JP2007228798A - Squirrel-cage rotor core - Google Patents

Squirrel-cage rotor core Download PDF

Info

Publication number
JP2007228798A
JP2007228798A JP2007153718A JP2007153718A JP2007228798A JP 2007228798 A JP2007228798 A JP 2007228798A JP 2007153718 A JP2007153718 A JP 2007153718A JP 2007153718 A JP2007153718 A JP 2007153718A JP 2007228798 A JP2007228798 A JP 2007228798A
Authority
JP
Japan
Prior art keywords
conductor
rotor core
short
circuit ring
cage rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007153718A
Other languages
Japanese (ja)
Inventor
Toshiro Aiga
俊郎 相賀
Hidetoshi Kanzaki
英俊 神嵜
Makoto Hirabayashi
誠 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2007153718A priority Critical patent/JP2007228798A/en
Publication of JP2007228798A publication Critical patent/JP2007228798A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Induction Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a squirrel-cage rotor core where a phenomenon that a secondary conductor goes out does not occur even if residual stress at the time of casting appears outside or internally exists. <P>SOLUTION: The squirrel-cage rotor core has a first conductor 12 formed by casting molten metals in a plurality of grooves in a circumferential direction of the rotor core, a second conductor 12a which is connected to the first conductor 12 in the same number, whose cross section is large and which is formed by simultaneous casting with the first conductor 12 and a short circuit ring 13 formed by connecting it to the second conductor 12a. The cross section of the second conductor 12a is formed to be larger than the first conductor 12 and a head part of the second conductor 12a is formed in an arc shape. A radiation direction length at a boundary part 18 of the second conductor 12a and the short circuit ring 13 is formed to be equal to that of the second conductor 12a and the short circuit ring 13 so as to eliminate a level difference of a radiation direction in the boundary part 18 of the second conductor 12a and the short circuit ring 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、かご形回転子鉄心に関する。   The present invention relates to a cage rotor core.

一般に誘導電動機のかご形回転子は、回転子鉄心1の溝にアルミニウムをダイキャストにより鋳込んで二次導体2と回転子鉄心1両端に短絡環3を形成すると共に、回転子鉄心1の軸孔6に回転軸を嵌合させて形成される(図6参照)。前記回転子鉄心1の二次導体2の一例に、図2に示すような頭部が三角形で凸形状のものがある。この二次導体2の総断面積(導体2総数を加算したもの)と短絡環3(ドーナツ形状)の断面積(鉄心1端面に接する面積)の比が1:2.8〜1:3.5と大きい為に、鋳造された溶融金属(アルミニウム)の凝固速度は前記断面積比の逆数以上の冷却速度となっている。すると、短絡環3との境界となる二次導体2の境界部5では、既に凝固完了状態の二次導体2より遅れて短絡環3側の凝固が開始される。その時、境界部5では引張の残留応力(約1.8〜2.0Kg/mm2 )が加わった状態(図7(a)参照)で二次導体2が形成されることとなる。 In general, a squirrel-cage rotor of an induction motor is formed by casting aluminum into a groove of a rotor core 1 by die-casting to form a secondary conductor 2 and a short-circuit ring 3 at both ends of the rotor core 1, and a shaft of the rotor core 1 It is formed by fitting a rotating shaft into the hole 6 (see FIG. 6). An example of the secondary conductor 2 of the rotor core 1 has a triangular head and a convex shape as shown in FIG. The ratio of the total cross-sectional area of the secondary conductor 2 (the sum of the total number of conductors 2) to the cross-sectional area of the short-circuit ring 3 (doughnut shape) (area in contact with the end surface of the iron core 1) is 1: 2.8 to 1: 3. Therefore, the solidification rate of the cast molten metal (aluminum) is a cooling rate equal to or higher than the reciprocal of the cross-sectional area ratio. Then, in the boundary part 5 of the secondary conductor 2 which becomes a boundary with the short-circuiting ring 3, solidification on the short-circuiting ring 3 side is started later than the secondary conductor 2 already solidified. At that time, the secondary conductor 2 is formed in the boundary portion 5 in a state where the tensile residual stress (about 1.8 to 2.0 kg / mm 2 ) is applied (see FIG. 7A).

一方、二次導体2の断面積は電動機の電気特性から決定されるもので、前記境界部5での二次導体2と短絡環3の放射方向の長さ比は約1:2(図6参照)である。この二次導体2が短絡環3より放射方向長さが50%短い状態の境界部5に、電動機が運転されると運転時に発生する熱応力と遠心力の合計応力が加わる(図7(b)参照)。   On the other hand, the cross-sectional area of the secondary conductor 2 is determined from the electrical characteristics of the motor, and the length ratio of the secondary conductor 2 and the short-circuit ring 3 in the radial direction at the boundary 5 is about 1: 2 (FIG. 6). Reference). When the electric motor is operated, the total stress of the thermal stress and centrifugal force generated when the motor is operated is applied to the boundary portion 5 in which the secondary conductor 2 is 50% shorter in the radial direction than the short-circuit ring 3 (FIG. 7B). )reference).

このように境界部5には、引張残留応力と熱応力及び遠心力の合計応力が繰返し応力として加わる。すると、図7(b)で示す短絡環3の内周側根元X(境界部5の内周側)ではこれらの応力により亀裂の発生する恐れがあり、二次導体2と短絡環3が分離する現象(二次導体2が切れる)が発生し電動機特性を低下させる要因となる。この為に、鋳造時の残留応力を電動機運転時の負荷応力以下に抑える必要性が出てくる。   Thus, the total stress of the tensile residual stress, the thermal stress, and the centrifugal force is applied to the boundary portion 5 as a repeated stress. As a result, cracks may occur due to these stresses on the inner periphery side X of the short-circuit ring 3 shown in FIG. 7B (the inner periphery side of the boundary portion 5), and the secondary conductor 2 and the short-circuit ring 3 are separated. Phenomenon occurs (secondary conductor 2 is cut), which causes a reduction in motor characteristics. For this reason, it becomes necessary to keep the residual stress during casting below the load stress during motor operation.

本発明は上記事情に鑑みて成されたもので、鋳造時の残留応力を現象又は内在した状態でも二次導体の切れる現象が発生しない、かご形回転子鉄心を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a squirrel-cage rotor core which does not generate a phenomenon in which a secondary conductor breaks even in a state in which residual stress during casting is present or is inherent.

本発明におけるかご形回転子鉄心は、請求項1では、回転子鉄心の円周方向に複数個の溝に溶融金属を鋳込んで形成の第1導体と、この第1導体と同数で連通し且つ断面積が大で該第1導体と同時鋳込みで形成の第2導体と、この第2導体と連通して形成の短絡環を有するかご形回転子鉄心において、前記第2導体の断面積は第1導体よりも大きく形成し、この第2導体の頭部を円弧状に形成し、この第2導体と前記短絡環との境界部における放射方向長さを第2導体と短絡環との放射方向長さに等しく形成して、前記第2導体と短絡環との境界部における放射方向の段差をなくしたことを特徴とする。第2導体と短絡環との境界部における放射方向の段差をなくし、しかも第2導体の断面積は茄子形状で第1導体の多角形に比べ角がないので角部への応力集中問題がない上に断面積が大きくなっているので、短絡環の内径側での第2導体強度が増加して境界部での残留応力が低下する。   In the cage rotor core according to the present invention, the first conductor formed by casting molten metal in a plurality of grooves in the circumferential direction of the rotor core and the same number of the first conductors communicate with each other. In addition, in a cage rotor core having a large cross-sectional area, a second conductor formed by simultaneous casting with the first conductor, and a short-circuited ring formed in communication with the second conductor, the cross-sectional area of the second conductor is The second conductor is formed larger than the first conductor, the head of the second conductor is formed in an arc shape, and the radial length at the boundary between the second conductor and the short-circuit ring is the radiation between the second conductor and the short-circuit ring. It is formed to be equal to the length in the direction, and the radial step at the boundary between the second conductor and the short-circuit ring is eliminated. The step in the radial direction is eliminated at the boundary between the second conductor and the short-circuit ring, and the cross-sectional area of the second conductor is an insulator and has no corners compared to the polygon of the first conductor, so there is no problem of stress concentration at the corners. Since the cross-sectional area is increased upward, the strength of the second conductor on the inner diameter side of the short-circuiting ring is increased and the residual stress at the boundary portion is reduced.

請求項2では、前記第1導体と第2導体との円弧段差部に円弧を形成したもので、円弧段差部に集中する応力を分散緩和させる。請求項3では、前記溶融金属を純アルミニウムとし、この純アルミニウムに成分構成がAl−10%Ti−Bの合金を溶解重量に対して0.2〜1.0重量%添加し形成された第1,2導体並びに短絡環を有するものである。電気伝導率は合金添加により57IACS%以上となり、又、結晶組織を微細化することができて引張り強度は若干バラツキはあるものの8〜13%向上し、伸びは略同等のものが形成された。この結果から段差部及び境界部の耐残留応力を改善できる。   According to a second aspect of the present invention, an arc is formed at the arc step portion between the first conductor and the second conductor, and the stress concentrated on the arc step portion is distributed and relaxed. According to a third aspect of the present invention, the molten metal is pure aluminum, and an alloy having a composition of Al-10% Ti-B is added to the pure aluminum in an amount of 0.2 to 1.0% by weight based on the dissolved weight. It has 1 and 2 conductors and a short circuit ring. The electrical conductivity became 57 IACS% or more by addition of the alloy, the crystal structure could be refined, the tensile strength was slightly varied, but it was improved by 8 to 13%, and the elongation was substantially the same. From this result, the residual stress resistance of the stepped portion and the boundary portion can be improved.

本発明によれば、回転子鉄心端面での二次導体と短絡環の境界部が強度補強され、この境界部での亀裂発生を防止することができる。   According to the present invention, the boundary portion between the secondary conductor and the short-circuit ring at the rotor core end face is reinforced, and cracks at the boundary portion can be prevented.

以下本発明の一実施例を図面を参照して説明する。図1は、かご形回転子鉄心の短絡環周辺の要部を示す断面図で、図2は図1のII方向断面図である。図3,4は回転子鉄心の電気抜板を夫々示す正面図である。   An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing the main part around the short-circuit ring of the cage rotor core, and FIG. 2 is a cross-sectional view in the II direction of FIG. 3 and 4 are front views showing the electrical punching plates of the rotor core, respectively.

図において、回転子鉄心は2種類の電気鉄板である第1電気鉄板(以下、第1鉄板)11, 第2電気鉄板(以下、第2鉄板)11aで形成され、第1鉄板11を複数枚積層して規定厚l1 とし、この第1鉄板11積層両端に第2鉄板11aを複数枚積層して規定厚l2 として、回転子鉄心は規定厚Lとなる。この第2鉄板11aの規定厚l2 は、回転子鉄心の規定厚Lの5〜10%(電動機特性を考慮して)に設定してある。前記第1鉄板11は、溝16形状が図3に示すように頭部16aが三角形で凸形状のものを円周方向に所定個数穿孔されている。次に第2鉄板11aは、第1鉄板11の溝16と同数穿孔され同溝16より断面積が約1.5倍大きい略茄子形状の溝17を図4に示すように穿孔されている。溝17の頭部17aは半径5〜10mmの円弧R1 状に形成され、前記溝16の頭部16aとは略外径である。   In the figure, the rotor core is formed of a first electric iron plate (hereinafter referred to as a first iron plate) 11 and a second electric iron plate (hereinafter referred to as a second iron plate) 11a, which are two types of electric iron plates. The rotor core has a specified thickness L by laminating to a specified thickness l1 and laminating a plurality of second iron plates 11a on both ends of the first iron plate 11 to obtain a specified thickness l2. The specified thickness l2 of the second iron plate 11a is set to 5 to 10% (in consideration of the motor characteristics) of the specified thickness L of the rotor core. As shown in FIG. 3, the first iron plate 11 is formed with a predetermined number of holes 16a having a triangular head 16a and a convex shape in the circumferential direction. Next, the second iron plate 11a has the same number of holes 16 as the grooves 16 of the first iron plate 11, and has a substantially insulator-shaped groove 17 having a cross-sectional area approximately 1.5 times larger than the groove 16 as shown in FIG. The head portion 17a of the groove 17 is formed in the shape of an arc R1 having a radius of 5 to 10 mm, and the head portion 16a of the groove 16 has a substantially outer diameter.

この回転子鉄心を図示しない金型内に挿入して約400℃まで予熱し、約700〜720℃の溶融純アルミニウムを夫々の溝16,17にダイキャストにより鋳込み、金型外しの鉄心温度と二次導体温度が約200℃以下となるまで冷却保持する。この鋳込みにより溝16で第1導体である二次導体12を、溝17で第2導体である二次導体12aを夫々形成すると共に、二次導体12aに連通して回転子鉄心両端に短絡環13を有する図1に示すような、かご形回転子鉄心15を形成する。この時、かご形回転子鉄心15端面での二次導体12aの放射方向長さ(溝17高さ)と短絡環13の放射方向長さ(以下境界部18長さという)比は0.75〜1.0(図1では略1.0で表示)に形成されている。尚、二次導体12と二次導体12aとの段差部12c及び境界部18の残留応力を除去する歪取焼鈍として、再度かご形回転子鉄心15を昇温温度約20〜30℃/Hr,熱処理温度約200〜355℃で3〜6時間保持し炉冷してもよい。   This rotor core is inserted into a mold (not shown), preheated to about 400 ° C., molten aluminum at about 700 to 720 ° C. is cast into the respective grooves 16 and 17 by die casting, and the temperature of the core is removed from the mold. Cool and hold until the secondary conductor temperature is about 200 ° C. or less. By this casting, the secondary conductor 12 which is the first conductor is formed in the groove 16 and the secondary conductor 12a which is the second conductor is formed in the groove 17, and the short-circuit ring is connected to the both ends of the rotor core in communication with the secondary conductor 12a. A cage rotor core 15 is formed as shown in FIG. At this time, the ratio of the radial length of the secondary conductor 12a (height of the groove 17) to the radial length of the short-circuit ring 13 (hereinafter referred to as the length of the boundary portion 18) at the end face of the cage rotor core 15 is 0.75. To 1.0 (indicated by about 1.0 in FIG. 1). In addition, as the strain relief annealing for removing the residual stress at the step portion 12c and the boundary portion 18 between the secondary conductor 12 and the secondary conductor 12a, the squirrel-cage rotor core 15 is again heated at a temperature of about 20 to 30 ° C./Hr, You may hold | maintain at the heat processing temperature about 200-355 degreeC for 3 to 6 hours, and furnace-cooling.

このように形成された境界部の作用効果を述べる。境界部18長さ比を0.75〜1.0にしたことにより二次導体12aと短絡環13での段差がなくなる若しくは小さくなり、しかも二次導体12aの断面積は茄子形状で二次導体12の多角形に比べ角がないので角部への応力集中問題がない上に断面積は約1.5倍大きくなっており、短絡環13の内径側での二次導体12a強度が増加する。即ち、図9で示す100℃における修正グッドマン線図での破線で示す応力計算値が、従来のa点から境界部18長さ比が0.75の場合はb点へ、境界部18長さ比が1.0の場合はc点へと夫々移動して低下する。この結果、境界部18での残留応力が低下する。尚、図9でAは疲労試験のS−N曲線の1.0*10における疲労限度を示し、Bは100℃での引張強度である。また、図8は100℃における応力−歪み線図である。   The effect of the boundary portion thus formed will be described. By setting the length ratio of the boundary portion 18 to 0.75 to 1.0, the step between the secondary conductor 12a and the short-circuit ring 13 is eliminated or reduced, and the secondary conductor 12a has a cross-sectional area in the form of an insulator. Since there are no corners compared to 12 polygons, there is no problem of stress concentration at the corners, and the cross-sectional area is about 1.5 times larger, and the strength of the secondary conductor 12a on the inner diameter side of the short-circuit ring 13 is increased. . That is, the stress calculation value indicated by the broken line in the modified Goodman diagram at 100 ° C. shown in FIG. 9 is changed from the conventional point a to the point b when the boundary portion 18 length ratio is 0.75. When the ratio is 1.0, it moves to point c and decreases. As a result, the residual stress at the boundary 18 is reduced. In FIG. 9, A represents the fatigue limit at 1.0 * 10 of the SN curve of the fatigue test, and B represents the tensile strength at 100 ° C. FIG. 8 is a stress-strain diagram at 100 ° C.

又、溝17の頭部17aは半径5〜10mmの円弧R1 状になっているので、形成された二次導体12aの頭部も円弧状になっている。この為、従来の頭部は三角形であつたので頂点に応力が集中し、この頂点で亀裂の発生する恐れがあったが、本実施例は三角形から円弧状になることで応力が分散されて頭部頂点での強度が高くなり亀裂発生の恐れがなくなった。更に、金型外しの鉄心温度と二次導体温度が約200℃以下となるまで冷却保持することで、境界部18にかかる応力を緩和することができる。しかも、二次導体12aと二次導体12の段差部12cは回転子鉄心内にあるので、回転による短絡環13の遠心力を鉄心によって保護される。   Further, since the head portion 17a of the groove 17 has an arc R1 shape having a radius of 5 to 10 mm, the head portion of the formed secondary conductor 12a also has an arc shape. For this reason, since the conventional head is a triangle, stress concentrates on the apex and there is a risk of cracks occurring at this apex, but in this example, the stress is dispersed by changing from a triangle to an arc. The strength at the top of the head has increased and there is no risk of cracking. Furthermore, the stress applied to the boundary portion 18 can be relieved by cooling and holding until the iron core temperature and the secondary conductor temperature are about 200 ° C. or less. In addition, since the step 12c between the secondary conductor 12a and the secondary conductor 12 is in the rotor core, the centrifugal force of the short-circuit ring 13 due to rotation is protected by the iron core.

これらの相乗効果で、電動機が運転された時に従来の境界部5で発生していた応力が緩和され、境界部5の内径側の段差部Xや外径側頭部で亀裂発生の恐れがあったが、本実施例の境界部18ではなくなった。そして、段差部12c及び境界部18の残留応力を除去する歪取焼鈍を実施すると、この効果は更に向上する。   Due to these synergistic effects, the stress generated in the conventional boundary portion 5 when the motor is operated is relieved, and there is a risk of cracks occurring in the stepped portion X on the inner diameter side of the boundary portion 5 and the outer diameter side head portion. However, it is no longer the boundary 18 in this embodiment. And if the stress relief annealing which removes the residual stress of the level | step-difference part 12c and the boundary part 18 is implemented, this effect will further improve.

(第2実施例)
第2実施例を図5を参照して説明する。第1実施例と異なるのは、二次導体12aと二次導体12の段差部12cを円弧段差部24に形成したことである。これは、積層された電気抜板11両端に電気抜板11aを複数枚積層した後に、図1に示す段差部12cを溝17から研磨加工により半径3〜10mmの円弧R2 を設け、二次導体12aと二次導体12間の段差部12cに円弧段差部24を形成する。これは、電動機運転による発生する短絡環13及び二次導体12a,二次導体12の熱応力によって軸方向には伸縮作用が働き、この伸縮作用と短絡環13の遠心力が段差部12cに一点集中するのを円弧段差部24で分散支持することで緩和される。この結果、二次導体12aと二次導体12間の段差部12cでの切断発生の可能性を更になくすることができる。
(Second embodiment)
A second embodiment will be described with reference to FIG. The difference from the first embodiment is that the stepped portion 12c between the secondary conductor 12a and the secondary conductor 12 is formed in the arc-shaped stepped portion 24. This is because, after laminating a plurality of electrical release plates 11a at both ends of the laminated electrical release plate 11, an arc R2 having a radius of 3 to 10 mm is provided by polishing the step portion 12c shown in FIG. An arc step portion 24 is formed in a step portion 12c between 12a and the secondary conductor 12. This is because the expansion and contraction action acts in the axial direction by the thermal stress of the short-circuit ring 13 and the secondary conductor 12a and the secondary conductor 12 generated by the motor operation, and this expansion action and the centrifugal force of the short-circuit ring 13 are applied to the step portion 12c. Concentration is alleviated by supporting in a distributed manner with the circular arc step portion 24. As a result, it is possible to further eliminate the possibility of cutting at the step portion 12c between the secondary conductor 12a and the secondary conductor 12.

(第3実施例)
第3実施例を図10を参照して説明する。第1実施例と異なるのは、回転子鉄心の溝へ鋳込む溶融した純アルミニウムに、成分構成がAl−10%Ti−Bの合金を、溶解重量に対して0.2〜1.0重量%まで0.2%ピッチで添加し、形成される二次導体の電気伝導率を57IACS%以上を狙うと共に二次導体強度の向上にある。電気伝導率及び強度調査は二次導体12aと略同形状の試料を製作して比較試験した。その結果を図10に示した。
(Third embodiment)
A third embodiment will be described with reference to FIG. The difference from the first embodiment is that 0.2 to 1.0 weight of the alloy whose composition is Al-10% Ti-B is added to molten pure aluminum cast into the groove of the rotor core. In addition, the electrical conductivity of the formed secondary conductor is set to 57 IACS% or more and the secondary conductor strength is improved. For the electrical conductivity and strength investigation, a sample having the same shape as that of the secondary conductor 12a was manufactured and subjected to a comparative test. The results are shown in FIG.

電気伝導率は添加した0.2〜1.0重量%の全試料が57IACS%以上となり目的を達成した。又、Al−10%Ti−B合金の添加で結晶組織を微細化することができて引張り強度は若干バラツキはあるものの8〜13%向上し、伸びは略同等のものが形成されている。この結果から、Al−10%Ti−B合金を添加した材料を強度が向上した二次導体材料として使用可能で、段差部12c及び境界部18の耐残留応力を改善できる。   The electrical conductivity of the whole sample of 0.2 to 1.0% by weight added was 57 IACS% or more, and the object was achieved. Further, the addition of Al-10% Ti-B alloy can refine the crystal structure, and the tensile strength is slightly varied, but is improved by 8 to 13%, and the elongation is substantially the same. From this result, it is possible to use a material added with an Al-10% Ti-B alloy as a secondary conductor material with improved strength, and to improve the residual stress resistance of the stepped portion 12c and the boundary portion 18.

本発明の第1実施例を示すかご形回転子鉄心の要部断面図、Sectional drawing of the principal part of the cage rotor core which shows 1st Example of this invention, 図1のII方向断面図、II sectional view of FIG. 溝形状を示す第1電気鉄板の平面図、A plan view of the first electric iron plate showing the groove shape, 溝形状を示す第2電気鉄板の平面図、A plan view of the second electric iron plate showing the groove shape, 第2実施例を示す図1相当図、FIG. 1 equivalent view showing a second embodiment, 従来のかご形回転子鉄心の断面図、Sectional view of a conventional cage rotor core, 二次導体と短絡環にかかる応力の説明図、Explanatory drawing of stress applied to secondary conductor and short-circuit ring, 応力−歪み線図、Stress-strain diagram, 修正グッドマン線図、Modified Goodman diagram, アルミ材料にAl−10%Ti−B添加による強度比較図。The strength comparison figure by Al-10% Ti-B addition to the aluminum material.

符号の説明Explanation of symbols

11…第1電気鉄板(第1鉄板)、 11a…第2電気鉄板(第2鉄板)、12…第1導体(二次導体)、 12a…第2導体(二次導体)、12c…段差部、 13…短絡環、15…かご形回転子鉄心、 16,17…溝、16a,17a…頭部、 5,18…境界部、24…円弧段差部、 R1 ,R2 …円弧。 11 ... 1st electric iron plate (1st iron plate), 11a ... 2nd electric iron plate (2nd iron plate), 12 ... 1st conductor (secondary conductor), 12a ... 2nd conductor (secondary conductor), 12c ... Step part 13 ... Short-circuited ring, 15 ... Cage rotor core, 16, 17 ... Groove, 16a, 17a ... Head, 5, 18 ... Border, 24 ... Arc step, R1, R2 ... Arc.

Claims (3)

回転子鉄心の円周方向に複数個の溝に溶融金属を鋳込んで形成の第1導体と、この第1導体と同数で連通し且つ断面積が大で該第1導体と同時鋳込みで形成の第2導体と、この第2導体と連通して形成の短絡環を有するかご形回転子鉄心において、前記第2導体の断面積は第1導体よりも大きく形成し、この第2導体の頭部を円弧状に形成し、この第2導体と前記短絡環との境界部における放射方向長さを第2導体と短絡環との放射方向長さに等しく形成して、前記第2導体と短絡環との境界部における放射方向の段差をなくしたことを特徴とするかご形回転子鉄心。   A first conductor formed by casting molten metal in a plurality of grooves in the circumferential direction of the rotor core, and the same number of first conductors as in the first conductor and having a large cross-sectional area and formed by simultaneous casting with the first conductor. A cage rotor core having a short-circuit ring formed in communication with the second conductor, the cross-sectional area of the second conductor is formed larger than that of the first conductor, and the head of the second conductor A portion is formed in a circular arc shape, and a radial length at a boundary portion between the second conductor and the short-circuit ring is formed to be equal to a radial direction length between the second conductor and the short-circuit ring, and the second conductor is short-circuited. A squirrel-cage rotor core characterized by eliminating a radial step at the boundary with the ring. 前記第1導体と第2導体との円弧段差部に円弧を形成した請求項1記載のかご形回転子鉄心。   The squirrel-cage rotor core according to claim 1, wherein an arc is formed at an arc step portion between the first conductor and the second conductor. 前記溶融金属を純アルミニウムとし、この純アルミニウムに成分構成がAl−10%Ti−Bの合金を溶解重量に対して0.2〜1.0重量%添加し形成された第1,2導体並びに短絡環を有する請求項1記載のかご形回転子鉄心。   The first and second conductors formed by adding pure aluminum as the molten metal and adding 0.2 to 1.0% by weight of an alloy whose composition is Al-10% Ti-B to the pure aluminum, The squirrel-cage rotor core according to claim 1 having a short-circuited ring.
JP2007153718A 2007-06-11 2007-06-11 Squirrel-cage rotor core Pending JP2007228798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153718A JP2007228798A (en) 2007-06-11 2007-06-11 Squirrel-cage rotor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153718A JP2007228798A (en) 2007-06-11 2007-06-11 Squirrel-cage rotor core

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17164098A Division JP4028089B2 (en) 1998-06-18 1998-06-18 Manufacturing method of cage rotor core

Publications (1)

Publication Number Publication Date
JP2007228798A true JP2007228798A (en) 2007-09-06

Family

ID=38550023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153718A Pending JP2007228798A (en) 2007-06-11 2007-06-11 Squirrel-cage rotor core

Country Status (1)

Country Link
JP (1) JP2007228798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130187512A1 (en) * 2010-09-30 2013-07-25 Siemens Aktiengesellschaft Squirrel-cage rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130187512A1 (en) * 2010-09-30 2013-07-25 Siemens Aktiengesellschaft Squirrel-cage rotor
US10700582B2 (en) * 2010-09-30 2020-06-30 Siemens Aktiengesellschaft Rotor bar for squirrel-cage rotor, and squirrel-cage rotor provided with rotor bar

Similar Documents

Publication Publication Date Title
US8963394B2 (en) Cage rotor with starting bar
Bonnett et al. Squirrel cage rotor options for AC induction motors
JP5675404B2 (en) Copper alloy sheet and manufacturing method thereof
US8925182B2 (en) Cast rotor and method
JP4028089B2 (en) Manufacturing method of cage rotor core
WO2013018164A1 (en) Aluminum alloy foil for electrode collector and production method therefor
EP0652624B1 (en) Rotor for dynamo electric machine
CN110622398B (en) Method for producing a squirrel-cage rotor for an asynchronous machine
JP2007228798A (en) Squirrel-cage rotor core
DE102013202403A1 (en) Centrifugal force support of a short-circuit ring in induction machines
JP4947634B2 (en) Copper alloy
JP5898476B2 (en) Aluminum alloy foil for lithium ion battery positive electrode current collector and method for producing the same
US8120226B2 (en) Methods and apparatus for an electric machine with a cast rotor
US9601978B2 (en) Aluminum alloy rotor for an electromagnetic device
KR101137815B1 (en) Method for Manufacturing Hollowed Coil and Using for Generator Hollowed Coil and Method for Manufacturing thereby
JP4973437B2 (en) Copper alloy wire, copper alloy twisted wire, coaxial cable, multi-core cable, and copper alloy wire manufacturing method
RU2654688C1 (en) Rotor of cast squirrel-cage induction motor
EP3713050B1 (en) Induction motor
US3194996A (en) Induction motor rotor
JPH0736686B2 (en) Induction motor
JP6759612B2 (en) Trolley wire and feeder overhead wire
JPH0313935B2 (en)
JPH11350093A (en) Manufacture of heat resistant aluminum alloy conducting wire
JP2012244824A (en) Rotor of motor
JPS5895961A (en) Manufacture of squirrel-cage rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819