JP2007229653A - Exhaust gas treatment catalyst - Google Patents

Exhaust gas treatment catalyst Download PDF

Info

Publication number
JP2007229653A
JP2007229653A JP2006056179A JP2006056179A JP2007229653A JP 2007229653 A JP2007229653 A JP 2007229653A JP 2006056179 A JP2006056179 A JP 2006056179A JP 2006056179 A JP2006056179 A JP 2006056179A JP 2007229653 A JP2007229653 A JP 2007229653A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas purification
purification catalyst
compound carrier
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006056179A
Other languages
Japanese (ja)
Other versions
JP4677931B2 (en
Inventor
Masaki Nakamura
雅紀 中村
Hiroto Kikuchi
博人 菊地
Katsuo Suga
克雄 菅
Hironori Wakamatsu
広憲 若松
Hirobumi Yasuda
博文 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006056179A priority Critical patent/JP4677931B2/en
Publication of JP2007229653A publication Critical patent/JP2007229653A/en
Application granted granted Critical
Publication of JP4677931B2 publication Critical patent/JP4677931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treatment catalyst which has catalytic function scarcely deteriorated even by use at a high temperature for a long duration. <P>SOLUTION: The exhaust gas treatment catalyst comprises noble metal particles 1, a compound carrier 2 for carrying the noble metal particles 1, and including members 3 and 4 having different physical properties and including the compound carrier 2 carrying the noble metal particles 1 and parting the included compound carriers 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関から排出される排気ガスを浄化する排気ガス浄化触媒に関する。   The present invention relates to an exhaust gas purification catalyst that purifies exhaust gas discharged from an internal combustion engine.

内燃機関から排出される排気ガス中に含まれる炭化水素系化合物(HC)、一酸化炭素(CO)、窒素酸化物(NO)等の有害物質を除去するために、アルミナ(Al)等の金属酸化物担体に白金(Pt)等の貴金属粒子を担持した排気ガス浄化触媒が広く利用されている。近年、排気ガス規制はますます厳しくなっていて、この排気ガス規制をクリアするために、排気ガス浄化触媒には上記貴金属が多量に用いられている。しかし、この貴金属は、産出量が少ない材料であるため、多量の使用は資源枯渇の観点から望ましくない。 In order to remove harmful substances such as hydrocarbon compounds (HC), carbon monoxide (CO), and nitrogen oxides (NO x ) contained in the exhaust gas discharged from the internal combustion engine, alumina (Al 2 O 3) Exhaust gas purification catalysts in which noble metal particles such as platinum (Pt) are supported on a metal oxide carrier such as) are widely used. In recent years, exhaust gas regulations have become stricter, and in order to satisfy these exhaust gas regulations, a large amount of the above-mentioned noble metals are used in exhaust gas purification catalysts. However, since this noble metal is a material with a small amount of output, a large amount of use is not desirable from the viewpoint of resource depletion.

従来の排気ガス浄化触媒で、貴金属粒子が多量に用いられている理由の一つは、排気ガス浄化触媒の耐久性確保のためである。よって、排気ガス浄化触媒の耐久性を他の手段で確保できれば、排気ガス浄化触媒に用いられる貴金属量を著しく減らすことが可能となる。   One of the reasons why a large amount of noble metal particles is used in the conventional exhaust gas purification catalyst is to ensure the durability of the exhaust gas purification catalyst. Therefore, if the durability of the exhaust gas purification catalyst can be ensured by other means, the amount of noble metal used for the exhaust gas purification catalyst can be significantly reduced.

このような背景から、最近では、OSC(Oxygen Storage Component:酸素吸蔵物質)材として機能するセリウム(Ce)やマンガン(Mn)等の遷移金属又は遷移金属化合物を貴金属粒子近傍に配置し、貴金属粒子周囲の雰囲気変動を遷移金属又は遷移金属化合物によって抑制することにより、貴金属粒子の耐久性を向上させる試みがなされている(特許文献1〜4参照)。なお、このような方法によれば、貴金属粒子の耐久性向上に加えて、貴金属粒子の活性向上も期待することができる。
特開平8−131830号公報 特開2005−000829号公報 特開2005−000830号公報 特開2003−117393号公報
Against this background, recently, transition metals or transition metal compounds such as cerium (Ce) and manganese (Mn) that function as OSC (Oxygen Storage Component) materials are arranged in the vicinity of noble metal particles. Attempts have been made to improve the durability of noble metal particles by suppressing ambient atmosphere fluctuations with transition metals or transition metal compounds (see Patent Documents 1 to 4). In addition, according to such a method, in addition to the improvement in durability of the noble metal particles, an improvement in the activity of the noble metal particles can be expected.
JP-A-8-131830 JP-A-2005-000829 Japanese Patent Laid-Open No. 2005-000830 JP 2003-117393 A

貴金属粒子周囲の雰囲気変動を遷移金属の化合物によって抑制する場合には、貴金属粒子と遷移金属の化合物粒子の双方が微粒子であり、かつ、互いに接触している必要性がある。しかしながら、従来の排気ガス浄化触媒では、貴金属粒子と遷移金属の化合物粒子とを接触させることができても双方が微粒子にならない。又は、微粒子になっても接触させることができないか、接触量が少ない。そのため、貴金属粒子近傍に遷移金属の化合物粒子を設計通りに配置させることは難しい。また、貴金属粒子の耐久性向上を図るためには、貴金属粒子の平均粒子径は2[nm]以上とすることが望ましく、貴金属粒子の活性向上を図るためには、貴金属粒子の平均粒子径は5[nm]以下とすることが望ましい。しかしながら、従来の含浸法を用いて製造された排気ガス浄化触媒は、貴金属粒子の平均粒子径は1[nm]以下になるために、貴金属粒子の耐久性向上や活性向上を期待することは難しい。   In order to suppress the change in atmosphere around the noble metal particles with the transition metal compound, both the noble metal particles and the transition metal compound particles need to be fine particles and in contact with each other. However, in the conventional exhaust gas purification catalyst, even if the noble metal particles and the transition metal compound particles can be brought into contact with each other, neither of them becomes fine particles. Or even if it becomes fine particles, it cannot be contacted or the contact amount is small. Therefore, it is difficult to arrange the transition metal compound particles in the vicinity of the noble metal particles as designed. In order to improve the durability of the noble metal particles, the average particle diameter of the noble metal particles is desirably 2 [nm] or more. In order to improve the activity of the noble metal particles, the average particle diameter of the noble metal particles is 5 [nm] or less is desirable. However, the exhaust gas purifying catalyst manufactured by using the conventional impregnation method has an average particle diameter of noble metal particles of 1 [nm] or less, so it is difficult to expect improvement in durability and activity of noble metal particles. .

また、遷移金属の化合物は、金属酸化物担体として広く利用されているアルミナと固溶し易いために、遷移金属の化合物を貴金属粒子近傍に単に配置しただけでは貴金属粒子の活性向上効果は得られ難い。なお、このような問題を解決するために、遷移金属の化合物と固溶しない担体上に遷移金属の化合物を担持する排気ガス浄化触媒が考えられてはいるが、この排気ガス浄化触媒では、高温雰囲気下において遷移金属の化合物が移動し、遷移金属の化合物同士が接触することによって遷移金属の化合物が凝集してしまう。また、遷移金属の化合物の凝集を防止するために、逆ミセル法を利用して表面積が大きい遷移金属の化合物粒子を製造する方法も考えられるが、この方法では有機溶媒を使用するために製造コストや環境負荷が大きい。   In addition, since transition metal compounds are easily dissolved in alumina, which is widely used as a metal oxide support, simply placing the transition metal compound in the vicinity of the noble metal particles can improve the activity of the noble metal particles. hard. In order to solve such a problem, an exhaust gas purification catalyst that supports a transition metal compound on a carrier that does not form a solid solution with the transition metal compound has been considered. When the transition metal compound moves in the atmosphere and the transition metal compounds come into contact with each other, the transition metal compound aggregates. In order to prevent agglomeration of the transition metal compound, a method of producing transition metal compound particles having a large surface area by using the reverse micelle method may be considered. However, in this method, an organic solvent is used. And environmental load is large.

上記課題を有利に解決する本発明の排気ガス浄化用触媒は、貴金属粒子と、この貴金属粒子を担持する化合物担体と、この貴金属粒子を担持した当該化合物担体を内包し、この内包された化合物担体同士を離隔する包接材とを有し、かつ、前記包接材は、物理的性状の異なる2種以上の材料からなることを要旨とする。   The exhaust gas purifying catalyst of the present invention that advantageously solves the above problems includes noble metal particles, a compound carrier that supports the noble metal particles, and the compound carrier that supports the noble metal particles. The inclusion material that separates each other, and the inclusion material is made of two or more kinds of materials having different physical properties.

本発明に係る排気ガス浄化触媒によれば、貴金属粒子の凝集を抑制して、長期間にわたり貴金属粒子の活性向上効果を維持することができる。   According to the exhaust gas purification catalyst of the present invention, it is possible to suppress the aggregation of noble metal particles and maintain the activity improvement effect of the noble metal particles for a long period of time.

図1は、本発明の第一の実施形態となる排気ガス浄化用触媒の模式図である。同図に示す排気ガス浄化用触媒は、触媒活性を有する貴金属粒子1を備え、この貴金属粒子1は、化合物担体2に担持されている。この貴金属粒子1を担持した化合物担体2を包むように、包接材3と包接材4とからなる包接材が重ねて形成されている。この包接材3及び包接材4は、化合物担体2を内包するとともに、この内包された化合物担体2同士を離隔している。なお、図1では、包接材3及び包接材4が、一個の化合物担体2を包んでいる例を図示しているが、複数個の化合物担体2のユニットを、包接材3及び包接材4が包むように形成することもできる。また、図1では、包接材3及び包接材4の2種の包接材が形成されているが、3種以上の包接材を形成することも可能である。   FIG. 1 is a schematic view of an exhaust gas purifying catalyst according to a first embodiment of the present invention. The exhaust gas purifying catalyst shown in the figure includes noble metal particles 1 having catalytic activity, and the noble metal particles 1 are supported on a compound carrier 2. An enclosure material composed of an enclosure material 3 and an enclosure material 4 is formed so as to wrap around the compound carrier 2 carrying the noble metal particles 1. The inclusion material 3 and the inclusion material 4 include the compound carrier 2 and separate the included compound carriers 2 from each other. In FIG. 1, an example in which the inclusion material 3 and the inclusion material 4 enclose one compound carrier 2 is illustrated. However, a plurality of compound carrier 2 units are included in the inclusion material 3 and the encapsulation material 3. It can also form so that the contact material 4 may wrap. In FIG. 1, two types of inclusion materials, that is, the inclusion material 3 and the inclusion material 4, are formed. However, three or more types of inclusion materials can be formed.

図1に示した本実施形態の排気ガス浄化触媒は、貴金属粒子1が化合物担体2に担持されていることから、貴金属粒子1は化合物担体2に化学的に結合される。これにより貴金属粒子1の移動を化学的に抑制することができる。また、貴金属粒子1が包接材3及び包接材4で覆われることにより、貴金属粒子1の移動を物理的に抑制することができる。これらのことから、貴金属粒子1の凝集が抑制され、排気ガス浄化触媒の耐久性を向上させることができる。   In the exhaust gas purification catalyst of the present embodiment shown in FIG. 1, the noble metal particles 1 are chemically bonded to the compound carrier 2 because the noble metal particles 1 are supported on the compound carrier 2. Thereby, the movement of the noble metal particles 1 can be chemically suppressed. Moreover, the movement of the noble metal particles 1 can be physically suppressed by covering the noble metal particles 1 with the enclosure material 3 and the enclosure material 4. From these things, aggregation of the noble metal particle 1 is suppressed and durability of the exhaust gas purification catalyst can be improved.

更に、貴金属粒子1を担持した化合物担体2が、包接材としての包接材3及び包接材4で覆われることにより、包接材3及び包接材4が、いわば化合物担体2間の壁材の役割を果し、化合物担体2同士を離隔して凝集を抑制することができる。この化合物担体2の凝集の抑制によってもまた、化合物担体2に担持された貴金属粒子1の凝集が抑制されるので、排気ガス浄化触媒の耐久性をいっそう向上させることができる。   Furthermore, the compound carrier 2 carrying the noble metal particles 1 is covered with the clathrate 3 and the clathrate 4 as the clathrate, so that the clathrate 3 and the clathrate 4 are so-called between the compound carriers 2. It plays the role of a wall material and can separate the compound carriers 2 from each other to suppress aggregation. The suppression of the aggregation of the compound carrier 2 also suppresses the aggregation of the noble metal particles 1 supported on the compound carrier 2, so that the durability of the exhaust gas purification catalyst can be further improved.

上述した包接材に求められる機能には、第一に貴金属粒子1を担持した化合物担体2の凝集を抑える壁材の機能、第二に貴金属粒子1を担持した化合物担体2の移動を抑えて保持する機能、第三にガスを拡散させ、貴金属粒子に排気ガスを送る機能がある。上記第一の機能、すなわち、壁材の機能のためには、包接材は、耐熱性の高い材料が良い。また、上記第二の機能、すなわち、ガスを拡散させ、貴金属粒子1に排気ガスを送る機能のためには、包接材は、貴金属粒子1を担持した化合物担体2を確実に包み込むことができる材料が良い。   The functions required for the above-mentioned clathrate include firstly the function of a wall material that suppresses the aggregation of the compound carrier 2 carrying the noble metal particles 1 and secondly the movement of the compound carrier 2 that carries the noble metal particles 1. There is a function of holding, and thirdly, a function of diffusing gas and sending exhaust gas to the noble metal particles. For the first function, that is, the function of the wall material, the packaging material is preferably a material having high heat resistance. Further, for the second function, that is, the function of diffusing gas and sending the exhaust gas to the noble metal particles 1, the inclusion material can surely enclose the compound carrier 2 carrying the noble metal particles 1. Good material.

この包接材を構成する包接材3及び包接材4に用いることができる材料には、例えば、AlやZrO等の金属酸化物、又はこれらの金属酸化物を含有する複合酸化物がある。これらの包接材材料は、その結晶粒子径やアスペクト比、結晶構造によって、耐熱性や、担体の包み込み性、ガス拡散性に差異が生じる。 Examples of materials that can be used for the clathrate 3 and the clathrate 4 constituting the clathrate include metal oxides such as Al 2 O 3 and ZrO 2 , or composites containing these metal oxides. There is an oxide. These clathrate materials differ in heat resistance, carrier enveloping property, and gas diffusibility depending on their crystal particle diameter, aspect ratio, and crystal structure.

耐熱性が高く、上記壁材の機能に適する包接材材料は、結晶粒子径が大きく、又はアスペクト比の小さい(塊状)ものである。また、担体の包み込み性が高く、上記保持機能に適する包接材材料は、結晶粒子径が小さく、又はアスペクト比の大きい(繊維状)のものである。よって、この二つの機能に応える材料は相反するものであり、包接材としては、どちらの機能も満たすようにバランスさせる必要がある。   A clathrate material having high heat resistance and suitable for the function of the wall material has a large crystal particle diameter or a small aspect ratio (lumps). In addition, a packaging material having a high carrier wrapping property and suitable for the holding function is a material having a small crystal particle diameter or a large aspect ratio (fibrous). Therefore, materials that satisfy these two functions are contradictory, and it is necessary to balance the inclusion material so that both functions are satisfied.

そこで、本発明の排気ガス浄化用触媒は、包接材が物理的性状(例えば、結晶粒子径、アスペクト、結晶構造)の異なる2種以上の材料からなることにより、上掲した包接材に求められる諸機能を、高い次元で両立させるものである。   Therefore, the exhaust gas purifying catalyst of the present invention is the same as the above-mentioned clathrate material because the clathrate material is made of two or more kinds of materials having different physical properties (for example, crystal particle diameter, aspect, crystal structure). Various functions required are made compatible at a high level.

図1に示した本実施形態の排気ガス浄化触媒では、貴金属粒子1を担持した化合物担体2を包むように重ねて形成された包接材3および包接材4のうち、包接材3は針状の包接材、遠い側の包接材4は塊状の包接材であり、化合物担体2に近い側の包接材3が遠い側の包接材4よりも粒子のアスペクト比が大きい形状を有している。この包接材3は
針状であるためにガス拡散性が高く、かつ、貴金属粒子1を担持した化合物担体2を包み込む機能に優れている。また、包接材4は、塊状であるため、ガス拡散性は針状の包接材3より低いが、耐熱性に優れている。これらの包接材3及び包接材4を有する本実施形態の排気ガス浄化触媒は、包接材3による優れた包み込み機能と、包接材4による優れた耐熱性という、各包接材の優れた特性が発揮され、高い触媒活性を有する排気ガス浄化触媒となる。
In the exhaust gas purifying catalyst of the present embodiment shown in FIG. 1, among the enclosure material 3 and the enclosure material 4 formed so as to wrap the compound carrier 2 carrying the noble metal particles 1, the enclosure material 3 is a needle. And the far side clathrate 4 is a massive clathrate, and the clathrate 3 nearer to the compound carrier 2 has a larger aspect ratio of particles than the far side clathrate 4 have. Since the inclusion material 3 has a needle shape, the gas diffusibility is high, and the function of enclosing the compound carrier 2 carrying the noble metal particles 1 is excellent. Moreover, since the enclosure material 4 is a block shape, although gas diffusibility is lower than the needle-like enclosure material 3, it is excellent in heat resistance. The exhaust gas purifying catalyst of the present embodiment having these inclusion material 3 and inclusion material 4 has an excellent wrapping function by the inclusion material 3 and excellent heat resistance by the inclusion material 4. The exhaust gas purifying catalyst having excellent characteristics and high catalytic activity is obtained.

図2は、本発明の排気ガス浄化触媒の第二の実施形態の模式図である。図2に示した本実施形態の排気ガス浄化触媒は、貴金属粒子1を担持した化合物担体2を包むように重ねて形成された包接材として、結晶粒子径の小さな包接材5と、この包接材5よりも結晶粒子径の大きな包接材6とを備えている。結晶粒子径の小さな包接材5は、貴金属粒子1を担持した化合物担体2を包み込む機能に優れている。また、結晶粒子径の大きな包接材6は、耐熱性に優れている。これらの包接材5及び包接材6を有する本実施形態の排気ガス浄化触媒は、包接材5による優れた包み込み機能と、包接材6による優れた耐熱性という、各包接材の優れた特性が発揮され、高い触媒活性を有する排気ガス浄化触媒となる。   FIG. 2 is a schematic view of a second embodiment of the exhaust gas purification catalyst of the present invention. The exhaust gas purification catalyst of the present embodiment shown in FIG. 2 includes a clathrate 5 having a small crystal particle diameter as a clathrate formed so as to wrap the compound carrier 2 carrying the noble metal particles 1, And an inclusion material 6 having a crystal grain size larger than that of the contact material 5. The inclusion material 5 having a small crystal particle diameter has an excellent function of enclosing the compound carrier 2 carrying the noble metal particles 1. Moreover, the clathrate 6 with a large crystal particle diameter is excellent in heat resistance. The exhaust gas purifying catalyst of the present embodiment having these enclosure material 5 and enclosure material 6 has an excellent enveloping function by the enclosure material 5 and excellent heat resistance by the enclosure material 6. The exhaust gas purifying catalyst having excellent characteristics and high catalytic activity is obtained.

次に、本発明の排気ガス浄化触媒の第三の実施形態として、貴金属粒子1を担持した化合物担体2を包むように重ねて形成された包接材が、互いに結晶構造の異なるものとすることができる。包接材に用いられるAlには、α−Alやγ−Alのように結晶構造の異なるものが存在する。α−Alは、γ−Alよりも耐熱性が高い。したがって、包接材として、化合物担体2に近い側にγ−Alが配設され、化合物担体2に遠い側にα−Alが配設されるように重ねて形成することにより、高い触媒活性を有する排気ガス浄化触媒が得られる。 Next, as a third embodiment of the exhaust gas purifying catalyst of the present invention, the clathrate formed so as to wrap the compound carrier 2 carrying the noble metal particles 1 has different crystal structures from each other. it can. Al 2 O 3 used for the clathrate has different crystal structures such as α-Al 2 O 3 and γ-Al 2 O 3 . α-Al 2 O 3 has higher heat resistance than γ-Al 2 O 3 . Accordingly, the clathrate is formed so that γ-Al 2 O 3 is disposed on the side close to the compound carrier 2 and α-Al 2 O 3 is disposed on the side far from the compound carrier 2. As a result, an exhaust gas purification catalyst having high catalytic activity can be obtained.

また、包接材に用いられるZrOには、斜方晶ZrOと立方晶ZrOとが存在する。立方晶ZrOは、斜方晶ZrOよりも耐熱性が高い。したがって、包接材として、化合物担体2に近い側に斜方晶ZrOが配設され、化合物担体2に遠い側に立方晶ZrOが配設されるように重ねて形成することにより、高い触媒活性を有する排気ガス浄化触媒が得られる。 In addition, orthorhombic ZrO 2 and cubic ZrO 2 exist in ZrO 2 used for the inclusion material. Cubic ZrO 2 has higher heat resistance than orthorhombic ZrO 2 . Therefore, by forming the clathrate so that orthorhombic ZrO 2 is disposed on the side closer to the compound carrier 2 and cubic ZrO 2 is disposed on the side far from the compound carrier 2, An exhaust gas purification catalyst having catalytic activity is obtained.

次に、本発明の排気ガス浄化触媒の第四の実施形態として、貴金属粒子1を担持した化合物担体2を包むように重ねて形成された包接材が、互いに組成の異なるものとすることができる。例えば、包接材が、AlやZrOといったAl及びZrから選ばれる少なくとも1種の酸化物、又はこのAl及びZrから選ばれる少なくとも1種の酸化物に、更にCe、La、Zr、Ti及びSiから選ばれる少なくとも1種を含有する酸化物とすることができる。 Next, as a fourth embodiment of the exhaust gas purification catalyst of the present invention, the clathrate formed so as to wrap the compound carrier 2 carrying the noble metal particles 1 can have a different composition. . For example, the clathrate is at least one oxide selected from Al and Zr, such as Al 2 O 3 and ZrO 2 , or at least one oxide selected from Al and Zr, and Ce, La, Zr An oxide containing at least one selected from Ti and Si can be used.

上記包接材の酸化物を化学式で示すと、A又は[X]となる。ここに、[X]は、Ce、La、Zr、Ti及びSiから選ばれる少なくとも1種、Aは、Al又はZrから選ばれる1種、Oは酸素であり、添字のx、a、yで表される原子数は任意である。包接材の具体的な例としては、Al、Ce−Al、Zr−Al、La−Al、(Ce,Zr)−Al、ZrO、Ce−ZrO、La−ZrO、(Ce,Zr)−ZrOなどがあり、また、このAlについては、α−Alやγ−Alなどが、このZrOについては、斜方晶ZrOや立方晶ZrOがある。 When the oxide of the inclusion material is represented by a chemical formula, it becomes A a O y or [X] x A a O y . Here, [X] is at least one selected from Ce, La, Zr, Ti, and Si, A is one selected from Al or Zr, O is oxygen, and the subscripts x, a, and y The number of atoms represented is arbitrary. Specific examples of the inclusion material include Al 2 O 3 , Ce—Al 2 O 3 , Zr—Al 2 O 3 , La—Al 2 O 3 , (Ce, Zr) —Al 2 O 3 , ZrO 2. , Ce-ZrO 2 , La-ZrO 2 , (Ce, Zr) -ZrO 2, etc., and for this Al 2 O 3 , α-Al 2 O 3 , γ-Al 2 O 3, etc. ZrO 2 includes orthorhombic ZrO 2 and cubic ZrO 2 .

互いに組成の異なる包接材の組み合わせには、酸化物の組成の一部を同じくするもの(例えば、アルミナ系酸化物同士、ジルコニア系酸化物同士)を用いることができるが、一方の包接材がアルミナ系の酸化物、他方の包接材がジルコニア系の酸化物という組み合わせも可能である。   For the combination of clathrates having different compositions, ones having the same oxide composition (for example, alumina oxides and zirconia oxides) can be used. Can be combined with alumina oxide and the other clathrate is zirconia oxide.

[X]で示される成分のうち、Ce、La及びZrは、Alの耐熱性を向上させる成分である。また、このCe、Laは、ZrOの耐熱性を向上させる成分でもある。したがって、これらの成分を含有する酸化物は、化合物担体を包むように重ねて形成した包接材のうち、化合物担体に遠い側の包接材の材料に用いて好適である。 Among the components represented by [X], Ce, La, and Zr are components that improve the heat resistance of Al 2 O 3 . Further, Ce and La are also components that improve the heat resistance of ZrO 2 . Therefore, the oxide containing these components is suitable for use as the material of the clathrate on the side far from the compound carrier among the clathrate formed so as to wrap the compound carrier.

化合物担体を包むように重ねて形成した包接材のうち、耐熱性の高い材料は、化合物担体に遠い側の包接材の材料に用いて好適である。耐熱性の高い材料を化合物担体に遠い側の包接材の材料に用いることにより、貴金属粒子1を担持した化合物担体2の凝集を、効果的に抑制することができるからである。   Of the clathrate formed so as to wrap around the compound carrier, a material having high heat resistance is suitable for use as a clathrate material far from the compound carrier. This is because aggregation of the compound carrier 2 carrying the noble metal particles 1 can be effectively suppressed by using a material having high heat resistance as the material of the clathrate on the side far from the compound carrier.

包接材の物理的性状に関し、平均結晶粒子径の大きい材料は、平均結晶粒子径の小さい材料よりも耐熱性が高いので、図2に図示したように、化合物担体2を覆って形成され、化合物担体2に近い側の包接材が平均結晶粒子径の小さい包接材5であり、この包接材5の周囲を覆って形成され、化合物担体2に遠い側の包接材が平均結晶粒子径の大きな包接材6であることが好ましい。   With respect to the physical properties of the clathrate, the material having a large average crystal particle diameter has higher heat resistance than the material having a small average crystal particle diameter, so that it is formed so as to cover the compound carrier 2 as shown in FIG. The clathrate on the side close to the compound carrier 2 is the clathrate 5 having a small average crystal particle diameter, and the clathrate on the side far from the compound carrier 2 is formed so as to cover the circumference of the clathrate 5. The inclusion material 6 having a large particle diameter is preferable.

また、アスペクト比の小さいな包接材は、アスペクト比の大きな包接材よりも耐熱性が高いので、図1に図示したように、化合物担体2を覆って形成され、化合物担体2に近い側の包接材がアスペクト比の大きい包接材3であり、この包接材3の周囲を覆って形成され、化合物担体2に遠い側の包接材がアスペクト比の小さい包接材4であることが好ましい。   In addition, since the clathrate having a small aspect ratio has higher heat resistance than the clathrate having a large aspect ratio, it is formed so as to cover the compound carrier 2 as shown in FIG. The clathrate 3 is a clathrate 3 having a large aspect ratio. The clathrate 4 is formed so as to cover the periphery of the clathrate 3, and the clathrate far from the compound carrier 2 is the clathrate 4 having a small aspect ratio. It is preferable.

さらに、包接材の結晶構造に関しては、α−アルミナのほうがγ−アルミナよりも耐熱性が高いので、化合物担体2に近い側の包接材がγ−アルミナ又はγ−アルミナを含む包接材であり、化合物担体2に遠い側の包接材がα−アルミナ又はα−アルミナを含む包接材であることが好ましい。   Furthermore, regarding the crystal structure of the clathrate, α-alumina has higher heat resistance than γ-alumina, so that the clathrate close to the compound carrier 2 contains γ-alumina or γ-alumina. It is preferable that the clathrate on the side far from the compound carrier 2 is clathrate containing α-alumina or α-alumina.

また、立方晶ZrOが斜方晶ZrOよりも耐熱性が高いので、化合物担体2に近い側の包接材が斜方晶ZrO又は斜方晶ZrOを含む包接材であり、化合物担体2に遠い側の包接材が立方晶ZrO又は立方晶ZrOを含む包接材であることが好ましい。 Further, since cubic ZrO 2 has higher heat resistance than orthorhombic ZrO 2 , the inclusion material on the side close to compound carrier 2 is an inclusion material containing orthorhombic ZrO 2 or orthorhombic ZrO 2 , It is preferable that the clathrate on the side far from the compound carrier 2 is a clathrate containing cubic ZrO 2 or cubic ZrO 2 .

包接材に内包される化合物担体2は、少なくともCeを含む酸化物であることが好ましい。CeはOSC材として機能し、貴金属粒子1の近傍に配設することにより、この貴金属粒子1の耐久性を向上させることができるためである。もっとも、本発明の排気ガス浄化触媒の化合物担体2は、Ceを含む酸化物に限定されるものではない。このCeを含む酸化物には、例えばCe−Zr−O、Ce−Nd−O、Ce−Pr−O等がある。 The compound carrier 2 encapsulated in the inclusion material is preferably an oxide containing at least Ce. This is because Ce functions as an OSC material, and the durability of the noble metal particle 1 can be improved by disposing it in the vicinity of the noble metal particle 1. However, the compound carrier 2 of the exhaust gas purification catalyst of the present invention is not limited to the oxide containing Ce. Examples of the oxide containing Ce include Ce—Zr—O x , Ce—Nd—O x , and Ce—Pr—O x .

化合物担体2に担持される貴金属粒子1は、Ptであることが好ましい。本発明の排気ガス浄化触媒は、貴金属粒子1がPtであり、化合物担体2がCeを含む酸化物である系の場合に効果が著しいからである。もっとも、本発明の排気ガス浄化触媒は、貴金属粒子1がPtに限定されるものではない。   The noble metal particles 1 supported on the compound carrier 2 are preferably Pt. This is because the exhaust gas purifying catalyst of the present invention is remarkably effective when the noble metal particle 1 is Pt and the compound carrier 2 is an oxide containing Ce. However, in the exhaust gas purification catalyst of the present invention, the noble metal particles 1 are not limited to Pt.

本発明の排気ガス浄化触媒における包接材の好適な組み合わせの例としては、包接材が、結晶粒子径の異なる複数のAlよりなり、一方のAlの結晶粒子径が10nm未満、他方のAlの結晶粒子径が10nm以上のものである。平均結晶粒子径が10nm未満のAlが貴金属粒子1を担持した化合物担体2を保持する機能が高く、平均結晶粒子径が10nm以上のものは耐熱性が高い。他方のAlの望ましい結晶粒子径は、20nm以上である。 Examples of suitable combinations of enclosure materials in the exhaust gas purifying catalyst of the present invention, enclosure material is made of a plurality of Al 2 O 3 having different crystal grain size, the crystal grain size of the one Al 2 O 3 The crystal particle diameter of the other Al 2 O 3 is less than 10 nm and 10 nm or more. Al 2 O 3 having an average crystal particle diameter of less than 10 nm has a high function of holding the compound carrier 2 supporting the noble metal particles 1, and those having an average crystal particle diameter of 10 nm or more have high heat resistance. The desirable crystal particle diameter of the other Al 2 O 3 is 20 nm or more.

本発明の排気ガス浄化触媒における包接材の好適な組み合わせの別の例としては、包接材が、アスペクト比の異なる複数のAlよりなり、一方のAlのアスペクト比が2.0以上、他方のAlのアスペクト比が0.8〜1.2のものである。アスペクト比が2.0以上のAlが貴金属粒子1を担持した化合物担体2を保持する機能が高く、アスペクト比が0.8〜1.2ものは耐熱性が高い。一方のAlの望ましいアスペクト比は3.0以上、他方のAlの望ましいアスペクト比は、0.9〜1.1である。なお、化合物担体2のアスペクト比は、電子顕微鏡による粒子形状の観察から、求めることができる。 Another example of a suitable combination of enclosure materials in the exhaust gas purifying catalyst of the present invention, enclosure material is made of a plurality of Al 2 O 3 having different aspect ratios, the aspect ratio of one of Al 2 O 3 2.0 or more, and the other Al 2 O 3 has an aspect ratio of 0.8 to 1.2. Al 2 O 3 having an aspect ratio of 2.0 or more has a high function of holding the compound carrier 2 carrying the noble metal particles 1, and those having an aspect ratio of 0.8 to 1.2 have high heat resistance. Desirable aspect ratio of one of Al 2 O 3 is 3.0 or more, preferably the aspect ratio of the other Al 2 O 3 is 0.9 to 1.1. The aspect ratio of the compound carrier 2 can be determined from observation of the particle shape with an electron microscope.

本発明の排気ガス浄化触媒は、更に、Co、Mn、Fe、Ni、Mg、Ca、Ba、Na、Cs及びRbから選ばれる少なくとも1種を含有することができる。これらの成分は、排気ガス浄化触媒に含有させることにより、貴金属粒子の活性を更に向上させることができる。   The exhaust gas purification catalyst of the present invention can further contain at least one selected from Co, Mn, Fe, Ni, Mg, Ca, Ba, Na, Cs and Rb. By containing these components in the exhaust gas purification catalyst, the activity of the noble metal particles can be further improved.

以上述べた排気ガス浄化触媒は、耐火性無機基材の壁面に触媒層として被覆形成され、使用に供される。   The exhaust gas purification catalyst described above is coated on the wall surface of a refractory inorganic base material as a catalyst layer and is used.

〔実施例1〕
実施例1は、包接材にアスペクト比の異なる2種類のアルミナを用いた例である。
[Example 1]
Example 1 is an example in which two types of alumina having different aspect ratios are used for the inclusion material.

平均粒子径が20nmのCeOゾル水溶液にジニトロジアミン白金水溶液を入れ、一昼夜攪拌した。また、平均アスペクト比3.3(縦15nm、横50nm)のベーマイトアルミナを水中に分散させ、硝酸を入れて邂逅した。この邂逅後の液中に、前述したCeOゾル水溶液とジニトロジアミン白金水溶液との混合液を投入し、3時間攪拌した。次いで、エバポレータ中で減圧乾燥した後、120℃の乾燥機中で乾燥した。更に400℃、空気中で焼成し、Pt/CeO/Al触媒粉末を得た。 A dinitrodiamine platinum aqueous solution was put into a CeO 2 sol aqueous solution having an average particle size of 20 nm, and stirred for a whole day and night. In addition, boehmite alumina having an average aspect ratio of 3.3 (length 15 nm, width 50 nm) was dispersed in water, and nitric acid was added to the mixture. The mixed solution of the CeO 2 sol aqueous solution and the dinitrodiamine platinum aqueous solution described above was put into the liquid after this stirring and stirred for 3 hours. Subsequently, after drying under reduced pressure in an evaporator, it was dried in a dryer at 120 ° C. Further, it was calcined in the air at 400 ° C. to obtain a Pt / CeO 2 / Al 2 O 3 catalyst powder.

得られたPt/CeO/Al触媒粉末を水中に分散し、超音波をかけた。この液中にPVP(ポリビニルピロリドン)を入れ、さらに超音波をかけてPt/CeO/Alコロイドを得た。また、平均アスペクト比1.1(縦30nm、横35nm)のベーマイトアルミナを水中に分散し、硝酸を入れて邂逅した。この邂逅後の液中に、前述したコロイドを入れ、3時間攪拌した。次いで、エバポレータ中で減圧乾燥した後、120℃の乾燥機中で乾燥した。更に、400℃、空気中で焼成し、Pt/CeO/Al/Al触媒粉末を得た。 The obtained Pt / CeO 2 / Al 2 O 3 catalyst powder was dispersed in water and subjected to ultrasonic waves. PVP (polyvinylpyrrolidone) was put into this liquid, and ultrasonic waves were further applied to obtain a Pt / CeO 2 / Al 2 O 3 colloid. In addition, boehmite alumina having an average aspect ratio of 1.1 (length 30 nm, width 35 nm) was dispersed in water, and nitric acid was added to the mixture. The colloid described above was placed in the liquid after this stirring and stirred for 3 hours. Subsequently, after drying under reduced pressure in an evaporator, it was dried in a dryer at 120 ° C. Furthermore, it baked in the air at 400 ° C. to obtain a Pt / CeO 2 / Al 2 O 3 / Al 2 O 3 catalyst powder.

このPt/CeO/Al/Al触媒粉末225g、アルミナゾル25g、水240g、硝酸10gを磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。この触媒スラリーをコーデェライト質モノリス基材(0.12L、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層200g/Lの触媒層を得た。 225 g of this Pt / CeO 2 / Al 2 O 3 / Al 2 O 3 catalyst powder, 25 g of alumina sol, 240 g of water, and 10 g of nitric acid were charged into a magnetic ball mill and mixed and pulverized to obtain a catalyst slurry. This catalyst slurry was attached to a cordierite monolith substrate (0.12 L, 400 cells), excess slurry in the cells was removed by air flow and dried at 130 ° C., and then calcined at 400 ° C. for 1 hour. A catalyst layer having a coat layer of 200 g / L was obtained.

この実施例1に用いられた、アスペクト比の異なる2種類のベーマイトの粒子形状を、図3に顕微鏡組織写真で示す。図3(a)は、平均アスペクト比が1.1のベーマイトを示していて、同図(b)は、平均アスペクト比が3.3のベーマイトを示している。また、この平均アスペクト比3.3のベーマイトアルミナを焼成して得たAlと、平均アスペクト比1.1のベーマイトアルミナを焼成して得たAlとについて、焼成後の諸特性及び耐久試験の前後によるBET表面積変化を調べた結果を表1に示す。
The particle shapes of two types of boehmite with different aspect ratios used in Example 1 are shown in a micrograph in FIG. 3A shows boehmite having an average aspect ratio of 1.1, and FIG. 3B shows boehmite having an average aspect ratio of 3.3. Also, for, Al 2 O 3, based on obtained by firing the boehmite alumina of the average aspect ratio 3.3,, Al 2 O 3, based on obtained by firing the boehmite alumina having an average aspect ratio of 1.1, after firing various Table 1 shows the results of examining the BET surface area change before and after the characteristics and durability test.

表1から、平均アスペクト比1.1のものは、平均アスペクト比3.3のものに比べて、耐久試験前後でのBET表面積維持率、細孔容積維持率が高く、細孔径がさほど広がっていないことから、アスペクト比の小さいもののほうが、耐熱性が高いとわかる。また、このアスペクト比の小さいものの方が、細孔径、細孔容積の数値が共に高く、ガス拡散性が高いことがわかる。   From Table 1, those with an average aspect ratio of 1.1 have higher BET surface area maintenance ratio and pore volume maintenance ratio before and after the durability test than those with an average aspect ratio of 3.3, and the pore diameter is much wider. From this, it can be seen that the one with a smaller aspect ratio has higher heat resistance. It can also be seen that the smaller aspect ratio has higher pore diameter and pore volume values and higher gas diffusibility.

〔実施例2〕
実施例2は、包接材に結晶粒径の異なる2種類のアルミナを用いた例である。この包接材に用いたベーマイトのアスペクト比は1.1である。また、実施例1で説明した工程中、先に投入したベーマイトを結晶粒子径8nmとし、後に投入したベーマイトを結晶子径20nmのものとした。それ以外の工程は実施例1と同じである。なお、ここで言う結晶粒子径とは、Alに焼成した後の結晶粒子径のことを指す。
[Example 2]
Example 2 is an example in which two types of alumina having different crystal grain sizes were used for the inclusion material. The aspect ratio of boehmite used for this inclusion material is 1.1. In addition, during the process described in Example 1, the boehmite introduced first had a crystal particle diameter of 8 nm, and the boehmite introduced later had a crystallite diameter of 20 nm. The other steps are the same as those in Example 1. Note that the crystal grain size referred to herein, refers to a crystal grain size after firing the Al 2 O 3.

〔実施例3〕
実施例3は、包接材に結晶構造の異なる2種類のアルミナを用いた例である。
Example 3
Example 3 is an example in which two types of alumina having different crystal structures are used for the inclusion material.

平均粒子径が20nmのCeOゾル水溶液にジニトロジアミン白金水溶液を入れ、一昼夜攪拌した。また、平均アスペクト比3.3(縦15nm、横50nm)のベーマイトアルミナを水中に分散させ、硝酸を入れて邂逅した。この邂逅後の液中に、前述したCeOゾル水溶液とジニトロジアミン白金水溶液との混合液を投入し、3時間攪拌した。次いで、エバポレータ中で減圧乾燥した後、120℃の乾燥機中で乾燥した。更に400℃、空気中で焼成し、Pt/CeO/Al触媒粉末を得た。(このAlはγ相である)
得られたPt/CeO/Al触媒粉末を水中に分散し、超音波をかけた。この液中にPVP(ポリビニルピロリドン)を入れ、さらに超音波をかけてPt/CeO/Alコロイドを得た。また、α−アルミナを水中に分散した。このα−アルミナが分散した液中に、前述したコロイドを入れ、3時間攪拌した。次いで、エバポレータ中で減圧乾燥した後、120℃の乾燥機中で乾燥した。更に、400℃、空気中で焼成し、Pt/CeO/γ−Al/α−Al触媒粉末を得た。
A dinitrodiamine platinum aqueous solution was put into a CeO 2 sol aqueous solution having an average particle size of 20 nm, and stirred for a whole day and night. In addition, boehmite alumina having an average aspect ratio of 3.3 (length 15 nm, width 50 nm) was dispersed in water, and nitric acid was added to the mixture. The mixed solution of the CeO 2 sol aqueous solution and the dinitrodiamine platinum aqueous solution described above was put into the liquid after this stirring and stirred for 3 hours. Subsequently, after drying under reduced pressure in an evaporator, it was dried in a dryer at 120 ° C. Further, it was calcined in the air at 400 ° C. to obtain a Pt / CeO 2 / Al 2 O 3 catalyst powder. (This Al 2 O 3 is a γ phase)
The obtained Pt / CeO 2 / Al 2 O 3 catalyst powder was dispersed in water and subjected to ultrasonic waves. PVP (polyvinylpyrrolidone) was put into this liquid, and ultrasonic waves were further applied to obtain a Pt / CeO 2 / Al 2 O 3 colloid. Further, α-alumina was dispersed in water. The above-mentioned colloid was put into this α-alumina-dispersed liquid and stirred for 3 hours. Subsequently, after drying under reduced pressure in an evaporator, it was dried in a dryer at 120 ° C. Furthermore, it baked in the air at 400 ° C. to obtain a Pt / CeO 2 / γ-Al 2 O 3 / α-Al 2 O 3 catalyst powder.

このPt/CeO/γ−Al/α−Al触媒粉末225g、アルミナゾル25g、水240g、硝酸10gを磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。この触媒スラリーをコーデェライト質モノリス基材(0.12L、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層200g/Lの触媒層を得た。 225 g of this Pt / CeO 2 / γ-Al 2 O 3 / α-Al 2 O 3 catalyst powder, 25 g of alumina sol, 240 g of water, and 10 g of nitric acid were put into a magnetic ball mill, mixed and pulverized to obtain a catalyst slurry. This catalyst slurry was attached to a cordierite monolith substrate (0.12 L, 400 cells), excess slurry in the cells was removed by air flow and dried at 130 ° C., and then calcined at 400 ° C. for 1 hour. A catalyst layer having a coat layer of 200 g / L was obtained.

〔比較例1〕
比較例1は、従来の含浸法により製造された例である。
[Comparative Example 1]
Comparative Example 1 is an example manufactured by a conventional impregnation method.

比表面積が200m/gのAlにCeOとして30wt%となるように硝酸Ceを含浸した。次いで、120℃で一昼夜乾燥後、400℃、空気中で焼成した。次いで、ジニトロジアミンPtをPtとして0.15wt%となるように含浸した。次いで、120℃で一昼夜乾燥後、400℃、空気中で焼成した。このようにして得た粉末225g、アルミナゾル25g、水240g、硝酸10gを磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。この触媒スラリーをコーデェライト質モノリス基材(0.12L、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層200g/Lの触媒層を得た。 The specific surface area was impregnated with Ce nitrate so that 30 wt% as CeO 2 to Al 2 O 3 of 200 meters 2 / g. Next, after drying all day and night at 120 ° C., it was fired in air at 400 ° C. Subsequently, it was impregnated with dinitrodiamine Pt as Pt so as to be 0.15 wt%. Next, after drying all day and night at 120 ° C., it was fired in air at 400 ° C. 225 g of the powder thus obtained, 25 g of alumina sol, 240 g of water, and 10 g of nitric acid were put into a magnetic ball mill, mixed and ground to obtain a catalyst slurry. This catalyst slurry was attached to a cordierite monolith substrate (0.12 L, 400 cells), excess slurry in the cells was removed by air flow and dried at 130 ° C., and then calcined at 400 ° C. for 1 hour. A catalyst layer having a coat layer of 200 g / L was obtained.

以上説明した実施例1〜3、比較例1の排気ガス浄化触媒について、耐久試験を行い、耐久試験前後での貴金属粒子の平均粒子径をTEMを用いて測定した。耐久試験は、排気量3500ccのガソリンエンジンの排気系に触媒を装着し、触媒入口温度を900℃とし、30時間運転した。   The exhaust gas purification catalysts of Examples 1 to 3 and Comparative Example 1 described above were subjected to a durability test, and the average particle diameter of the noble metal particles before and after the durability test was measured using a TEM. In the durability test, a catalyst was attached to an exhaust system of a gasoline engine with a displacement of 3500 cc, and the catalyst inlet temperature was set to 900 ° C. and the system was operated for 30 hours.

また、耐久試験後に、排気量3500ccのガソリンエンジンの排気系に触媒を装着し、触媒入口温度を150℃から500℃まで10℃/分で昇温し、そのときの転化率を次式に従って求めた。   After the endurance test, a catalyst is attached to the exhaust system of a 3500cc gasoline engine, the catalyst inlet temperature is increased from 150 ° C to 500 ° C at 10 ° C / min, and the conversion rate at that time is obtained according to the following equation. It was.

HC転化率(%)=[(触媒入口HC濃度)−(触媒出口HC濃度)]/(触媒入口HC濃度)×100
CO転化率(%)=[(触媒入口CO濃度)−(触媒出口CO濃度)]/(触媒入口CO濃度)×100
NO転化率(%)=[(触媒入口NO濃度)−(触媒出口NO濃度)]/(触媒入口NO濃度)×100
実施例1〜3、比較例1についてのPt粒子の平均粒子径及び転化率を表2に示す。表2より、本発明に従う実施例1〜3は、耐久試験後もPt粒子の平均粒子径が比較例よりも格段に小さく、Pt粒子の凝集が抑制されていることがわかる。また、実施例1〜3は転化率も優れていて、排気ガス浄化性能に優れていることが分かる。
HC conversion rate (%) = [(catalyst inlet HC concentration) − (catalyst outlet HC concentration)] / (catalyst inlet HC concentration) × 100
CO conversion rate (%) = [(catalyst inlet CO concentration) − (catalyst outlet CO concentration)] / (catalyst inlet CO concentration) × 100
NO x conversion rate (%) = [(catalyst inlet NO x concentration) − (catalyst outlet NO x concentration)] / (catalyst inlet NO x concentration) × 100
Table 2 shows the average particle size and conversion of Pt particles for Examples 1 to 3 and Comparative Example 1. From Table 2, it can be seen that in Examples 1 to 3 according to the present invention, the average particle diameter of the Pt particles is much smaller than that of the comparative example even after the durability test, and aggregation of the Pt particles is suppressed. Moreover, Examples 1-3 are excellent also in the conversion rate, and it turns out that it is excellent in exhaust gas purification performance.

〔実施例4〕
実施例4は、実施例1のCeOゾルをCe−Zr−OというCeとZrの複合酸化物ゾルに変えた以外は同じである。
Example 4
Example 4 is the same as Example 4 except that the CeO 2 sol of Example 1 is changed to a complex oxide sol of Ce and Zr called Ce—Zr—O x .

〔実施例5〕
実施例5は、実施例1のCeOゾルをCe−Pr−OというCeとPrの複合酸化物ゾルに変えた以外は同じである。
Example 5
Example 5 is the same as Example 5 except that the CeO 2 sol of Example 1 is changed to a complex oxide sol of Ce and Pr called Ce—Pr—O x .

〔実施例6〕
実施例6は、貴金属粒子がPdの例であり、実施例1のジニトロジアミンPtを硝酸Pdに変えた以外は同じである。
Example 6
Example 6 is an example in which the noble metal particles are Pd, and is the same except that the dinitrodiamine Pt of Example 1 is changed to Pd nitrate.

〔実施例7〕
実施例7は、実施例6のCeOゾルを、Ce−Nd−OというCeとNdの複合酸化物ゾルに変えた以外は同じである。
Example 7
Example 7 is the same as Example 7 except that the CeO 2 sol of Example 6 is changed to a Ce—Nd—O x complex oxide sol of Ce and Nd.

〔実施例8〕
実施例8は、貴金属粒子がRhの例であり、実施例4のジニトロジアミンPtを硝酸Rhに変えた以外は同じである。
Example 8
Example 8 is an example in which the noble metal particles are Rh, and is the same except that the dinitrodiamine Pt of Example 4 is changed to Rh nitrate.

〔実施例9〕
実施例9は、実施例8のCe−Zr−O複合酸化物ゾルをLa−ZrOゾルに変えた以外は同じである。
Example 9
Example 9 is the same as Example 9 except that the Ce—Zr—O x composite oxide sol of Example 8 is changed to a La—ZrO 2 sol.

〔実施例10〕
実施例10は、包接材がCe−Alの例である。
Example 10
Example 10 is an example in which the inclusion material is Ce—Al 2 O 3 .

平均粒子径が20nmのCeOゾル水溶液にジニトロジアミン白金水溶液を入れ、一昼夜攪拌した。また、平均アスペクト比3.3(縦15nm、横50nm)のCe入りベーマイトアルミナを水中に分散させ、硝酸を入れて邂逅した。この邂逅後の液中に、前述したCeOゾル水溶液とジニトロジアミン白金水溶液との混合液を投入し、3時間攪拌した。次いで、エバポレータ中で減圧乾燥した後、120℃の乾燥機中で乾燥した。更に、400℃、空気中で焼成し、Pt/CeO/Ce−Al触媒粉末を得た。 A dinitrodiamine platinum aqueous solution was put into a CeO 2 sol aqueous solution having an average particle size of 20 nm, and stirred for a whole day and night. In addition, Ce-containing boehmite alumina having an average aspect ratio of 3.3 (length 15 nm, width 50 nm) was dispersed in water, and nitric acid was added to the mixture. The mixed solution of the CeO 2 sol aqueous solution and the dinitrodiamine platinum aqueous solution described above was put into the liquid after this stirring and stirred for 3 hours. Subsequently, after drying under reduced pressure in an evaporator, it was dried in a dryer at 120 ° C. Furthermore, 400 ° C., and calcined in air to obtain a Pt / CeO 2 / Ce-Al 2 O 3 catalyst powder.

得られたPt/CeO/Ce−Al粉末を水中に分散し、超音波をかけた。この液中にPVP(ポリビニルピロリドン)を入れ、さらに超音波をかけてPt/CeO/Ce−Alコロイドを得た。また、平均アスペクト比1.1(縦30nm、横35nm)のCe入りベーマイトアルミナを水中に分散し、硝酸を入れて邂逅した。この邂逅後の液中に、前述したコロイドを入れ、3時間攪拌した。次いで、エバポレータ中で減圧乾燥した後、120℃の乾燥機中で乾燥した。更に、400℃、空気中で焼成し、Pt/CeO/Ce−Al/Ce−Al触媒粉末を得た。 The resulting Pt / CeO 2 / Ce-Al 2 O 3 powder was dispersed in water and sonicated. PVP (polyvinylpyrrolidone) was put into this liquid, and ultrasonic waves were further applied to obtain a Pt / CeO 2 / Ce—Al 2 O 3 colloid. In addition, Ce-containing boehmite alumina having an average aspect ratio of 1.1 (length 30 nm, width 35 nm) was dispersed in water, and nitric acid was added to the mixture. The colloid described above was placed in the liquid after this stirring and stirred for 3 hours. Subsequently, after drying under reduced pressure in an evaporator, it was dried in a dryer at 120 ° C. Furthermore, 400 ° C., and calcined in air to obtain a Pt / CeO 2 / Ce-Al 2 O 3 / Ce-Al 2 O 3 catalyst powder.

Pt/CeO/Ce−Al/Ce−Al触媒粉末225g、アルミナゾル25g、水240g、硝酸10gを磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。 225 g of Pt / CeO 2 / Ce—Al 2 O 3 / Ce—Al 2 O 3 catalyst powder, 25 g of alumina sol, 240 g of water, and 10 g of nitric acid were charged into a magnetic ball mill, mixed and ground to obtain a catalyst slurry.

この触媒スラリーをコーデェライト質モノリス基材(0.12L、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層200g/Lの触媒層を得た。   This catalyst slurry was attached to a cordierite monolith substrate (0.12 L, 400 cells), excess slurry in the cells was removed by air flow and dried at 130 ° C., and then calcined at 400 ° C. for 1 hour. A catalyst layer having a coat layer of 200 g / L was obtained.

〔実施例11〕
実施例11は、実施例10のCe入りベーマイトアルミナを、Ce,Zr入りベーマイトアルミナに変えた以外は同じである。
Example 11
Example 11 is the same as Example 10 except that the Ce-containing boehmite alumina of Example 10 is changed to Ce, Zr-containing boehmite alumina.

〔実施例12〕
実施例12は、実施例10のCe入りベーマイトアルミナをCe,Zr,La入りベーマイトアルミナに変えた以外は同じである。
Example 12
Example 12 is the same as Example 10 except that the Ce-containing boehmite alumina of Example 10 is changed to Ce, Zr, La-containing boehmite alumina.

〔実施例13〕
実施例13は、包接材にCe−Zr−OとLa−Zr−Oという、組成の異なる2種類の酸化物を用いた例である。
Example 13
Example 13 is an example in which two kinds of oxides of Ce—Zr—O x and La—Zr—O x having different compositions were used for the inclusion material.

平均粒子径が20nmのCeOゾル水溶液にジニトロジアミン白金水溶液を入れ、一昼夜攪拌した。また、硝酸Ceと硝酸Zrとを水中に溶解させた液を用意した。この液中に前述したCeOゾル水溶液とジニトロジアミン白金水溶液との混合液を投入し攪拌した。次いで、アンモニア水を滴下し、3時間攪拌し、一昼夜熟成した。次いで遠心分離機にかけ、上澄み液が中性になるまで洗浄した。更に120℃で一昼夜乾燥後、400℃、空気中で焼成し、Pt/CeO/Ce−Zr−O触媒粉末を得た。 A dinitrodiamine platinum aqueous solution was put into a CeO 2 sol aqueous solution having an average particle size of 20 nm, and stirred for a whole day and night. Further, a solution in which Ce nitrate and Zr nitrate were dissolved in water was prepared. Into this liquid, the above-mentioned mixed liquid of CeO 2 sol aqueous solution and dinitrodiamine platinum aqueous solution was added and stirred. Next, aqueous ammonia was added dropwise, stirred for 3 hours, and aged for a whole day and night. Subsequently, it was centrifuged and washed until the supernatant became neutral. Furthermore, after drying all day and night at 120 ° C., it was calcined in the air at 400 ° C. to obtain a Pt / CeO 2 / Ce—Zr—O x catalyst powder.

得られたPt/CeO/Ce−Zr−O触媒粉末を水中に分散し、超音波をかけた。この液中にPVP(ポリビニルピロリドン)を入れ、さらに超音波をかけてPt/CeO/Ce−Zr−Oコロイドを得た。また、硝酸Ceと硝酸Laを水中に溶解させた液を用意し、この液中に前述したコロイドを投入し攪拌した。次いで、アンモニア水を滴下し、3時間攪拌し、一昼夜熟成した。次いで遠心分離機にかけ、上澄み液が中性になるまで洗浄した。更に120℃で一昼夜乾燥後、400℃、空気中で焼成し、Pt/CeO/Ce−Zr−O/La−Zr−O触媒粉末を得た。 The obtained Pt / CeO 2 / Ce—Zr—O x catalyst powder was dispersed in water and subjected to ultrasonic waves. PVP (polyvinyl pyrrolidone) was put into this liquid, and ultrasonic waves were further applied to obtain a Pt / CeO 2 / Ce—Zr—O x colloid. Further, a liquid in which Ce nitrate and La nitrate were dissolved in water was prepared, and the above-described colloid was added to the liquid and stirred. Next, aqueous ammonia was added dropwise, stirred for 3 hours, and aged for a whole day and night. Subsequently, it was centrifuged and washed until the supernatant became neutral. Furthermore, after drying all day and night at 120 ° C., the mixture was calcined in the air at 400 ° C. to obtain a Pt / CeO 2 / Ce—Zr—O x / La—Zr—O x catalyst powder.

このPt/CeO/Ce−Zr−O/La−Zr−O触媒粉末225g、アルミナゾル25g、水240g、硝酸10gを磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。この触媒スラリーをコーデェライト質モノリス基材(0.12L、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層200g/Lの触媒層を得た。 225 g of this Pt / CeO 2 / Ce—Zr—O x / La—Zr—O x catalyst powder, 25 g of alumina sol, 240 g of water, and 10 g of nitric acid were charged into a magnetic ball mill and mixed and ground to obtain a catalyst slurry. This catalyst slurry was attached to a cordierite monolith substrate (0.12 L, 400 cells), excess slurry in the cells was removed by air flow and dried at 130 ° C., and then calcined at 400 ° C. for 1 hour. A catalyst layer having a coat layer of 200 g / L was obtained.

〔実施例14〕
実施例14は、実施例13のジニトロジアミンPtを硝酸Pdに変えた以外は同じである。
Example 14
Example 14 is the same except that dinitrodiamine Pt of Example 13 is changed to Pd nitrate.

〔実施例15〕
実施例15は、実施例13のジニトロジアミンPtを硝酸Rhに変えた以外は同じである。
Example 15
Example 15 is the same except that dinitrodiamine Pt of Example 13 is changed to Rh nitrate.

〔実施例16〕
実施例16は、実施例15のCeOゾルをLa−ZrOゾルに変えた以外は同じである。
Example 16
Example 16 is the same except that the CeO 2 sol of Example 15 was changed to a La—ZrO 2 sol.

以上述べた実施例4〜16の排気ガス浄化触媒について、耐久試験前後での貴金属粒子の平均粒子径及び転化率を調べた結果を表3に示す。なお、耐久試験条件及び転化率測定条件は、前述したのと同じである。また、表3では、参考のために表2に前掲した実施例1の結果も併記している。この表3から、本発明に従う実施例4〜16はいずれも、貴金属粒子の凝集が抑制され、排気ガス浄化性能に優れていることが分かる。
Table 3 shows the results of examining the average particle diameter and the conversion rate of the noble metal particles before and after the durability test for the exhaust gas purification catalysts of Examples 4 to 16 described above. The durability test conditions and the conversion rate measurement conditions are the same as described above. Table 3 also shows the results of Example 1 listed above in Table 2 for reference. From Table 3, it can be seen that in Examples 4 to 16 according to the present invention, aggregation of noble metal particles is suppressed and the exhaust gas purification performance is excellent.

〔実施例17〕
実施例17は、実施例1で説明した工程中、先に投入したベーマイトアルミナと、後に投入したベーマイトアルミナとを入れ替えた以外は実施例1と同じである。
Example 17
Example 17 is the same as Example 1 except that boehmite alumina introduced earlier and boehmite alumina introduced later are exchanged during the steps described in Example 1.

〔実施例18〕
実施例18は、実施例2で説明した工程中、先に投入したベーマイトアルミナと、後に投入したベーマイトアルミナとを入れ替えた以外は実施例2と同じである
この実施例17及び実施例18の排気ガス浄化触媒について、耐久試験前後での貴金属粒子の平均粒子径及び転化率を調べた結果を表4に示す。なお、耐久試験条件及び転化率測定条件は、前述したのと同じである。また、表4では、参考のために表2に前掲した実施例1、実施例2の結果も併記している。
Example 18
Example 18 is the same as Example 2 except that the boehmite alumina introduced earlier and the boehmite alumina introduced later are replaced during the process described in Example 2. Exhaust gas of Examples 17 and 18 Table 4 shows the results of examining the average particle diameter and the conversion rate of the noble metal particles before and after the durability test for the gas purification catalyst. The durability test conditions and the conversion rate measurement conditions are the same as described above. Table 4 also shows the results of Examples 1 and 2 listed above in Table 2 for reference.

表4から、化合物担体に近い側の包接材の平均アスペクト比が小さく、化合物担体に遠い側の包接材の平均アスペクト比が大きい実施例17、化合物担体に近い側の包接材の平均結晶粒径が大きく、化合物担体に遠い側の包接材の平均結晶粒径が小さい実施例18は、排気ガス浄化触媒の耐熱性が高く、Pt粒子のシンタリングは抑えられていても、ガス拡散性が実施例1や実施例2に比べて劣るため、触媒性能は実施例1や実施例2に比べて低くなった。
From Table 4, Example 17 in which the average aspect ratio of the clathrate on the side close to the compound carrier is small and the average aspect ratio of the clathrate on the side far from the compound carrier is large, the average of the clathrate on the side close to the compound carrier Example 18 has a large crystal grain size and a small average crystal grain size of the clathrate on the side far from the compound carrier. The heat resistance of the exhaust gas purification catalyst is high, and the sintering of Pt particles is suppressed. Since the diffusibility was inferior to that of Example 1 or Example 2, the catalyst performance was lower than that of Example 1 or Example 2.

〔実施例19〕
実施例19は、助触媒として更にMnを含有する例である。
Example 19
Example 19 is an example in which Mn is further contained as a promoter.

平均粒子径が20nmのCeOゾル水溶液にジニトロジアミン白金水溶液、硝酸Mnを入れ、一昼夜攪拌した。また、平均アスペクト比3.3(縦15nm、横50nm)のベーマイトアルミナを水中に分散させ、硝酸を入れて邂逅した。この邂逅後の液中に、前述したCeOゾル水溶液とジニトロジアミン白金水溶液と硝酸Mnとの混合液を投入し、3時間攪拌した。次いで、エバポレータ中で減圧乾燥した後、120℃の乾燥機中で乾燥した。更に、400℃、空気中で焼成し、Pt/Mn/CeO/Al触媒粉末を得た。 An aqueous solution of dinitrodiamine platinum and Mn nitrate were placed in an aqueous CeO 2 sol solution having an average particle size of 20 nm, and the mixture was stirred overnight. In addition, boehmite alumina having an average aspect ratio of 3.3 (length 15 nm, width 50 nm) was dispersed in water, and nitric acid was added to the mixture. The liquid mixture of the above-mentioned CeO 2 sol aqueous solution, dinitrodiamine platinum aqueous solution and Mn nitrate was put into the liquid after this stirring and stirred for 3 hours. Subsequently, after drying under reduced pressure in an evaporator, it was dried in a dryer at 120 ° C. Furthermore, 400 ° C., and calcined in air to obtain a Pt / Mn / CeO 2 / Al 2 O 3 catalyst powder.

得られたPt/Mn/CeO/Al触媒粉末を水中に分散し、超音波をかけた。この液中にPVP(ポリビニルピロリドン)を入れ、さらに超音波をかけてPt/Mn/CeO/Alコロイドを得た。また、平均アスペクト比1.1(縦30nm、横35nm)のベーマイトアルミナを水中に分散し、硝酸を入れて邂逅した。この邂逅後の液中に、前述したコロイドを入れ、3時間攪拌した。次いで、エバポレータ中で減圧乾燥した後、120℃の乾燥機中で乾燥した。更に、400℃、空気中で焼成し、Pt/Mn/CeO/Al/Al触媒粉末を得た。 The obtained Pt / Mn / CeO 2 / Al 2 O 3 catalyst powder was dispersed in water and subjected to ultrasonic waves. PVP (polyvinylpyrrolidone) was put in this liquid, and ultrasonic waves were further applied to obtain a Pt / Mn / CeO 2 / Al 2 O 3 colloid. In addition, boehmite alumina having an average aspect ratio of 1.1 (length 30 nm, width 35 nm) was dispersed in water, and nitric acid was added to the mixture. The colloid described above was placed in the liquid after this stirring and stirred for 3 hours. Subsequently, after drying under reduced pressure in an evaporator, it was dried in a dryer at 120 ° C. Furthermore, 400 ° C., and calcined in air to obtain a Pt / Mn / CeO 2 / Al 2 O 3 / Al 2 O 3 catalyst powder.

このPt/Mn/CeO/Al/Al触媒粉末225g、アルミナゾル25g、水240g、硝酸10gを磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。この触媒スラリーをコーデェライト質モノリス基材(0.12L、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層200g/Lの触媒層を得た。 225 g of this Pt / Mn / CeO 2 / Al 2 O 3 / Al 2 O 3 catalyst powder, 25 g of alumina sol, 240 g of water, and 10 g of nitric acid were charged into a magnetic ball mill and mixed and ground to obtain a catalyst slurry. This catalyst slurry was attached to a cordierite monolith substrate (0.12 L, 400 cells), excess slurry in the cells was removed by air flow and dried at 130 ° C., and then calcined at 400 ° C. for 1 hour. A catalyst layer having a coat layer of 200 g / L was obtained.

〔実施例20〕
実施例20は、排気ガス浄化触媒が更にCoを含有する例であり、実施例19の硝酸Mnを硝酸Coに変えた以外は同じである。
Example 20
Example 20 is an example in which the exhaust gas purification catalyst further contains Co, and is the same except that Mn nitrate in Example 19 is changed to Co nitrate.

〔実施例21〕
実施例21は、排気ガス浄化触媒が更にFeを含有する例であり、実施例19の硝酸Mnを硝酸Feに変えた以外は同じである。
Example 21
Example 21 is an example in which the exhaust gas purification catalyst further contains Fe, and is the same except that Mn nitrate in Example 19 is changed to Fe nitrate.

〔実施例22〕
実施例22は、排気ガス浄化触媒が更にNiを含有する例であり、実施例19の硝酸Mnを硝酸Niに変えた以外は同じである。
[Example 22]
Example 22 is an example in which the exhaust gas purification catalyst further contains Ni, and is the same except that Mn nitrate in Example 19 is changed to Ni nitrate.

〔実施例23〕
実施例23は、排気ガス浄化触媒が更にBaを含有する例である。
Example 23
Example 23 is an example in which the exhaust gas purification catalyst further contains Ba.

実施例1で説明した工程中、モノリス基材の壁面にコート層200g/Lの触媒層を得た後、酢酸Ba水溶液中に浸漬した。その後、触媒を引き上げ、130℃で乾燥した後、400℃で1時間焼成した。それ以外の工程は実施例1と同じである。   During the process described in Example 1, after obtaining a catalyst layer having a coating layer of 200 g / L on the wall surface of the monolith substrate, it was immersed in an aqueous solution of Ba acetate. Thereafter, the catalyst was pulled up, dried at 130 ° C., and calcined at 400 ° C. for 1 hour. The other steps are the same as those in Example 1.

〔実施例24〕
実施例24は、排気ガス浄化触媒が更にCaを含有する例であり、実施例23の酢酸Baを酢酸Caとした以外は同じである。
Example 24
Example 24 is an example in which the exhaust gas purification catalyst further contains Ca, and is the same except that Ba acetate of Example 23 is Ca acetate.

〔実施例25〕
実施例25は、排気ガス浄化触媒が更にMgを含有する例であり、実施例23の酢酸Baを酢酸Mgとした以外は同じである。
Example 25
Example 25 is an example in which the exhaust gas purification catalyst further contains Mg, and is the same except that the acetic acid Ba of Example 23 is changed to Mg acetate.

〔実施例26〕
実施例26は、排気ガス浄化触媒が更にNaを含有する例であり、実施例23の酢酸Baを酢酸Naとした以外は同じである。
Example 26
Example 26 is an example in which the exhaust gas purification catalyst further contains Na, and is the same as Example 23 except that the acetic acid Ba is changed to Na acetate.

〔実施例27〕
実施例27は、排気ガス浄化触媒が更にCsを含有する例であり、実施例23の酢酸Baを酢酸Csとした以外は同じである。
Example 27
Example 27 is an example in which the exhaust gas purification catalyst further contains Cs, and is the same except that the acetic acid Ba of Example 23 was changed to Cs acetate.

〔実施例28〕
実施例28は、排気ガス浄化触媒が更にRbを含有する例であり、実施例23の酢酸Baを酢酸Rbとした以外は同じである。
Example 28
Example 28 is an example in which the exhaust gas purification catalyst further contains Rb, and is the same except that the acetic acid Ba of Example 23 was changed to Rb acetate.

以上述べた実施例19〜28の排気ガス浄化触媒について、転化率を調べた結果を表5に示す。なお、転化率測定条件は、前述したのと同じである。また、表5では、参考のために表2に前掲した実施例1の結果も併記している。表5から、Co、Mn、Fe、Ni、Mg、Ca、Ba、Na、Cs及びRbから選ばれる少なくとも1種を含有する実施例19〜28は、触媒性能に優れている。
Table 5 shows the results of examining the conversion rates of the exhaust gas purifying catalysts of Examples 19 to 28 described above. The conversion rate measurement conditions are the same as described above. Table 5 also shows the results of Example 1 listed above in Table 2 for reference. From Table 5, Examples 19-28 containing at least 1 sort (s) chosen from Co, Mn, Fe, Ni, Mg, Ca, Ba, Na, Cs, and Rb are excellent in catalyst performance.

本発明の第一の実施形態となる排気ガス浄化用触媒の模式図である。1 is a schematic diagram of an exhaust gas purifying catalyst according to a first embodiment of the present invention. 本発明の排気ガス浄化触媒の第二の実施形態の模式図である。It is a schematic diagram of 2nd embodiment of the exhaust-gas purification catalyst of this invention. アスペクト比の異なる2種類のベーマイトの粒子形状を示す顕微鏡組織写真である。It is a microscope picture which shows the particle shape of two kinds of boehmite from which an aspect ratio differs.

符号の説明Explanation of symbols

1 貴金属粒子
2 化合物担体
3 包接材
4 包接材
5 包接材
6 包接材
DESCRIPTION OF SYMBOLS 1 Noble metal particle 2 Compound carrier 3 Inclusion material 4 Inclusion material 5 Inclusion material 6 Inclusion material

Claims (15)

貴金属粒子と、
この貴金属粒子を担持する化合物担体と、
この貴金属粒子を担持した当該化合物担体を内包し、この内包された化合物担体同士を離隔する包接材と
を有し、かつ、
前記包接材は、物理的性状の異なる2種以上の材料からなることを特徴とする排気ガス浄化触媒。
Precious metal particles,
A compound carrier supporting the noble metal particles,
Including the compound carrier carrying the noble metal particles, and an inclusion material for separating the encapsulated compound carriers, and
The exhaust gas purification catalyst, wherein the enclosure material is made of two or more materials having different physical properties.
前記包接材が、平均結晶粒子径の異なる2種以上の材料からなることを特徴とする請求項1に記載の排気ガス浄化触媒。   The exhaust gas purification catalyst according to claim 1, wherein the inclusion material is made of two or more materials having different average crystal particle diameters. 前記包接材が、粒子のアスペクト比の異なる2種以上の材料からなることを特徴とする請求項1に記載の排気ガス浄化触媒。   The exhaust gas purification catalyst according to claim 1, wherein the enclosure material is made of two or more kinds of materials having different aspect ratios of particles. 前記包接材が、結晶構造の異なる2種以上の材料からなることを特徴とする請求項1に記載の排気ガス浄化触媒。   The exhaust gas purification catalyst according to claim 1, wherein the inclusion material is made of two or more materials having different crystal structures. 前記包接材が、Al及びZrから選ばれる少なくとも1種の酸化物を有することを特徴とする請求項1〜4のいずれか1項に記載の排気ガス浄化触媒。   The exhaust gas purification catalyst according to any one of claims 1 to 4, wherein the enclosure material has at least one oxide selected from Al and Zr. 前記酸化物が、更にCe、La、Zr、Ti及びSiから選ばれる少なくとも1種を含有するものであることを特徴とする請求項5に記載の排気ガス浄化触媒。   6. The exhaust gas purification catalyst according to claim 5, wherein the oxide further contains at least one selected from Ce, La, Zr, Ti and Si. 前記包接材が、物理的性状の異なる2種以上の材料を、前記化合物担体を包むように重ねて形成してなり、前記化合物担体に近い側の包接材の材料に比べて、前記化合物担体に遠い側の包接材の材料は、耐熱性の高い材料であることを特徴とする請求項1〜6のいずれか1項に記載の排気ガス浄化触媒。   The inclusion carrier is formed by stacking two or more kinds of materials having different physical properties so as to enclose the compound carrier, and the compound carrier is compared with the inclusion material on the side close to the compound carrier. The exhaust gas purifying catalyst according to any one of claims 1 to 6, wherein a material of the enclosure material on the far side is a material having high heat resistance. 前記包接材が、物理的性状の異なる2種以上の材料を、前記化合物担体を包むように重ねて形成してなり、前記化合物担体に近い側の包接材の材料に比べて、前記化合物担体に遠い側の包接材の材料は、平均結晶粒子径の大きい材料であることを特徴とする請求項7に記載の排気ガス浄化触媒。   The inclusion carrier is formed by stacking two or more kinds of materials having different physical properties so as to enclose the compound carrier, and the compound carrier is compared with the inclusion material on the side close to the compound carrier. The exhaust gas purifying catalyst according to claim 7, wherein the material of the clathrate on the far side is a material having a large average crystal particle diameter. 前記包接材が、物理的性状の異なる2種以上の材料を、前記化合物担体を包むように重ねて形成してなり、前記化合物担体に近い側の包接材の材料に比べて、前記化合物担体に遠い側の包接材の材料は、粒子のアスペクト比の小さい材料であることを特徴とする請求項7に記載の排気ガス浄化触媒。   The inclusion carrier is formed by stacking two or more kinds of materials having different physical properties so as to enclose the compound carrier, and the compound carrier is compared with the inclusion material on the side close to the compound carrier. The exhaust gas purifying catalyst according to claim 7, wherein the material of the clathrate on the far side is a material having a small particle aspect ratio. 前記化合物担体が、少なくともCeを含む酸化物であることを特徴とする請求項1〜9のいずれか1項に記載の排気ガス浄化触媒。   The exhaust gas purification catalyst according to any one of claims 1 to 9, wherein the compound carrier is an oxide containing at least Ce. 前記貴金属粒子が、Ptであることを特徴とする請求項1〜10のいずれか1項に記載の排気ガス浄化触媒。   The exhaust gas purification catalyst according to any one of claims 1 to 10, wherein the noble metal particles are Pt. 前記包接材が、結晶粒子径の異なる複数のAlよりなり、一方のAlの結晶粒子径が10nm未満、他方のAlの結晶粒子径が10nm以上であることを特徴とする請求項1〜11のいずれか1項に記載の排気ガス浄化触媒。 Said enclosure material is made of a plurality of Al 2 O 3 having different crystal grain size, crystal grain size of one of Al 2 O 3 is less than 10nm, it is crystal grain size of the other of Al 2 O 3 is 10nm or more The exhaust gas purification catalyst according to any one of claims 1 to 11. 前記包接材が、アスペクト比の異なるAlよりなり、一方のAlのアスペクト比が2.0以上、他方のAlのアスペクト比が0.8〜1.2であることを特徴とする請求項1〜11のいずれか1項に記載の排気ガス浄化触媒。 The inclusion material is made of Al 2 O 3 having different aspect ratios, the aspect ratio of one Al 2 O 3 is 2.0 or more, and the aspect ratio of the other Al 2 O 3 is 0.8 to 1.2. The exhaust gas purification catalyst according to any one of claims 1 to 11, wherein the exhaust gas purification catalyst is provided. 更にCo、Mn、Fe、Ni、Mg、Ca、Ba、Na、Cs及びRbから選ばれる少なくとも1種を含有することを特徴とする請求項1〜13のいずれか1項に記載の排気ガス浄化触媒。   The exhaust gas purification according to any one of claims 1 to 13, further comprising at least one selected from Co, Mn, Fe, Ni, Mg, Ca, Ba, Na, Cs and Rb. catalyst. 請求項1〜14のいずれか1項に記載の排気ガス浄化触媒が触媒層として耐火性無機基材の壁面に塗布形成されていることを特徴とする排気ガス浄化触媒。

An exhaust gas purification catalyst, wherein the exhaust gas purification catalyst according to any one of claims 1 to 14 is formed on a wall surface of a refractory inorganic base material as a catalyst layer.

JP2006056179A 2006-03-02 2006-03-02 Exhaust gas purification catalyst Active JP4677931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056179A JP4677931B2 (en) 2006-03-02 2006-03-02 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056179A JP4677931B2 (en) 2006-03-02 2006-03-02 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2007229653A true JP2007229653A (en) 2007-09-13
JP4677931B2 JP4677931B2 (en) 2011-04-27

Family

ID=38550776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056179A Active JP4677931B2 (en) 2006-03-02 2006-03-02 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4677931B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013574A1 (en) * 2008-07-31 2010-02-04 日産自動車株式会社 Catalyst for purification of exhaust gas
JP2010149112A (en) * 2008-11-28 2010-07-08 Ict:Kk Catalyst for cleaning exhaust gas and exhaust gas cleaning method using this
WO2010101223A1 (en) * 2009-03-04 2010-09-10 日産自動車株式会社 Exhaust gas purification catalyst and process for producing same
JP2010227931A (en) * 2009-03-06 2010-10-14 Ict:Kk Exhaust gas purification catalyst, production method of the same, and exhaust gas purification method
US8465711B2 (en) 2008-08-27 2013-06-18 Umicore Shokubai Japan Co., Ltd. Exhaust gas purification catalyst and method for purifying exhaust gas by using same
US8683787B2 (en) 2009-11-17 2014-04-01 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method for manufacturing the same
EP2308595A4 (en) * 2008-07-04 2016-01-27 Nissan Motor Exhaust gas purifying catalyst
JP2016198762A (en) * 2015-04-14 2016-12-01 日産自動車株式会社 Exhaust gas purification catalyst, method for producing exhaust gas purification catalyst and exhaust gas purification monolith catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736030B (en) * 2018-05-17 2020-12-25 福州大学 Porous carbon-free catalyst for proton exchange membrane fuel cell and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117393A (en) * 2001-10-09 2003-04-22 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2004066126A (en) * 2002-08-07 2004-03-04 Babcock Hitachi Kk Catalyst for purification of exhaust gas containing silicon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117393A (en) * 2001-10-09 2003-04-22 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2004066126A (en) * 2002-08-07 2004-03-04 Babcock Hitachi Kk Catalyst for purification of exhaust gas containing silicon

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2308595A4 (en) * 2008-07-04 2016-01-27 Nissan Motor Exhaust gas purifying catalyst
WO2010013574A1 (en) * 2008-07-31 2010-02-04 日産自動車株式会社 Catalyst for purification of exhaust gas
JP5447377B2 (en) * 2008-07-31 2014-03-19 日産自動車株式会社 Exhaust gas purification catalyst
US8609578B2 (en) 2008-07-31 2013-12-17 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst
US8465711B2 (en) 2008-08-27 2013-06-18 Umicore Shokubai Japan Co., Ltd. Exhaust gas purification catalyst and method for purifying exhaust gas by using same
JP2013006181A (en) * 2008-11-28 2013-01-10 Ict:Kk Exhaust gas purification catalys and method for purifying gas by using same
JP2010149112A (en) * 2008-11-28 2010-07-08 Ict:Kk Catalyst for cleaning exhaust gas and exhaust gas cleaning method using this
RU2477176C1 (en) * 2009-03-04 2013-03-10 Ниссан Мотор Ко., Лтд. Catalyst for neutralisation of exhaust gases and method of producing said catalyst
US8486853B2 (en) 2009-03-04 2013-07-16 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method for manufacturing the same
WO2010101223A1 (en) * 2009-03-04 2010-09-10 日産自動車株式会社 Exhaust gas purification catalyst and process for producing same
JP2010227931A (en) * 2009-03-06 2010-10-14 Ict:Kk Exhaust gas purification catalyst, production method of the same, and exhaust gas purification method
JP2016013552A (en) * 2009-03-06 2016-01-28 ユミコア日本触媒株式会社 Catalyst for exhaust gas purification and production method thereof, and exhaust gas purification method
US8683787B2 (en) 2009-11-17 2014-04-01 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method for manufacturing the same
JP2016198762A (en) * 2015-04-14 2016-12-01 日産自動車株式会社 Exhaust gas purification catalyst, method for producing exhaust gas purification catalyst and exhaust gas purification monolith catalyst

Also Published As

Publication number Publication date
JP4677931B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP5613219B2 (en) Exhaust gas purification system for internal combustion engine
KR100989224B1 (en) Exhaust gas purifying catalyst and manufacturing method thereof
JP4677931B2 (en) Exhaust gas purification catalyst
JP5458126B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4853291B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5567923B2 (en) Exhaust gas purification catalyst
JP5305904B2 (en) Exhaust gas purification catalyst
JP5661989B2 (en) High heat resistant catalyst and process for producing the same
WO2013061933A1 (en) Catalyst for exhaust gas purification, and method for manufacturing same
WO2010007839A1 (en) Exhaust gas purifying catalyst and method for producing the same
JP5332131B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6438384B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP2007144290A (en) Exhaust gas purification catalyst and manufacturing method of exhaust gas purification catalyst
JP6598972B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5094049B2 (en) Exhaust gas purification catalyst
JP6050703B2 (en) Exhaust gas purification catalyst
JP2020131111A (en) Exhaust gas purifying catalyst
JP5104009B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2020099840A (en) Exhaust gas purification catalyst
JP4805031B2 (en) Exhaust gas purification catalyst, its production method and use method
JP5831083B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007029779A (en) Exhaust gas cleaning catalyst
JP2007021437A (en) Exhaust gas cleaning catalyst and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Ref document number: 4677931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3