JP2007227562A - プラズマ処理装置およびプラズマ処理方法 - Google Patents

プラズマ処理装置およびプラズマ処理方法 Download PDF

Info

Publication number
JP2007227562A
JP2007227562A JP2006045729A JP2006045729A JP2007227562A JP 2007227562 A JP2007227562 A JP 2007227562A JP 2006045729 A JP2006045729 A JP 2006045729A JP 2006045729 A JP2006045729 A JP 2006045729A JP 2007227562 A JP2007227562 A JP 2007227562A
Authority
JP
Japan
Prior art keywords
substrate
processed
voltage
electrostatic chuck
chuck mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006045729A
Other languages
English (en)
Other versions
JP4920991B2 (ja
Inventor
Hitoshi Tamura
仁 田村
Hisateru Yasui
尚輝 安井
Seiichi Watanabe
成一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006045729A priority Critical patent/JP4920991B2/ja
Priority to KR1020060076374A priority patent/KR100838750B1/ko
Priority to US11/506,788 priority patent/US20070193976A1/en
Priority to TW095131153A priority patent/TW200746291A/zh
Publication of JP2007227562A publication Critical patent/JP2007227562A/ja
Priority to US12/420,370 priority patent/US8142674B2/en
Priority to US13/399,465 priority patent/US20120145323A1/en
Application granted granted Critical
Publication of JP4920991B2 publication Critical patent/JP4920991B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • H01J37/32706Polarising the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】高精度に被処理基板の電圧制御が可能となるので、高精度なプラズマ処理が可能となるプラズマ処理装置およびプラズマ処理方法を提供する。
【解決手段】あらかじめ用意した電圧プローブ付き被処理基板から被処理基板の電圧Vwを測定して、静電チャック機構200に加えたバイアス電圧Vescと、静電チャック機構200を流れるバイアス電流Iescとから、静電チャック機構200の電気特性としてのインピーダンスである容量成分Cescを数値的に算出する。そして、測定しようとする被処理基板102のバイアス電圧Vescと、静電チャック機構200を流れるバイアス電流Iescと、あらかじめ取得したこのインピーダンスである容量成分Cescの数値とを用いて、所定の式に基づいて被処理基板102の電圧Vwを推定する。
【選択図】図1

Description

本発明は、プラズマ処理装置に係り、特に被処理基板に対するプラズマ処理の高精度化と高性能化を図るのに好適なプラズマ処理装置およびプラズマ処理方法に関する。
一般にプラズマ処理装置、特にプラズマエッチング装置は、被処理基板に高周波バイアス電位(バイアス電圧)を与えることで、プラズマ中のイオンのエネルギーを制御して、プラズマ処理の高性能化と高精度化を図ることが多い。
また、被処理基板の温度もプラズマ処理の品質には大きな影響を与えるために、被処理基板の温度制御性を高めることが重要である。これに対応して、被処理基板を基板電極に静電的に吸着させ、被処理基板と基板電極の間に温度制御用のガスを介在させて被処理基板の温度制御を高精度に行うことを狙った構造を採用することが多い。
この種の従来技術を用いたプラズマ処理装置としては、プラズマエッチング装置がある。プラズマエッチング装置の処理室内にプラズマを発生させ、プラズマ中のイオンを被処理基板に引き込むために、前述の静電的に被処理基板を吸着させることのできる構造体(以下、静電チャックと呼ぶ)を介して高周波バイアス電位を与えることが多い(例えば、特許文献1参照)。
特開2004−193564号公報
しかし、特許文献1に記載の技術では、被処理基板に印加された電圧波形をモニタするために、被処理基板の電流や電圧、電力、またはこれらの演算量を用いることの記載があるが、これらのモニタ量から被処理基板の電圧波形を演算する方法等についての開示が充分で無く、被処理基板の電圧を所望の波形に制御することが事実上困難であった。
静電チャックでは直流的な高電圧を静電チャック内の電極に加えなければならないため、直接被処理基板に印加されるバイアス電位を計測できず、静電チャック機構の電圧やバイアス電源の出力電力と反射電力を計測するに留まっていた。上記従来技術では、このように被処理基板に与えるバイアス電位を計測する手段が充分で無いため、バイアス電位の制御性が悪いという課題があった。これにより、被処理基板のプラズマエッチング処理の高精度化と高品質化が充分に図れない場合があった。
本発明の目的は、高精度に被処理基板の電圧制御を可能として、高精度なプラズマ処理が可能となるプラズマ処理装置およびプラズマ処理方法を提供することである。
上記目的を達成するために、本発明のプラズマ処理装置は被処理基板をプラズマ処理するためのプラズマ処理装置において、前記被処理基板を収容する処理室と、前記被処理基板を静電的に吸着して保持する静電チャック機構を有する基板電極と、前記被処理基板に対してプラズマを供給するプラズマ生成手段と、前記基板電極の前記被処理基板にバイアス電圧を供給するバイアス電圧印加手段と、前記基板電極に載せた測定用被処理基板を用いて、前記測定用被処理基板から電圧を測定し、前記静電チャック機構の容量成分と、前記静電チャック機構に加えたバイアス電圧と、前記静電チャック機構を流れるバイアス電流とを用いて、取得した前記静電チャック機構のインピーダンス値を、格納するインピーダンス値格納手段と、を備え、実際にプラズマ処理しようとする前記被処理基板に与えるバイアス電圧値とバイアス電流値と、前記静電チャック機構の前記取得したインピーダンス値を用いて、プラズマ処理しようとする前記被処理基板の電圧を推定する。
本発明は、上記プラズマ処理装置において、推定された前記被処理基板の電位を用いて、前記バイアス電圧印加手段の電源出力を制御する。
本発明は、上記プラズマ処理装置において、前記インピーダンス値格納手段は、静電チャック機構に印加するバイアス電圧、バイアス電流を取り入れて格納し、前記静電チャック機構の電気特性であるインピーダンス値を格納し、前記被処理基板の電圧値を推定する手段は、前記インピーダンス値格納手段に格納された、前記静電チャック機構に印加する電圧と電流と、前記静電チャック機構の電気特性であるインピーダンス値とから前記被処理基板の電圧値を推定し、制御ユニットは、前記被処理基板の電圧値を推定する手段で推定された前記被処理基板の電圧値の推定値に基づいて、前記バイアス電圧印加手段の制御信号を作成して前記バイアス電圧印加手段に与える。
本発明は、上記プラズマ処理装置において、前記被処理基板の電圧のサグを平坦化するように前記被処理基板の前記バイアス電圧値の波形を制御する。
上記課題を解決するために、本発明は、被処理基板をプラズマ処理するためのプラズマ処理方法において、前記被処理基板を処理室に収容して、前記被処理基板を基板電極の静電チャック機構に静電的に吸着して保持し、前記被処理基板に対してプラズマ生成手段からプラズマを供給し、前記基板電極の前記被処理基板にバイアス電圧印加手段からバイアス電圧を供給する際に、前記基板電極に載せた測定用被処理基板を用いて、前記測定用被処理基板から電圧を測定し、前記静電チャック機構の容量成分と、前記静電チャック機構に加えたバイアス電圧と、前記静電チャック機構を流れるバイアス電流とを用いて、前記静電チャック機構のインピーダンス値を取得して、前記取得した前記静電チャック機構のインピーダンス値をインピーダンス値格納手段に格納し、実際にプラズマ処理しようとする前記被処理基板に与えるバイアス電圧値とバイアス電流値と、前記静電チャック機構の前記取得したインピーダンス値を用いて、プラズマ処理しようとする前記被処理基板の電圧を推定する。
本発明は、上記プラズマ処理方法において、推定された前記被処理基板の電位を用いて、前記バイアス電圧印加手段の電源出力を制御する。さらに、本発明は、上記プラズマ処理方法において、前記被処理基板の電圧のサグを平坦化するように、前記被処理基板の前記バイアス電圧値の波形を制御する。
本発明は、上記プラズマ処理方法において、前記インピーダンス値格納手段は、静電チャック機構に印加するバイアス電圧、バイアス電流を取り入れて格納し、前記静電チャック機構の電気特性であるインピーダンス値を格納し、前記被処理基板の電圧値を推定する手段は、前記インピーダンス値格納手段に格納された、前記静電チャック機構に印加する電圧と電流と、前記静電チャック機構の電気特性であるインピーダンス値とから前記被処理基板の電圧値を推定し、制御ユニットは、前記被処理基板の電圧値を推定する手段で推定された前記被処理基板の電圧値の推定値に基づいて、前記バイアス電圧印加手段の制御信号を作成して前記バイアス電圧印加手段に与える。
本発明では、基板電極に載せた測定用被処理基板を用いて、測定用被処理基板から電圧を測定し、静電チャック機構の容量成分と、静電チャック機構に加えたバイアス電圧と、静電チャック機構を流れるバイアス電流とを用いて、取得した静電チャック機構のインピーダンス値を格納して、実際にプラズマ処理しようとする被処理基板に与えるバイアス電圧値とバイアス電流値と、静電チャック機構の取得したインピーダンス値を用いて、プラズマ処理しようとする被処理基板の電圧を推定する。これにより、本発明は、プラズマ処理装置において、高精度に被処理基板の電圧制御が可能となるので、高精度なプラズマ処理が可能となる効果がある。算出した被処理基板の電圧または電流をバイアス電源により制御することで、被処理基板のプラズマエッチング処理の高精度化と高品質化が充分に図れる。
以下、本発明の実施例を、図面を用いて詳細に説明する。本発明のプラズマ処理装置を用いた第1の実施例として、プラズマエッチング装置を説明する。図1には、本実施例で用いられているプラズマエッチング装置の概略図を示す。図1のプラズマ処理装置は、高周波電源115により発生した高周波電力は、自動整合機114および同軸線路113を介して、アンテナ112に導入される。高周波電源115の発振周波数としては、450MHzを用いた。
図1のアンテナ112から放射された高周波は、電磁波導入窓111とシャワープレート110を介して、処理室101内に導入される。処理室101には、図示しない処理ガスの供給系、および真空排気系が接続されている。処理室101には、処理に適したガスを所定の流量分供給して排気することで、処理室101内をプラズマエッチング処理に適した圧力とガス雰囲気に調整することができる。処理ガスは、シャワープレート110により処理室101内にシャワー状に供給され、処理室101内のガス流れを処理に適した所定の分布に制御することができる。
図1の処理室101の周囲には、静磁界の発生手段としての電磁石118が設置されており、電磁石118は処理室101内に静磁界を加えることができる。周波数450MHzの高周波電力に対し、0.016テスラの静磁界を加えると、処理室101内のプラズマ中の電子のサイクロトロン周波数が450MHzとなり、電磁波が共鳴的に強く吸収される電子サイクロトロン共鳴現象が起きることが知られている。この電子サイクロトロン共鳴現象により、通常ではプラズマが発生できない極低圧力域等でもプラズマの発生が可能となり、このため被処理基板102に対してプラズマエッチングを行い得る条件が広く取れる利点がある。
また、電子サイクロトロン共鳴を起こす0.016テスラとなる位置で強くプラズマが発生する傾向にあることから、0.016テスラとなる位置を制御してプラズマ発生位置を制御することができる。
さらに、図1の電磁石118を用いて処理室101内に静磁界を形成する別の効果として、プラズマ中の電子が静磁界に拘束される効果があるため、処理室101内におけるプラズマの拡散を制御でき、処理室101内でのプラズマ拡散制御によってもプラズマ密度分布を制御することが可能となる。本実施例では、同軸線路113を中心として、3つの電磁石118を同軸に設置することで静磁界の制御性を高めて、プラズマ密度分布の制御性を高めている。
図1の処理室101内には、被処理基板102を戴置するための基板電極103が設置されている。基板電極103には、被処理基板102にバイアス電位を与えるためのバイアス電源117が、自動整合機116を介して接続されている。バイアス電源117の発振周波数としては、400KHzを用いた。
図2に、この基板電極103付近の構造をより詳細に示す。被処理基板102を基板電極103上において保持するために、静電チャック機構200が用いられる。この静電チャック機構200は、主として誘電体層204と、この誘電体層204内に埋め込まれた電極層205と、下地層206とから構成される。電極層205には、直流電圧を印加するための直流電源203が、帯域阻止フィルタ209を介して接続されている。
図2の基板電極103は、サセプタ201と電極カバー202を有している。被処理基板102の周囲にはサセプタ201が設けられており、さらにサセプタ201の下部には電極カバー202が配置されていることで全体を覆っている。サセプタ201は、被処理基板102の周辺部の表面状態を制御するために設けられており、本実施例ではサセプタ201の材質としては、石英を用いた。電極カバー202の材質としては、陽極酸化したアルミニウムを用いた。
図2の基板電極103には、被処理基板102を静電気力により吸着するために、直流電源203によりプラスまたはマイナス側に数百ボルト程度の電圧を加える。直流電源203による電圧は、電極層205に印加される。誘電体層204は、比較的絶縁性の高い材料として例えばアルミナセラミックを主成分とし、二酸化ケイ素や酸化チタン等の材料の混合物で形成されている。
図2の直流電源203からの電圧により被処理基板102には電荷が誘起され、静電気力により被処理基板102を静電吸着することができる。直流電源203にはバイアス電源117からのバイアス電流が流れ込むことを防止するために、バイアス電源117からの電流を阻止するための帯域阻止フィルタ209を用いている。
図2のバイアス電源117から供給される電圧と電流は、電圧モニタ(電圧計)207と電流モニタ(電流計)208によりそれぞれモニタすることができる。
バイアス電源117からのバイアス電力は、静電チャック機構200の下地層206に加えられ、静電チャック機構200を介して被処理基板102に印加される。通常、静電チャック機構200は、高周波に対するインピーダンスの大きさが小さくなるように作られており、本質的に薄い絶縁膜層で構成されているため、電気的には概略、容量の大きなコンデンサとして働くことになる。
本来的には、被処理基板102の表面の電位をモニタして、モニタした被処理基板102の表面の電位の値(電圧値)に基づいて、バイアス電源117のバイアス電圧出力等を制御すべきであるが、前述した様に静電チャック機構200を介してバイアス電力を被処理基板102に供給する構成をとっており、被処理基板102の表面の電位を直接測定することは事実上、困難である。
そこで、静電チャック機構200での電圧降下や電力損失を無視して、静電チャック機構200に印加する電圧や電力のみを測定することが多い。
ただし、静電チャック機構200を介して流れるバイアス電流が大きい場合や、静電チャック機構200のインピーダンスの大きさが大きい場合には、静電チャック機構200で生じる電圧降下が無視できなくなる場合が考えられる。
また、バイアス電源出力波形が正弦波ではなく、複数の周波数成分を含む場合には、各周波数成分に対する静電チャック機構のインピーダンスが異なるため、波形ひずみが生じることになる。時間的に繰り返し変化する電圧の大小を表現するのに、ピークトゥピーク電圧(peak−to−peak電圧)と呼ばれる表現方法が用いられることが多い。
このピークトゥピーク電圧とは、電圧の最大値から最小値を引いた値を指す。ピークトゥピーク電圧のみでは、波形ひずみが生じた場合には電圧の大小を正確に表現できているとは言いがたく、被処理基板102のプラズマ処理特性を安定して制御することは困難となる。
そこで、本発明の実施例では、被処理基板102上に印加されるバイアス電圧を正確にモニタするために、電圧測定用プローブを付加した測定用被処理基板を用いてこの測定用被処理基板の表面のバイアス電圧を測定し、事前に静電チャック機構200の電気特性であるインピーダンスを取得しておき、さらに電圧モニタ207および電流モニタ208によりそれぞれ実際に処理しようとしている被処理基板102のモニタされたバイアス電源117のバイアス電圧およびバイアス電流を用いて、実際に処理しようとしている被処理基板102上のバイアス電圧を算出して推定することができる。
図3(a)と図3(b)には、静電チャック機構200の電気特性を測定するために行ったバイアス電圧とバイアス電流の測定結果を示す。図3(a)の横軸は時間であり、縦軸は電圧と電流を示している。図3(b)の横軸は時間であり、縦軸は電圧を示している。
図2に示す電圧モニタ207、電流モニタ208に加えて、電圧測定用プローブを付加した測定用被処理基板を、図2の基板電極103上に設置して、静電チャック機構200の各部のバイアス電圧とバイアス電流を測定した。
図2に示す電圧モニタ(電圧計)207、電流モニタ208(電流計)によって測定されたバイアス電圧Vescとバイアス電流Iescの経時変化を、図3(a)に示す。また、同時に測定用被処理基板上の電圧も計測した結果を、図3(b)に示す。
図2の静電チャック機構200に印加した電圧Vescの波形は、図3(a)に示すように、正弦波ではなく電圧の負側をクリップした波形とした。この場合に、前述のように静電チャック機構200が容量性インピーダンスを持つため、低周波成分が透過しにくく、被処理基板上の電圧Vwの波形は、図3(b)に示すように、クリップした部分に相当して、サグ300と呼ばれる傾きが生じている。このサグ300を平坦化するように、バイアス電圧Vescの波形を制御することにより、そろったイオンエネルギーを得ることができ、プラズマエッチングの効率と精度を上げることができる。
図3(a)、図3(b)に示す電圧波形と電流波形から、静電チャック機構200の容量Cescを、以下の手順で数値的に算出することができる。
図2のバイアス電源117による電流が流れる経路を、図4に示す等価回路でモデル化する。図4では、測定記憶ユニット301は、静電チャック機構200に印加する電圧値、電流値を取り入れて格納して、静電チャック機構200の電気特性であるインピーダンス値である容量Cescを格納する手段である。
図4の計算ユニット302は、測定記憶ユニット301に格納された、静電チャック機構200に印加する電圧値、電流値と静電チャック機構200の電気特性であるインピーダンス値から、式(1)、または式(2)により、被処理基板の電圧値を推定する手段である。
さらに、図4の制御ユニット303は、計算ユニット302で推定された被処理基板の電圧値の推定値に基づいて、バイアス電源117の制御信号を作成してバイアス電源117に与える手段である。
ここで、静電チャック機構200のインピーダンス値である容量成分をCesc、図3(a)に示す静電チャック機構200に加えたバイアス電圧をVesc、図3(a)に示す静電チャック機構200を流れるバイアス電流をIesc、図3(b)に示す被処理基板102の電圧をVw、被処理基板102からアース電位に到る経路のインピーダンスをZpとすると、被処理基板102の電圧Vwを時間領域で表現すると、下記(1)式で表される。なお、(1)式において、Aは積分定数である。
Figure 2007227562
上記(1)式を周波数領域で表すと、下記(2)式で表される。
Figure 2007227562
上記(1)式で推定した被処理基板の電圧Vwと、実測した被処理基板の電圧とを比較して、両者が最小二乗法的に誤差が最小になることを根拠に、静電チャック機構200のインピーダンスである容量成分Cescを算出し、さらにこの静電チャック機構200の容量成分Cescの値を用いて、(1)式で計算した被処理基板の電圧(被処理基板電圧推定値)を求めた。周波数領域の(2)式については、フーリエ級数展開により各周波数成分に分解した後、(2)式を各周波数成分に適用し、重ね合わせることで被処理基板102の電圧Vwを推定できる。
図3(b)に、(1)式で計算した被処理基板の電圧(被処理基板電圧推定値)を、被処理基板の電圧の実測値と共に示す。実測値は実線で示し推測値は■で示している。
図3(b)に示すように、被処理基板の電圧の実測値と(1)式による被処理基板電圧推定値の波形はよく一致することが確認できた。誤差の評価方法としては、二乗誤差以外に、被処理基板電圧推定値と、被処理基板の電圧の実測値との差の絶対値の総和等、他の基準を用いても良い。
実験的には、測定用の被処理基板に電圧プローブを設置して構成した電圧プローブ付き被処理基板を用意して、被処理基板の電圧を直接的に測定することは可能である。しかし、通常のプラズマエッチング処理の運用時には、被処理基板毎に電圧プローブを設置することは事実上不可能なことが多い。
したがって、前述の様に、あらかじめ電圧プローブ付き被処理基板から直接的に被処理基板の電圧Vwを測定して、図3(a)に示す静電チャック機構200に加えたバイアス電圧をVesc、図3(a)に示す静電チャック機構200を流れるバイアス電流をIescから、図2の静電チャック機構200の電気特性としてのインピーダンスである容量成分Cescを数値的に算出する。
そして、実際に測定しようとする被処理基板102のバイアス電圧Vescと、静電チャック機構200を流れるバイアス電流Iescと、あらかじめ取得した静電チャック機構200のインピーダンスである容量成分Cescの数値と、を用いて、(1)式に基づいて被処理基板102の電圧Vwを推定することが有効となる。ただし、バイアス電流Iescは、プラズマ生成条件によって変化する。
図2のバイアス電源117による被処理基板102の電圧により、プラズマ中のイオンを被処理基板102に引き込んで、プラズマエッチング形状の制御や、プラズマエッチング速度の制御が行われる。そのため、被処理基板102の電圧は、プラズマエッチング特性を左右する重要なパラメータの一つである。被処理基板の電圧波形をモニタすることで、プラズマエッチング特性を高精度に制御することができる。
本実施例の場合には、静電チャック機構200が容量性のインピーダンスを持っていたため、(1)式でモデル化できた。静電チャック機構200のインピーダンスが、抵抗分Resc、容量分Cesc、誘導分Lescが直列に接続された回路により表現できる場合には、(1)式相当の式として、次の(3)式を用いることができる。
Figure 2007227562
同様に、電圧プローブ付き被処理基板の電圧Vwを実測し、(3)式による推定値との比較から抵抗分Resc、容量分Cesc、誘導分Lescを算出して、通常の被処理基板の電圧Vwの推定値を算出することができる。また、抵抗分Resc、容量分Cesc、誘導分Lesc等を測定する別の方法として、インピーダンスアナライザにより測定する方法を取ることもできる。
以上説明したように、従来技術を用いたプラズマエッチング装置では、静電チャック機構200に印加するバイアス電力を所定の値に制御し、静電チャック機構に印加する電圧のピークトゥピーク電圧をモニタすることが行われてきた。前述の様にバイアス電圧の波形が正弦波でなく、複数の周波数成分を含む場合には、静電チャック機構が周波数特性をもつため、被処理基板に印加される電圧波形が歪むことになる。また、プラズマの密度が高い等の原因によりバイアス電流が大きい場合には、静電チャック機構での電圧降下を無視することになり、プラズマエッチング特性に直接影響を及ぼすと思われる被処理基板の電圧を高精度にモニタすることが困難な問題があった。プラズマエッチング特性を制御する立場からは、被処理基板に印加される電圧が直接制御されることが望ましい。
そこで、本発明では、静電チャック機構の電気的特性をあらかじめ測定しておき、実際の被処理基板の処理時の静電チャック機構の電圧、電流等を計測して、被処理基板の電圧や、電流を算出することができる。算出した被処理基板の電圧または電流をバイアス電源により制御することで上記課題は解決できる。すなわち、被処理基板のバイアス電位の制御性が良好になるので、被処理基板に対するプラズマエッチング処理の高精度化と高品質化が充分に図れる。
本発明の実施例では、上述のモニタ方法によりモニタリングされた被処理基板の電圧の大きさを指定できる制御方式とした。(1)式や(3)式を用いたモニタ方式を用いることで、プラズマの密度や状態によらず、被処理基板の電圧を安定してモニタできるので、プラズマエッチング性能の高性能化を図ることができる。
なお、本発明は、上記実施形態に限定されるものではなく、本発明の範囲内で上記実施形態に多くの修正および変更を加え得ることは勿論である。
また、本発明のプラズマ処理装置として、プラズマエッチング装置を例に挙げているが、本発明は、これに限定されるものではない。
本発明を用いたプラズマ処理装置の一実施例を示す断面図である。 本発明の基板電極の周辺構造の説明図である。 本発明の基板電極各部の電圧または電流の測定値、被処理基板電圧の推定値を示す図である。 本発明の基板電極周辺の等価回路モデルを示す図である。
符号の説明
101:処理室
102:被処理基板
103:基板電極
107:バイアス電源(バイアス電圧印加手段)
110:シャワープレート
111:電磁波導入窓
112:アンテナ
113:同軸線路
114:自動整合機
115:高周波電源
116:自動整合機
117:バイアス電源
118:電磁石
200:静電チャック機構
201:サセプタ
202:電極カバー
203:直流電源
204:誘電体層
205:電極層
206:下地層
207:電圧モニタ(電圧計)
208:電流モニタ(電流計)
300:被処理基板電圧のサグ
301:測定記憶ユニット(インピーダンス値格納手段)
302:計算ユニット(被処理基板の電圧値を推定する手段)
303:制御ユニット

Claims (8)

  1. 被処理基板をプラズマ処理するためのプラズマ処理装置において、
    前記被処理基板を収容する処理室と、
    前記被処理基板を静電的に吸着して保持する静電チャック機構を有する基板電極と、
    前記被処理基板に対してプラズマを供給するプラズマ生成手段と、
    前記基板電極の前記被処理基板にバイアス電圧を供給するバイアス電圧印加手段と、
    前記基板電極に載せた測定用被処理基板を用いて、前記測定用被処理基板から電圧を測定し、前記静電チャック機構の容量成分と、前記静電チャック機構に加えたバイアス電圧と、前記静電チャック機構を流れるバイアス電流とを用いて、取得した前記静電チャック機構のインピーダンス値を、格納するインピーダンス値格納手段と、を備え、
    実際にプラズマ処理しようとする前記被処理基板に与えるバイアス電圧値とバイアス電流値と、前記静電チャック機構の前記取得したインピーダンス値を用いて、プラズマ処理しようとする前記被処理基板の電圧を推定する
    ことを特徴とするプラズマ処理装置。
  2. 推定された前記被処理基板の電位を用いて、前記バイアス電圧印加手段の電源出力を制御することを特徴とする請求項1に記載のプラズマ処理装置。
  3. 前記インピーダンス値格納手段は、静電チャック機構に印加するバイアス電圧、バイアス電流を取り入れて格納し、前記静電チャック機構の電気特性であるインピーダンス値を格納し、
    前記被処理基板の電圧値を推定する手段は、前記インピーダンス値格納手段に格納された、前記静電チャック機構に印加する電圧と電流と、前記静電チャック機構の電気特性であるインピーダンス値とから前記被処理基板の電圧値を推定し、
    制御ユニットは、前記被処理基板の電圧値を推定する手段で推定された前記被処理基板の電圧値の推定値に基づいて、前記バイアス電圧印加手段の制御信号を作成して前記バイアス電圧印加手段に与えることを特徴とする請求項1に記載のプラズマ処理装置。
  4. 前記被処理基板の電圧のサグを平坦化するように前記被処理基板の前記バイアス電圧値の波形を制御することを特徴とする請求項1に記載のプラズマ処理装置。
  5. 被処理基板をプラズマ処理するためのプラズマ処理方法において、
    前記被処理基板を処理室に収容して、前記被処理基板を基板電極の静電チャック機構に静電的に吸着して保持し、前記被処理基板に対してプラズマ生成手段からプラズマを供給し、前記基板電極の前記被処理基板にバイアス電圧印加手段からバイアス電圧を供給する際に、
    前記基板電極に載せた測定用被処理基板を用いて、前記測定用被処理基板から電圧を測定し、前記静電チャック機構の容量成分と、前記静電チャック機構に加えたバイアス電圧と、前記静電チャック機構を流れるバイアス電流とを用いて、前記静電チャック機構のインピーダンス値を取得して、前記取得した前記静電チャック機構のインピーダンス値をインピーダンス値格納手段に格納し、
    実際にプラズマ処理しようとする前記被処理基板に与えるバイアス電圧値とバイアス電流値と、前記静電チャック機構の前記取得したインピーダンス値を用いて、プラズマ処理しようとする前記被処理基板の電圧を推定する
    ことを特徴とするプラズマ処理方法。
  6. 推定された前記被処理基板の電位を用いて、前記バイアス電圧印加手段の電源出力を制御することを特徴とする請求項5に記載のプラズマ処理方法。
  7. 前記被処理基板の電圧のサグを平坦化するように、前記被処理基板の前記バイアス電圧値の波形を制御することを特徴とする請求項5に記載のプラズマ処理方法。
  8. 前記インピーダンス値格納手段は、静電チャック機構に印加するバイアス電圧、バイアス電流を取り入れて格納し、前記静電チャック機構の電気特性であるインピーダンス値を格納し、
    前記被処理基板の電圧値を推定する手段は、前記インピーダンス値格納手段に格納された、前記静電チャック機構に印加する電圧と電流と、前記静電チャック機構の電気特性であるインピーダンス値とから前記被処理基板の電圧値を推定し、
    制御ユニットは、前記被処理基板の電圧値を推定する手段で推定された前記被処理基板の電圧値の推定値に基づいて、前記バイアス電圧印加手段の制御信号を作成して前記バイアス電圧印加手段に与えることを特徴とする請求項5に記載のプラズマ処理方法。
JP2006045729A 2006-02-22 2006-02-22 プラズマ処理装置およびプラズマ処理方法 Expired - Fee Related JP4920991B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006045729A JP4920991B2 (ja) 2006-02-22 2006-02-22 プラズマ処理装置およびプラズマ処理方法
KR1020060076374A KR100838750B1 (ko) 2006-02-22 2006-08-11 플라즈마처리장치 및 플라즈마처리방법
US11/506,788 US20070193976A1 (en) 2006-02-22 2006-08-21 Plasma processing apparatus and plasma processing method
TW095131153A TW200746291A (en) 2006-02-22 2006-08-24 Plasma processing apparatus and plasma processing method
US12/420,370 US8142674B2 (en) 2006-02-22 2009-04-08 Plasma processing apparatus and plasma processing method
US13/399,465 US20120145323A1 (en) 2006-02-22 2012-02-17 Plasma Processing Apparatus and Plasma Processing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045729A JP4920991B2 (ja) 2006-02-22 2006-02-22 プラズマ処理装置およびプラズマ処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012001894A Division JP2012138581A (ja) 2012-01-10 2012-01-10 プラズマ処理装置およびプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2007227562A true JP2007227562A (ja) 2007-09-06
JP4920991B2 JP4920991B2 (ja) 2012-04-18

Family

ID=38427109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045729A Expired - Fee Related JP4920991B2 (ja) 2006-02-22 2006-02-22 プラズマ処理装置およびプラズマ処理方法

Country Status (4)

Country Link
US (3) US20070193976A1 (ja)
JP (1) JP4920991B2 (ja)
KR (1) KR100838750B1 (ja)
TW (1) TW200746291A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054159A (ja) * 2009-11-19 2016-04-14 ラム リサーチ コーポレーションLam Research Corporation プラズマ処理システムを制御するための方法および装置
JP2017228558A (ja) * 2016-06-20 2017-12-28 東京エレクトロン株式会社 プラズマ処理装置、及び波形補正方法
US11456199B2 (en) * 2018-12-28 2022-09-27 Tokyo Electron Limited Measurement method and measuring jig

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101394337B1 (ko) * 2006-08-30 2014-05-13 엘아이지에이디피 주식회사 정전척
KR101045621B1 (ko) * 2008-12-31 2011-06-30 엘아이지에이디피 주식회사 정전척 및 상기 정전척을 이용한 기판의 바이어스 전압 측정방법
JP2010199429A (ja) * 2009-02-26 2010-09-09 Fujifilm Corp プラズマエッチング方法及びプラズマエッチング装置並びに液体吐出ヘッドの製造方法
US9299539B2 (en) * 2009-08-21 2016-03-29 Lam Research Corporation Method and apparatus for measuring wafer bias potential
JP5841917B2 (ja) * 2012-08-24 2016-01-13 株式会社日立ハイテクノロジーズ プラズマ処理装置及びプラズマ処理方法
WO2020222764A1 (en) * 2019-04-29 2020-11-05 Applied Materials, Inc. Ground strap assemblies
US11694869B2 (en) * 2020-12-08 2023-07-04 Applied Materials Israel Ltd. Evaluating a contact between a wafer and an electrostatic chuck
WO2023211665A1 (en) * 2022-04-25 2023-11-02 Lam Research Corporation Method to enhance etch rate and improve critical dimension of features and mask selectivity

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124913A (ja) * 1994-10-27 1996-05-17 Nec Corp エッチング装置
JPH08335567A (ja) * 1995-06-07 1996-12-17 Tokyo Electron Ltd プラズマ処理装置
JP2000049216A (ja) * 1998-07-28 2000-02-18 Mitsubishi Electric Corp プラズマ処理装置および当該装置で用いられる静電チャック吸着方法
JP2000269195A (ja) * 1999-03-19 2000-09-29 Toshiba Corp 半導体装置の製造装置
JP2001338917A (ja) * 2000-03-24 2001-12-07 Hitachi Ltd 半導体製造装置および処理方法、およびウエハ電位プローブ
JP2002540616A (ja) * 1999-03-31 2002-11-26 ラム リサーチ コーポレーション プラズマ処理室における不均一なウェハ処理を補正する方法及び装置
JP2003045846A (ja) * 2001-08-01 2003-02-14 Tokyo Electron Ltd 半導体製造装置の監視方法及びその制御方法
JP2003228459A (ja) * 2001-11-30 2003-08-15 Fujitsu Component Ltd 入力装置
JP2006210415A (ja) * 2005-01-25 2006-08-10 Renesas Technology Corp 部品検査方法、部品検査装置および製造装置
JP2007281205A (ja) * 2006-04-07 2007-10-25 Hitachi High-Technologies Corp プラズマ処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5556549A (en) * 1994-05-02 1996-09-17 Lsi Logic Corporation Power control and delivery in plasma processing equipment
US5474648A (en) * 1994-07-29 1995-12-12 Lsi Logic Corporation Uniform and repeatable plasma processing
US5576629A (en) * 1994-10-24 1996-11-19 Fourth State Technology, Inc. Plasma monitoring and control method and system
KR100280443B1 (ko) * 1998-02-06 2001-06-01 김영환 반도체식각장비의3극척장치
KR20000038597A (ko) 1998-12-08 2000-07-05 윤종용 반도체 식각장치
US6563076B1 (en) 1999-09-30 2003-05-13 Lam Research Corporation Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor
US6727655B2 (en) * 2001-10-26 2004-04-27 Mcchesney Jon Method and apparatus to monitor electrical states at a workpiece in a semiconductor processing chamber
TWI259546B (en) * 2002-06-28 2006-08-01 Tokyo Electron Ltd Method and system for predicting process performance using material processing tool and sensor data
JP4319514B2 (ja) 2002-11-29 2009-08-26 株式会社日立ハイテクノロジーズ サグ補償機能付き高周波電源を有するプラズマ処理装置
US7247218B2 (en) * 2003-05-16 2007-07-24 Applied Materials, Inc. Plasma density, energy and etch rate measurements at bias power input and real time feedback control of plasma source and bias power
US20050072444A1 (en) * 2003-10-03 2005-04-07 Shigeru Shirayone Method for processing plasma processing apparatus
KR100668956B1 (ko) 2004-12-22 2007-01-12 동부일렉트로닉스 주식회사 반도체 제조 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124913A (ja) * 1994-10-27 1996-05-17 Nec Corp エッチング装置
JPH08335567A (ja) * 1995-06-07 1996-12-17 Tokyo Electron Ltd プラズマ処理装置
JP2000049216A (ja) * 1998-07-28 2000-02-18 Mitsubishi Electric Corp プラズマ処理装置および当該装置で用いられる静電チャック吸着方法
JP2000269195A (ja) * 1999-03-19 2000-09-29 Toshiba Corp 半導体装置の製造装置
JP2002540616A (ja) * 1999-03-31 2002-11-26 ラム リサーチ コーポレーション プラズマ処理室における不均一なウェハ処理を補正する方法及び装置
JP2001338917A (ja) * 2000-03-24 2001-12-07 Hitachi Ltd 半導体製造装置および処理方法、およびウエハ電位プローブ
JP2003045846A (ja) * 2001-08-01 2003-02-14 Tokyo Electron Ltd 半導体製造装置の監視方法及びその制御方法
JP2003228459A (ja) * 2001-11-30 2003-08-15 Fujitsu Component Ltd 入力装置
JP2006210415A (ja) * 2005-01-25 2006-08-10 Renesas Technology Corp 部品検査方法、部品検査装置および製造装置
JP2007281205A (ja) * 2006-04-07 2007-10-25 Hitachi High-Technologies Corp プラズマ処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054159A (ja) * 2009-11-19 2016-04-14 ラム リサーチ コーポレーションLam Research Corporation プラズマ処理システムを制御するための方法および装置
JP2017228558A (ja) * 2016-06-20 2017-12-28 東京エレクトロン株式会社 プラズマ処理装置、及び波形補正方法
US11456199B2 (en) * 2018-12-28 2022-09-27 Tokyo Electron Limited Measurement method and measuring jig

Also Published As

Publication number Publication date
US8142674B2 (en) 2012-03-27
KR100838750B1 (ko) 2008-06-17
US20120145323A1 (en) 2012-06-14
TW200746291A (en) 2007-12-16
KR20070085010A (ko) 2007-08-27
JP4920991B2 (ja) 2012-04-18
US20090194506A1 (en) 2009-08-06
US20070193976A1 (en) 2007-08-23
TWI318425B (ja) 2009-12-11

Similar Documents

Publication Publication Date Title
JP4920991B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP7155354B2 (ja) プラズマ処理装置、プロセッサ、制御方法、非一時的コンピュータ可読記録媒体及びプログラム
JP7455174B2 (ja) Rf発生器及び方法
US20210043472A1 (en) Control method and plasma processing apparatus
JP5514413B2 (ja) プラズマエッチング方法
JP5319150B2 (ja) プラズマ処理装置及びプラズマ処理方法及びコンピュータ読み取り可能な記憶媒体
JP6224958B2 (ja) プラズマ処理装置及びプラズマ処理方法
KR100924845B1 (ko) 플라즈마 처리 장치용 탑재대 및 플라즈마 처리 장치
JP7000521B2 (ja) プラズマ処理装置及び制御方法
JP4922705B2 (ja) プラズマ処理方法および装置
US20100078129A1 (en) Mounting table for plasma processing apparatus
JP2020109838A (ja) プラズマ処理装置及び制御方法
JP2012138581A (ja) プラズマ処理装置およびプラズマ処理方法
KR101283360B1 (ko) 플라즈마 처리장치 및 플라즈마 처리방법
JPWO2002059954A1 (ja) プラズマ処理装置およびプラズマ処理方法
JP2020092036A (ja) 制御方法及びプラズマ処理装置
US7655110B2 (en) Plasma processing apparatus
JP5107597B2 (ja) プラズマ処理装置
JP2007266365A (ja) プラズマ処理装置及びプラズマ内の高周波電流量の測定方法
JP6510922B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2008147384A (ja) ドライエッチング装置
JP2002033310A (ja) プラズマ処理装置
CN111383898A (zh) 等离子体处理装置和控制方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees