JP2007227602A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2007227602A
JP2007227602A JP2006046449A JP2006046449A JP2007227602A JP 2007227602 A JP2007227602 A JP 2007227602A JP 2006046449 A JP2006046449 A JP 2006046449A JP 2006046449 A JP2006046449 A JP 2006046449A JP 2007227602 A JP2007227602 A JP 2007227602A
Authority
JP
Japan
Prior art keywords
layer
sige
hydrofluoric acid
sige layer
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006046449A
Other languages
Japanese (ja)
Inventor
Juri Kato
樹理 加藤
Hisaki Hara
寿樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006046449A priority Critical patent/JP2007227602A/en
Publication of JP2007227602A publication Critical patent/JP2007227602A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Weting (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a selection ratio in etching Si and SiG. <P>SOLUTION: An Si layer and an SiGe layer are formed on the same substrate, and the SiGe layer is selectively removed by etching using fluoro-nitric acid processing within three minutes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体装置の製造方法に関し、特に、SiとSiGeとのエッチング時の選択
比を向上させる方法に適用して好適なものである。
The present invention relates to a method for manufacturing a semiconductor device, and is particularly suitable for application to a method for improving the selection ratio during etching of Si and SiGe.

SOI基板上に形成された電界効果型トランジスタは、素子分離の容易性、ラッチアッ
プフリー、ソース/ドレイン接合容量が小さいなどの点から、その有用性が注目されてい
る。特に、完全空乏型SOIトランジスタは、低消費電力かつ高速動作が可能で、低電圧
駆動が容易なため、SOIトランジスタを完全空乏モードで動作させるための研究が盛ん
に行われている。ここで、非特許文献1には、バルク基板上にSOI層を形成することで
、SOIトランジスタを低コストで形成できる方法が開示されている。この非特許文献1
に開示された方法では、Si基板上にSi/SiGe層を成膜し、SiとSiGeとのエ
ッチングレートの違いを利用してSiGe層のみを選択的に除去することにより、Si基
板とSi層との間に空洞部を形成する。そして、空洞部内に露出されたSiの熱酸化を行
うことにより、Si基板とSi層との間にSiO2層を埋め込み、Si基板とSi層との
間にBOX層を形成する。
T.Sakai et al.“Separation by BondingSi Islands(SBSI) for LSI Application”,Second International SiGe Technology and Device Meeting,Meeting Abstract,pp.230−231,May(2004)
Field effect transistors formed on an SOI substrate are attracting attention because of their ease of element isolation, latch-up freeness, and low source / drain junction capacitance. In particular, since a fully depleted SOI transistor can operate at low power consumption and at high speed and can be easily driven at a low voltage, research for operating the SOI transistor in a fully depleted mode has been actively conducted. Here, Non-Patent Document 1 discloses a method in which an SOI transistor can be formed at low cost by forming an SOI layer on a bulk substrate. Non-Patent Document 1
In the method disclosed in (1), a Si / SiGe layer is formed on a Si substrate, and only the SiGe layer is selectively removed by utilizing a difference in etching rate between Si and SiGe. A cavity is formed between the two. Then, by performing thermal oxidation of Si exposed in the cavity, an SiO 2 layer is buried between the Si substrate and the Si layer, and a BOX layer is formed between the Si substrate and the Si layer.
T. T. et al. Sakai et al. “Separation by Bonding Si Islands (SBSI) for LSI Applications”, Second International SiGe Technology and Device Meeting, Meeting Abstract, pp. 230-231, May (2004)

しかしながら、非特許文献1に開示された方法では、SiGe層のみを選択的に除去す
るときに、SiとSiGeとのエッチング時の選択比がばらつき、SiGeのみならずS
iもエッチングされるため、SOI層の膜厚がばらつくようになる。このため、SOIト
ランジスタの閾値やオン電流やオフ電流がばらつく原因となり、SOI基板上に形成され
た電界効果型トランジスタの製造歩留まりが低下するという問題があった。
そこで、本発明の目的は、SiとSiGのエッチング時の選択比を向上させ、SOI層膜
厚バラツキ低減が可能な半導体装置の製造方法を提供することである。
However, in the method disclosed in Non-Patent Document 1, when only the SiGe layer is selectively removed, the selection ratio during etching of Si and SiGe varies, and not only SiGe but also S
Since i is also etched, the film thickness of the SOI layer varies. For this reason, the threshold value, on-current, and off-current of the SOI transistor vary, and there is a problem that the manufacturing yield of the field effect transistor formed on the SOI substrate is lowered.
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device capable of improving the selection ratio during etching of Si and SiG and reducing variations in the thickness of the SOI layer.

上述した課題を解決するために、本発明の一態様に係る半導体装置の製造方法によれば
、Si層とSiGe層とを同一基板上に形成する工程と、30℃以下の温度範囲で前記S
iGe層をフッ硝酸処理にて選択的にエッチング除去する工程とを備えることを特徴とす
る。
In order to solve the above-described problem, according to a method for manufacturing a semiconductor device according to one embodiment of the present invention, the step of forming the Si layer and the SiGe layer on the same substrate, and the S in a temperature range of 30 ° C. or less.
and a step of selectively removing the iGe layer by hydrofluoric acid treatment.

これにより、SiGeに対するSiのエッチング時の選択比の劣化を抑制しつつ、Si
Geをエッチングすることができ、SiとSiGeとのエッチング時の選択比のばらつき
を少なくさせることができる。このため、SiGe層上にSi層を積層させた場合におい
ても、Si層の膜厚のばらつきを低減しつつ、Si層下のSiGe層を除去することがで
き、SOI層の膜厚のばらつきを低減することができる。このため、SBSI法にてSO
I層を形成した場合においても、SOIトランジスタの閾値やオン電流やオフ電流のばら
つきを低減させることが可能となり、SOIトランジスタの製造コストを抑制しつつ、S
OIトランジスタの製造歩留まりを向上させることができる。
Thereby, while suppressing the deterioration of the selection ratio at the time of etching of Si with respect to SiGe, Si
Ge can be etched, and variation in the selection ratio between Si and SiGe can be reduced. For this reason, even when the Si layer is stacked on the SiGe layer, the SiGe layer under the Si layer can be removed while reducing the variation in the thickness of the Si layer, and the variation in the thickness of the SOI layer can be reduced. Can be reduced. For this reason, the SBSI method uses SO
Even in the case where the I layer is formed, it is possible to reduce variations in the threshold value, on-current, and off-current of the SOI transistor, and while suppressing the manufacturing cost of the SOI transistor, S
The production yield of the OI transistor can be improved.

また、本発明の一態様に係る半導体装置の製造方法によれば、Si層とSiGe層とを
同一基板上に形成する工程と、3分以内の時間内でSiGe層をフッ硝酸処理にて選択的
にエッチング除去する工程とを備えることを特徴とする。
これにより、SiGeのエッチング時間の増大に起因するSiの増速エッチングを抑制
することができる。このため、SiGe層上にSi層を積層させた場合においても、Si
層の膜厚の低下を低減しつつ、Si層下のSiGe層を除去することができ、SOI層の
膜厚の均一性を向上させることができる。このため、SBSI法にてSOI層を形成した
場合においても、SOIトランジスタの閾値やオン電流やオフ電流のばらつきを低減させ
ることが可能となり、SOIトランジスタの製造コストを抑制しつつ、SOIトランジス
タの製造歩留まりを向上させることができる。
In addition, according to the method for manufacturing a semiconductor device according to one embodiment of the present invention, the SiGe layer and the SiGe layer are formed on the same substrate, and the SiGe layer is selected by hydrofluoric acid treatment within 3 minutes. And a step of etching away.
Thereby, the accelerated etching of Si resulting from the increase in the etching time of SiGe can be suppressed. For this reason, even when the Si layer is stacked on the SiGe layer, Si
The SiGe layer under the Si layer can be removed while reducing the decrease in the layer thickness, and the uniformity of the SOI layer thickness can be improved. For this reason, even when the SOI layer is formed by the SBSI method, it is possible to reduce variations in the threshold value, on-current, and off-current of the SOI transistor, and manufacturing the SOI transistor while suppressing the manufacturing cost of the SOI transistor. Yield can be improved.

また、本発明の一態様に係る半導体装置の製造方法によれば、Si層とSiGe層とを
同一基板上に形成する工程と、前記SiGe層をフッ硝酸処理にて選択的にエッチングす
る工程と、前記SiGe層をフッ硝酸処理した後、アンモニア過水処理を行う工程とを備
えることを特徴とする。
これにより、フッ硝酸処理によるエッチング時に発生する亜硝酸の発生を抑制すること
ができ、純水リンス時のSiの増速エッチングを抑制することができる。このため、Si
Ge層上にSi層を積層させた場合においても、Si層の膜厚の低下を低減しつつ、Si
層下のSiGe層を除去することができ、SOI層の膜厚の均一性を向上させることがで
きる。このため、SBSI法にてSOI層を形成した場合においても、SOIトランジス
タの閾値やオン電流やオフ電流のばらつきを低減させることが可能となり、SOIトラン
ジスタの製造コストを抑制しつつ、SOIトランジスタの製造歩留まりを向上させること
ができる。
According to the method for manufacturing a semiconductor device of one embodiment of the present invention, a step of forming the Si layer and the SiGe layer on the same substrate, and a step of selectively etching the SiGe layer by a hydrofluoric acid treatment, And a step of performing an ammonia hydrogen peroxide treatment after the SiGe layer is treated with hydrofluoric acid.
Thereby, generation | occurrence | production of the nitrous acid generate | occur | produced at the time of the etching by a hydrofluoric acid process can be suppressed, and the accelerated etching of Si at the time of pure water rinse can be suppressed. For this reason, Si
Even when the Si layer is stacked on the Ge layer, Si layer is reduced while reducing the decrease in the thickness of the Si layer.
The SiGe layer under the layer can be removed, and the uniformity of the thickness of the SOI layer can be improved. For this reason, even when the SOI layer is formed by the SBSI method, it is possible to reduce variations in the threshold value, on-current, and off-current of the SOI transistor, and manufacturing the SOI transistor while suppressing the manufacturing cost of the SOI transistor. Yield can be improved.

また、本発明の一態様に係る半導体装置の製造方法によれば、Si層とSiGe層とを
同一基板上に形成する工程と、前記SiGe層をフッ硝酸処理にて選択的にエッチングす
る工程と、前記SiGe層をフッ硝酸処理した後、過酸化水素水を含むフッ硝酸処理を行
う工程とを備えることを特徴とする。
これにより、フッ硝酸処理によるエッチング時に発生する亜硝酸の発生を抑制すること
ができ、純水リンス時のSiの増殖エッチングを抑制することができる。このため、Si
Ge層上にSi層を積層させた場合においても、Si層の膜厚の低下を低減しつつ、Si
層下のSiGe層を除去することができ、SOI層の膜厚の均一性を向上させることがで
きる。このため、SBSI法にてSOI層を形成した場合においても、SOIトランジス
タの閾値やオン電流やオフ電流のばらつきを低減させることが可能となり、SOIトラン
ジスタの製造コストを抑制しつつ、SOIトランジスタの製造歩留まりを向上させること
ができる。
According to the method for manufacturing a semiconductor device of one embodiment of the present invention, a step of forming the Si layer and the SiGe layer on the same substrate, and a step of selectively etching the SiGe layer by a hydrofluoric acid treatment, And a step of performing a hydrofluoric acid treatment including hydrogen peroxide after the SiGe layer is subjected to a hydrofluoric acid treatment.
Thereby, generation | occurrence | production of the nitrous acid generate | occur | produced at the time of the etching by a hydrofluoric acid process can be suppressed, and the proliferation etching of Si at the time of pure water rinse can be suppressed. For this reason, Si
Even when the Si layer is stacked on the Ge layer, Si layer is reduced while reducing the decrease in the thickness of the Si layer.
The SiGe layer under the layer can be removed, and the uniformity of the thickness of the SOI layer can be improved. For this reason, even when the SOI layer is formed by the SBSI method, it is possible to reduce variations in the threshold value, on-current, and off-current of the SOI transistor, and manufacturing the SOI transistor while suppressing the manufacturing cost of the SOI transistor. Yield can be improved.

また、本発明の一態様に係る半導体装置の製造方法によれば、前記フッ硝酸処理に用い
るフッ硝酸溶液は、HFに対してHNO3およびH2Oを50%以上含むことを特徴とする

これにより、フッ硝酸処理によるエッチング時に発生する亜硝酸の発生を抑制しつつ、
SiGe層をエッチングすることができ、Si層の膜厚のばらつきを低減しつつ、SiG
e層を除去することができる。
According to the method for manufacturing a semiconductor device of one embodiment of the present invention, the hydrofluoric acid solution used for the hydrofluoric acid treatment includes 50% or more of HNO 3 and H 2 O with respect to HF.
As a result, while suppressing the generation of nitrous acid that occurs during etching by the hydrofluoric acid treatment,
SiG layer can be etched, SiG layer thickness variation is reduced, while SiG
The e layer can be removed.

以下、本発明の実施形態に係る半導体装置の製造方法について図面を参照しながら説明
する。
SBSI法にてSOI層を形成する場合、Si基板上にSi/SiGe層を成膜し、S
iとSiGeとのエッチングレートの違いを利用してSiGe層のみを選択的に除去する
ことにより、Si基板とSi層との間に空洞部を形成する。そして、空洞部内に露出され
たSiの熱酸化を行うことにより、Si基板とSi層との間にSiO2層を埋め込み、S
i基板とSi層との間にBOX層を形成する。
Hereinafter, a semiconductor device manufacturing method according to an embodiment of the present invention will be described with reference to the drawings.
When an SOI layer is formed by the SBSI method, a Si / SiGe layer is formed on a Si substrate, and S
A cavity is formed between the Si substrate and the Si layer by selectively removing only the SiGe layer using the difference in etching rate between i and SiGe. Then, by performing thermal oxidation of Si exposed in the cavity, an SiO 2 layer is embedded between the Si substrate and the Si layer, and S
A BOX layer is formed between the i substrate and the Si layer.

ここで、図1に示すように、Si層とSiGe層(Geが30%)とのフッ硝酸処理に
よる選択比は、SiGe層のエッチング時間が3分以内ならば、500〜1000の範囲
内で一定に保つことができるが、3分を超えると、Si層とSiGe層との選択比が低下
するとともに、Si層とSiGe層との選択比がばらつくようになる。
このため、Si基板上に積層されたSi/SiGe層からSiGe層を選択的に除去す
る場合、SiGe層のエッチング時間を3分以内に設定することが好ましい。
Here, as shown in FIG. 1, the selectivity ratio between the Si layer and the SiGe layer (Ge is 30%) by the hydrofluoric acid treatment is within a range of 500 to 1000 if the etching time of the SiGe layer is within 3 minutes. Although it can be kept constant, when it exceeds 3 minutes, the selectivity between the Si layer and the SiGe layer is lowered and the selectivity between the Si layer and the SiGe layer is varied.
For this reason, when the SiGe layer is selectively removed from the Si / SiGe layer stacked on the Si substrate, it is preferable to set the etching time of the SiGe layer within 3 minutes.

また、Si層とSiGe層(とのフッ硝酸処理による選択比は、SiGe層のエッチン
グ温度が30℃を越えると、Si層とSiGe層との選択比が低下するとともに、Si層
とSiGe層との選択比がばらつくようになる。このため、Si基板上に積層されたSi
/SiGe層からSiGe層を選択的に除去する場合、SiGe層のエッチング温度を3
0℃以下に設定することが好ましい。
In addition, the selectivity ratio between the Si layer and the SiGe layer (with the nitric acid hydrofluoric acid treatment is such that when the etching temperature of the SiGe layer exceeds 30 ° C., the selectivity ratio between the Si layer and the SiGe layer decreases, and Therefore, the selective ratio of Si varies, so that the Si stacked on the Si substrate
When the SiGe layer is selectively removed from the / GeGe layer, the etching temperature of the SiGe layer is set to 3
It is preferable to set it to 0 ° C. or lower.

これにより、SiGeに対するSiのエッチング時の選択比の劣化を抑制しつつ、Si
Geをエッチングすることができ、SiとSiGeとのエッチング時の選択比のばらつき
を低下させることができる。このため、SiGe層上にSi層を積層させた場合において
も、Si層の膜厚のばらつきを低減しつつ、Si層下のSiGe層を除去することができ
、SOI層の膜厚のばらつきを低減することができる。このため、SBSI法にてSOI
層を形成した場合においても、SOIトランジスタの閾値やオン電流やオフ電流のばらつ
きを低減させることが可能となり、SOIトランジスタの製造コストを抑制しつつ、SO
Iトランジスタの製造歩留まりを向上させることができる。
Thereby, while suppressing the deterioration of the selection ratio at the time of etching of Si with respect to SiGe, Si
Ge can be etched, and variation in the selection ratio between Si and SiGe can be reduced. For this reason, even when the Si layer is stacked on the SiGe layer, the SiGe layer under the Si layer can be removed while reducing the variation in the thickness of the Si layer, and the variation in the thickness of the SOI layer can be reduced. Can be reduced. For this reason, SOI by the SBSI method
Even when the layers are formed, it is possible to reduce variations in the threshold value, on-current, and off-current of the SOI transistor, and while suppressing the manufacturing cost of the SOI transistor, the SO transistor
The manufacturing yield of the I transistor can be improved.

また、SiGe層の選択エッチングにおけるフッ硝酸処理後、アンモニア過水処理また
は過酸化水素水(H22)を含むフッ硝酸処理を行うことが好ましい。なお、フッ硝酸処
理に用いるフッ硝酸溶液は、HFに対してHNO3およびH2Oを50倍以上含むことが好
ましい。これにより、フッ硝酸処理によるエッチング時に発生する亜硝酸の発生を抑制す
ることができ、フッ硝酸処理後の純水リンス時における、Siの増速エッチングを抑制す
ることができる。このため、SiGe層上にSi層を積層させた場合においても、Si層
の膜厚の低下を低減しつつ、Si層下のSiGe層を除去することができ、SOI層の膜
厚の均一性を向上させることができる。
In addition, after the hydrofluoric acid treatment in the selective etching of the SiGe layer, it is preferable to perform an ammonia overwater treatment or a hydrofluoric acid treatment containing hydrogen peroxide water (H 2 O 2 ). Note that the hydrofluoric acid solution used for the hydrofluoric acid treatment preferably contains 50 times or more of HNO 3 and H 2 O with respect to HF. Thereby, generation | occurrence | production of the nitrous acid generate | occur | produced at the time of the etching by a hydrofluoric acid process can be suppressed, and the accelerated etching of Si at the time of the pure water rinse after a hydrofluoric acid process can be suppressed. Therefore, even when the Si layer is stacked on the SiGe layer, the SiGe layer under the Si layer can be removed while reducing the decrease in the thickness of the Si layer, and the uniformity of the SOI layer thickness Can be improved.

本発明の一実施形態に係るSiとSiGeとのエッチング時の選択比とエッチング時間との関係を示す図。The figure which shows the relationship between the selection ratio at the time of the etching of Si and SiGe which concerns on one Embodiment of this invention, and etching time.

Claims (5)

Si層とSiGe層とを同一基板上に形成する工程と、
30℃以下の温度範囲で前記SiGe層をフッ硝酸処理にて選択的にエッチング除去す
る工程とを備えることを特徴とする半導体装置の製造方法。
Forming a Si layer and a SiGe layer on the same substrate;
And a step of selectively removing the SiGe layer by a hydrofluoric acid treatment in a temperature range of 30 ° C. or lower.
Si層とSiGe層とを同一基板上に形成する工程と、
3分以内の時間内でSiGe層をフッ硝酸処理にて選択的にエッチング除去する工程と
を備えることを特徴とする半導体装置の製造方法。
Forming a Si layer and a SiGe layer on the same substrate;
And a step of selectively removing the SiGe layer by hydrofluoric acid treatment within a time of 3 minutes or less.
Si層とSiGe層とを同一基板上に形成する工程と、
前記SiGe層をフッ硝酸処理にて選択的にエッチングする工程と、
前記SiGe層をフッ硝酸処理した後、アンモニア過水処理を行う工程とを備えること
を特徴とする半導体装置の製造方法。
Forming a Si layer and a SiGe layer on the same substrate;
Selectively etching the SiGe layer by hydrofluoric acid treatment;
And a step of performing an ammonia overwater treatment after the SiGe layer is treated with hydrofluoric acid.
Si層とSiGe層とを同一基板上に形成する工程と、
前記SiGe層をフッ硝酸処理にて選択的にエッチングする工程と、
前記SiGe層をフッ硝酸処理した後、過酸化水素水を含むフッ硝酸処理を行う工程と
を備えることを特徴とする半導体装置の製造方法。
Forming a Si layer and a SiGe layer on the same substrate;
Selectively etching the SiGe layer by hydrofluoric acid treatment;
And a step of performing a hydrofluoric acid treatment including hydrogen peroxide after the SiGe layer is subjected to a hydrofluoric acid treatment.
前記フッ硝酸処理に用いるフッ硝酸溶液は、HFに対してHNO3およびH2Oを50倍
以上含むことを特徴とする請求項1から4のいずれか1項記載の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 1, wherein the hydrofluoric acid solution used for the hydrofluoric acid treatment contains 50 times or more of HNO 3 and H 2 O with respect to HF.
JP2006046449A 2006-02-23 2006-02-23 Method of manufacturing semiconductor device Withdrawn JP2007227602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046449A JP2007227602A (en) 2006-02-23 2006-02-23 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046449A JP2007227602A (en) 2006-02-23 2006-02-23 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2007227602A true JP2007227602A (en) 2007-09-06

Family

ID=38549119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046449A Withdrawn JP2007227602A (en) 2006-02-23 2006-02-23 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2007227602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10414978B2 (en) 2016-12-14 2019-09-17 Samsung Electronics Co., Ltd. Etching composition and method for fabricating semiconductor device by using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10414978B2 (en) 2016-12-14 2019-09-17 Samsung Electronics Co., Ltd. Etching composition and method for fabricating semiconductor device by using the same
US10793775B2 (en) 2016-12-14 2020-10-06 Samsung Electronics Co., Ltd. Etching composition and method for fabricating semiconductor device by using the same
US11198815B2 (en) 2016-12-14 2021-12-14 Samsung Electronics Co., Ltd. Etching composition and method for fabricating semiconductor device by using the same

Similar Documents

Publication Publication Date Title
CN104124273B (en) There is MOS device of strained buffer layer and forming method thereof
CN100590839C (en) Method of manufacturing a semiconductor device and semiconductor device obtained by means of said method
CN104241134B (en) Non-Planar Transistors with Replacement Fins and Methods of Forming the Same
JP2005277420A (en) Method for forming local &#34;silicon-on-nothing&#34; wafer having tensile strain or &#34;silicon-on-insulator&#34;
US7314790B2 (en) Enhancement of electron and hole mobilities in &lt;110&gt; Si under biaxial compressive strain
JP2009532865A (en) Semiconductor device provided with SOI transistor and bulk transistor, and manufacturing method thereof
JP2007103654A (en) Semiconductor device and its manufacturing method
TW200611414A (en) Semiconductor device and method of fabricating a LTPS film
JP5511173B2 (en) Method for manufacturing semiconductor device
US8030148B2 (en) Structured strained substrate for forming strained transistors with reduced thickness of active layer
US9236380B2 (en) Semiconductor-on-insulator (SOI) device and related methods for making same using non-oxidizing thermal treatment
US7361574B1 (en) Single-crystal silicon-on-glass from film transfer
CN102148183B (en) Method for forming SOI (Silicon On Insulator) with stepped buried oxide layer
CN103050432A (en) Preparation method of GaAsOI (GaAs On Insulator) structure and III-VOI (III-V On Insulator) structure
JP2007227602A (en) Method of manufacturing semiconductor device
JP2010040931A (en) Manufacturing method of semiconductor substrate, and semiconductor substrate
US20190288012A1 (en) Implementing a hybrid finfet device and nanowire device utilizing selective sgoi
CN103972173B (en) CMOS (complementary metal oxide semiconductor) transistor forming method
WO2019087517A1 (en) Method for manufacturing soi wafer having thin-film soi layer
US9059092B2 (en) Chemical dielectric formation for semiconductor device fabrication
CN108039337B (en) Method for forming shallow trench isolation structure in FDSOI (fully drawn silicon on insulator) process
US20140187051A1 (en) Poly Removal for replacement gate with an APM mixture
JP2005026472A (en) Manufacturing method of semiconductor device
CN102064097B (en) Preparation method for mixed crystal material and semiconductor element prepared from same
CN103646853B (en) The preparation method of germanic membrane structure on a kind of insulator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512