JP2007229056A - Blood purifying apparatus - Google Patents

Blood purifying apparatus Download PDF

Info

Publication number
JP2007229056A
JP2007229056A JP2006051941A JP2006051941A JP2007229056A JP 2007229056 A JP2007229056 A JP 2007229056A JP 2006051941 A JP2006051941 A JP 2006051941A JP 2006051941 A JP2006051941 A JP 2006051941A JP 2007229056 A JP2007229056 A JP 2007229056A
Authority
JP
Japan
Prior art keywords
flow rate
circuit
dialysate
blood
rate detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006051941A
Other languages
Japanese (ja)
Inventor
Ichiro Kumo
雲  一郎
Mitsukatsu Ueda
充克 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Toray Medical Co Ltd
Original Assignee
Toray Industries Inc
Toray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc, Toray Medical Co Ltd filed Critical Toray Industries Inc
Priority to JP2006051941A priority Critical patent/JP2007229056A/en
Publication of JP2007229056A publication Critical patent/JP2007229056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a credible blood purifying apparatus which measures and controls easily and accurately a flow of a dialysis fluid or a replacement fluid regardless of the quantity of the flow and even when the flow changes within a short period. <P>SOLUTION: The blood purifying apparatus has a blood circuit 4 having a blood purifier 3, a dialysis fluid supply circuit 7 for supplying a dialysis fluid to the blood purifier, a dialysis fluid discharge circuit 9 for discharging a used dialysis fluid from the blood purifier, and a replacement fluid supply circuit 12 for supplying a replacement fluid to the blood circuit. A flow detecting container is bifurcated from and is connected to at least one of the dialysis fluid supply circuit, the dialysis fluid discharge circuit and the replacement fluid supply circuit. The flow detecting container has a valve for controlling the introduction or discharge of fluid into or from the flow detecting container and a pressure change detecting means for detecting pressure change due to change of the height of a water column within the flow detecting container. With such a configuration, a flow within the circuit is measured by using the pressure change detected by the pressure change detecting means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、血液透析装置等の血液浄化装置に関し、とくに、透析液や補液の流量を高精度で測定可能な血液浄化装置に関する。   The present invention relates to a blood purification apparatus such as a hemodialysis apparatus, and more particularly to a blood purification apparatus capable of measuring the flow rate of dialysate and replacement fluid with high accuracy.

血液浄化装置では、中空糸等の形態に形成された半透膜を内蔵した血液浄化器に患者の動脈側から血液が導入され、浄化された血液が血液浄化器から患者の静脈側へと戻され、血液浄化器内には、半透膜の上記血液回路とは反対側に透析液が供給され、半透膜を介して血液中の老廃物や余剰水分が透析液側に除去されて使用済みの透析液が血液浄化器から系外に排出される。場合によっては、上記血液回路に生理食塩水等の補液が供給されることもある。   In a blood purification device, blood is introduced from a patient's artery side into a blood purification device incorporating a semipermeable membrane formed in the form of a hollow fiber or the like, and the purified blood returns from the blood purification device to the patient's vein side. In the blood purifier, dialysate is supplied to the side opposite to the blood circuit of the semipermeable membrane, and waste and excess water in the blood are removed to the dialysate side through the semipermeable membrane. Used dialysate is discharged from the blood purifier out of the system. In some cases, a replacement fluid such as physiological saline may be supplied to the blood circuit.

このような血液浄化装置においては、透析液の血液浄化器への供給量や血液浄化器からの使用済み透析液の排出量、血液回路への補液の供給量等を、極力精密に計測できることが要求される。このような要求を満たすために、特許文献1に、透析液の回路や補液の回路に、液容量を測定する計量容器を設け、液の流量を実測するようにした装置が開示されている。この装置では、より具体的には、計量容器の上下にレベルセンサを設け、容器内で変化する液面が一つのレベルセンサを通過した後もう一つのレベルセンサを通過するまでの時間を計測して、その時間に計量容器の横断面積を乗じて流量を算出するようにしている。
特許第3180309号公報
In such a blood purification apparatus, the amount of dialysate supplied to the blood purifier, the amount of used dialysate discharged from the blood purifier, the amount of replacement fluid supplied to the blood circuit, etc. can be measured as precisely as possible. Required. In order to satisfy such a requirement, Patent Document 1 discloses a device in which a measuring container for measuring a liquid volume is provided in a dialysate circuit or a replacement fluid circuit so as to actually measure the flow rate of the liquid. More specifically, in this device, level sensors are provided above and below the weighing container, and the time until the liquid level changing in the container passes through one level sensor and then passes through another level sensor is measured. The flow rate is calculated by multiplying the time by the cross-sectional area of the measuring container.
Japanese Patent No. 3180309

ところが、上記のような装置構成では、計量容器に取り付けた2個のレベルセンサの1つを通過した後、もう一つのセンサを通過するまでの間の時間を計測して流量を計算するようにしているので、流量が少ないときは、計測時間が長時間となり、すなわち、計測間隔が長くなり、計測結果に基づいて流量を高精度に制御することが困難になる。また、2個のレベルセンサを通過する時間内での短時間のうちに生じた流量変動は検出困難であるので、そのような流量変動を抑えるべく、ポンプ等の回転数を制御して流量を目標値に安定して制御することも困難になる。つまり、上記装置構成では、2個のレベルセンサ間の、予め定められた一定の容積が流量測定の前提となっており、この容積に相当する流量分の液が実際に流れることによって初めて流量測定が可能となっているので、小流量の場合の測定時間が長くなったり、上記予め定められた一定の容積以内での流量変動の検出ができないこととなっている。さらに、複数の計量容器に対し、故障の原因となりやすいレベルセンサが多数設けられる構成となるので、装置の信頼性が低い。   However, in the apparatus configuration as described above, the flow rate is calculated by measuring the time after passing through one of the two level sensors attached to the weighing container and passing through the other sensor. Therefore, when the flow rate is small, the measurement time becomes long, that is, the measurement interval becomes long, and it becomes difficult to control the flow rate with high accuracy based on the measurement result. In addition, since it is difficult to detect flow rate fluctuations that occur within a short period of time passing through the two level sensors, in order to suppress such flow rate fluctuations, the rotational speed of the pump or the like is controlled to control the flow rate. It becomes difficult to stably control the target value. That is, in the above device configuration, a predetermined fixed volume between the two level sensors is a precondition for the flow rate measurement, and the flow rate measurement is not performed until the liquid corresponding to this volume actually flows. Therefore, the measurement time in the case of a small flow rate becomes long, or the flow rate fluctuation within the predetermined fixed volume cannot be detected. Furthermore, since a plurality of level sensors that are likely to cause failure are provided for a plurality of weighing containers, the reliability of the apparatus is low.

そこで本発明の課題は、上記のような従来技術における問題点に着目し、流量の大小にかかわらず、また、短時間のうちに流量変動が生じた場合にあっても、透析液や補液の流量を簡単にかつ高精度に測定、制御することが可能で、しかも検出手段の数を大幅に低減して信頼性を高めた流量測定手段を備えた血液浄化装置を提供することにある。   Therefore, the object of the present invention is to pay attention to the problems in the prior art as described above. Regardless of the flow rate, even if the flow rate fluctuates in a short time, the dialysate and the replacement fluid An object of the present invention is to provide a blood purification apparatus including a flow rate measuring means that can measure and control a flow rate easily and with high accuracy, and that greatly reduces the number of detection means and increases reliability.

上記課題を解決するために、本発明に係る血液浄化装置は、半透膜を内蔵した血液浄化器を備え患者の体内との間で血液を循環させる血液回路と、血液浄化器に透析液を供給する透析液供給回路および血液浄化器から使用済み透析液を排出する透析液排出回路からなる透析液回路を有する血液浄化装置において、透析液回路に、透析液を供給するポンプおよび使用済み透析液を排出するポンプの少なくとも一方のポンプを設け、透析液回路に、該回路から分岐するように流量検出用容器を接続するとともに、流量検出用容器に対し、流量検出用容器への液導入および流量検出用容器からの液排出を制御可能な弁を設け、流量検出用容器内の液の水柱高さの変化に伴う圧力変化を検出する圧力変化検出手段を設け、該圧力変化検出手段により検出された圧力変化から透析液回路における流量を測定可能に構成したことを特徴とするものからなる。すなわち、本発明は、少なくとも透析液供給回路および透析液排出回路からなる透析液回路を有する血液浄化装置に適用可能であり、上記ポンプ、流量検出用容器、圧力変化検出手段は、透析液供給回路および透析液排出回路のいずれか一方に対して設けることも可能であり、両方に対して設けることも可能である。   In order to solve the above-described problems, a blood purification apparatus according to the present invention includes a blood purification device having a blood purification device incorporating a semipermeable membrane, and a blood circuit for circulating blood to and from a patient's body, and dialysate to the blood purification device. A pump for supplying dialysate to a dialysate circuit and a used dialysate in a blood purification apparatus having a dialysate circuit comprising a dialysate supply circuit for supplying and a dialysate discharge circuit for discharging used dialysate from a blood purifier At least one of the pumps for discharging gas is provided, and the flow rate detection container is connected to the dialysate circuit so as to branch from the circuit, and the liquid introduction and flow rate to the flow rate detection container are connected to the flow rate detection container. A valve capable of controlling the discharge of the liquid from the detection container is provided, and a pressure change detecting means for detecting a pressure change accompanying a change in the water column height of the liquid in the flow rate detecting container is provided, and the pressure change detecting means detects the pressure change. It was measurably constituting the flow rate in the dialysate circuit from pressure changes consists those characterized by. That is, the present invention can be applied to a blood purification apparatus having a dialysate circuit comprising at least a dialysate supply circuit and a dialysate discharge circuit, and the pump, the flow rate detection container, and the pressure change detection means include a dialysate supply circuit. It is also possible to provide for either one of the dialysate discharge circuit and the dialysate discharge circuit.

また、本発明に係る血液浄化装置は、半透膜を内蔵した血液浄化器を備え患者の体内との間で血液を循環させる血液回路と、血液浄化器に透析液を供給する透析液供給回路および血液浄化器から使用済み透析液を排出する透析液排出回路からなる透析液回路と、血液回路に補液を供給する補液供給回路とを有する血液浄化装置において、補液供給回路に補液を供給するポンプを設け、補液供給回路に、該回路から分岐するように流量検出用容器を接続するとともに、流量検出用容器に対し、流量検出用容器への液導入および流量検出用容器からの液排出を制御可能な弁を設け、流量検出用容器内の液の水柱高さの変化に伴う圧力変化を検出する圧力変化検出手段を設け、該圧力変化検出手段により検出された圧力変化から補液供給回路における流量を測定可能に構成したことを特徴とするものからなる。すなわち、本発明は、補液供給回路に対してのみ適用することも可能である。   The blood purification apparatus according to the present invention includes a blood circuit that includes a blood purification device incorporating a semipermeable membrane and circulates blood between the patient's body and a dialysate supply circuit that supplies dialysate to the blood purification device. And a pump for supplying replacement fluid to the replacement fluid supply circuit in a blood purification device having a dialysate fluid circuit comprising a dialysate discharge circuit for discharging spent dialysate from the blood purifier and a replacement fluid supply circuit for supplying replacement fluid to the blood circuit The flow rate detection container is connected to the replacement fluid supply circuit so as to branch from the circuit, and the liquid introduction to the flow rate detection container and the liquid discharge from the flow rate detection container are controlled with respect to the flow rate detection container. A pressure change detecting means for detecting a pressure change associated with a change in the height of the water column of the liquid in the flow rate detection container is provided, and the replacement fluid supply circuit detects the pressure change detected by the pressure change detecting means. Consist of, wherein a flow rate and can configure the measurement. That is, the present invention can be applied only to the replacement fluid supply circuit.

さらに、本発明の好ましい態様は、本発明が透析液回路と補液供給回路の両方に対して適用された態様である。すなわち、本発明に係る血液浄化装置は、半透膜を内蔵した血液浄化器を備え患者の体内との間で血液を循環させる血液回路と、血液浄化器に透析液を供給する透析液供給回路および血液浄化器から使用済み透析液を排出する透析液排出回路からなる透析液回路と、血液回路に補液を供給する補液供給回路とを有する血液浄化装置において、透析液回路に、透析液を供給するポンプおよび使用済み透析液を排出するポンプの少なくとも一方のポンプを設け、透析液回路に、該回路から分岐するように流量検出用容器を接続するとともに、該流量検出用容器に対し、流量検出用容器への液導入および流量検出用容器からの液排出を制御可能な弁を設け、補液供給回路に補液を供給するポンプを設け、補液供給回路に、該回路から分岐するように流量検出用容器を接続するとともに、該流量検出用容器に対し、流量検出用容器への液導入および流量検出用容器からの液排出を制御可能な弁を設け、各流量検出用容器内の液の水柱高さの変化に伴う圧力変化を検出する圧力変化検出手段を設け、該圧力変化検出手段により検出された圧力変化から透析液回路および補液供給回路における流量を測定可能に構成したことを特徴とするものからなる。   Furthermore, a preferred embodiment of the present invention is an embodiment in which the present invention is applied to both the dialysate circuit and the replacement fluid supply circuit. That is, the blood purification apparatus according to the present invention includes a blood circuit that includes a blood purification device incorporating a semipermeable membrane and circulates blood between the patient's body and a dialysate supply circuit that supplies dialysate to the blood purification device. In a blood purification apparatus having a dialysate circuit comprising a dialysate discharge circuit for discharging spent dialysate from the blood purifier and a replacement fluid supply circuit for supplying replacement fluid to the blood circuit, the dialysate is supplied to the dialysate circuit. And at least one of a pump for discharging used dialysate, and a flow rate detection container is connected to the dialysate circuit so as to branch from the circuit, and the flow rate detection is detected with respect to the flow rate detection container. A valve capable of controlling the introduction of liquid into the container and the discharge of liquid from the flow rate detection container, a pump for supplying the replacement fluid to the replacement fluid supply circuit, and a branch from the circuit to the replacement fluid supply circuit A flow rate detection container is connected to the flow rate detection container, and a valve capable of controlling the liquid introduction into the flow rate detection container and the liquid discharge from the flow rate detection container is provided. A pressure change detecting means for detecting a pressure change accompanying a change in the water column height is provided, and the flow rate in the dialysate circuit and the replacement fluid supply circuit can be measured from the pressure change detected by the pressure change detecting means. It is made up of.

本発明に係る血液浄化装置において、流量検出用容器が複数設けられる場合には、各流量検出用容器の横断面積が同一に設定されていることが好ましい。同一に設定されていると、同じ圧力変化検出手段を使用する場合にあっても、各流量検出用容器の水柱高さの変化を検出するだけで、容易に各流量検出用容器における圧力変化、ひいては流量が測定できるようになる。   In the blood purification apparatus according to the present invention, when a plurality of flow rate detection containers are provided, it is preferable that the cross-sectional areas of the respective flow rate detection containers are set to be the same. If the same pressure change detection means is used, the pressure change in each flow rate detection container can be easily detected only by detecting the change in the water column height of each flow rate detection container. As a result, the flow rate can be measured.

上記流量検出用容器の構造は特に限定されるものではないが、その上部が大気開放されている構造にすると、容器内液面の上下変化に伴う水柱高さの変化が検出されやすくなる。   The structure of the flow rate detection container is not particularly limited, but if the upper part of the structure is open to the atmosphere, a change in the height of the water column accompanying a vertical change in the liquid level in the container is easily detected.

また、上記圧力変化としては、上記流量検出用容器内の液の水柱高さの変化として検出されるようにすることができ、この場合には、検出された水柱高さの変化と流量検出用容器の横断面積とを乗じた値を流量として測定することができる。   Further, the pressure change can be detected as a change in the water column height of the liquid in the flow rate detection container. In this case, the detected change in the water column height and the flow rate detection can be detected. A value obtained by multiplying the cross-sectional area of the container can be measured as a flow rate.

このように測定された流量に応じて、対応するポンプの回転数を制御することにより、実際に得られる流量を目標値に精度良く制御することが可能になる。このような流量測定は、比較的短い周期で間欠的に行ってもよく、実質的に連続的に行ってもよい。   By controlling the rotation speed of the corresponding pump according to the flow rate thus measured, it is possible to accurately control the actually obtained flow rate to the target value. Such flow rate measurement may be performed intermittently with a relatively short period or may be performed substantially continuously.

また、上記のように測定された流量と流量測定周期とから、その回路における総流量を求めることができる。   Further, the total flow rate in the circuit can be obtained from the flow rate measured as described above and the flow rate measurement period.

さらに、複数の流量検出用容器が設けられる場合には、その複数の流量検出用容器に対して共通の圧力変化検出手段を設けることが可能である。この場合には、該圧力変化検出手段が切り替え使用可能に構成されていればよい。   Furthermore, when a plurality of flow rate detection containers are provided, a common pressure change detection means can be provided for the plurality of flow rate detection containers. In this case, it is only necessary that the pressure change detecting means is configured to be switchable.

本発明に係る血液浄化装置によれば、流量検出用容器内における圧力変化を検出することにより、その回路の流量を測定できるので、極めて迅速に短時間のうちに流量を精度良く測定することが可能になり、流量の大小にかかわらず、また、短時間の流量変動がある場合にあっても、透析液や補液の流量を簡単にかつ精密に測定、制御することが可能になる。また、圧力変化検出手段は、流量検出用容器に対して一つ設ければよく、しかも、流量検出用容器が複数ある場合には切り替え使用可能な共通の圧力変化検出手段に構成することも可能であるので、前述の従来の装置における各計量容器ごとに上下2個のレベルセンサが必要とされる構成に比べ、検出手段の数が大幅に低減され、装置全体の構成が簡素化され、かつ、信頼性が大幅に高められる。さらに、一般に、レベルセンサに比べ圧力計等の圧力変化検出手段は故障の少ないものであるから、この面からも装置の信頼性が高められる。   According to the blood purification apparatus of the present invention, the flow rate of the circuit can be measured by detecting a pressure change in the flow rate detection container, so that the flow rate can be measured very quickly and accurately in a short time. This makes it possible to easily and precisely measure and control the flow rate of the dialysate and the replacement fluid regardless of the flow rate, and even when there is a flow rate fluctuation for a short time. Further, only one pressure change detection means may be provided for the flow rate detection container, and when there are a plurality of flow rate detection containers, it can be configured as a common pressure change detection means that can be switched. Therefore, compared to the configuration in which two level sensors are required for each weighing container in the above-described conventional device, the number of detection means is greatly reduced, the configuration of the entire device is simplified, and , Reliability is greatly improved. Furthermore, since the pressure change detecting means such as a pressure gauge is generally less in failure than the level sensor, the reliability of the apparatus can be improved also from this aspect.

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は、本発明の一実施態様に係る血液浄化装置を示しており、本発明による構造を、透析液供給回路、透析液排出回路、補液供給回路のすべてに適用した場合を示している。図1において、1は患者を示しており、血液ポンプ2、半透膜を内蔵した血液浄化器3を備えた血液回路4により、患者1の体内との間で血液が循環される。血液浄化器3には、透析液容器5に収容されている透析液が、透析液供給ポンプ6を備えた透析液供給回路7を介して供給され、血液浄化器3からは、透析液排出ポンプ8を備えた透析液排出回路9を介して、使用済みの透析液が系外に排出(排液)される。これら透析液供給回路7と透析液排出回路9は、本発明で言う透析液回路を構成している。また、血液回路4には、必要に応じて、補液容器10に収容されている生理食塩水等の補液が、補液供給ポンプ11を備えた補液供給回路12を介して供給されるようになっている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a blood purification apparatus according to an embodiment of the present invention, and shows a case where the structure according to the present invention is applied to all of a dialysate supply circuit, a dialysate discharge circuit, and a replacement fluid supply circuit. In FIG. 1, reference numeral 1 denotes a patient, and blood is circulated between the body of the patient 1 by a blood circuit 4 including a blood pump 2 and a blood purifier 3 incorporating a semipermeable membrane. The dialysate contained in the dialysate container 5 is supplied to the blood purifier 3 via a dialysate supply circuit 7 having a dialysate supply pump 6, and the dialysate discharge pump is supplied from the blood purifier 3. The used dialysate is discharged (drained) out of the system through a dialysate discharge circuit 9 having 8. The dialysate supply circuit 7 and the dialysate discharge circuit 9 constitute a dialysate circuit referred to in the present invention. Further, the blood circuit 4 is supplied with a replacement fluid such as physiological saline contained in the replacement fluid container 10 through a replacement fluid supply circuit 12 including a replacement fluid supply pump 11 as necessary. Yes.

このような血液浄化装置100において、透析液供給回路7の透析液供給ポンプ6上流側に、透析液供給回路7から分岐するように透析液供給流量検出用容器Aが接続され、該流量検出用容器Aに対し、流量検出用容器Aへの透析液導入および流量検出用容器Aからの透析液排出を制御可能な弁VA1、VA2が設けられている。また、透析液排出回路9の透析液排出ポンプ8下流側に、透析液排出回路9から分岐するように透析液排出流量検出用容器Bが接続され、該流量検出用容器Bに対し、流量検出用容器Bへの透析液導入および流量検出用容器Bからの透析液排出を制御可能な弁VB1、VB2が設けられている。さらに、補液供給回路12の補液供給ポンプ11上流側に、補液供給回路12から分岐するように補液供給流量検出用容器Cが接続され、該流量検出用容器Cに対し、流量検出用容器Cへの補液導入および流量検出用容器Cからの補液排出を制御可能な弁VC1、VC2が設けられている。各流量検出用容器A、B、Cの上部には、大気開放部13が設けられており、各流量検出用容器A、B、Cは、内部に液が導入、排出されるとともに、上部が大気圧に開放されている。   In such a blood purification apparatus 100, a dialysate supply flow rate detection container A is connected upstream of the dialysate supply pump 6 of the dialysate supply circuit 7 so as to branch from the dialysate supply circuit 7. For the container A, valves VA1 and VA2 capable of controlling the introduction of the dialysate into the flow rate detection container A and the discharge of the dialysate from the flow rate detection container A are provided. Further, a dialysate discharge flow rate detection container B is connected downstream of the dialysate discharge circuit 8 of the dialysate discharge circuit 9 so as to branch from the dialysate discharge circuit 9. Valves VB1 and VB2 capable of controlling the introduction of dialysate into the container B and the discharge of dialysate from the flow rate detection container B are provided. Further, a replacement fluid supply flow rate detection container C is connected upstream of the replacement fluid supply pump 11 of the replacement fluid supply circuit 12 so as to branch from the replacement fluid supply circuit 12, and the flow rate detection container C is connected to the flow rate detection container C. Valves VC1 and VC2 are provided which can control the replacement fluid introduction and the replacement fluid discharge from the flow rate detection container C. At the upper part of each flow rate detection container A, B, C, an air release part 13 is provided, and each flow rate detection container A, B, C is introduced and discharged with liquid inside. Open to atmospheric pressure.

上記透析液供給流量検出用容器A、透析液排出流量検出用容器B、補液供給流量検出用容器Cに、各流量検出用容器内の液の水柱高さの変化に伴う圧力変化を検出する圧力変化検出手段としての圧力計14が接続されている。この圧力計14は、本実施態様では、各流量検出用容器A、B、Cに対して共通の圧力計として設けられており、切り替えにより、各流量検出用容器A、B、C内の上記圧力変化を順次検出できるようになっている。なお、本実施態様では、各流量検出用容器A、B、Cの内部の横断面積は同一に設定されており、各流量検出用容器内の水柱高さの変化に伴う圧力変化の検出を、共通の圧力計14により容易に行うことができるようになっている。   Pressure for detecting a pressure change associated with a change in the water column height of the liquid in each flow rate detection container in the dialysate supply flow rate detection container A, the dialysate discharge flow rate detection container B, and the replacement fluid supply flow rate detection container C A pressure gauge 14 as a change detecting means is connected. In the present embodiment, the pressure gauge 14 is provided as a pressure gauge common to the flow rate detection containers A, B, and C. By switching, the pressure gauge 14 in the flow rate detection containers A, B, and C Pressure changes can be detected sequentially. In this embodiment, the cross-sectional areas inside the respective flow rate detection containers A, B, and C are set to be the same, and the detection of the pressure change accompanying the change in the height of the water column in each flow rate detection container, The common pressure gauge 14 can be easily used.

上記圧力計14により検出された各流量検出用容器A、B、C内の圧力変化から、各回路7、9、12における流量が測定され、測定された流量に基づいて、各ポンプ6、8、11の回転数が制御されることにより、各回路7、9、12の流量が目標値に制御される。   The flow rate in each circuit 7, 9, 12 is measured from the pressure change in each flow rate detection container A, B, C detected by the pressure gauge 14, and each pump 6, 8 is based on the measured flow rate. , 11 is controlled, the flow rate of each circuit 7, 9, 12 is controlled to the target value.

この圧力変化に基づく流量の測定は、次のような原理による。すなわち、各流量検出用容器A、B、Cの横断面積をS、対象となる液の密度をγ、重力の加速度をg、単位時間当たりの水柱高さの変化をΔh、単位時間当たりの圧力変化をΔP、単位時間当たりの流量をΔVとすると、
ΔV=SΔh
ΔP=γgΔh
が成り立つから、
ΔV=(S/γg)ΔP
が成立する。すなわち、ΔPが検出されれば、予め設定された流量検出用容器の横断面積S、対象液の密度γから、即座に単位時間当たりの流量ΔVを求めることが可能となる。この測定においては、ΔPをΔP/dt(tは時間)として、刻々圧力変化を検出してもよく、それを平均化してもよく、さらに、適当な時間内における圧力変化量を検出するようにしてもよい。いずれにしても、圧力変化の検出に要する時間は、前述した従来構成における2個のレベルセンサ間を液面が通過するに要する時間に比べ、大幅に短縮される。
The flow rate measurement based on this pressure change is based on the following principle. That is, the cross-sectional area of each of the flow detection containers A, B, and C is S, the density of the target liquid is γ, the acceleration of gravity is g, the change in the height of the water column per unit time is Δh, and the pressure per unit time If the change is ΔP and the flow rate per unit time is ΔV,
ΔV = SΔh
ΔP = γgΔh
Because
ΔV = (S / γg) ΔP
Is established. That is, if ΔP is detected, the flow rate ΔV per unit time can be immediately obtained from the preset cross-sectional area S of the flow rate detection container and the density γ of the target liquid. In this measurement, ΔP may be ΔP / dt (t is time), and the pressure change may be detected every moment, or may be averaged, and the pressure change amount within an appropriate time may be detected. May be. In any case, the time required for detecting the pressure change is significantly shortened compared to the time required for the liquid level to pass between the two level sensors in the conventional configuration described above.

上記のように測定された流量ΔVに基づき、それが予め設定された各ポンプ6、8、11の目標流量QA、QB、QCに近づくように、各ポンプ6、8、11の回転数が制御される。これによって、透析液の供給量、使用済み透析液の排出量、補液の供給量が、それぞれ、目標値に制御されることになる。上記の如く、圧力変化の検出はごく短時間で行われるので(実質的に、リアルタイムで行うことが可能であるので)、透析液や補液の流量は極めて高精度に制御される。本実施態様では、各対象液に対して共通の圧力計14が切り替え使用されるようになっているので、この圧力変化の検出、流量の制御も間欠的に行えばよいが、切り替え、測定頻度を適切に設定することにより、十分に高い制御精度が確保される。   Based on the flow rate ΔV measured as described above, the rotation speed of each pump 6, 8, 11 is controlled so that it approaches the preset target flow rate QA, QB, QC of each pump 6, 8, 11 Is done. As a result, the supply amount of dialysate, the discharge amount of used dialysate, and the supply amount of replacement fluid are respectively controlled to target values. As described above, since the pressure change is detected in a very short time (because it can be performed substantially in real time), the flow rates of the dialysate and the replacement fluid are controlled with extremely high accuracy. In this embodiment, since the common pressure gauge 14 is used by switching for each target liquid, the detection of this pressure change and the control of the flow rate may be performed intermittently. By setting appropriately, sufficiently high control accuracy is ensured.

より具体的に各対象液ごとにみると、例えば、次のような制御が行われればよい。
透析液の供給流量制御は、弁VA1を開いた状態で透析液供給ポンプ6を回転させつつ、弁VA2を流量検出用容器Aに透析液が所定量充満するまで開く。透析液が所定量充満した後、弁VA1を閉じると、容器A内の透析液が透析液供給ポンプ6により吸い出され、容器A内の水柱高さが減じる。単位時間当たりの水柱高さの変化と容器Aの横断面積とを乗じた値を流量として演算し、目標流量との差異を減少するよう透析液供給ポンプ6の回転数を制御する。
More specifically, for example, the following control may be performed for each target liquid.
In the dialysate supply flow rate control, while the valve VA1 is opened, the dialysate supply pump 6 is rotated and the valve VA2 is opened until the flow rate detection container A is filled with a predetermined amount of dialysate. When the valve VA1 is closed after the dialysate is filled with a predetermined amount, the dialysate in the container A is sucked out by the dialysate supply pump 6, and the water column height in the container A is reduced. A value obtained by multiplying the change in the height of the water column per unit time and the cross-sectional area of the container A is calculated as a flow rate, and the rotation speed of the dialysate supply pump 6 is controlled so as to reduce the difference from the target flow rate.

使用済み透析液の排出流量制御は、弁VB1を開いた状態で、透析液排出ポンプ8を回転させ、弁VB1を閉じて弁VB2を開いて流量検出用容器B内に使用済み透析液を導入すると、容器B内の水柱高さが増加する。単位時間当たりの水柱高さの変化と容器Bの横断面積とを乗じた値を流量として演算し、目標流量との差異を減少するよう透析液排出ポンプ8の回転数を制御する。   The used dialysate discharge flow rate is controlled by rotating the dialysate discharge pump 8 with the valve VB1 opened, closing the valve VB1 and opening the valve VB2, and introducing the used dialysate into the flow rate detection container B. Then, the water column height in the container B increases. A value obtained by multiplying the change in the height of the water column per unit time by the cross-sectional area of the container B is calculated as a flow rate, and the rotation speed of the dialysate discharge pump 8 is controlled so as to reduce the difference from the target flow rate.

補液の供給流量制御は、弁VC1を開いた状態で補液供給ポンプ11を回転させつつ、弁VC2を流量検出用容器Cに補液が所定量充満するまで開く。補液が所定量充満した後、弁VC1を閉じると、容器C内の補液が補液供給ポンプ11により吸い出され、容器C内の水柱高さが減じる。単位時間の水柱高さの変化と容器Cの横断面積とを乗じた値を流量ととして演算し、目標流量との差異を減少するよう補液供給ポンプ11の回転数を制御する。   In the supply flow control of the replacement fluid, the replacement fluid supply pump 11 is rotated with the valve VC1 opened, and the valve VC2 is opened until the replacement fluid is filled in the flow rate detection container C. When the valve VC1 is closed after the replacement fluid is filled to a predetermined amount, the replacement fluid in the container C is sucked out by the replacement fluid supply pump 11, and the water column height in the container C is reduced. A value obtained by multiplying the change in the water column height per unit time by the cross-sectional area of the container C is calculated as the flow rate, and the rotation speed of the replacement fluid supply pump 11 is controlled so as to reduce the difference from the target flow rate.

なお、上記実施態様では圧力計14を共通の圧力計として設置したが、各流量検出用容器A、B、Cに対し、それぞれ専用の圧力計を設置することもできる。また、各流量検出用容器A、B、Cの横断面積を同一に設定したが、異なる横断面積であっても前述の式に基づいて流量演算することが可能である。さらに、各液の総流量は、各制御流量と計測周期時間とを乗じた値の総和として求めることが可能である。   In the above embodiment, the pressure gauge 14 is installed as a common pressure gauge. However, a dedicated pressure gauge can be installed for each of the flow rate detection containers A, B, and C. Further, although the cross-sectional areas of the respective flow rate detection containers A, B, and C are set to be the same, even if the cross-sectional areas are different, the flow rate can be calculated based on the above formula. Further, the total flow rate of each liquid can be obtained as the sum of values obtained by multiplying each control flow rate and the measurement cycle time.

本発明は、血液透析装置に代表される、あらゆる血液浄化装置に適用可能であり、透析液の供給系、排出系、補液の供給系のいずれか少なくとも一つに対しての適用も可能である。   The present invention can be applied to any blood purification apparatus represented by a hemodialysis apparatus, and can be applied to at least one of a dialysate supply system, a discharge system, and a replacement fluid supply system. .

本発明の一実施態様に係る血液浄化装置の機器系統図である。It is an equipment system diagram of a blood purification device concerning one embodiment of the present invention.

符号の説明Explanation of symbols

1 患者
2 血液ポンプ
3 血液浄化器
4 血液回路
5 透析液容器
6 透析液供給ポンプ
7 透析液供給回路
8 透析液排出ポンプ
9 透析液排出回路
10 補液容器
11 補液供給ポンプ
12 補液供給回路
13 大気開放部
14 圧力変化検出手段としての圧力計
100 血液浄化装置
A 透析液供給流量検出用容器
B 透析液排出流量検出用容器
C 補液供給流量検出用容器
VA1、VA2、VB1、VB2、VC1、VC2 弁
DESCRIPTION OF SYMBOLS 1 Patient 2 Blood pump 3 Blood purifier 4 Blood circuit 5 Dialysate container 6 Dialysate supply pump 7 Dialysate supply circuit 8 Dialysate discharge pump 9 Dialysate discharge circuit 10 Replacement fluid container 11 Replacement fluid supply pump 12 Replacement fluid supply circuit 13 Opening to atmosphere 14 Pressure gauge 100 as pressure change detection means Blood purification device A Dialysate supply flow rate detection vessel B Dialysate discharge flow rate detection vessel C Replacement fluid supply flow rate detection vessel VA1, VA2, VB1, VB2, VC1, VC2 Valve

Claims (10)

半透膜を内蔵した血液浄化器を備え患者の体内との間で血液を循環させる血液回路と、血液浄化器に透析液を供給する透析液供給回路および血液浄化器から使用済み透析液を排出する透析液排出回路からなる透析液回路を有する血液浄化装置において、透析液回路に、透析液を供給するポンプおよび使用済み透析液を排出するポンプの少なくとも一方のポンプを設け、透析液回路に、該回路から分岐するように流量検出用容器を接続するとともに、流量検出用容器に対し、流量検出用容器への液導入および流量検出用容器からの液排出を制御可能な弁を設け、流量検出用容器内の液の水柱高さの変化に伴う圧力変化を検出する圧力変化検出手段を設け、該圧力変化検出手段により検出された圧力変化から透析液回路における流量を測定可能に構成したことを特徴とする血液浄化装置。   A blood circuit equipped with a semipermeable membrane and a blood circuit that circulates blood between the patient's body, a dialysate supply circuit that supplies dialysate to the blood purifier, and a used dialysate from the blood purifier In a blood purification apparatus having a dialysate circuit comprising a dialysate discharge circuit, the dialysate circuit is provided with at least one of a pump for supplying dialysate and a pump for discharging used dialysate, A flow rate detection container is connected so as to branch from the circuit, and a valve capable of controlling the liquid introduction into the flow rate detection container and the liquid discharge from the flow rate detection container is provided for the flow rate detection container. Pressure change detection means to detect the pressure change accompanying the change in the water column height of the liquid in the container, and the flow rate in the dialysate circuit can be measured from the pressure change detected by the pressure change detection means Blood purification apparatus being characterized in that form. 半透膜を内蔵した血液浄化器を備え患者の体内との間で血液を循環させる血液回路と、血液浄化器に透析液を供給する透析液供給回路および血液浄化器から使用済み透析液を排出する透析液排出回路からなる透析液回路と、血液回路に補液を供給する補液供給回路とを有する血液浄化装置において、補液供給回路に補液を供給するポンプを設け、補液供給回路に、該回路から分岐するように流量検出用容器を接続するとともに、流量検出用容器に対し、流量検出用容器への液導入および流量検出用容器からの液排出を制御可能な弁を設け、流量検出用容器内の液の水柱高さの変化に伴う圧力変化を検出する圧力変化検出手段を設け、該圧力変化検出手段により検出された圧力変化から補液供給回路における流量を測定可能に構成したことを特徴とする血液浄化装置。   A blood circuit equipped with a semipermeable membrane and a blood circuit that circulates blood between the patient's body, a dialysate supply circuit that supplies dialysate to the blood purifier, and a used dialysate from the blood purifier In a blood purification apparatus having a dialysate circuit comprising a dialysate discharge circuit and a replacement fluid supply circuit for supplying a replacement fluid to the blood circuit, a pump for supplying the replacement fluid to the replacement fluid supply circuit is provided, and the replacement fluid supply circuit includes The flow rate detection container is connected so as to branch, and a valve capable of controlling the liquid introduction to the flow rate detection container and the liquid discharge from the flow rate detection container is provided for the flow rate detection container. The pressure change detecting means for detecting the pressure change accompanying the change in the water column height of the liquid is provided, and the flow rate in the replacement fluid supply circuit can be measured from the pressure change detected by the pressure change detecting means. Blood purification device to. 半透膜を内蔵した血液浄化器を備え患者の体内との間で血液を循環させる血液回路と、血液浄化器に透析液を供給する透析液供給回路および血液浄化器から使用済み透析液を排出する透析液排出回路からなる透析液回路と、血液回路に補液を供給する補液供給回路とを有する血液浄化装置において、透析液回路に、透析液を供給するポンプおよび使用済み透析液を排出するポンプの少なくとも一方のポンプを設け、透析液回路に、該回路から分岐するように流量検出用容器を接続するとともに、該流量検出用容器に対し、流量検出用容器への液導入および流量検出用容器からの液排出を制御可能な弁を設け、補液供給回路に補液を供給するポンプを設け、補液供給回路に、該回路から分岐するように流量検出用容器を接続するとともに、該流量検出用容器に対し、流量検出用容器への液導入および流量検出用容器からの液排出を制御可能な弁を設け、各流量検出用容器内の液の水柱高さの変化に伴う圧力変化を検出する圧力変化検出手段を設け、該圧力変化検出手段により検出された圧力変化から透析液回路および補液供給回路における流量を測定可能に構成したことを特徴とする血液浄化装置。   A blood circuit equipped with a semipermeable membrane and a blood circuit that circulates blood between the patient's body, a dialysate supply circuit that supplies dialysate to the blood purifier, and a used dialysate from the blood purifier A pump for supplying dialysate to a dialysate circuit and a pump for discharging used dialysate in a blood purification apparatus having a dialysate circuit comprising a dialysate discharge circuit and a replacement fluid supply circuit for supplying a replacement fluid to the blood circuit The flow rate detection container is connected to the dialysate circuit so as to branch from the circuit, and the liquid introduction into the flow rate detection container and the flow rate detection container are connected to the flow rate detection container. Provided with a valve capable of controlling the discharge of liquid from the reservoir, provided with a pump for supplying the replacement fluid to the replacement fluid supply circuit, connected to the replacement fluid supply circuit with a flow rate detection container and branched from the circuit. For the detection container, a valve that can control the liquid introduction to the flow rate detection container and the liquid discharge from the flow rate detection container is provided, and the pressure change caused by the change in the water column height of the liquid in each flow rate detection container A blood purification apparatus comprising pressure change detecting means for detecting, and configured to measure flow rates in a dialysate circuit and a replacement fluid supply circuit from a pressure change detected by the pressure change detecting means. 流量検出用容器が複数設けられる場合の各流量検出用容器の横断面積が同一に設定されている、請求項1または3に記載の血液浄化装置。   The blood purification apparatus according to claim 1 or 3, wherein the cross-sectional areas of the respective flow rate detection containers when a plurality of flow rate detection containers are provided are set to be the same. 流量検出用容器の上部が大気開放されている、請求項1〜4のいずれかに記載の血液浄化装置。   The blood purification apparatus according to any one of claims 1 to 4, wherein an upper part of the flow rate detection container is open to the atmosphere. 前記圧力変化が前記流量検出用容器内の液の水柱高さの変化として検出され、検出された水柱高さの変化と流量検出用容器の横断面積とを乗じた値が流量として測定される、請求項1〜5のいずれかに記載の血液浄化装置。   The pressure change is detected as a change in the water column height of the liquid in the flow rate detection container, and a value obtained by multiplying the detected change in the water column height and the cross-sectional area of the flow rate detection container is measured as a flow rate. The blood purification apparatus according to any one of claims 1 to 5. 測定された流量に応じて、対応するポンプの回転数が制御される、請求項1〜6のいずれかに記載の血液浄化装置。   The blood purification apparatus according to any one of claims 1 to 6, wherein the rotation speed of the corresponding pump is controlled according to the measured flow rate. 流量測定が間欠的に行われる、請求項1〜7のいずれかに記載の血液浄化装置。   The blood purification apparatus according to any one of claims 1 to 7, wherein the flow rate is measured intermittently. 測定された流量と流量測定周期とから総流量が求められる、請求項8に記載の血液浄化装置。   The blood purification apparatus according to claim 8, wherein the total flow rate is obtained from the measured flow rate and the flow rate measurement cycle. 複数の流量検出用容器に対して共通の圧力変化検出手段が設けられ、該圧力変化検出手段が切り替え使用可能に構成されている、請求項1、3〜9のいずれかに記載の血液浄化装置。   The blood purification device according to any one of claims 1 to 3, wherein a common pressure change detection means is provided for a plurality of flow rate detection containers, and the pressure change detection means is configured to be switchable. .
JP2006051941A 2006-02-28 2006-02-28 Blood purifying apparatus Pending JP2007229056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051941A JP2007229056A (en) 2006-02-28 2006-02-28 Blood purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051941A JP2007229056A (en) 2006-02-28 2006-02-28 Blood purifying apparatus

Publications (1)

Publication Number Publication Date
JP2007229056A true JP2007229056A (en) 2007-09-13

Family

ID=38550254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051941A Pending JP2007229056A (en) 2006-02-28 2006-02-28 Blood purifying apparatus

Country Status (1)

Country Link
JP (1) JP2007229056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182822A (en) * 2010-03-04 2011-09-22 Asahi Kasei Kuraray Medical Co Ltd Fixing member, medical instrument, medical fluid storage bag, and blood purifier
JP2014061409A (en) * 2007-11-16 2014-04-10 Fresenius Medical Care Holdings Inc Dialysis system
CN105343953A (en) * 2015-10-06 2016-02-24 浙江大学 Disposable plasma immunoadsorption pipeline

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014061409A (en) * 2007-11-16 2014-04-10 Fresenius Medical Care Holdings Inc Dialysis system
JP2011182822A (en) * 2010-03-04 2011-09-22 Asahi Kasei Kuraray Medical Co Ltd Fixing member, medical instrument, medical fluid storage bag, and blood purifier
CN105343953A (en) * 2015-10-06 2016-02-24 浙江大学 Disposable plasma immunoadsorption pipeline

Similar Documents

Publication Publication Date Title
CA2495561C (en) Blood purifying device and method of operating the same
CN104470554B (en) Relative calibration of pump for the Filtration Control in dialysis apparatus
CN103826672B (en) Apparatus for purifying blood
JP6247268B2 (en) Acute kidney replacement therapy device
CN104334203B (en) Extracorporeal blood treatment and method
JPH0798059B2 (en) Artificial kidney
US20050011833A1 (en) Apparatus for extracorporeal blood treatment with a device for checking a sterile filter, and method of checking a sterile filter of an extracorporeal blood treatment apparatus
US11083829B2 (en) Medical treatment device and method for monitoring a medical treatment device
JP5822319B1 (en) Continuous blood purification device
EP2714258B1 (en) Method and arrangement for venting gases from a container having a powdered concentrate for use in hemodialysis
US11890402B2 (en) Extracorporeal blood treatment device and method for monitoring the integrity of a dialyzer of an extracorporeal blood treatment device
US9011678B2 (en) Blood purification apparatus and blood purification circuit
JP2007229056A (en) Blood purifying apparatus
US20170014565A1 (en) Device and method for balancing between an inflow into and an outflow out of a medical treatment device
US20170258976A1 (en) Method of displaying a predicted state, medical apparatus and computer program
JP4311242B2 (en) Dialysis machine
JP4337981B2 (en) Blood purification equipment
JP4978179B2 (en) Blood purification equipment
JP4427753B2 (en) Blood purification equipment
JP4978178B2 (en) Blood purification circuit
JP4539565B2 (en) Blood purification circuit
JP3924449B2 (en) Blood purification equipment
JP4539566B2 (en) Blood circuit controller
JP2008200174A (en) Chamber for extracorporeal circulation circuit
JP2009219666A (en) Replenishing liquid supply device for hemodialyzer