JP2007229792A - Joining method of turbine wheel with rotor shaft - Google Patents

Joining method of turbine wheel with rotor shaft Download PDF

Info

Publication number
JP2007229792A
JP2007229792A JP2006057288A JP2006057288A JP2007229792A JP 2007229792 A JP2007229792 A JP 2007229792A JP 2006057288 A JP2006057288 A JP 2006057288A JP 2006057288 A JP2006057288 A JP 2006057288A JP 2007229792 A JP2007229792 A JP 2007229792A
Authority
JP
Japan
Prior art keywords
turbine wheel
rotor shaft
brazing
shaft
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006057288A
Other languages
Japanese (ja)
Other versions
JP4304190B2 (en
Inventor
Toshimitsu Tetsui
利光 鉄井
Katsuhiro Kuwabara
克洋 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimitsu Kogyo KK
Original Assignee
Seimitsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimitsu Kogyo KK filed Critical Seimitsu Kogyo KK
Priority to JP2006057288A priority Critical patent/JP4304190B2/en
Publication of JP2007229792A publication Critical patent/JP2007229792A/en
Application granted granted Critical
Publication of JP4304190B2 publication Critical patent/JP4304190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brazing method capable of reducing softening of a rotor shaft and unnecessary for any heat treatment for recovering the hardness of the rotor shaft after the brazing in a step of joining a turbine wheel with the rotor shaft by arranging a brazing filler metal consisting of a nickel brazing filler metal between the turbine wheel consisting of a TiAl-based alloy and the rotor shaft consisting of a structural steel, and heating the brazing filler metal at the temperature above the liquidus. <P>SOLUTION: In this joining method, a turbine wheel is irradiated with infrared rays, and the turbine wheel is heated by infrared rays at the temperature above the liquidus of a brazing filler metal. The brazing filler metal arranged at a joining part is melted by the heat conduction from the turbine wheel. Thus, the turbine wheel is joined with the rotor shaft to suppress any increase in the temperature of the shaft. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両用内燃機関のターボチャージャに用いられるタービンロータにおいて、タービンホイールとロータシャフトをろう付けによって接合する方法に関する。   The present invention relates to a method of joining a turbine wheel and a rotor shaft by brazing in a turbine rotor used in a turbocharger of an internal combustion engine for a vehicle.

近年、タービンホイールの耐熱性を改善し、軽量化によるエンジン応答性を向上させるために、タービンホイールの材料としてTiAl系合金が用いられている。
このタービンホイールは、図3中、符号(2)で示され、複数の渦巻き状羽根(21)とボス(22)を有し、該ボス(22)に対して、ロータシャフト(3)の端面が摩擦接合やろう付け(4)によって接合されることにより、タービンロータ(1)が製造される。
In recent years, TiAl-based alloys have been used as a material for turbine wheels in order to improve the heat resistance of turbine wheels and improve engine responsiveness due to weight reduction.
This turbine wheel is denoted by reference numeral (2) in FIG. 3 and has a plurality of spiral blades (21) and a boss (22), and the end surface of the rotor shaft (3) with respect to the boss (22). Are joined by friction welding or brazing (4), whereby the turbine rotor (1) is manufactured.

ロータシャフトは、一般的に、構造用鋼から作られており、所定の機械的性質(強度、靱性等)を得るために、ろう付け前に、シャフト全体の硬度がビッカース硬度約Hv300〜Hv450となるように調質熱処理が施された後、機械加工によって所定寸法に加工される。接合後は、シャフトの耐摩耗性を確保するために、所望により、高周波焼入れによってシャフト表面だけを硬化させ、さらに研磨工程を経て最終製品とされる。
タービンホイールとロータシャフトの接合をろう付けで行なう場合、接合部の高温強度を確保するために、ろう材には、ニッケルろうが好適に用いられる。
The rotor shaft is generally made of structural steel, and in order to obtain a predetermined mechanical property (strength, toughness, etc.), before brazing, the hardness of the entire shaft is Vickers hardness of about Hv300 to Hv450. After being subjected to a tempering heat treatment, it is processed into a predetermined dimension by machining. After the joining, in order to ensure the wear resistance of the shaft, if desired, only the shaft surface is cured by induction hardening, and a final product is obtained through a polishing process.
When the turbine wheel and the rotor shaft are joined by brazing, nickel brazing is preferably used as the brazing material in order to ensure the high temperature strength of the joint.

このろう付け接合法として、タービンホイールとロータシャフトの接合部近傍を高周波誘導加熱によって加熱し、接合部に配置したろう材を溶融させる方法が知られている(特許文献1)。   As this brazing joining method, a method is known in which the vicinity of the joint between the turbine wheel and the rotor shaft is heated by high-frequency induction heating to melt the brazing material disposed in the joint (Patent Document 1).

特開平10−118764号公報JP-A-10-118764

特許文献1によるタービンホイールとロータシャフトのろう付け接合方法について、図4を参照して説明する。
この方法は、タービンホイール(2)とロータシャフト(3)の接合部の近傍を、高周波コイル(5)によって誘導加熱し、接合部に装填されたろう材(41)を溶融させるものである。
しかし、タービンホイール(2)のボス(22)の高さは数mm程度しかなく、また、タービンホイール(2)の羽根(21)の部分はボス(22)よりもはるかに大径であるから、高周波コイル(5)は、接合部よりロータシャフト側に配置せざるを得ない。
従って、特許文献1の高周波加熱法の場合、接合部の近傍だけを局部的に集中して加熱することは困難であり、実際は、ロータシャフト(3)を加熱して、ロータシャフト(3)からの熱伝導によってろう材(41)を溶融させている。
この特許文献1の方法は、次の不都合がある。
A method of brazing and joining a turbine wheel and a rotor shaft according to Patent Document 1 will be described with reference to FIG.
In this method, the vicinity of the joint between the turbine wheel (2) and the rotor shaft (3) is induction-heated by the high-frequency coil (5) to melt the brazing material (41) loaded in the joint.
However, the height of the boss (22) of the turbine wheel (2) is only a few millimeters, and the blade (21) portion of the turbine wheel (2) is much larger in diameter than the boss (22). The high frequency coil (5) must be disposed on the rotor shaft side from the joint.
Therefore, in the case of the high-frequency heating method of Patent Document 1, it is difficult to concentrate and heat only the vicinity of the joint portion. In practice, the rotor shaft (3) is heated and the rotor shaft (3) is heated. The brazing material (41) is melted by heat conduction.
The method of Patent Document 1 has the following disadvantages.

まず第1に、ロータシャフトの質量はタービンホイールに比べてはるかに小さいので、ロータシャフトからタービンホイールへの熱伝達に時間がかかり、加熱効率が悪いことである。   First, since the mass of the rotor shaft is much smaller than that of the turbine wheel, it takes time to transfer heat from the rotor shaft to the turbine wheel, and the heating efficiency is poor.

第2に、ろう材として、ニッケルろうを用いる場合、その液相線温度は約1000℃の近傍又はそれより高温であるから、ろう付けは、約1000℃以上の温度で行われる。このため、シャフトは、少なくともこの接合温度以上に加熱される必要があり、ロータシャフト材のオーステナイト化温度よりも高い温度に比較的長い時間曝される結果、シャフトの軟化が起こり、シャフトの強度が低下する。シャフトの強度を回復させるには、シャフト全体を再度熱処理せねばならない。   Second, when nickel brazing is used as the brazing material, the liquidus temperature is around 1000 ° C. or higher, so brazing is performed at a temperature of about 1000 ° C. or higher. For this reason, the shaft needs to be heated to at least the joining temperature or higher, and as a result of being exposed to a temperature higher than the austenitizing temperature of the rotor shaft material for a relatively long time, the shaft is softened and the strength of the shaft is increased. descend. To restore the strength of the shaft, the entire shaft must be heat treated again.

それゆえ、特許文献1の方法では、ろう付け時に低下するシャフトの強度を回復させるために、ろう付け後直ちに、シャフトの全体(表面だけでなく内部を含む)に高周波焼入れを実施している(特許文献1、段落0010)。この工程は、接合に関しては本質的に無関係な余分の工程であり、コストアップに繋がるため、好ましくない。
また、高周波焼入れの場合は、表面だけを硬化させるときの熱処理変形はさほど大きくないが、シャフト全体に焼入れを実施すると、焼入れ後の変形が非常に大きくなる。このため、後の研削及び研磨工程での加工時間が長くなり、製造コストがさらに高くなる。
Therefore, in the method of Patent Document 1, induction hardening is performed on the entire shaft (including not only the surface but also the interior) immediately after brazing in order to recover the strength of the shaft that is reduced during brazing ( Patent Document 1, paragraph 0010). This process is not preferable because it is an extra process that is essentially irrelevant with respect to bonding and leads to an increase in cost.
In addition, in the case of induction hardening, the heat treatment deformation when hardening only the surface is not so large, but if the entire shaft is quenched, the deformation after quenching becomes very large. For this reason, the processing time in the subsequent grinding and polishing steps becomes longer, and the manufacturing cost further increases.

なお、高周波加熱の場合、高周波の集中形態が形状に依存するため、高周波は、先端部分や肉薄部に集中する傾向がある。しかし、タービンホイールを加熱して接合部を約1000℃以上の温度まで昇温しようとすると、渦巻き状羽根の部分が局部的に著しく過熱され、タービンホイールの品質低下、ひいては溶融を招く。それゆえ、高周波によってタービンホイール側を加熱することは事実上不可能である。   In the case of high-frequency heating, since the concentration form of high-frequency depends on the shape, high-frequency tends to concentrate on the tip portion and the thin portion. However, if the turbine wheel is heated to increase the temperature of the joint to about 1000 ° C. or higher, the spiral blade portion is locally overheated, causing a deterioration in the quality of the turbine wheel and eventually melting. Therefore, it is virtually impossible to heat the turbine wheel side with high frequency.

本発明の目的は、TiAl系合金からなるタービンホイールと、構造用鋼からなるロータシャフトとを、ニッケルろう材を用いてろう付け接合する方法において、ロータシャフトの軟化を可及的に抑制することにより、ろう付け後に強度回復のための熱処理を必要としない方法を提供することである。   An object of the present invention is to suppress the softening of a rotor shaft as much as possible in a method of brazing a turbine wheel made of a TiAl alloy and a rotor shaft made of structural steel using a nickel brazing material. Thus, it is to provide a method that does not require heat treatment for strength recovery after brazing.

本発明は、TiAl系合金からなるタービンホイールと、構造用鋼からなるロータシャフトとの間に、ニッケルろうからなるろう材を配置し、ろう材を液相線以上の温度に加熱して溶融させることにより、タービンホイールとロータシャフトとを接合する方法において、タービンホイールに赤外線を照射し、タービンホイールをろう材の液相線以上の温度に赤外線加熱することにより、タービンホイールからの熱伝導によって、接合部に配置したろう材を溶融させて、タービンホイールとロータシャフトを接合することを特徴としている。   In the present invention, a brazing material made of nickel brazing is arranged between a turbine wheel made of a TiAl-based alloy and a rotor shaft made of structural steel, and the brazing material is heated to a temperature equal to or higher than the liquidus and melted. Thus, in the method of joining the turbine wheel and the rotor shaft, the turbine wheel is irradiated with infrared rays, and the turbine wheel is heated by infrared rays to a temperature equal to or higher than the liquidus line of the brazing filler metal. It is characterized by melting the brazing material arranged at the joint and joining the turbine wheel and the rotor shaft.

本発明は、質量の大きなタービンホイールの側から、質量の小さなロータシャフトへの熱伝導によってろう材を溶融させることから、接合部への伝熱効率が高く、ろう材が所定温度に達するまでの時間は短くてすむ。また、ロータシャフトの温度は接合部の温度よりも必ず低いことから、ロータシャフトの過昇温が防止され、ロータシャフト内部の軟化を可及的に抑制することができる。それゆえ、ろう付け後のロータシャフトは、耐摩耗性を確保するために表面部だけを焼入れして硬化すれば足り、強度回復のために、内部を含むシャフトの全体について熱処理を行なう必要はない。
また、本発明は、赤外線加熱であるから、高周波加熱のように先端部や薄肉部が局部的に加熱されることはなく、タービンホイールのように複雑な形状であっても、全体が均等に加熱される。
In the present invention, the brazing material is melted by heat conduction from the side of the turbine wheel having a large mass to the rotor shaft having a small mass, so that the heat transfer efficiency to the joint is high and the time until the brazing material reaches a predetermined temperature. Is short. Further, since the temperature of the rotor shaft is always lower than the temperature of the joint portion, excessive temperature rise of the rotor shaft is prevented, and softening inside the rotor shaft can be suppressed as much as possible. Therefore, it is sufficient that the rotor shaft after brazing is hardened by hardening only the surface portion in order to ensure wear resistance, and it is not necessary to heat-treat the entire shaft including the inside in order to recover the strength. .
In addition, since the present invention uses infrared heating, the tip and thin portions are not locally heated unlike high-frequency heating, and even if the shape is complicated like a turbine wheel, the whole is even. Heated.

本発明は、TiAl系合金からなるタービンホイールと、構造用鋼からなるロータシャフトとを、ニッケルろう材によるろう付けによって接合するものである。   The present invention joins a turbine wheel made of a TiAl alloy and a rotor shaft made of structural steel by brazing with a nickel brazing material.

図3に示す如く、タービンホイール(2)は、渦巻き状の羽根(21)が周方向に間隔をあけて配設されたもので、軸芯には、ロータシャフトと接合するためのボス(22)が突設されている。ボス(22)は、短い円柱状で、ロータシャフトと略同じ外径を有している。
タービンホイール(2)は、TiAl系合金からなり、例えば精密鋳造によって作製される。
TiAl系合金は、Tiを主たる構成元素とする合金であり、例えば、重量%にて、Al:28〜33%を含有し、残部Ti及び不可避の不純物からなる合金を例示することができる。このTiAl系合金は、所望により、Nb、C、Cr、Si、Mn、V、Mo、Ni、W又はTaの少なくとも一種を添加元素として含有することができる。
As shown in FIG. 3, the turbine wheel (2) has spiral blades (21) arranged at intervals in the circumferential direction, and a boss (22 for joining to the rotor shaft) is arranged on the shaft core. ) Is projected. The boss (22) has a short cylindrical shape and has substantially the same outer diameter as the rotor shaft.
The turbine wheel (2) is made of a TiAl-based alloy, and is produced, for example, by precision casting.
The TiAl-based alloy is an alloy containing Ti as a main constituent element. For example, an alloy containing Al: 28 to 33% by weight%, and the balance Ti and inevitable impurities can be exemplified. The TiAl-based alloy can contain at least one of Nb, C, Cr, Si, Mn, V, Mo, Ni, W, or Ta as an additive element as desired.

ロータシャフト(3)は丸棒状であり、シャフト用材料として一般的に用いられる構造用鋼から作製される。
構造用鋼は、JISに規定された構造用炭素鋼又は構造用合金鋼に含まれる鋼材であって、通常の調質熱処理を施すことにより、ビッカース硬度Hv約300以上、より好ましくはHv約350以上の硬度を得られるものが好適に用いられる。
この種の材料として、SC、SNC、SCr、SCM、SNCM等を例示することができる。
The rotor shaft (3) has a round bar shape and is made of structural steel generally used as a shaft material.
The structural steel is a steel material included in the structural carbon steel or structural alloy steel specified in JIS, and is subjected to a normal tempering heat treatment, whereby a Vickers hardness of about 300 or higher, more preferably about 350, Hv. What can obtain the above hardness is used suitably.
Examples of this type of material include SC, SNC, SCr, SCM, SNCM and the like.

ろう材は、JISに規定されたBNiシリーズの各種ニッケルろう材が用いられる。これらのろう材は、高い高温強度を具えており、液相線温度が約1000℃前後又はそれよりも高温である。   As the brazing material, various nickel brazing materials of the BNi series defined in JIS are used. These brazing materials have high high-temperature strength and a liquidus temperature of about 1000 ° C. or higher.

図2は、タービンホイール(2)とロータシャフト(3)のろう付け部の構造、及び、ろう材(41)を示している。
タービンホイール(2)とロータシャフト(3)の接合界面が平面であると、両者を正確に位置決めすることが困難であり、偏心したままで接合され易い。このため、図示の如く、タービンホイール(2)のボス(22)側にその輪郭と同心円状の凸部(23)を設け、ロータシャフト(3)側にその輪郭と同心円状の凹部(31)を形成し、凸部(23)と凹部(31)が嵌合するようになし、その間に、リング状のろう材(41)を配する構成とすることが好ましい。ろう材(41)は、凸部(23)の外径よりも僅かに大きい内径を有することが好ましい。なお、凸部をロータシャフト側に設け、凹部をタービンホイール側に形成することもできる。
FIG. 2 shows the structure of the brazed portion of the turbine wheel (2) and the rotor shaft (3), and the brazing material (41).
If the joining interface between the turbine wheel (2) and the rotor shaft (3) is a plane, it is difficult to accurately position both of them, and it is easy to join them while being eccentric. For this reason, as shown in the figure, a convex portion (23) concentric with the contour is provided on the boss (22) side of the turbine wheel (2), and a concave portion (31) concentric with the contour is provided on the rotor shaft (3) side. It is preferable that the convex portion (23) and the concave portion (31) are fitted to each other, and a ring-shaped brazing material (41) is disposed therebetween. The brazing material (41) preferably has an inner diameter slightly larger than the outer diameter of the convex portion (23). In addition, a convex part can be provided in the rotor shaft side and a recessed part can also be formed in the turbine wheel side.

次に、図1を参照して、本発明のろう付け方法を説明する。
図1中、(6)は、タービンホイール(2)の赤外線加熱に用いられるゴールドイメージ炉である。タービンホイール(2)とロータシャフト(3)の間にはろう材(41)が配備されており、ロータシャフト(3)の端部が支持台(7)に載置され、タービンホイール(2)がゴールドイメージ炉(6)の加熱チャンバーへ装入される。
使用したゴールドイメージ炉(6)の加熱チャンバーには、金メッキされた放物反射面(61)が複数配備され、該反射面の夫々の焦点位置に、直管型赤外線ランプ(62)が加熱源として配置されており、赤外線ランプ(62)から放射された赤外線光は、放物反射面(61)で反射し、前記放物反射面の他方の焦点に集光する。この他方の焦点位置にタービンホイール(2)が配置されているので、タービンホイール(2)だけが効率良く加熱される。
ろう付け加熱温度は、ろう材の液相線温度以上であり、使用するニッケルろう材の種類に応じて、約1000℃前後又は約1000℃以上の適宜温度が選定される。
Next, the brazing method of the present invention will be described with reference to FIG.
In FIG. 1, (6) is a gold image furnace used for infrared heating of the turbine wheel (2). A brazing material (41) is provided between the turbine wheel (2) and the rotor shaft (3), and the end of the rotor shaft (3) is placed on the support base (7), and the turbine wheel (2) Is charged into the heating chamber of the gold image furnace (6).
In the heating chamber of the used gold image furnace (6), a plurality of gold-plated parabolic reflection surfaces (61) are arranged, and straight tube type infrared lamps (62) are provided as heating sources at the respective focal positions of the reflection surfaces. The infrared light radiated from the infrared lamp (62) is reflected by the parabolic reflection surface (61) and collected at the other focal point of the parabolic reflection surface. Since the turbine wheel (2) is disposed at the other focal position, only the turbine wheel (2) is efficiently heated.
The brazing heating temperature is equal to or higher than the liquidus temperature of the brazing material, and an appropriate temperature of about 1000 ° C. or about 1000 ° C. is selected according to the type of nickel brazing material used.

なお、ろう付け工程では、ろう材と被接合材との間で未接合部が生じないように、タービンホイール(2)の上方から、約2〜8MPa程度の荷重Pを付加して、ろう材と被接合材との密着性を向上させることが好ましい。
また、酸化防止のために、タービンホイール(2)とロータシャフト(3)を、Ar等の不活性ガスで置換した透明な石英管の中に入れ、タービンホイール(2)に対して、石英管の外部から赤外線を照射することが好ましい。なお、赤外線は石英管を透過するので、石英管を設置しても、加熱の妨げにはならない。
In the brazing process, a load P of about 2 to 8 MPa is applied from above the turbine wheel (2) so that an unjoined portion does not occur between the brazing material and the material to be joined. It is preferable to improve the adhesion between the material and the material to be joined.
In order to prevent oxidation, the turbine wheel (2) and the rotor shaft (3) are placed in a transparent quartz tube substituted with an inert gas such as Ar, and the quartz tube is placed against the turbine wheel (2). It is preferable to irradiate infrared rays from the outside. Infrared light passes through the quartz tube, so even if the quartz tube is installed, it does not hinder heating.

図2に示すように、タービンホイール(2)とロータシャフト(3)の間にろう材(41)を配置し、図1に示す如く、ゴールドイメージ炉の中でタービンホイール(2)を赤外線加熱した発明例と、図4に示す如く、ロータシャフト(3)を高周波加熱した特許文献1の比較例について、ろう付け接合後のロータシャフトの硬度を夫々測定した。   As shown in FIG. 2, a brazing material (41) is disposed between the turbine wheel (2) and the rotor shaft (3), and as shown in FIG. 1, the turbine wheel (2) is heated by infrared rays in a gold image furnace. As shown in FIG. 4, the hardness of the rotor shaft after brazing and joining was measured for the inventive example and the comparative example of Patent Document 1 in which the rotor shaft (3) was heated at a high frequency.

タービンホイール(2)は、重量%にて、C:0.07%、Nb:14%、Al:30%、残部Ti及び不可避の不純物からなるTiAl系合金を精密鋳造することにより得た。羽根(21)の部分は外径52mm、ボス(22)は高さ2mm、外径15mm、凸部(23)は高さ3mm、外径3mmである。
ロータシャフト(3)は、重量%にて、C:0.35%、Si:0.2%、Mn:0.7%、Cr:1%、Mo:0.2%、残部Fe及び不可避の不純物からなる構造用鋼(SCM435相当材)であり、外径15mm、長さ100mm、凹部(31)は、内径3.1mm、深さ3.5mmである。
ろう材(41)は、外径15.5mm、内径3.5mm、厚さ0.04mmのリング状で、BNi2(JIS規格)に規定されるニッケルろうを使用した。このろう材の液相線温度は、1024℃である。
The turbine wheel (2) was obtained by precision casting a TiAl alloy composed of C: 0.07%, Nb: 14%, Al: 30%, the balance Ti and unavoidable impurities in weight%. The blade (21) has an outer diameter of 52 mm, the boss (22) has a height of 2 mm, an outer diameter of 15 mm, and the projection (23) has a height of 3 mm and an outer diameter of 3 mm.
The rotor shaft (3) is, by weight%, C: 0.35%, Si: 0.2%, Mn: 0.7%, Cr: 1%, Mo: 0.2%, the remaining Fe and inevitable It is structural steel made of impurities (equivalent to SCM435), and has an outer diameter of 15 mm, a length of 100 mm, and a recess (31) having an inner diameter of 3.1 mm and a depth of 3.5 mm.
As the brazing material (41), a nickel brazing material defined in BNi2 (JIS standard) was used in a ring shape having an outer diameter of 15.5 mm, an inner diameter of 3.5 mm, and a thickness of 0.04 mm. The liquidus temperature of this brazing material is 1024 ° C.

発明例について、ゴールドイメージ炉での赤外線加熱によるろう付けは次の要領にて行なった。
タービンホイールとロータシャフトは、酸化防止のために、Arガスで置換した石英管の中に入れ、石英管外部からタービンホイールのみを局部的に加熱した。
加熱は出力4.8KWで行なった。約2分で1050℃に到達し、その状態で30秒間保持した後、電源を切り、冷却を行なった。ろう付けによる接合状態は良好であった。
About the invention example, the brazing by the infrared heating in a gold image furnace was performed in the following way.
In order to prevent oxidation, the turbine wheel and the rotor shaft were placed in a quartz tube substituted with Ar gas, and only the turbine wheel was locally heated from the outside of the quartz tube.
Heating was performed at an output of 4.8 KW. The temperature reached 1050 ° C. in about 2 minutes, and was kept in that state for 30 seconds, and then the power was turned off and cooling was performed. The joining state by brazing was good.

特許文献1の比較例について、高周波加熱によるろう付けは次の要領にて行なった。
発明例の場合と同様、酸化防止のために、タービンホイールとロータシャフトの周囲を石英管で覆い、石英管の内部をArガスで置換した。石英管の外側に高周波コイルを配備し、該高周波コイルを出力20KWで加熱し、約2分30秒で1050℃に到達した。その状態で30秒間保持した後、電源を切り、冷却を行なった。ろう付けによる接合状態は良好であった。
About the comparative example of patent document 1, brazing by high frequency heating was performed in the following way.
As in the case of the inventive example, in order to prevent oxidation, the periphery of the turbine wheel and the rotor shaft was covered with a quartz tube, and the inside of the quartz tube was replaced with Ar gas. A high frequency coil was disposed outside the quartz tube, and the high frequency coil was heated at an output of 20 KW and reached 1050 ° C. in about 2 minutes and 30 seconds. After holding in that state for 30 seconds, the power was turned off and cooling was performed. The joining state by brazing was good.

ろう付け後のロータシャフトについて、表1に示す各部位を切断し、半径方向の位置において、表面部(表面から軸心方向に向けて約0.2mmの位置)と、中間部(表面と軸心の中間位置)と、軸心部とを、ビッカース硬度計にて夫々3箇所ずつ測定した。表1には、3箇所の測定結果の平均値を記載している。
なお、ロータシャフトのろう付け前の硬度測定結果は、表面部がHv376.3、中間部がHv374.6、軸心部がHv376.8であった。
About the rotor shaft after brazing, each part shown in Table 1 is cut, and at a radial position, a surface part (position of about 0.2 mm from the surface toward the axial center direction) and an intermediate part (surface and shaft). The center position of the core) and the axial center were measured with a Vickers hardness meter at three locations. Table 1 lists the average values of the measurement results at three locations.
As a result of hardness measurement before brazing of the rotor shaft, the surface portion was Hv376.3, the intermediate portion was Hv374.6, and the shaft center portion was Hv376.8.

Figure 2007229792
Figure 2007229792

表1に記載した軸心部の硬度測定結果をプロットしたものを図5に示す。発明例は、軸心部の硬度が約Hv300以上あり、ロータシャフトとして必要の強度を確保できるのに対し、比較例では、接合部から約40mmまでの部分(図5より推定)の硬度が約Hv300よりも小さく、所定の強度を回復させるために、シャフト全体の熱処理が必要となる。   FIG. 5 shows a plot of the hardness measurement results of the shaft center described in Table 1. In the example of the invention, the shaft center has a hardness of about Hv300 or more, and the required strength as a rotor shaft can be secured. In order to recover a predetermined strength that is smaller than Hv300, heat treatment of the entire shaft is required.

本発明の方法は、車両用内燃機関のターボチャージャに用いられるタービンロータの製造工程において、タービンホイールとロータシャフトのろう付け接合に使用することができる。   The method of the present invention can be used for brazing a turbine wheel and a rotor shaft in a manufacturing process of a turbine rotor used for a turbocharger of an internal combustion engine for a vehicle.

赤外線加熱による本発明の接合方法の概要を説明する図である。It is a figure explaining the outline | summary of the joining method of this invention by infrared heating. タービンホイールとロータシャフトのろう付け接合部の一実施例を説明する図である。It is a figure explaining one Example of the brazing junction part of a turbine wheel and a rotor shaft. ロータシャフトとロータシャフトが接合されたタービンロータの概略図である。It is the schematic of the turbine rotor with which the rotor shaft and the rotor shaft were joined. 高周波加熱による従来の接合方法の概要を説明する図である。It is a figure explaining the outline | summary of the conventional joining method by high frequency heating. ろう付け接合後におけるロータシャフトの軸心部の硬度分布を示すグラフである。It is a graph which shows the hardness distribution of the axial center part of a rotor shaft after brazing joining.

符号の説明Explanation of symbols

(2) タービンホイール
(3) ロータシャフト
(6) ゴールドイメージ炉
(41) ろう材
(2) Turbine wheel
(3) Rotor shaft
(6) Gold Image Furnace
(41) Brazing material

Claims (1)

TiAl系合金からなるタービンホイールと、構造用鋼からなるロータシャフトとの間に、ニッケルろうからなるろう材を配置し、ろう材を液相線以上の温度に加熱して溶融させることにより、タービンホイールとロータシャフトとを接合する方法において、タービンホイールに赤外線を照射し、タービンホイールをろう材の液相線以上の温度に赤外線加熱することにより、タービンホイールからの熱伝導によって、接合部に配置したろう材を溶融させることを特徴とする、タービンホイールとロータシャフトの接合方法。   A brazing material made of nickel brazing is arranged between a turbine wheel made of a TiAl-based alloy and a rotor shaft made of structural steel, and the brazing material is heated to a temperature equal to or higher than the liquidus to melt it. In the method of joining the wheel and the rotor shaft, the turbine wheel is irradiated with infrared rays, and the turbine wheel is infrared-heated to a temperature equal to or higher than the liquidus line of the brazing material. A method for joining a turbine wheel and a rotor shaft, wherein the brazing material is melted.
JP2006057288A 2006-03-03 2006-03-03 Method of joining turbine wheel and rotor shaft Active JP4304190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057288A JP4304190B2 (en) 2006-03-03 2006-03-03 Method of joining turbine wheel and rotor shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057288A JP4304190B2 (en) 2006-03-03 2006-03-03 Method of joining turbine wheel and rotor shaft

Publications (2)

Publication Number Publication Date
JP2007229792A true JP2007229792A (en) 2007-09-13
JP4304190B2 JP4304190B2 (en) 2009-07-29

Family

ID=38550906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057288A Active JP4304190B2 (en) 2006-03-03 2006-03-03 Method of joining turbine wheel and rotor shaft

Country Status (1)

Country Link
JP (1) JP4304190B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202544A (en) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd Manufacturing method of rotor, and exhaust turbocharger having the rotor
JP2009297788A (en) * 2008-05-15 2009-12-24 Rolls-Royce Deutschland Ltd & Co Kg Method for manufacturing blisk
CN102046960A (en) * 2008-06-19 2011-05-04 博格华纳公司 Rotor shaft of a turbomachine and method for the production of a rotor of a turbomachine
JP2011196256A (en) * 2010-03-19 2011-10-06 Ihi Corp Rotor and supercharger
FR2958571A1 (en) * 2010-04-09 2011-10-14 Peugeot Citroen Automobiles Sa Assembling two sheet parts e.g. body shell of an automobile vehicle by braze welding, comprises disposing metal wire at seam of parts to be assembled and melting wire using infrared radiation heat source to form solder fillet between parts
US8437628B1 (en) * 2011-07-18 2013-05-07 United Technologies Corporation Method and apparatus of heat treating an integrally bladed rotor
WO2013129410A1 (en) * 2012-02-29 2013-09-06 三菱重工業株式会社 Turbocharger turbine rotor and manufacturing method thereof
CN103945972A (en) * 2011-12-01 2014-07-23 三菱重工业株式会社 Bonded component
US20150104318A1 (en) * 2012-03-29 2015-04-16 Continental Automotive Gmbh Turbine rotor for an exhaust-gas turbine and method for producing the turbine rotor
JP2015535323A (en) * 2012-11-02 2015-12-10 ボーグワーナー インコーポレーテッド Method for manufacturing a turbine rotor
US10753205B2 (en) 2016-04-14 2020-08-25 Ihi Corporation Turbine shaft and turbocharger

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202544A (en) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd Manufacturing method of rotor, and exhaust turbocharger having the rotor
JP2009297788A (en) * 2008-05-15 2009-12-24 Rolls-Royce Deutschland Ltd & Co Kg Method for manufacturing blisk
CN102046960A (en) * 2008-06-19 2011-05-04 博格华纳公司 Rotor shaft of a turbomachine and method for the production of a rotor of a turbomachine
KR101570139B1 (en) * 2008-06-19 2015-11-19 보르그워너 인코퍼레이티드 Rotor Shaft of a Turbomachine and Method for the Production of a Rotor of a Turbomachine
JP2011196256A (en) * 2010-03-19 2011-10-06 Ihi Corp Rotor and supercharger
FR2958571A1 (en) * 2010-04-09 2011-10-14 Peugeot Citroen Automobiles Sa Assembling two sheet parts e.g. body shell of an automobile vehicle by braze welding, comprises disposing metal wire at seam of parts to be assembled and melting wire using infrared radiation heat source to form solder fillet between parts
US8437628B1 (en) * 2011-07-18 2013-05-07 United Technologies Corporation Method and apparatus of heat treating an integrally bladed rotor
CN103945972A (en) * 2011-12-01 2014-07-23 三菱重工业株式会社 Bonded component
US10105778B2 (en) 2011-12-01 2018-10-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Joint part
JP2013181415A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Turbocharger turbine rotor, and manufacturing method thereof
CN104136738A (en) * 2012-02-29 2014-11-05 三菱重工业株式会社 Turbocharger turbine rotor and manufacturing method thereof
WO2013129410A1 (en) * 2012-02-29 2013-09-06 三菱重工業株式会社 Turbocharger turbine rotor and manufacturing method thereof
EP2821618A4 (en) * 2012-02-29 2015-12-23 Mitsubishi Heavy Ind Ltd Turbocharger turbine rotor and manufacturing method thereof
US9556738B2 (en) 2012-02-29 2017-01-31 Mitsubishi Heavy Industries, Ltd. Turbine rotor for supercharger and manufacturing method thereof
US20150104318A1 (en) * 2012-03-29 2015-04-16 Continental Automotive Gmbh Turbine rotor for an exhaust-gas turbine and method for producing the turbine rotor
JP2015535323A (en) * 2012-11-02 2015-12-10 ボーグワーナー インコーポレーテッド Method for manufacturing a turbine rotor
US10753205B2 (en) 2016-04-14 2020-08-25 Ihi Corporation Turbine shaft and turbocharger

Also Published As

Publication number Publication date
JP4304190B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4304190B2 (en) Method of joining turbine wheel and rotor shaft
EP1609948B1 (en) Integrally bladed rotor airfoil fabrication and repair techniques
KR101570139B1 (en) Rotor Shaft of a Turbomachine and Method for the Production of a Rotor of a Turbomachine
EP2676759B1 (en) Turbine rotor, method of manufacturing such turbine rotor, and steam turbine having such turbine rotor
WO2013129408A1 (en) Turbine rotor
CN104379289A (en) Turbine rotor for an exhaust-gas turbine and method for producing the turbine rotor
JP2009056512A (en) Method and related apparatus for joining dissimilar metals
CN102852559B (en) Disk preform, its welding turbine rotor made and the method manufacturing them
CN101172316A (en) High temperature electron beam welding
US20090001142A1 (en) Method for producing a welded rotor of a low-pressure steam turbine
JPH01153217A (en) Method of installing cutter for high alloy tool steel and other to tool support section and tool manufactured by said method
JPWO2008072303A1 (en) Friction welding method, centrifugal gas turbine manufacturing method, and turbocharger manufacturing method
EP3815836B1 (en) Butt welded joint of steel material and method for manufacturing same
JPH10193087A (en) Manufacture of titanium-aluminum-made turbine rotor
US10633731B2 (en) Method for producing enhanced fatigue and tensile properties in integrally bladed rotor forgings
JP2006297474A (en) JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD
JP5686582B2 (en) Axle case manufacturing method
CN101934405A (en) Brazing method
JPS594934A (en) Manufacture of piston ring
JP6493564B2 (en) Friction stir welding method and apparatus
US20100158691A1 (en) Component and Method for Joining Metal Elements
CN113560729B (en) Method of forming single, angled and hourglass shaped welds
JPH01182505A (en) Manufacture of turbine blade
JP2005133795A (en) Method of manufacturing rotor of torque converter, and rotor of torque converter manufactured by the same
JP2007039725A (en) Partial quenching method for boss-fitted work, and quenched boss-fitted component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4304190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350