JP2007227867A - Heat-dissipating board and semiconductor device using the same - Google Patents

Heat-dissipating board and semiconductor device using the same Download PDF

Info

Publication number
JP2007227867A
JP2007227867A JP2006069474A JP2006069474A JP2007227867A JP 2007227867 A JP2007227867 A JP 2007227867A JP 2006069474 A JP2006069474 A JP 2006069474A JP 2006069474 A JP2006069474 A JP 2006069474A JP 2007227867 A JP2007227867 A JP 2007227867A
Authority
JP
Japan
Prior art keywords
copper
heat dissipation
copper plate
bonding
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006069474A
Other languages
Japanese (ja)
Other versions
JP4688706B2 (en
Inventor
Yuichi Abe
裕一 阿部
Kiyotaka Nakamura
清隆 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006069474A priority Critical patent/JP4688706B2/en
Publication of JP2007227867A publication Critical patent/JP2007227867A/en
Application granted granted Critical
Publication of JP4688706B2 publication Critical patent/JP4688706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-dissipating board having excellent heat dissipation property and durability such that a crack is not formed. <P>SOLUTION: The heat-dissipating board 1 is formed by joining a silicon nitride substrate 2 and copper plates 41 and 42. The silicon nitride substrate 2 is formed from silicon nitride sintered body. The main component of the copper plates 41 and 42 is copper or copper alloy. The copper plates 41 and 42 are formed on both main surfaces of the silicon nitride substrate 2, via active metal layers 31 and 32. The heat-dissipating board 1 includes bonding layers 51 and 52 between the active metal layers 31 and 32 and the copper plates 41 and 42. The main component of the bonding layers 51 and 52 is copper. Therefore, silicon nitride substrate 2 and the copper plates 41 and 42 can be bonded at a low temperature of about 300°C, as a result of the diffusion effect of the copper or the copper alloy that is the main component of the bonding layers 51 and 52. Warpage is reduced that occurs in the copper layers 41 and 42 during bonding. Therefore, the thickness of the copper layers 41 and 42 can be increased. A heat-dissipating board 1 can be achieved with a high heat-dissipation property. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、IGBT(絶縁ゲート・バイポーラ・トランジスタ)素子等の半導体素子、昇華型サーマルプリンターヘッド用基板、面型発熱ヒーター支持基板、サーマルインクジェットプリンターヘッドのヒーター支持基板等の放熱効率を高める目的に用いられる放熱基板と、これを用いた半導体装置に関する。   The present invention aims to increase the heat radiation efficiency of semiconductor elements such as IGBT (insulated gate bipolar transistor) elements, substrates for sublimation thermal printer heads, surface heating heater support substrates, heater support substrates for thermal ink jet printer heads, etc. The present invention relates to a heat dissipation substrate used and a semiconductor device using the same.

近年、パワートランジスタモジュールやスイッチング電源モジュール等のパワーモジュールに代表される半導体装置の放熱基板として、例えば図6(a)〜(c)にその平面図および断面図を示すように、セラミック基板62の一方の主面上に回路基板である銅板63を接合し、他方の表面に放熱性の良好な銅板64を接合して構成された放熱基板61が広く用いられており、この銅板64には、セラミック基板62と反対側に熱をさらに拡散させるためのヒートシンク(不図示)が取り付けられる。   In recent years, as a heat dissipation substrate of a semiconductor device typified by a power module such as a power transistor module or a switching power supply module, for example, as shown in a plan view and a cross-sectional view in FIGS. A heat radiating board 61 is widely used which is formed by joining a copper plate 63 as a circuit board on one main surface and joining a copper plate 64 having good heat dissipation on the other surface. A heat sink (not shown) for further diffusing heat is attached to the side opposite to the ceramic substrate 62.

最近では、このような放熱基板におけるセラミック基板として特許文献1〜3で示されているように電気絶縁性を有するとともに熱伝導性に優れた窒化珪素基板が一般的に使用されるようになっている。窒化珪素基板62に銅板63,64を接合する手法としては、直接接合法、高融点金属メタライズ法、活性金属法等が用いられる。   Recently, as a ceramic substrate in such a heat dissipation substrate, a silicon nitride substrate having electrical insulation and excellent thermal conductivity has been generally used as shown in Patent Documents 1 to 3. Yes. As a method of bonding the copper plates 63 and 64 to the silicon nitride substrate 62, a direct bonding method, a refractory metal metallization method, an active metal method, or the like is used.

直接接合法とは、予め1000℃以上に加熱して表面を酸化させた窒化珪素基板62上に、所定形状に打ち抜いて回路を形成した銅板63を配置して加熱し、銅板63が窒化珪素基板62と接触する界面に、窒化珪素基板62との濡れ性が高いCu−CuO、Cu−O等の共晶液相を生成させた後、共晶液相を冷却固化させることにより、窒化珪素基板62と銅板63とを直接接合する、いわゆる銅直接接合法(DBC法:Direct Bonding Copper法)である。また、高融点金属メタライズ法は、モリブデン(Mo)やタングステン(W)等の高融点金属を窒化珪素基板62の表面に1400〜1600℃で焼き付けて銅板63,64を一体に形成する方法である。さらに、活性金属法は、図6(b)のB部を拡大した断面図である図6(c)に示すように、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)などの4族元素のような活性を有する金属を含むAg−Cuロウ材層(以下、単にロウ材層と称す。)65を介して窒化珪素基板62に銅板63,64を800〜900℃に加熱して接合する方法である。この活性金属法によれば、ロウ材層65は銅(Cu)および銀(Ag)の主成分により銅板63,64との接合強度を高められるとともに、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)成分により窒化珪素基板62との接合強度も高められる。 In the direct bonding method, a copper plate 63 having a circuit formed by punching into a predetermined shape is placed on a silicon nitride substrate 62 whose surface has been oxidized by heating to 1000 ° C. or higher in advance, and the copper plate 63 is heated to a silicon nitride substrate. The eutectic liquid phase such as Cu—Cu 2 O and Cu—O having high wettability with the silicon nitride substrate 62 is generated at the interface contacting with the 62, and then the eutectic liquid phase is cooled and solidified. This is a so-called direct copper bonding method (DBC method: Direct Bonding Copper method) in which the silicon substrate 62 and the copper plate 63 are directly bonded. The refractory metal metallization method is a method of integrally forming the copper plates 63 and 64 by baking a refractory metal such as molybdenum (Mo) or tungsten (W) onto the surface of the silicon nitride substrate 62 at 1400 to 1600 ° C. . Furthermore, as shown in FIG. 6C, which is an enlarged cross-sectional view of the portion B in FIG. 6B, the active metal method uses a group 4 such as titanium (Ti), zirconium (Zr), hafnium (Hf), and the like. Copper plates 63 and 64 are heated to 800 to 900 ° C. and bonded to a silicon nitride substrate 62 through an Ag—Cu brazing material layer (hereinafter simply referred to as a brazing material layer) 65 containing a metal having an activity such as an element. It is a method to do. According to this active metal method, the brazing material layer 65 can increase the bonding strength with the copper plates 63 and 64 by the main components of copper (Cu) and silver (Ag), and at the same time, titanium (Ti), zirconium (Zr), hafnium. The bonding strength with the silicon nitride substrate 62 is also increased by the (Hf) component.

なお、具体的な回路の形成方法としては、予めプレス加工やエッチング加工によりパターニングして回路を形成した銅板を用いたり、接合後にエッチング、レーザー等によりパターニングしたりする方法が知られている。   As a specific method for forming a circuit, a method of using a copper plate that has been previously patterned by press processing or etching processing to form a circuit, or performing patterning by etching, laser, or the like after bonding is known.

これら直接接合法や活性金属法により得られる放熱基板61は、いずれも窒化珪素基板62と銅板63,64との接合強度が高く、単純な構造を有するため、高実装化が可能であり、また製造工程も短縮できるといった効果が得られ、大電流型や高集積型の半導体素子に対応できるといった利点を有している。
特開平6−216481号公報 特開2001−94016号公報 特開2002−201076号公報
Each of the heat dissipation substrates 61 obtained by the direct bonding method or the active metal method has a high bonding strength between the silicon nitride substrate 62 and the copper plates 63 and 64 and has a simple structure, so that high mounting is possible. The manufacturing process can be shortened, and there is an advantage that it can be applied to a large current type or highly integrated semiconductor element.
JP-A-6-216482 JP 2001-94016 A JP 2002-201076 A

しかしながら、特許文献1〜3で提案された放熱基板61は、どれも800℃以上の高温で加熱して窒化珪素基板62に銅板63,64を接合しているため、接合時に熱応力が発生し、冷却の過程で放熱基板61が反りやすいという問題を有していた。   However, since each of the heat dissipation substrates 61 proposed in Patent Documents 1 to 3 is heated at a high temperature of 800 ° C. or higher and the copper plates 63 and 64 are bonded to the silicon nitride substrate 62, thermal stress is generated at the time of bonding. There is a problem that the heat dissipation substrate 61 tends to warp during the cooling process.

また、放熱基板61の放熱特性を向上させるために銅板63,64の厚みを大きくしようとした場合、上述の熱応力がより大きくなり、反りが大きくなりやすく、放熱特性の高い放熱基板61を得ることができないという問題があった。   In addition, when the thickness of the copper plates 63 and 64 is increased in order to improve the heat dissipation characteristics of the heat dissipation board 61, the above-described thermal stress becomes larger, warpage tends to increase, and the heat dissipation board 61 having high heat dissipation characteristics is obtained. There was a problem that I could not.

さらに、近年、上述のような放熱基板61を使用した半導体装置の高出力化に伴って半導体素子の高集積化は急速に進行し、放熱基板61に繰り返し与えられる熱応力は増加する傾向にあるが、このような熱応力に対して十分な耐久性を備えた放熱基板とは言えなかった。   Further, in recent years, with the increase in output of a semiconductor device using the heat dissipation substrate 61 as described above, the integration of semiconductor elements has been rapidly advanced, and the thermal stress repeatedly applied to the heat dissipation substrate 61 tends to increase. However, it cannot be said that the heat dissipation substrate has sufficient durability against such thermal stress.

本発明は、上述のような課題を解決するためのものであって、放熱特性が良好であるとともに、クラックの発生がない耐久性を備えた放熱基板を提供するものである。   The present invention is for solving the above-described problems, and provides a heat dissipation substrate having good heat dissipation characteristics and durability without cracking.

本発明の放熱基板は、窒化珪素質焼結体から成る窒化珪素基板と、該窒化珪素基板の両主面上に活性金属層を介して銅または銅合金を主成分とする銅板を接合してなる放熱基板であって、前記活性金属層および銅板との間に銅を主成分とする結合層を備えたことを特徴とするものである。   The heat dissipation substrate of the present invention is obtained by joining a silicon nitride substrate made of a silicon nitride-based sintered body and a copper plate containing copper or a copper alloy as a main component via active metal layers on both main surfaces of the silicon nitride substrate. A heat dissipation board comprising a bonding layer mainly composed of copper between the active metal layer and the copper plate.

また、前記活性金属層および銅板との間に活性金属層側より銅を主成分とする結合層、Au,Pt,Ag,InおよびSnのいずれかによりなる第1の薄層および前記金属のいずれかよりなる第2の薄層を備えたことを特徴とするものである。   Further, a bonding layer mainly composed of copper from the active metal layer side between the active metal layer and the copper plate, a first thin layer made of any of Au, Pt, Ag, In and Sn, and any of the metals A second thin layer made of the above is provided.

さらに、前記第1の薄層を形成する金属と、第2の薄層を形成する金属とが同じ金属であることを特徴とする。   Further, the metal forming the first thin layer and the metal forming the second thin layer are the same metal.

またさらに、前記第1の薄層および第2の薄層の互いに対向する面は、算術平均高さRaが0.05μm以下であることを特徴とする。   Still further, the mutually opposing surfaces of the first thin layer and the second thin layer have an arithmetic average height Ra of 0.05 μm or less.

また、銅板を平面透視した際の前記銅板の端部が結合層の端部より内側に位置することを特徴とするものである。   Further, the end portion of the copper plate when the copper plate is seen through the plane is positioned inside the end portion of the bonding layer.

さらに、銅板を平面透視した際の一方の銅板の端部が他方の銅板の端部より内側に位置することを特徴とするものである。   Furthermore, the end of one copper plate when the copper plate is seen through on a plane is located inside the end of the other copper plate.

またさらに、前記結合層は、そのビッカース硬度がHv0.5GPa以下であることを特徴とするものである。   Furthermore, the bonding layer has a Vickers hardness of Hv 0.5 GPa or less.

さらにまた、前記一方の銅板は、回路が形成された回路基板であることを特徴とするものである。   Further, the one copper plate is a circuit board on which a circuit is formed.

また、本発明の半導体装置は、放熱基板における回路基板に半導体素子を接続したことを特徴とするものである。   The semiconductor device of the present invention is characterized in that a semiconductor element is connected to a circuit board in a heat dissipation board.

本発明の放熱基板は、窒化珪素質焼結体から成る窒化珪素基板と、該窒化珪素基板の両主面上に活性金属層を介して銅または銅合金を主成分とする銅板を接合してなる放熱基板であって、前記活性金属層および銅板との間に銅を主成分とする結合層を備えたことから、
結合層の主成分である銅または銅合金の拡散作用により300〜500℃の低温で接合することができるため、銅直接接合法、高融点金属メタライズ法、活性金属法等で接合した場合より、接合時に銅板に生じる反りが小さくなるので、銅板の厚みを大きくすることができる。銅板の厚みの大きな放熱基板は、放熱特性を高くすることができ、場合によってはヒートシンクの取り付けも不要にすることができる。
The heat dissipation substrate of the present invention is obtained by joining a silicon nitride substrate made of a silicon nitride-based sintered body and a copper plate containing copper or a copper alloy as a main component via active metal layers on both main surfaces of the silicon nitride substrate. Since the heat dissipation substrate is provided with a bonding layer mainly composed of copper between the active metal layer and the copper plate,
Because it is possible to join at a low temperature of 300-500 ° C. due to the diffusion action of copper or copper alloy which is the main component of the bonding layer, than when joining by the copper direct joining method, refractory metal metallization method, active metal method, etc. Since the warp generated in the copper plate during joining is reduced, the thickness of the copper plate can be increased. A heat dissipation board with a large copper plate can improve heat dissipation characteristics, and in some cases, it is not necessary to attach a heat sink.

また、前記活性金属層および銅板との間に、活性金属層側より銅を主成分とする結合層、Au,Pt,AgおよびInのいずれかによりなる第1の薄層および前記金属のいずれかよりなる第2の薄層を備えた場合、これら金属の銅板および結合層に対する拡散作用と、銅板の主成分である銅または銅合金の第1の薄層および第2の薄層に対する拡散作用により180〜300℃の低温で接合することができる。   Further, between the active metal layer and the copper plate, any one of the first thin layer made of any one of Au, Pt, Ag, and In, and a bonding layer mainly composed of copper from the active metal layer side and the metal. When the second thin layer is provided, the diffusion action of these metals on the copper plate and the bonding layer and the diffusion action on the first thin layer and the second thin layer of copper or copper alloy, which is the main component of the copper plate, Bonding can be performed at a low temperature of 180 to 300 ° C.

また、前記第1の薄層および第2の薄層がSnからなる場合、Snは柔らかく、変形しやすいため、結合層および銅板となじみやすい上、銅または銅合金の第1の薄層および第2の薄層に対する拡散作用により180〜300℃の低温で接合することができる。   Further, when the first thin layer and the second thin layer are made of Sn, since Sn is soft and easily deformed, it is easily compatible with the bonding layer and the copper plate, and the first thin layer of the copper or copper alloy and the second thin layer. It is possible to join at a low temperature of 180 to 300 ° C. by the diffusion action on the two thin layers.

以上のことから、銅直接接合法、高融点金属メタライズ法、活性金属法等で接合した場合より、接合時に銅板に生じる反りが小さくなるので、銅板の厚みを大きくすることができる。銅板の厚みの大きな放熱基板は、放熱特性を高くすることができ、場合によってはヒートシンクの取り付けも不要にすることができる。   From the above, since the warp generated in the copper plate at the time of bonding is smaller than in the case of bonding by the copper direct bonding method, the high melting point metal metallization method, the active metal method or the like, the thickness of the copper plate can be increased. A heat dissipation board having a large copper plate can improve heat dissipation characteristics, and in some cases, it is not necessary to attach a heat sink.

また、第1の薄層を形成する金属と、第2の薄層を形成する金属とが同じ金属である場合、第1の薄層を形成する金属は第2の薄層に、第2の薄層を形成する金属は第1の薄層に拡散しやすくなるため、より低温で接合できるので、反りが小さく、しかも接合強度の高い放熱基板とすることができる。   In addition, when the metal forming the first thin layer and the metal forming the second thin layer are the same metal, the metal forming the first thin layer becomes the second thin layer, Since the metal forming the thin layer easily diffuses into the first thin layer and can be bonded at a lower temperature, a heat dissipation substrate with low warpage and high bonding strength can be obtained.

さらに、第1の薄層および第2の薄層の互いに対向する面は、その算術平均高さRaを0.05μm以下にすることで、対向する面同士が互いになじみ、これら薄層を形成する金属はより容易に拡散するため、放熱基板の反りを小さくできるとともに、接合強度を高くすることができる。   Further, the opposing surfaces of the first thin layer and the second thin layer have an arithmetic average height Ra of 0.05 μm or less, so that the opposing surfaces become compatible with each other and form these thin layers. Since the metal diffuses more easily, the warpage of the heat dissipation substrate can be reduced and the bonding strength can be increased.

また、銅板を平面透視した際の前記銅板の端部が結合層の端部より内側に位置することから、銅板の端面に加熱接合後の冷却工程で発生する応力が結合層内で分散されるように作用するため、窒化珪素基板に発生する応力は減少し、反りの小さい放熱基板とすることができる。   Further, since the end portion of the copper plate when the copper plate is seen through the plane is positioned inside the end portion of the bonding layer, the stress generated in the cooling step after heat bonding is dispersed in the end surface of the copper plate in the bonding layer. Therefore, the stress generated in the silicon nitride substrate is reduced, and a heat dissipation substrate with small warpage can be obtained.

さらに、銅板を平面透視した際の一方の銅板の端部が他方の銅板の端部より内側に位置することから、外側に位置する銅板の端部には引張り応力が作用しないため、両方の銅板の厚みが大きい場合でも、クラックが生じるのを有効に防止でき、厚みの大きな銅板を窒化珪素基板の両主面上に接合強度を高く接合することができる。   Furthermore, since the end of one copper plate when the copper plate is seen through is located on the inner side than the end of the other copper plate, tensile stress does not act on the end of the copper plate located on the outer side, so both copper plates Even if the thickness is large, the occurrence of cracks can be effectively prevented, and a thick copper plate can be bonded to both main surfaces of the silicon nitride substrate with high bonding strength.

さらにまた、結合層は、そのビッカース硬度Hvを0.5GPa以下とすることにより、接合時に印加する力に対して変形しやすいため、冷却時に発生する熱応力を十分に逃がすことができ、結果的に発生する熱応力が低くなり、より厚みの大きな銅板を接合することができる。   Furthermore, since the bonding layer has a Vickers hardness Hv of 0.5 GPa or less, the bonding layer is easily deformed with respect to the force applied at the time of bonding, so that the thermal stress generated at the time of cooling can be sufficiently released. The thermal stress generated in the sheet becomes low, and a thicker copper plate can be joined.

また、前記一方の銅板を回路が形成された回路基板とすることで、回路基板に半導体素子を接続した半導体装置とすることができ、半導体装置を使用時にも半導体素子に蓄熱することがなく、放熱性の高い半導体装置とすることができる。   In addition, by making the one copper plate a circuit board on which a circuit is formed, it is possible to make a semiconductor device in which a semiconductor element is connected to the circuit board, without storing heat in the semiconductor element even when the semiconductor device is used, A semiconductor device with high heat dissipation can be obtained.

以下、本発明を実施するための最良の形態を図面を用いて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の放熱基板の一実施形態を示し、(a)は一方の銅板を平面視したときの平面図、(b)は同図(a)のA−A線における断面図、(c)は同図(b)のB部の拡大図である。   1 shows an embodiment of a heat dissipation board of the present invention, (a) is a plan view when one copper plate is viewed in plan, (b) is a cross-sectional view taken along the line AA in FIG. (C) is the enlarged view of the B section of the same figure (b).

本発明の放熱基板1は、窒化珪素質焼結体から成る窒化珪素基板2と、該窒化珪素基板2の両主面上に活性金属層31,32を介して銅または銅合金を主成分とする銅板41,42を接合してなるものである。   The heat dissipation substrate 1 of the present invention includes a silicon nitride substrate 2 made of a silicon nitride-based sintered body, and copper or a copper alloy as a main component via active metal layers 31 and 32 on both main surfaces of the silicon nitride substrate 2. The copper plates 41 and 42 to be joined are joined.

放熱基板1を構成する窒化珪素基板2は、窒化珪素を主成分とする基板であり、窒化珪素はその熱伝導率が40W/(m・k)以上と高く、放熱特性に優れる。窒化珪素基板2は、その長さが30〜80mm、幅が10〜80mm、厚みは用途によって異なるが、厚すぎると熱抵抗が高くなり、薄すぎると耐久性が低下するため、0.13〜0.4mmとすることが適切である。窒化珪素を主成分とする基板とは、窒化珪素基板2の全質量を100%とした場合、主成分となる窒化珪素が少なくとも50質量%以上含まれている基板をいう。   The silicon nitride substrate 2 constituting the heat dissipation substrate 1 is a substrate mainly composed of silicon nitride, and silicon nitride has a high thermal conductivity of 40 W / (m · k) or more and is excellent in heat dissipation characteristics. The silicon nitride substrate 2 has a length of 30 to 80 mm, a width of 10 to 80 mm, and a thickness that varies depending on the application. However, if it is too thick, the thermal resistance increases, and if it is too thin, the durability decreases. It is appropriate to set it to 0.4 mm. The substrate containing silicon nitride as a main component refers to a substrate containing at least 50% by mass of silicon nitride as a main component when the total mass of the silicon nitride substrate 2 is 100%.

また、この窒化珪素基板2の両主面上に形成される活性金属層31,32は、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)などの4A族元素のような活性金属を含むAg−Cu合金からなり、その長さは5〜60mm、幅は5〜60mm、厚みは5〜20μmである。   Further, the active metal layers 31 and 32 formed on both main surfaces of the silicon nitride substrate 2 are, for example, active metals such as 4A group elements such as titanium (Ti), zirconium (Zr), hafnium (Hf). The length is 5 to 60 mm, the width is 5 to 60 mm, and the thickness is 5 to 20 μm.

銅板41は半導体素子の回路基板として機能し、長さは5〜60mm、幅は5〜60mm、厚みは回路を流れる電流の大きさや銅板41に搭載される半導体素子の発熱量等に応じて0.5〜5mmが選択される。銅板42は発熱した半導体素子により熱を逃がすという機能を有し、長さは5〜65mm、幅は5〜65mm、厚みは0.5〜5mmである。銅または銅合金を主成分とする銅板とは、銅板に対して、主成分である銅または銅合金が99.96質量%以上である銅板をいい、無酸素銅、タフピッチ銅、りん脱酸銅等の銅を用いるのがよい。特に、無酸素銅のうち、銅の含有率が99.995%以上の線形結晶無酸素銅、単結晶状高純度無酸素銅および真空溶解銅のいずれかを用いることが好ましい。   The copper plate 41 functions as a circuit board for the semiconductor element, and the length is 5 to 60 mm, the width is 5 to 60 mm, and the thickness is 0 depending on the magnitude of the current flowing through the circuit, the amount of heat generated by the semiconductor element mounted on the copper plate 41, and the like. .5-5 mm is selected. The copper plate 42 has a function of releasing heat by the generated semiconductor element, and has a length of 5 to 65 mm, a width of 5 to 65 mm, and a thickness of 0.5 to 5 mm. The copper plate mainly composed of copper or copper alloy refers to a copper plate having 99.96% by mass or more of copper or copper alloy as a main component with respect to the copper plate, and is oxygen-free copper, tough pitch copper, phosphorous deoxidized copper. It is preferable to use copper such as. In particular, among oxygen-free copper, it is preferable to use any of linear crystalline oxygen-free copper having a copper content of 99.995% or more, single-crystal high-purity oxygen-free copper, and vacuum-dissolved copper.

ここで、本発明の放熱基板1は、前記活性金属層31,32および銅板41,42との間に銅を主成分とする結合層51,52を備えたことが重要である。   Here, it is important that the heat dissipation substrate 1 of the present invention includes the bonding layers 51 and 52 mainly composed of copper between the active metal layers 31 and 32 and the copper plates 41 and 42.

図1に示すように、銅を主成分とする結合層51,52を備えることにより、結合層51,52の主成分である銅または銅合金の拡散作用により300〜500℃の低温で銅板41,42を接合することができる。また、結合層51,52は変形しやすいため、低い荷重でも接合でき、冷却時に発生する熱応力に対しても変形で緩和することができるため、結果的に発生する熱応力が低くなり、より厚みの大きな銅板41,42を接合しても反りが発生することなく、より放熱特性に優れた放熱基板を得ることができ、ヒートシンクの取り付けも不要にすることができる。   As shown in FIG. 1, by providing the bonding layers 51 and 52 mainly composed of copper, the copper plate 41 is formed at a low temperature of 300 to 500 ° C. by the diffusion action of copper or copper alloy which is the main component of the bonding layers 51 and 52. , 42 can be joined. In addition, since the bonding layers 51 and 52 are easily deformed, they can be joined even with a low load, and the thermal stress generated during cooling can be relaxed by deformation, resulting in a lower thermal stress. Even if the thick copper plates 41 and 42 are joined, a heat dissipation substrate with more excellent heat dissipation characteristics can be obtained without warping, and the installation of a heat sink can be made unnecessary.

銅を主成分とする結合層51,52とは、結合層51,52に対して、主成分である銅が90質量%以上含有することをいい、活性金属層31,32と銅板41,42とを強固に結合する機能を成し、無酸素銅、タフピッチ銅、りん脱酸銅、等の銅を用いるのがよい。特に、無酸素銅のうち、銅の含有率が99.995%以上の線形結晶無酸素銅、単結晶状高純度無酸素銅および真空溶解銅のいずれかを用いることが好ましい。   The bonding layers 51 and 52 containing copper as a main component means that the main component copper is contained in an amount of 90% by mass or more with respect to the bonding layers 51 and 52, and the active metal layers 31 and 32 and the copper plates 41 and 42. It is preferable to use copper such as oxygen-free copper, tough pitch copper, or phosphorus deoxidized copper. In particular, among oxygen-free copper, it is preferable to use any of linear crystalline oxygen-free copper having a copper content of 99.995% or more, single-crystal high-purity oxygen-free copper, and vacuum-dissolved copper.

また、このように結合層51,52を有する放熱基板1において、図2、3に示すように放熱基板1を平面透視した際の前記銅板41,42の端部41a,42aが結合層51,52の端部51a,52aより内側にあることが好ましい。   Further, in the heat dissipation board 1 having the coupling layers 51 and 52 as described above, the end portions 41a and 42a of the copper plates 41 and 42 when the heat dissipation board 1 is seen through the plane as shown in FIGS. It is preferable that it exists inside 52 edge part 51a, 52a.

ここで、図2および図3は、それぞれ(a)は一方の銅板を平面視したときの平面図、(b)は同図(a)のA−A線における断面図、(c)は同図(b)のB部の拡大図である。   Here, FIG. 2 and FIG. 3 are (a) a plan view when one copper plate is viewed in plan, (b) a cross-sectional view taken along the line AA in FIG. It is an enlarged view of the B section of Drawing (b).

図2に示すように、銅板41,42の端部41a,42aは、それぞれ結合層51,52の端部51a,52aより内側にすることにより、銅板41,42の端部41a,42aに加熱接合後の冷却工程で発生する応力は結合層51,52内で分散されるように作用するため、窒化珪素基板2に発生する応力は減少し、より反りの小さい放熱基板1とすることができる。特に、銅板41の端部41a、結合層51の端部51a間の距離は0.2〜1mm,銅板42の端部42a、結合層52の端部52a間の距離は0.2〜1mmであることが好ましい。   As shown in FIG. 2, the end portions 41a and 42a of the copper plates 41 and 42 are heated to the end portions 41a and 42a of the copper plates 41 and 42 by setting them to be inside the end portions 51a and 52a of the bonding layers 51 and 52, respectively. Since the stress generated in the cooling process after bonding acts to be dispersed in the bonding layers 51 and 52, the stress generated in the silicon nitride substrate 2 is reduced, and the heat dissipation substrate 1 with less warpage can be obtained. . In particular, the distance between the end 41a of the copper plate 41 and the end 51a of the bonding layer 51 is 0.2 to 1 mm, and the distance between the end 42a of the copper plate 42 and the end 52a of the bonding layer 52 is 0.2 to 1 mm. Preferably there is.

なお、銅板41,42を平面透視したとは、銅板41,42の下方または上方に位置する結合層51,52の端部51a,52aを確認できるように銅板41,42を透視した場合を示す。   Note that the plan view of the copper plates 41 and 42 indicates a case in which the copper plates 41 and 42 are seen through so that the end portions 51a and 52a of the coupling layers 51 and 52 located below or above the copper plates 41 and 42 can be confirmed. .

また、図3に示すように、本発明の放熱基板1は、銅板42を平面透視した際の一方の銅板41の端部41aを他方の銅板42の端部42aより内側に位置させることが好ましい。なお、平面透視する銅板41,42は何れでもよい。   Further, as shown in FIG. 3, in the heat dissipation board 1 of the present invention, it is preferable that the end 41 a of one copper plate 41 is located inside the end 42 a of the other copper plate 42 when the copper plate 42 is viewed through. . Note that any of the copper plates 41 and 42 seen through the plane may be used.

これは、平面透視した際の銅板41,42同士の端部41a,42aが同一平面上にあり、しかもどちらの銅板41,42の厚みも大きくした放熱基板1では、窒化珪素基板2がその平面上で両方の銅板41,42より引張り応力を受けて、クラックが入るおそれがある。しかしながら、一方の銅板41の端部41aを他方の銅板42の端部42aより内側にすることにより、外側に位置する銅板42の端部42aには引張り応力が作用することがなくなるため、両方の銅板41,42の厚みが大きくても、クラックが生じることはなく、放熱特性のより高い放熱基板1とすることができる。   This is because the end portions 41a and 42a of the copper plates 41 and 42 when viewed through the plane are on the same plane, and in the heat dissipation substrate 1 in which both the copper plates 41 and 42 are thick, the silicon nitride substrate 2 is the plane. There is a risk that cracks may occur due to tensile stress from both copper plates 41 and 42 above. However, since the end 41a of one copper plate 41 is set to the inner side of the end 42a of the other copper plate 42, tensile stress does not act on the end 42a of the copper plate 42 located on the outer side. Even if the copper plates 41 and 42 have a large thickness, cracks do not occur, and the heat dissipation substrate 1 with higher heat dissipation characteristics can be obtained.

特に、回路として機能する銅板41の端部41aを放熱特性の観点より、放熱機能を有する銅板42の端部42aより内側にすることが好ましい。   In particular, it is preferable that the end 41a of the copper plate 41 functioning as a circuit is located inside the end 42a of the copper plate 42 having a heat dissipation function from the viewpoint of heat dissipation characteristics.

また、結合層51,52は、そのビッカース硬度Hvが0.5GPa以下であることが好ましく、結合層51,52のビッカース硬度Hvを0.5GPa以下とすることで、予めビッカース硬度Hvの低いものを準備しなければならず、このような結合層51,52は容易に弾性変形して、銅板41,42との接合強度を高くすることができるからであり、特にビッカース硬度Hvは0.2〜0.5GPaであることがより好ましい。   The bonding layers 51 and 52 preferably have a Vickers hardness Hv of 0.5 GPa or less, and the bonding layers 51 and 52 have a low Vickers hardness Hv in advance by setting the Vickers hardness Hv of the bonding layers 51 and 52 to 0.5 GPa or less. This is because the bonding layers 51 and 52 can be easily elastically deformed to increase the bonding strength with the copper plates 41 and 42, and in particular, the Vickers hardness Hv is 0.2. More preferably, it is -0.5GPa.

なお、結合層51,52のビッカース硬度Hvは、JIS Z 2244−2003に準拠して測定すればよく、測定に用いる試験荷重は、結合層51,52の厚みに依存し、例えば98.07mN(ミリニュートン)あるいは196mNとする。   Note that the Vickers hardness Hv of the bonding layers 51 and 52 may be measured in accordance with JIS Z 2244-2003, and the test load used for the measurement depends on the thickness of the bonding layers 51 and 52, for example, 98.07 mN ( Millinewton) or 196 mN.

次いで、本発明の放熱基板の他の実施形態を示す。   Next, another embodiment of the heat dissipation board of the present invention is shown.

図4(a)は一方の銅板を平面視したときの平面図、(b)は同図(a)のA−A線における断面図、(c)は同図(b)のB部の拡大図である。   4A is a plan view when one copper plate is viewed in plan, FIG. 4B is a cross-sectional view taken along the line AA in FIG. 4A, and FIG. 4C is an enlarged view of portion B in FIG. FIG.

図4に示す放熱基板1は、活性金属層31,32および銅板41,42との間に活性金属層31,32側より銅を主成分とする結合層51,52,Au,Pt,Ag,InおよびSnのいずれかによりなる第1の薄層53,54および前記金属のいずれかよりなる第2の薄層を備えた55,56を備えている。   The heat dissipation substrate 1 shown in FIG. 4 includes coupling layers 51, 52, Au, Pt, Ag, copper as main components from the active metal layers 31, 32 side between the active metal layers 31, 32 and the copper plates 41, 42. The first thin layers 53 and 54 made of either In or Sn and the second thin layers 55 or 56 made of any of the metals are provided.

第1の薄層53,54および第2の薄層55,56がAu,Pt,AgおよびInのいずれかによりなる場合、これら金属の銅板41,42および結合層51,52に対する拡散作用と、銅板41,42の主成分である銅または銅合金の第1の薄層53,54および第2の薄層55,56に対する拡散作用により180〜300℃の低温で接合することができる。   When the first thin layers 53 and 54 and the second thin layers 55 and 56 are made of any of Au, Pt, Ag, and In, the diffusion action of these metals on the copper plates 41 and 42 and the coupling layers 51 and 52, Bonding can be performed at a low temperature of 180 to 300 ° C. by the diffusion action on the first thin layers 53 and 54 and the second thin layers 55 and 56 of copper or copper alloy which are the main components of the copper plates 41 and 42.

また、第1の薄層53,54および第2の薄層55,56がSnからなる場合、Snは柔らかく、変形しやすいため、結合層51,52および銅板41,42となじみやすい上、銅または銅合金の第1の薄層53,54および第2の薄層55,56に対する拡散作用により180〜300℃の低温で接合することができる。   Further, when the first thin layers 53 and 54 and the second thin layers 55 and 56 are made of Sn, Sn is soft and easily deformed. Therefore, the first thin layers 53 and 54 and the second thin layers 55 and 56 are easily compatible with the bonding layers 51 and 52 and the copper plates 41 and 42. Alternatively, the first thin layers 53 and 54 and the second thin layers 55 and 56 of copper alloy can be bonded at a low temperature of 180 to 300 ° C. by the diffusion action.

これら第1の薄層53,54および第2の薄層55,56を形成する金属としては、Au,Pt,AgおよびInを用いることにより、これら金属は、酸化して酸化皮膜を形成しにくく、しかも柔らかく、容易に変形するため、接合する面同士がより密接に接触して、薄層を形成する原子が容易に拡散することができる。   By using Au, Pt, Ag and In as the metal for forming the first thin layers 53 and 54 and the second thin layers 55 and 56, these metals are hardly oxidized to form an oxide film. In addition, since it is soft and easily deformed, the surfaces to be joined come into closer contact with each other, and atoms forming a thin layer can easily diffuse.

また、これら金属のうち、Au,Pt,AgおよびInのいずれかによりなる薄層は、加熱されると凝集しやすいため、薄層1層のみを結合層51,52、銅板41,42のいずれかに形成しても部分的に凝集に伴う空隙が生じ、接合強度の向上はあまり望めないが、薄層を2層とすることで、凝集してもその影響が相殺され、薄層1層のみの場合より接合強度を高くすることができる。   Further, among these metals, a thin layer made of any one of Au, Pt, Ag, and In is likely to aggregate when heated. Therefore, only one thin layer is bonded to any one of the bonding layers 51 and 52 and the copper plates 41 and 42. Even if it is formed, voids due to aggregation are partially generated, and improvement in bonding strength cannot be expected so much. However, by forming two thin layers, the influence is canceled out even by aggregation. Bonding strength can be made higher than in the case of only the case.

以上のことから、銅直接接合法、高融点金属メタライズ法、活性金属法等で接合した場合より、接合時に銅板41,42に生じる反りが小さくなるので、銅板の厚みを大きくすることができる。銅板41,42の厚みの大きな放熱基板1は、放熱特性を高くすることができ、場合によってはヒートシンクの取り付けも不要にすることができる。   From the above, since the warp generated in the copper plates 41 and 42 at the time of joining is smaller than when joining by the copper direct joining method, the refractory metal metallizing method, the active metal method or the like, the thickness of the copper plate can be increased. The heat dissipation board 1 having a large thickness of the copper plates 41 and 42 can improve heat dissipation characteristics, and in some cases, it is not necessary to attach a heat sink.

また、第1の薄層53,54を形成する金属と、第2の薄層55,56を形成する金属とが同じ金属であることが好適である。この場合、第1の薄層53,54を形成する金属は第2の薄層55,56に、第2の薄層55,56を形成する金属は第1の薄層53,54に拡散しやすくなるため、より低温で接合できるので、反りが小さく、しかも接合強度の高い放熱基板とすることができる。   In addition, it is preferable that the metal forming the first thin layers 53 and 54 and the metal forming the second thin layers 55 and 56 are the same metal. In this case, the metal forming the first thin layers 53 and 54 diffuses into the second thin layers 55 and 56, and the metal forming the second thin layers 55 and 56 diffuses into the first thin layers 53 and 54. Since it becomes easy and it can join at lower temperature, it can be set as a thermal radiation board with small curvature and high joining strength.

さらに、第1の薄層53,54および第2の薄層55,56を形成する金属は、特に酸化皮膜を形成しにくいAuが好ましく、Pt,AgおよびInのいずれかを用い、同じ温度で形成した場合より、接合強度を高くすることができる。   Further, the metal forming the first thin layers 53 and 54 and the second thin layers 55 and 56 is preferably Au which is difficult to form an oxide film, and any one of Pt, Ag and In is used at the same temperature. The bonding strength can be made higher than when formed.

またさらに、第1の薄層53,54および第2の薄層55,56の互いに対向する面は、その算術平均高さRaを0.05μm以下にすることで、対向する面同士が互いになじみ、これら薄層を形成する金属はより容易に拡散するため、放熱基板の反りを小さくできるとともに、接合強度を高くすることができる。   Furthermore, the mutually opposing surfaces of the first thin layers 53 and 54 and the second thin layers 55 and 56 have an arithmetic average height Ra of 0.05 μm or less, so that the opposing surfaces are compatible with each other. Since the metal forming these thin layers diffuses more easily, it is possible to reduce the warping of the heat dissipation substrate and increase the bonding strength.

次に、本発明の放熱基板の製造方法について説明する。   Next, the manufacturing method of the thermal radiation board | substrate of this invention is demonstrated.

本発明の放熱基板1は、先ず、長さ30〜80mm、幅10〜80mm、厚み0.13〜0.4mmの窒化珪素基板2の両主面上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)などの4族元素のような活性金属を含むAg−Cu合金のペーストをスクリーン印刷、ロールコーター法、刷毛塗り等で塗布し、このペースト上に銅が主成分であって、厚みが0.1〜0.6μmである銅箔を積層した後、800〜900℃で加熱溶融して、活性金属層31,32および銅を主成分とする結合層51,52を形成する。   First, the heat dissipation substrate 1 of the present invention has titanium (Ti), zirconium (Zr) on both main surfaces of a silicon nitride substrate 2 having a length of 30 to 80 mm, a width of 10 to 80 mm, and a thickness of 0.13 to 0.4 mm. A paste of an Ag-Cu alloy containing an active metal such as a group 4 element such as hafnium (Hf) is applied by screen printing, roll coater method, brush coating, etc., and copper is the main component on this paste, After laminating a copper foil having a thickness of 0.1 to 0.6 μm, it is heated and melted at 800 to 900 ° C. to form active metal layers 31 and 32 and bonding layers 51 and 52 mainly composed of copper.

次に、結合層51,52の銅板41,42と接する面を研磨した後、水素、窒素およびネオン、アルゴン等の不活性ガスのいずれかから選ばれる雰囲気中、300〜500℃に加熱し、30MPa以上の圧力で銅または銅合金を主成分とする、結合層51,52と接合する面が平坦な銅板41,42を接合して放熱基板1を得る。そして、銅および銅合金が酸化しない温度(50℃)まで加圧したまま冷却し、この温度に到達した後、加圧を終了し、放熱基板1を取り出す。   Next, after polishing the surfaces of the bonding layers 51 and 52 that are in contact with the copper plates 41 and 42, the surface is heated to 300 to 500 ° C. in an atmosphere selected from any of inert gases such as hydrogen, nitrogen, neon, and argon, The heat radiating substrate 1 is obtained by bonding copper plates 41 and 42 having a flat surface to be bonded to the bonding layers 51 and 52, which are mainly composed of copper or a copper alloy, at a pressure of 30 MPa or more. And it cools, pressing up to the temperature (50 degreeC) which copper and copper alloy do not oxidize, and after reaching this temperature, pressurization is complete | finished and the thermal radiation board | substrate 1 is taken out.

活性金属層31,32および銅板41,42との間に活性金属層31,32側より銅を主成分とする結合層41,42、Au,Pt,Ag,InおよびSnのいずれかによりなる第1の薄層53,54および前記金属のいずれかよりなる第2の薄層55,56を備える場合、先ず、結合層51,52の銅板41,42に対向する面を研磨した後、Au,Pt,Ag,InおよびSnのいずれかをスパッタまたは蒸着により、研磨した面に成膜して第1の薄層53,54とすればよい。   Between the active metal layers 31 and 32 and the copper plates 41 and 42, the active metal layers 31 and 32 are made of any one of the bonding layers 41 and 42 mainly composed of copper, Au, Pt, Ag, In and Sn. When the first thin layers 53 and 54 and the second thin layers 55 and 56 made of any of the above metals are provided, first, the surfaces of the bonding layers 51 and 52 facing the copper plates 41 and 42 are polished, and then Au, Any one of Pt, Ag, In and Sn may be formed on the polished surface by sputtering or vapor deposition to form the first thin layers 53 and 54.

一方、第2の薄層55,56については、予め銅板41,42の結合層51,52に対向する面を研磨した後、Au,Pt,Ag,InおよびSnのいずれかをスパッタまたは蒸着により、研磨した面に成膜して第2の薄層55,56とすればよい。いずれの研磨面も算術平均高さRaは0.05μm以下にすることが好適である。   On the other hand, for the second thin layers 55 and 56, after the surfaces of the copper plates 41 and 42 facing the bonding layers 51 and 52 are polished in advance, any one of Au, Pt, Ag, In and Sn is sputtered or evaporated. The second thin layers 55 and 56 may be formed on the polished surface. In any polished surface, the arithmetic average height Ra is preferably 0.05 μm or less.

これら金属の銅板および結合層に対する拡散は、これら金属の表面活性を高くするほど
進行しやすくなるので、第1の薄層53,54および第2の薄層55,56の各厚みは、10nm以下とすることが好適である。
Since the diffusion of these metals into the copper plate and the bonding layer is more likely to proceed as the surface activity of these metals increases, the thickness of each of the first thin layers 53 and 54 and the second thin layers 55 and 56 is 10 nm or less. Is preferable.

次に、第1の薄層53および第2の薄層55、第1の薄層54および第2の薄層56をそれぞれ対向させた状態で、水素、窒素およびネオン、アルゴン等の不活性ガスのいずれかから選ばれる雰囲気中、180〜300℃に加熱し、30MPa以上の圧力で接合して放熱基板1を得る。そして、銅および銅合金が酸化しない温度(50℃)まで加圧したまま冷却し、この温度に到達した後、加圧を終了し、放熱基板1を取り出す。   Next, an inert gas such as hydrogen, nitrogen, neon, or argon with the first thin layer 53 and the second thin layer 55 and the first thin layer 54 and the second thin layer 56 facing each other. In the atmosphere chosen from any of these, it heats at 180-300 degreeC, and joins with the pressure of 30 Mpa or more, and the heat sink 1 is obtained. And it cools, pressing up to the temperature (50 degreeC) which copper and copper alloy do not oxidize, and after reaching this temperature, pressurization is complete | finished and the thermal radiation board | substrate 1 is taken out.

さらに、結合層51,52は、そのビッカース硬度Hvが0.5GPa以下である放熱基板1を形成する場合、銅を主成分とする銅箔は、接合後の硬度低下を考慮して、ビッカース硬度Hv0.7GPa以下の銅箔を準備して接合するのがよい。   Further, when forming the heat dissipation substrate 1 having a Vickers hardness Hv of 0.5 GPa or less, the bonding layers 51 and 52 have a Vickers hardness in consideration of a decrease in hardness after bonding. A copper foil having a Hv of 0.7 GPa or less is preferably prepared and bonded.

また、図5は、それぞれ(a)は一方の銅板を平面視したときの平面図、(b)は同図(a)のA−A線における断面図、(c)は同図(b)にB部の拡大図である。   5A is a plan view when one copper plate is viewed in plan, FIG. 5B is a cross-sectional view taken along the line AA of FIG. 5A, and FIG. FIG.

図5に示すように、結合層51を介して窒化硅素基板2の主面上に銅板41が2個接合された放熱基板1であって、このように銅板41が複数接合されたものであってもよい。   As shown in FIG. 5, the heat dissipation substrate 1 has two copper plates 41 bonded to the main surface of the silicon nitride substrate 2 through a bonding layer 51, and a plurality of copper plates 41 are bonded in this way. May be.

上述の図1〜図5で示したような放熱基板1は、銅板41を回路が形成された回路基板とすることで放熱基板として好適に用いることができる。具体的な回路の形成方法としては、予めプレス加工やエッチング加工によりパターニングして回路を形成した銅板を用いたり、接合後にエッチング、レーザー等によりパターニングしたりすればよい。   The heat dissipation board 1 as shown in FIGS. 1 to 5 described above can be suitably used as a heat dissipation board by using the copper plate 41 as a circuit board on which a circuit is formed. As a specific method for forming a circuit, a copper plate that has been previously patterned by pressing or etching may be used, or patterning may be performed by etching, laser, or the like after bonding.

また、厚み方向から見たときの銅板41,42の形状がN角形(Nは5以上の整数)であることで、形状が四角形である銅板41,42に比べ、銅板41,42の角部で発生する応力は分散されるため、放熱基板1が繰り返し高温下に曝されても、放熱基板1へのクラックの発生を防止することができる。   Further, the shape of the copper plates 41 and 42 when viewed from the thickness direction is an N-gon (N is an integer of 5 or more), so that the corners of the copper plates 41 and 42 are compared with the copper plates 41 and 42 having a quadrilateral shape. Therefore, even if the heat dissipation substrate 1 is repeatedly exposed to a high temperature, the generation of cracks in the heat dissipation substrate 1 can be prevented.

また、前記放熱基板1における回路基板に半導体素子を接続することで、半導体装置を使用しているときにも半導体素子に蓄熱することがないので、半導体装置として好適に用いることができる。   In addition, by connecting a semiconductor element to the circuit board in the heat dissipation substrate 1, heat is not stored in the semiconductor element even when the semiconductor device is used, and therefore, it can be suitably used as a semiconductor device.

以上、本発明の放熱基板1は、上述の通り放熱特性が良好であるため、昇華型サーマルプリンターヘッド用基板、面型発熱ヒーター支持基板、サーマルインクジェットプリンターヘッドのヒーター支持基板等にも適用させることができる。   As described above, since the heat dissipation substrate 1 of the present invention has good heat dissipation characteristics as described above, it can be applied to a sublimation thermal printer head substrate, a surface heating heater support substrate, a heater support substrate of a thermal inkjet printer head, and the like. Can do.

以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

(実施例1)
窒化珪素を95質量%含有する窒化珪素質焼結体から成る窒化珪素基板2の両主面に、チタン(Ti)を含むAg−Cu合金のペーストをスクリーン印刷で塗布し、このペースト上に無酸素銅からなる銅箔を積層した。次に、850℃で加熱溶融して、活性金属層31,32および無酸素銅からなる結合層51,52を形成した。そして、結合層51,52の銅板41,42と接する面をラップ盤を用いて算術平均高さRa0.050μm以下まで研磨した後、水素雰囲気中にて加熱し、圧力30MPaで無酸素銅からなる結合層51,52と接合する面が平坦な銅板41,42を接合することにより本発明の放熱基板である試料No.1,2,5,6,9,10を作製した。また比較例として、活性金属層31、銅板41間には結合層51を介さない放熱基板である試料No.3,4,7,8,11,12を作製した。各試料を構成する部材の寸法および銅板41,42を接合するときの温度は表1、表2に示す通りである。なお、試料No.3,7,11では、結合層52、銅板42間に半田層を挿入することで結合層52、銅板42を接合した。
Example 1
A paste of an Ag—Cu alloy containing titanium (Ti) is applied to both main surfaces of the silicon nitride substrate 2 made of a silicon nitride-based sintered body containing 95% by mass of silicon nitride by screen printing. A copper foil made of oxygen copper was laminated. Next, the molten metal was heated and melted at 850 ° C. to form the active metal layers 31 and 32 and the bonding layers 51 and 52 made of oxygen-free copper. And after grind | polishing the surface which contact | connects the copper plates 41 and 42 of the bonding layers 51 and 52 to arithmetic mean height Ra0.050 micrometer or less using a lapping machine, it heats in a hydrogen atmosphere and consists of oxygen-free copper with a pressure of 30 MPa. By bonding the copper plates 41 and 42 having flat surfaces to be bonded to the bonding layers 51 and 52, the sample No. 1 which is the heat dissipation substrate of the present invention is used. 1, 2, 5, 6, 9, and 10 were produced. In addition, as a comparative example, a sample No. 1 which is a heat dissipation substrate without the bonding layer 51 between the active metal layer 31 and the copper plate 41 is used. 3, 4, 7, 8, 11, and 12 were produced. Table 1 and Table 2 show the dimensions of the members constituting each sample and the temperatures at which the copper plates 41 and 42 are joined. Sample No. In 3, 7, and 11, the bonding layer 52 and the copper plate 42 were joined by inserting a solder layer between the bonding layer 52 and the copper plate 42.

次に、JIS B 0601−2001に準拠して触針式の表面粗さ計を用い、窒化珪素基板2の長手方向の最大高さRmaxを測定し、この測定値を反りとして表2に示した。なお、測定長さ、カットオフ値、触針先端半径、触針の走査速度はそれぞれ45mm,0.8mm,2μm,0.5mm/秒とした。 Next, the maximum height R max in the longitudinal direction of the silicon nitride substrate 2 was measured using a stylus type surface roughness meter in accordance with JIS B 0601-2001, and this measured value is shown in Table 2 as warpage. It was. The measurement length, cutoff value, stylus tip radius, and stylus scanning speed were 45 mm, 0.8 mm, 2 μm, and 0.5 mm / second, respectively.

また、窒化珪素基板2のクラックの有無は超音波探傷法を用いて検出し、クラックが検出されたものを×、クラックが検出されなかったものを○で表1に示した。   Further, the presence or absence of cracks in the silicon nitride substrate 2 was detected using an ultrasonic flaw detection method. Table 1 shows that the crack was detected and × that the crack was not detected.

なお、超音波探傷法で用いる探触子は焦点深度25mmのものを用い、パルス発信器より探触子を介して放熱基板に発振される超音波の周波数は10MHzとした。

Figure 2007227867
The probe used in the ultrasonic flaw detection method has a focal depth of 25 mm, and the frequency of the ultrasonic wave oscillated from the pulse transmitter to the heat dissipation substrate through the probe is 10 MHz.
Figure 2007227867

Figure 2007227867
Figure 2007227867

表2からわかるように本発明の範囲外である試料No.3,7,11は、銅板41,42の厚みを0.5mmと薄くしたにも拘らず、反りが0.43mm以上と大きなものであった。   As can be seen from Table 2, sample no. Nos. 3, 7, and 11 had large warpages of 0.43 mm or more, despite the thickness of the copper plates 41 and 42 being as thin as 0.5 mm.

また、本発明の範囲外である試料No.4,8,12は、高い放熱特性を得ようとして銅板41,42の厚みを2mmと大きくしたものの、活性金属層31、銅板41間および活性金属層32、銅板42間にはそれぞれ結合層52,52がないために、窒化珪素基板2にはクラックが検出された。   In addition, sample No. which is outside the scope of the present invention. 4, 8, and 12 have increased the thickness of the copper plates 41 and 42 to 2 mm in order to obtain high heat dissipation characteristics, but the bonding layer 52 is between the active metal layer 31 and the copper plate 41 and between the active metal layer 32 and the copper plate 42. , 52 is not present, cracks were detected in the silicon nitride substrate 2.

一方、本発明の試料No.1,2,5,6,9,10は、銅板41,42の厚みを2mmと大きくしても窒化珪素基板2にはクラックは検出されず、反りも0.41mm以下と小さいことがわかった。   On the other hand, sample no. Nos. 1, 2, 5, 6, 9, and 10 showed that no crack was detected in the silicon nitride substrate 2 even when the thickness of the copper plates 41 and 42 was increased to 2 mm, and the warpage was as small as 0.41 mm or less. .

(実施例2)
実施例1と同様な方法にて本発明の放熱基板である試料No.13〜22を作製した。各試料を構成する部材の寸法および銅板41,42を接合するときの温度は表3、表4に示す通りである。なお、銅板41、42の端面間の距離は、長さ方向、幅方向とも均等になるように配置した。銅板42,結合層52の端面間の距離についても同様で、表4では、銅板41、結合層51の端面間の距離を端面間距離a、銅板42,結合層52の端面間の距離を端面間距離bとし、銅板の端面が結合層の端面より内側にあるものをプラス、銅板の端面が結合層の端面より外側にあるものをマイナスで表した。
(Example 2)
Sample No. which is a heat dissipation substrate of the present invention by the same method as Example 1. 13-22 were produced. Table 3 and Table 4 show the dimensions of the members constituting each sample and the temperatures at which the copper plates 41 and 42 are joined. In addition, the distance between the end surfaces of the copper plates 41 and 42 was arranged to be equal in both the length direction and the width direction. The same applies to the distance between the end surfaces of the copper plate 42 and the bonding layer 52. In Table 4, the distance between the end surfaces of the copper plate 41 and the bonding layer 51 is the distance a between the end surfaces, and the distance between the end surfaces of the copper plate 42 and the bonding layer 52 is the end surface. The distance b was defined as plus when the end face of the copper plate was inside the end face of the bonding layer, and minus when the end face of the copper plate was outside the end face of the bonding layer.

次に、実施例1と同様に窒化珪素基板2の長手方向の最大高さRmaxを測定し、この測定値を反りとして表4に示した。

Figure 2007227867
Next, the maximum height R max in the longitudinal direction of the silicon nitride substrate 2 was measured in the same manner as in Example 1, and the measured values are shown in Table 4 as warpage.
Figure 2007227867

Figure 2007227867
Figure 2007227867

表4からわかるように、長さ50mm、幅20mmの銅板42を構成部材とする試料No.13〜17では、端面距離aおよび端面距離bが長くなる。即ち、銅板41,42の端部41a、41bがそれぞれ結合層51,52の端部51a,51bより内側に行くほど、窒化珪素基板2の反りは0.29mm以下と小さくなったことがわかった。   As can be seen from Table 4, the sample No. 1 was composed of a copper plate 42 having a length of 50 mm and a width of 20 mm. In 13-17, the end surface distance a and the end surface distance b become long. In other words, it was found that the warpage of the silicon nitride substrate 2 was reduced to 0.29 mm or less as the end portions 41a and 41b of the copper plates 41 and 42 went inward from the end portions 51a and 51b of the coupling layers 51 and 52, respectively. .

また、長さ40mm、幅40mmの銅板42を構成部材とする試料No.18〜22についても同様である。   In addition, sample No. having a copper plate 42 having a length of 40 mm and a width of 40 mm as a constituent member. The same applies to 18-22.

(実施例3)
実施例1、2と同様な方法にて本発明の放熱基板である試料No.No.23〜26を作製した。各試料を構成する部材の寸法および銅板41,42を接合するときの温度は表5、表6に示す通りである。なお、銅板41、42の端面間の距離は、長さ方向、幅方向とも均等になるように配置し、この距離を端面間距離cとして表6に示した。
(Example 3)
In the same manner as in Examples 1 and 2, Sample No. No. 23-26 were produced. Tables 5 and 6 show the dimensions of the members constituting each sample and the temperatures at which the copper plates 41 and 42 are joined. The distances between the end faces of the copper plates 41 and 42 are arranged so as to be equal in both the length direction and the width direction, and this distance is shown in Table 6 as the end face distance c.

そして、試料No.23〜26の銅板41に半導体素子(不図示)を実装し、この半導体素子に30Aの電流を流し、電流を流してから5分後に半導体素子の表面温度をサーモグラフィーで測定し、その表面温度を表6に示した。

Figure 2007227867
And sample no. A semiconductor element (not shown) is mounted on the copper plates 41 to 26, a current of 30A is passed through the semiconductor element, and the surface temperature of the semiconductor element is measured by thermography 5 minutes after the current is passed. Table 6 shows.
Figure 2007227867

Figure 2007227867
Figure 2007227867

表6からわかるように、銅板42の厚みが同一である試料No.23,24を比べると、銅板41,42の端面が同一平面上にある試料No.24より銅板41の端面が銅板42の端面より内側にある試料No.23のほうが半導体素子の表面温度は低く成ることがわかった。これにより放熱基板の放熱特性が良好であることがわかった。銅板42の厚みが同一である試料No.25,26についても同様である。   As can be seen from Table 6, the sample numbers of the copper plates 42 having the same thickness. 23 and 24, sample Nos. 14 and 42 in which the end surfaces of the copper plates 41 and 42 are on the same plane. 24, the end surface of the copper plate 41 is inside the end surface of the copper plate 42. It was found that the surface temperature of 23 was lower in the semiconductor element. Thereby, it turned out that the thermal radiation characteristic of a thermal radiation board | substrate is favorable. Sample No. with the same copper plate 42 thickness. The same applies to 25 and 26.

(実施例4)
実施例1〜3と同様な方法にて本発明の放熱基板である試料No.No.27〜30を作製した。各試料を構成する部材の寸法および銅板41,42を接合するときの温度は表7、表8に示す通りである。そして、試料No.27〜30を固定し、窒化珪素基板2の長手方向から銅板41aに荷重を与え、銅板41aが結合層51から剥離するときの荷重をロードセルで読みとった。このときの荷重より算出した、銅板41aと結合層51との接合強度を表8に示した。

Figure 2007227867
Example 4
In the same manner as in Examples 1 to 3, the sample No. No. 27-30 were produced. Table 7 and Table 8 show the dimensions of the members constituting each sample and the temperatures at which the copper plates 41 and 42 are joined. And sample no. 27-30 were fixed, the load was given to the copper plate 41a from the longitudinal direction of the silicon nitride board | substrate 2, and the load when the copper plate 41a peeled from the coupling layer 51 was read with the load cell. Table 8 shows the bonding strength between the copper plate 41a and the bonding layer 51 calculated from the load at this time.
Figure 2007227867

Figure 2007227867
Figure 2007227867

表8からわかるように、結合層のビッカース硬度がHv0.5GPa以下である試料No.28〜31は、ビッカース硬度がHv0.5GPaを超える試料No.27より、接合強度が高いことがわかった。   As can be seen from Table 8, the sample No. 1 in which the Vickers hardness of the bonding layer is Hv 0.5 GPa or less. Samples Nos. 28 to 31 have sample numbers of Vickers hardness exceeding Hv 0.5 GPa. 27 shows that the bonding strength is high.

(実施例5)
窒化珪素を95質量%含有する窒化珪素質焼結体から成る窒化珪素基板2の両主面に、チタン(Ti)を含むAg−Cu合金のペーストをスクリーン印刷で塗布し、このペースト上に無酸素銅からなる銅箔を積層した。次に、850℃で加熱溶融して、活性金属層31,32および無酸素銅からなる結合層51,52を形成した。そして、結合層51,52の銅板41,42と対向する面をラップ加工により、鏡面とした後、この鏡面に表9に示す材質の金属をスパッタにより成膜して第1の薄層53,54とした。表9に第1の薄層53,54の各厚みを示す。
(Example 5)
A paste of an Ag—Cu alloy containing titanium (Ti) is applied to both main surfaces of the silicon nitride substrate 2 made of a silicon nitride-based sintered body containing 95% by mass of silicon nitride by screen printing. A copper foil made of oxygen copper was laminated. Next, the molten metal was heated and melted at 850 ° C. to form the active metal layers 31 and 32 and the bonding layers 51 and 52 made of oxygen-free copper. And after making the surface which opposes the copper plates 41 and 42 of the bonding layers 51 and 52 into a mirror surface by lapping, the metal of the material shown in Table 9 is formed into a film by sputtering on this mirror surface, and the 1st thin layer 53, 54. Table 9 shows the thicknesses of the first thin layers 53 and 54.

また、結合層51,52に対向する面を、予めラップ加工により鏡面とした銅板41,42を準備し、この鏡面に表9に示す材質の金属をスパッタにより成膜して第2の薄層55,56とした。表9に第2の薄層55,56の各厚みを示すが、横線を記入した欄は、比較のために第2の薄層55,56を形成しなかったものである。   Also, copper plates 41 and 42 whose surfaces facing the bonding layers 51 and 52 are mirror-finished by lapping are prepared in advance, and a metal of the material shown in Table 9 is formed on the mirror surface by sputtering to form a second thin layer. 55, 56. Table 9 shows the thicknesses of the second thin layers 55 and 56, but the columns with horizontal lines indicate that the second thin layers 55 and 56 were not formed for comparison.

次に、第1の薄層53および第2の薄層55、第1の薄層54および第2の薄層56をそれぞれ対向させた状態で、水素雰囲気中、圧力30MPa、表9に示す温度で接合して図4に示す放熱基板1からなる試料No.32〜43を得た。   Next, with the first thin layer 53 and the second thin layer 55 and the first thin layer 54 and the second thin layer 56 facing each other, in a hydrogen atmosphere, the pressure is 30 MPa, and the temperatures shown in Table 9 The sample No. consisting of the heat dissipation substrate 1 shown in FIG. 32-43 were obtained.

そして、試料No.32〜43を固定し、窒化珪素基板2の長手方向から銅板41aに荷重を与え、銅板41aが結合層51から剥離するときの荷重をロードセルで読みとった。このときの荷重より算出した銅板41aと結合層51との接合強度を表9に示した。

Figure 2007227867
And sample no. 32 to 43 were fixed, a load was applied to the copper plate 41a from the longitudinal direction of the silicon nitride substrate 2, and the load when the copper plate 41a was peeled off from the bonding layer 51 was read with a load cell. Table 9 shows the bonding strength between the copper plate 41a and the bonding layer 51 calculated from the load at this time.
Figure 2007227867

表9からわかるように、第1の薄層53,54および第2の薄層55,56を備えた試料No.32は300℃以下の低温で接合することができ、第1の薄層53,54のみを備え、試料No.32と同温度(180℃)で接合した試料No.33より接合強度が高いことがわかる。このことは、試料No.35と試料No.36、試料No.38と試料No.39、試料No.41と試料No.42をそれぞれ比べても同様である。   As can be seen from Table 9, the sample No. 1 provided with the first thin layers 53 and 54 and the second thin layers 55 and 56 was obtained. 32 can be bonded at a low temperature of 300 ° C. or lower, and includes only the first thin layers 53 and 54. No. 32 bonded at the same temperature (180 ° C.) as the sample No. 32. It can be seen from FIG. This is because sample no. 35 and sample no. 36, sample no. 38 and sample no. 39, Sample No. 41 and sample no. The same applies when comparing 42.

また、第1の薄層53,54および第2の薄層55,56をAuで形成した試料No.32は第1の薄層53,54および第2の薄層55,56をAgで形成した試料No.34より接合強度が高いことがわかる。このことは、試料No.35と試料No.37、試料No.38と試料No.40、試料No.41と試料No.43を比べても同様である。   Sample No. 1 in which the first thin layers 53 and 54 and the second thin layers 55 and 56 are formed of Au is used. 32 is a sample No. 32 in which the first thin layers 53 and 54 and the second thin layers 55 and 56 are formed of Ag. 34 shows that the bonding strength is higher. This is because sample no. 35 and sample no. 37, Sample No. 38 and sample no. 40, sample no. 41 and sample no. The same applies to 43.

(実施例6)
窒化珪素を95質量%含有する窒化珪素質焼結体から成る窒化珪素基板2の両主面に、チタン(Ti)を含むAg−Cu合金のペーストをスクリーン印刷で塗布し、このペースト上に無酸素銅からなる銅箔を積層した。次に、850℃で加熱溶融して、活性金属層31,32および無酸素銅からなる結合層51,52を形成した。そして、結合層51,52の銅板41,42と対向する面をラップ加工により、鏡面とした後、この鏡面に表10に示す金属をスパッタにより成膜して第1の薄層53,54とした。なお、第1の薄層53,54の各厚みは10nmとした。
(Example 6)
A paste of an Ag—Cu alloy containing titanium (Ti) is applied to both main surfaces of the silicon nitride substrate 2 made of a silicon nitride-based sintered body containing 95% by mass of silicon nitride by screen printing. A copper foil made of oxygen copper was laminated. Next, the molten metal was heated and melted at 850 ° C. to form the active metal layers 31 and 32 and the bonding layers 51 and 52 made of oxygen-free copper. And after making the surface which opposes the copper plates 41 and 42 of the coupling layers 51 and 52 into a mirror surface by lapping, the metal shown in Table 10 is formed into a film by sputtering on this mirror surface, and the 1st thin layers 53 and 54 and did. Each thickness of the first thin layers 53 and 54 was 10 nm.

また、結合層51,52に対向する面を予め、ラップ加工により、鏡面とした銅板41,42を準備し、この鏡面に表10に示す金属をスパッタにより成膜して第2の薄層55,56とした。第2の薄層55,56の各厚みは10nmである。   In addition, copper plates 41 and 42 having mirror surfaces as surfaces facing the bonding layers 51 and 52 are prepared in advance by lapping, and the metal shown in Table 10 is formed on the mirror surfaces by sputtering to form the second thin layer 55. , 56. Each thickness of the second thin layers 55 and 56 is 10 nm.

次に、第1の薄層53および第2の薄層55、第1の薄層54および第2の薄層56をそれぞれ対向させた状態で、水素雰囲気中、圧力30MPa、表10に示す温度で接合して図4に示す放熱基板1からなる試料No.44〜55を得た。   Next, with the first thin layer 53 and the second thin layer 55 and the first thin layer 54 and the second thin layer 56 facing each other, in a hydrogen atmosphere, a pressure of 30 MPa, and a temperature shown in Table 10 The sample No. consisting of the heat dissipation substrate 1 shown in FIG. 44-55 were obtained.

そして、試料No.44〜55を固定し、窒化珪素基板2の長手方向から銅板41aに荷重を与え、銅板41aが結合層51から剥離するときの荷重をロードセルで読みとった。このときの荷重より算出した、銅板41aと結合層51との接合強度を表10に示した。

Figure 2007227867
And sample no. 44 to 55 were fixed, a load was applied to the copper plate 41a from the longitudinal direction of the silicon nitride substrate 2, and the load when the copper plate 41a was peeled off from the bonding layer 51 was read with a load cell. Table 10 shows the bonding strength between the copper plate 41a and the bonding layer 51 calculated from the load at this time.
Figure 2007227867

表10からわかるように、第1の薄層53,54および第2の薄層55,56が同じ金属である試料No.44は300℃以下の低温で接合することができ、第1の薄層53,54と第2の薄層55,56とが異なる試料No.45,46より接合強度が高いことがわかる。このことは、試料No.47と試料No.48,49、試料No.50と試料No.51,52、試料No.53と試料No.54,55を比べても同様である。   As can be seen from Table 10, the first thin layers 53 and 54 and the second thin layers 55 and 56 are of the same metal. 44 can be bonded at a low temperature of 300 ° C. or lower, and the first thin layers 53 and 54 and the second thin layers 55 and 56 are different from each other. 45 and 46 show that the bonding strength is higher. This is because sample no. 47 and sample no. 48, 49, sample no. 50 and sample no. 51, 52, sample no. 53 and sample no. The same applies to 54 and 55.

(実施例7)
窒化珪素を95質量%含有する窒化珪素質焼結体から成る窒化珪素基板2の両主面に、チタン(Ti)を含むAg−Cu合金のペーストをスクリーン印刷で塗布し、このペースト上に無酸素銅からなる銅箔を積層した。次に、850℃で加熱溶融して、活性金属層31,32および無酸素銅からなる結合層51,52を形成した。そして、結合層51,52の銅板41,42と対向する面をラップ加工により、鏡面とした後、この鏡面に表11に示す金属をスパッタにより成膜して第1の薄層53,54とした。第1の薄層53,54の厚みは200nmとした。
(Example 7)
A paste of an Ag—Cu alloy containing titanium (Ti) is applied to both main surfaces of the silicon nitride substrate 2 made of a silicon nitride-based sintered body containing 95% by mass of silicon nitride by screen printing. A copper foil made of oxygen copper was laminated. Next, the molten metal was heated and melted at 850 ° C. to form the active metal layers 31 and 32 and the bonding layers 51 and 52 made of oxygen-free copper. And after making the surface which opposes the copper plates 41 and 42 of the coupling layers 51 and 52 into a mirror surface by lapping, the metal shown in Table 11 was formed into a film by sputtering on this mirror surface, and the 1st thin layers 53 and 54 and did. The thickness of the first thin layers 53 and 54 was 200 nm.

また、結合層51,52に対向する面を予め、ラップ加工により、鏡面とした銅板41,42を準備し、この鏡面に表11に示す金属をスパッタにより成膜して第2の薄層55,56とした。第2の薄層55,56の各厚みを200nmとした。   Also, copper plates 41 and 42 having mirror surfaces as surfaces facing the bonding layers 51 and 52 are prepared in advance by lapping, and a metal shown in Table 11 is formed on the mirror surfaces by sputtering to form the second thin layer 55. , 56. Each thickness of the 2nd thin layers 55 and 56 was 200 nm.

ここで、JIS B 0601−2001に準拠して触針式の表面粗さ計を用いて、第1の薄層53,54および第2の薄層55,56がそれぞれ対向する面の長手方向の算術平均高さRaを測定した。なお、測定長さ、カットオフ値、触針先端半径、触針の走査速度はそれぞれ45mm,0.8mm,2μm,0.5mm/秒とした。   Here, in accordance with JIS B 0601-2001, using a stylus type surface roughness meter, the first thin layers 53 and 54 and the second thin layers 55 and 56 are arranged in the longitudinal direction of the surfaces facing each other. Arithmetic mean height Ra was measured. The measurement length, cut-off value, stylus tip radius, and stylus scanning speed were 45 mm, 0.8 mm, 2 μm, and 0.5 mm / second, respectively.

次に、第1の薄層53および第2の薄層55、第1の薄層54および第2の薄層56をそれぞれ対向させた状態で、水素雰囲気中、圧力30MPa、表11に示す温度で接合して図4に示す放熱基板1からなる試料No.56〜63を得た。   Next, with the first thin layer 53 and the second thin layer 55, the first thin layer 54 and the second thin layer 56 facing each other, in a hydrogen atmosphere, a pressure of 30 MPa, and a temperature shown in Table 11 The sample No. consisting of the heat dissipation substrate 1 shown in FIG. 56-63 were obtained.

次に、JIS B 0601−2001に準拠して触針式の表面粗さ計を用い、窒化珪素基板2の長手方向の最大高さRmaxを測定し、この測定値を反りとして表11に示した。なお、測定長さ、カットオフ値、触針先端半径、触針の走査速度はそれぞれ45mm,0.8mm,2μm,0.5mm/秒とした。 Next, the maximum height R max in the longitudinal direction of the silicon nitride substrate 2 was measured using a stylus type surface roughness meter in accordance with JIS B 0601-2001, and this measured value is shown in Table 11 as warpage. It was. The measurement length, cut-off value, stylus tip radius, and stylus scanning speed were 45 mm, 0.8 mm, 2 μm, and 0.5 mm / second, respectively.

そして、試料No.56〜63を固定し、窒化珪素基板2の長手方向から銅板41aに荷重を与え、銅板41aが結合層51から剥離するときの荷重をロードセルで読みとった。このときの荷重より算出した、銅板41aと結合層51との接合強度を表11に示した。

Figure 2007227867
And sample no. 56 to 63 were fixed, a load was applied to the copper plate 41a from the longitudinal direction of the silicon nitride substrate 2, and the load when the copper plate 41a was peeled off from the bonding layer 51 was read with a load cell. Table 11 shows the bonding strength between the copper plate 41a and the bonding layer 51 calculated from the load at this time.
Figure 2007227867

表11からわかるように、第1の薄層53,54および第2の薄層55,56の互いに対向する面の算術平均高さRaがいずれも0.05μm以下であり、温度300℃で接合した試料No.56,57は、算術平均高さRaが0.05μmを超える試料No.58,59より接合強度が高く、好適である。   As can be seen from Table 11, the arithmetic average height Ra of the first thin layers 53 and 54 and the second thin layers 55 and 56 facing each other is 0.05 μm or less, and bonding is performed at a temperature of 300 ° C. Sample No. Nos. 56 and 57 are sample Nos. With an arithmetic average height Ra exceeding 0.05 μm. The bonding strength is higher than 58 and 59, which is preferable.

同様に、第1の薄層53,54および第2の薄層55,56の互いに対向する面の算術平均高さRaがいずれも0.05μm以下であり、温度200℃で接合した試料No.60,61は、算術平均高さRaが0.05μmを超える試料No.62,63より接合強度が高く、好適である。   Similarly, the arithmetic average height Ra of the mutually opposing surfaces of the first thin layers 53 and 54 and the second thin layers 55 and 56 is 0.05 μm or less, and the sample No. Samples Nos. 60 and 61 are sample Nos. With an arithmetic average height Ra exceeding 0.05 μm. The bonding strength is higher than 62 and 63, which is preferable.

本発明の放熱基板の一実施形態を示し、(a)は銅板を平面視したときの平面図、(b)は同図(a)のA−A線における断面図、(c)は同図(b)のB部拡大図である。1 shows an embodiment of a heat dissipation board of the present invention, (a) is a plan view when a copper plate is viewed in plan, (b) is a cross-sectional view taken along the line AA in FIG. It is the B section enlarged view of (b). 本発明の放熱基板の他の実施形態を示し、(a)は銅板を平面視したときの平面図、(b)は同図(a)のA−A線における断面図、(c)は同図(b)のB部拡大図である。The other embodiment of the thermal radiation board | substrate of this invention is shown, (a) is a top view when a copper plate is planarly viewed, (b) is sectional drawing in the AA line of the figure (a), (c) is the same. It is the B section enlarged view of figure (b). 本発明の放熱基板の他の実施形態を示し、(a)は銅板を平面視したときの平面図、(b)は同図(a)のA−A線における断面図、(c)は同図(b)のB部拡大図である。The other embodiment of the thermal radiation board | substrate of this invention is shown, (a) is a top view when a copper plate is planarly viewed, (b) is sectional drawing in the AA line of the figure (a), (c) is the same. It is the B section enlarged view of figure (b). 本発明の放熱基板の他の実施形態を示し、(a)は銅板を平面視したときの平面図、(b)は同図(a)のA−A線における断面図、(c)は同図(b)のB部拡大図である。The other embodiment of the thermal radiation board | substrate of this invention is shown, (a) is a top view when a copper plate is planarly viewed, (b) is sectional drawing in the AA line of the figure (a), (c) is the same. It is the B section enlarged view of figure (b). 本発明の放熱基板の他の実施形態を示し、(a)は銅板を平面視したときの平面図、(b)は同図(a)のA−A線における断面図、(c)は同図(b)のB部拡大図である。The other embodiment of the thermal radiation board | substrate of this invention is shown, (a) is a top view when a copper plate is planarly viewed, (b) is sectional drawing in the AA line of the figure (a), (c) is the same. It is the B section enlarged view of figure (b). 従来の放熱基板を示し、(a)は銅板を平面視したときの平面図、(b)は同図(a)のA−A線における断面図、(c)は同図(b)のB部拡大図である。1 shows a conventional heat dissipation board, (a) is a plan view when a copper plate is viewed in plan, (b) is a cross-sectional view taken along line AA in FIG. 1 (a), and (c) is B in FIG. FIG.

符号の説明Explanation of symbols

1:放熱基板
2:窒化珪素基板
31,32:活性金属層
41,42:銅板
51,52:結合層
53,54:第1の薄層
55,56:第2の薄層
1: heat dissipation substrate 2: silicon nitride substrate 31, 32: active metal layer 41, 42: copper plate 51, 52: coupling layer 53, 54: first thin layer 55, 56: second thin layer

Claims (9)

窒化珪素質焼結体から成る窒化珪素基板と、該窒化珪素基板の両主面上に活性金属層を介して銅または銅合金を主成分とする銅板を接合してなる放熱基板であって、前記活性金属層および銅板との間に銅を主成分とする結合層を備えたことを特徴とする放熱基板。 A heat dissipation substrate formed by bonding a silicon nitride substrate made of a silicon nitride sintered body and a copper plate mainly composed of copper or a copper alloy via active metal layers on both main surfaces of the silicon nitride substrate, A heat dissipation board comprising a bonding layer mainly composed of copper between the active metal layer and the copper plate. 前記活性金属層および銅板との間に活性金属層側より銅を主成分とする結合層、Au,Pt,Ag,InおよびSnの何れかを主成分とする第1の薄層および前記金属のいずれかよりなる第2の薄層を備えたことを特徴とする請求項1に記載の放熱基板。 Between the active metal layer and the copper plate, a bonding layer mainly composed of copper from the active metal layer side, a first thin layer mainly composed of any one of Au, Pt, Ag, In and Sn, and the metal The heat dissipation substrate according to claim 1, further comprising a second thin layer made of any one of the above. 前記第1の薄層を形成する金属と、第2の薄層を形成する金属とが同じ金属であることを特徴とする請求項2に記載の放熱基板。 The heat dissipation substrate according to claim 2, wherein the metal forming the first thin layer and the metal forming the second thin layer are the same metal. 前記第1の薄層および第2の薄層の互いに対向する面は、算術平均高さRaが0.05μm以下であることを特徴とする請求項2または請求項3に記載の放熱基板。 4. The heat dissipation substrate according to claim 2, wherein the surfaces of the first thin layer and the second thin layer facing each other have an arithmetic average height Ra of 0.05 μm or less. 前記銅板を平面透視した際の前記銅板の端部が結合層の端部より内側に位置することを特徴とする請求項1乃至4のいずれかに記載の放熱基板。 5. The heat dissipation board according to claim 1, wherein an end portion of the copper plate when the copper plate is seen through the plane is positioned inside an end portion of the bonding layer. 前記銅板を平面透視した際の一方の銅板の端部が他方の銅板の端部より内側に位置することを特徴とする請求項1乃至5のいずれかにに記載の放熱基板。 6. The heat dissipation board according to claim 1, wherein an end portion of one copper plate when the copper plate is seen through in a plane is positioned inside an end portion of the other copper plate. 前記結合層は、そのビッカース硬度がHv0.5GPa以下であることを特徴とする請求項1乃至6のいずれかに記載の放熱基板。 The heat dissipation substrate according to claim 1, wherein the bonding layer has a Vickers hardness of Hv 0.5 GPa or less. 前記一方の銅板は、主面上に回路が形成された回路基板であることを特徴とする請求項1乃至7のいずれかに記載の放熱基板。 The heat dissipation board according to any one of claims 1 to 7, wherein the one copper plate is a circuit board having a circuit formed on a main surface thereof. 請求項8に記載の前記回路基板に半導体素子を搭載したことを特徴とする半導体装置。 A semiconductor device comprising a semiconductor element mounted on the circuit board according to claim 8.
JP2006069474A 2006-01-27 2006-03-14 Heat dissipation substrate and semiconductor device using the same Expired - Fee Related JP4688706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069474A JP4688706B2 (en) 2006-01-27 2006-03-14 Heat dissipation substrate and semiconductor device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006019586 2006-01-27
JP2006019586 2006-01-27
JP2006069474A JP4688706B2 (en) 2006-01-27 2006-03-14 Heat dissipation substrate and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2007227867A true JP2007227867A (en) 2007-09-06
JP4688706B2 JP4688706B2 (en) 2011-05-25

Family

ID=38549340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069474A Expired - Fee Related JP4688706B2 (en) 2006-01-27 2006-03-14 Heat dissipation substrate and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4688706B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131217A1 (en) * 2008-04-25 2009-10-29 京セラ株式会社 Heat dissipating base body and electronic device using the same
US9105535B2 (en) 2012-06-19 2015-08-11 International Business Machines Corporation Copper feature design for warpage control of substrates
JP2018101763A (en) * 2016-12-22 2018-06-28 株式会社Nsc Power module substrate and production method thereof
WO2020179893A1 (en) * 2019-03-07 2020-09-10 株式会社Fjコンポジット Circuit board production method
KR20210056736A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR20210056737A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR20210056735A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
WO2023203852A1 (en) * 2022-04-19 2023-10-26 パナソニックホールディングス株式会社 Laminated structure, and method for manufacturing laminated structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054761A1 (en) * 1997-05-26 1998-12-03 Sumitomo Electric Industries, Ltd. Copper circuit junction substrate and method of producing the same
JP2003100965A (en) * 2001-09-20 2003-04-04 Denki Kagaku Kogyo Kk Reliability evaluating method of circuit board and circuit board
JP2004055576A (en) * 2002-07-16 2004-02-19 Denki Kagaku Kogyo Kk Circuit board and power module using it
JP2004327737A (en) * 2003-04-24 2004-11-18 Kyocera Corp Compound substrate and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054761A1 (en) * 1997-05-26 1998-12-03 Sumitomo Electric Industries, Ltd. Copper circuit junction substrate and method of producing the same
JP2003100965A (en) * 2001-09-20 2003-04-04 Denki Kagaku Kogyo Kk Reliability evaluating method of circuit board and circuit board
JP2004055576A (en) * 2002-07-16 2004-02-19 Denki Kagaku Kogyo Kk Circuit board and power module using it
JP2004327737A (en) * 2003-04-24 2004-11-18 Kyocera Corp Compound substrate and manufacturing method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131217A1 (en) * 2008-04-25 2009-10-29 京セラ株式会社 Heat dissipating base body and electronic device using the same
EP2284883A1 (en) * 2008-04-25 2011-02-16 Kyocera Corporation Heat dissipating base body and electronic device using the same
JP5562234B2 (en) * 2008-04-25 2014-07-30 京セラ株式会社 Heat dissipation base and electronic device using the same
EP2284883A4 (en) * 2008-04-25 2014-12-10 Kyocera Corp Heat dissipating base body and electronic device using the same
US9105535B2 (en) 2012-06-19 2015-08-11 International Business Machines Corporation Copper feature design for warpage control of substrates
US9659131B2 (en) 2012-06-19 2017-05-23 Globalfoundries Inc. Copper feature design for warpage control of substrates
JP2018101763A (en) * 2016-12-22 2018-06-28 株式会社Nsc Power module substrate and production method thereof
WO2020179893A1 (en) * 2019-03-07 2020-09-10 株式会社Fjコンポジット Circuit board production method
JP2020145335A (en) * 2019-03-07 2020-09-10 株式会社Fjコンポジット Manufacturing method of circuit substrate
KR20210056736A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR20210056737A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR20210056735A (en) * 2019-11-11 2021-05-20 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR102447793B1 (en) * 2019-11-11 2022-09-27 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR102447783B1 (en) * 2019-11-11 2022-09-27 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
KR102488227B1 (en) * 2019-11-11 2023-01-13 주식회사 아모그린텍 Sheet type heat pipe and manufacturing method thereof
WO2023203852A1 (en) * 2022-04-19 2023-10-26 パナソニックホールディングス株式会社 Laminated structure, and method for manufacturing laminated structure

Also Published As

Publication number Publication date
JP4688706B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4688706B2 (en) Heat dissipation substrate and semiconductor device using the same
JP6125691B2 (en) Semiconductor device
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
JP5202333B2 (en) Heat dissipation board and electronic device using the same
JP4664816B2 (en) Ceramic circuit board, manufacturing method thereof and power module
JP5474188B2 (en) Circuit board and electronic device using the same
JP5759902B2 (en) Laminate and method for producing the same
JP4744385B2 (en) Heat dissipation board and electronic device using the same
JP4544964B2 (en) Heat dissipation board
JP2011181846A (en) Substrate for power module, method of manufacturing the same, substrate for power module with heat sink, and power module
JP2011181847A (en) Substrate for power module, method of manufacturing the same, substrate for power module with heat sink, and power module
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JPWO2008149818A1 (en) Laminated heat dissipation base, heat dissipation unit using the same, and electronic device
JP5564999B2 (en) Power module substrate, power module substrate manufacturing method, power module substrate with heat sink, and power module
JP3192911B2 (en) Ceramic circuit board
JP4557398B2 (en) Electronic element
JP3798917B2 (en) Press heating heater
JP5649489B2 (en) Heat dissipation board and electronic device using the same
JP6819385B2 (en) Manufacturing method of semiconductor devices
JP6780561B2 (en) Manufacturing method of joint, manufacturing method of insulated circuit board, and joint, insulated circuit board
JP2010098058A (en) Substrate for power module with heat sink, power module with heat sink and method of manufacturing substrate for power module with heat sink
JP2016184606A (en) Heat dissipation substrate
JP4468338B2 (en) Manufacturing method of ceramic circuit board
JP5303936B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP2015130431A (en) Manufacturing method of power module substrate with heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees