 (en) Strain sensor and jig for attaching strain sensor
JP4482878B2 (en) How to fix an optical fiber cable to a ferrule
WO1999001789A1 (en) Organic insulating device with built-in optical fiber and manufacturing method therefor
JP3192771B2 (en) Optical element mounting method
JP5477365B2 (en) Optical connector
JP2012103311A (en) Optical fiber with glass ferrule
KR20040096172A (en) Double-coated optical fiber
Suhir Fiber Optics Structural Mechanics and Nano-Technology Based New Generation of Fiber Coatings: Review and Extension

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20080222

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Effective date: 20080228

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20080226

Free format text: JAPANESE INTERMEDIATE CODE: A821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080807

A621 Written request for application examination

Effective date: 20080909

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20080909

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080909

A977 Report on retrieval

Effective date: 20100831

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100902

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20101026

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20101210

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A02 Decision of refusal

Effective date: 20110302

Free format text: JAPANESE INTERMEDIATE CODE: A02