JP2007226984A - Proton conductivity measurement method and device - Google Patents

Proton conductivity measurement method and device Download PDF

Info

Publication number
JP2007226984A
JP2007226984A JP2006043562A JP2006043562A JP2007226984A JP 2007226984 A JP2007226984 A JP 2007226984A JP 2006043562 A JP2006043562 A JP 2006043562A JP 2006043562 A JP2006043562 A JP 2006043562A JP 2007226984 A JP2007226984 A JP 2007226984A
Authority
JP
Japan
Prior art keywords
electrodes
proton conductivity
film thickness
electrolyte membrane
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006043562A
Other languages
Japanese (ja)
Other versions
JP5131671B2 (en
Inventor
Akihiro Hiroki
章博 廣木
Tetsuya Yamaki
徹也 八巻
Masaharu Asano
雅春 浅野
Masaru Yoshida
勝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2006043562A priority Critical patent/JP5131671B2/en
Publication of JP2007226984A publication Critical patent/JP2007226984A/en
Application granted granted Critical
Publication of JP5131671B2 publication Critical patent/JP5131671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that a conventional measurement method is likely to be affected by manufacturing defects such as misalignment of both electrodes on an electrode membrane assembly, is difficult to exactly read out membrane main body resistance, and a thickness corresponding to a distance between the electrodes must be measured by a film thickness meter after an electrolyte membrane is removed from a conductivity measurement device under an environment control. <P>SOLUTION: A method for measuring proton conductivity of the electrolyte membrane based on a potential difference between the electrodes while feeding a current in a thickness direction to the electrolyte membrane laminated and arranged between the electrodes, measures the proton conductivity and simultaneously measures the film thickness (that is the distance between the electrodes), wherein the pair of electrodes are an upper part and a lower part for sandwiching a sample of the film thickness meter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プロトン伝導性を有する電解質、特に燃料電池用高分子電解質膜に対して電気伝導特性の評価を行うためのプロトン伝導度測定方法と装置に関するものである。   The present invention relates to a proton conductivity measuring method and apparatus for evaluating electrical conductivity characteristics of an electrolyte having proton conductivity, particularly a polymer electrolyte membrane for fuel cells.

近年、固体高分子型燃料電池は、低温作動が可能で、出力密度が高く、小型化できるなどの特徴から次世代の携帯機器用電源、車載用電源、家庭用電源として注目されている。固体高分子型燃料電池で重要な基幹部分となるのがプロトン伝導性の高分子電解質膜であり、これまで多くの研究者により様々な電解質膜が開発されている。代表的な燃料電池用高分子電解質膜として、Nafion(登録商標), Dow(登録商標), Aciplex(登録商標), Flemion(登録商標)が挙げられる。   In recent years, polymer electrolyte fuel cells are attracting attention as power sources for next-generation portable devices, in-vehicle power sources, and household power sources because of their features such as low-temperature operation, high output density, and miniaturization. Proton-conducting polymer electrolyte membranes are an important core part of solid polymer fuel cells, and various electrolyte membranes have been developed by many researchers. Typical polymer electrolyte membranes for fuel cells include Nafion (registered trademark), Dow (registered trademark), Aciplex (registered trademark), and Flemion (registered trademark).

電解質膜の性能を評価する際、重要な指標となるのが、膜のプロトン伝導度である。一般に、燃料電池用高分子電解質膜のプロトン伝導度の測定は、「面内方向」への2端子測定法(非特許文献1)や4端子測定法(非特許文献2)にて行われている。電流電極間の電解質膜に一組の電圧電極を挿入した状態で測定を行う4端子法は、電圧電極の接触抵抗における電圧降下を無視できるため、一般に、2端子法に比べ精度良く測定できるとされている。   When evaluating the performance of the electrolyte membrane, an important index is the proton conductivity of the membrane. In general, the proton conductivity of a polymer electrolyte membrane for a fuel cell is measured by a two-terminal measurement method (Non-Patent Document 1) or a four-terminal measurement method (Non-Patent Document 2) in the “in-plane direction”. Yes. The four-terminal method, in which a pair of voltage electrodes are inserted in the electrolyte membrane between the current electrodes, can ignore the voltage drop in the contact resistance of the voltage electrodes, so generally it can be measured with higher accuracy than the two-terminal method. Has been.

上記非特許文献1,2に記載のあるような等方的なプロトン伝導性を示す電解質膜では、面内方向の伝導度測定により評価することができる。しかし、延伸やホットプレスなどの工程で面内の縦横方向や膜厚方向に結晶構造などの異方性が生じたような膜(非特許文献3)あるいは膜厚方向にのみ導通経路を有する新規の異方導電性電解質膜では、面内方向ではなく「膜厚方向」の伝導度測定により評価しなければならない。このような現状から、近年、膜厚方向のプロトン伝導度を測定する必要性が高まっている。   The electrolyte membrane having isotropic proton conductivity as described in Non-Patent Documents 1 and 2 can be evaluated by in-plane conductivity measurement. However, a film in which anisotropy such as a crystal structure is generated in the longitudinal and lateral directions or in the film thickness direction in a process such as stretching or hot pressing (Non-Patent Document 3) or a novel having a conduction path only in the film thickness direction The anisotropic conductive electrolyte film must be evaluated by measuring the conductivity in the “film thickness direction”, not the in-plane direction. In recent years, the necessity for measuring proton conductivity in the film thickness direction has increased.

膜厚方向のプロトン伝導度測定として、2端子法(非特許文献4)と4端子法(非特許文献5)が提案されている。膜厚方向の4端子法は、電流電極の間に積層した電解質膜を挟み、そして積層した膜の間に一組の電圧電極を配置しなければならず、作製に手間がかかり、利便性に乏しい。一方、膜厚方向の2端子法は、4端子法に比べ装置の作製が簡便で、容易に測定できるという利点がある。ここで、膜厚方向2端子法を適用した高分子電解質膜に対するプロトン伝導度測定方法について、図1を参照して以下に説明する。図1(a)において、プロトン伝導度が測定される際の電解質膜と電極との配置関係の側面図を示す。上記配置においては、電解質膜1〜3、電流電圧電極4,5が図示されている。図1(b)は、電解質膜の上部から観た平面図であり、電流電圧電極4と5の領域は、重なるように配置されている。尚、図1(a)においては、電解質膜と電極の位置関係が明確になるように、それぞれの間を開けて記載しているが、実際に測定を行う場合には、膜と電極とは接触して配置されている。   As a proton conductivity measurement in the film thickness direction, a two-terminal method (Non-patent Document 4) and a four-terminal method (Non-Patent Document 5) have been proposed. In the four-terminal method in the film thickness direction, a laminated electrolyte membrane must be sandwiched between current electrodes, and a set of voltage electrodes must be placed between the laminated membranes. poor. On the other hand, the two-terminal method in the film thickness direction has an advantage that the apparatus is simpler to manufacture and can be easily measured than the four-terminal method. Here, a proton conductivity measurement method for the polymer electrolyte membrane to which the film thickness direction two-terminal method is applied will be described below with reference to FIG. FIG. 1 (a) shows a side view of the positional relationship between the electrolyte membrane and the electrodes when the proton conductivity is measured. In the above arrangement, electrolyte membranes 1 to 3 and current / voltage electrodes 4 and 5 are shown. FIG. 1B is a plan view of the electrolyte membrane as viewed from above, and the regions of the current and voltage electrodes 4 and 5 are arranged so as to overlap each other. In FIG. 1 (a), the positions of the electrolyte membrane and the electrode are shown so as to be clear so that the positional relationship between the electrolyte membrane and the electrode is clear. Arranged in contact.

上記配置において電解質膜のプロトン伝導度を測定するには、交流波による電流が与えられた状態で電解質膜の膜厚方向の電圧が測定される。電流電圧電極間の距離をL、電極の接触面積をA、測定結果から得られる電解質膜の抵抗をRとすると、電解質膜のプロトン伝導度σは、下記式(1)より求められる。   In order to measure the proton conductivity of the electrolyte membrane in the above arrangement, the voltage in the film thickness direction of the electrolyte membrane is measured in a state where a current by an AC wave is applied. When the distance between the current and voltage electrodes is L, the contact area of the electrodes is A, and the resistance of the electrolyte membrane obtained from the measurement result is R, the proton conductivity σ of the electrolyte membrane can be obtained from the following formula (1).

σ=L/RA (1)
上記のように膜厚方向の2端子法は、電流電圧電極を膜の表裏面から挟むだけで接合体が作製でき、測定が簡便である。しかし、電極/電解質膜接合体作製における両電極のズレなどの装置作製欠陥が生じやすいため電解質膜と電極との接触状態や接触面積が安定せず、測定精度が低くなり、正確なプロトン伝導度を求めることが困難であるという問題がある。さらに、他の問題として電極間距離の不正確さが挙げられる。上記式(1)の電極間距離には、一般に、プロトン伝導度測定の前(もしくは後)に測定された膜厚が用いられる。しかし、実際のプロトン伝導度測定では、膜を電極で挟む際の荷重により接合部の電解質膜が変形するため、測定前(後)と測定中では膜厚(つまり、電極間距離)が異なり、誤差の大きいイオン伝導度を算出してしまうこととなる。
σ = L / RA (1)
As described above, the two-terminal method in the film thickness direction makes it possible to produce a joined body by simply sandwiching the current / voltage electrode from the front and back surfaces of the film, and the measurement is simple. However, device fabrication defects such as electrode misalignment in electrode / electrolyte membrane assembly fabrication are likely to occur, so the contact state and contact area between the electrolyte membrane and the electrode are not stable, resulting in low measurement accuracy and accurate proton conductivity. There is a problem that it is difficult to seek. Another problem is inaccuracy of the interelectrode distance. Generally, the film thickness measured before (or after) the proton conductivity measurement is used as the interelectrode distance in the above formula (1). However, in actual proton conductivity measurement, the electrolyte membrane at the joint is deformed by the load when the membrane is sandwiched between electrodes, so the film thickness (that is, the distance between the electrodes) is different before (after) and during the measurement, The ion conductivity with a large error is calculated.

上記の異方導電性を示す電解質膜に対して正確な伝導性評価を行わなければならないことや、実際の固体高分子型燃料電池において電解質膜の電極配置が膜厚方向であることを考慮すると、簡便に再現性よく膜厚方向のプロトン伝導度を測定する方法が必要となる。しかし、上記の問題を解決した膜厚方向のプロトン伝導度測定方法は、これまで報告されていない。
Thomas A. Zawodzinski, et al., [Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranes], J. Phys. Chem., 95, 6040-6044 (1991). Yoshitsugu Sone, et al., [Proton Conductivity of Nafion117 as Measured by a Four-Electrode AC Impedance Method], J. Electrochem. Soc., 143, 1254-1258 (1996). Kevin M. Cable, et al., [Anisotropic Ionic Conductivity in Uniaxially Oriented Perfluorosulfonate Ionomers], Chem. Maer., 7, 1601-1603 (1995). J. Halim, et al., [Characterization of Perfluorosulfonic Acid Membranes by Conductivity Measurements and Small-angle X-ray Scattering], Electrochimica Acta, 39, 1303-1307 (1994). Felix N. Buchi, et al., [Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells], J. Electrochem. Soc., 148, A183-A188 (2001).
Considering the fact that an accurate conductivity evaluation must be performed on the above-described electrolyte membrane exhibiting anisotropic conductivity, and that the electrode arrangement of the electrolyte membrane is in the film thickness direction in an actual solid polymer fuel cell Therefore, a method for easily measuring proton conductivity in the film thickness direction with high reproducibility is required. However, no proton conductivity measurement method in the film thickness direction that solves the above problem has been reported so far.
Thomas A. Zawodzinski, et al., [Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranes], J. Phys. Chem., 95, 6040-6044 (1991). Yoshitsugu Sone, et al., [Proton Conductivity of Nafion117 as Measured by a Four-Electrode AC Impedance Method], J. Electrochem. Soc., 143, 1254-1258 (1996). Kevin M. Cable, et al., [Anisotropic Ionic Conductivity in Uniaxially Oriented Perfluorosulfonate Ionomers], Chem. Maer., 7, 1601-1603 (1995). J. Halim, et al., [Characterization of Perfluorosulfonic Acid Membranes by Conductivity Measurements and Small-angle X-ray Scattering], Electrochimica Acta, 39, 1303-1307 (1994). Felix N. Buchi, et al., [Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells], J. Electrochem. Soc., 148, A183-A188 (2001).

上述した膜厚方向の2端子法では、4端子法に比べ測定は簡便であるものの、電極/膜接合体における両電極のズレなどの作製欠陥の影響を受けやすく、正確に膜本体抵抗を読み出すことが難しいといった問題があった。さらに、環境制御下にある伝導度測定装置から電解質膜を取り外した後、膜厚計により電極間距離に相当する膜厚を測定しなければならず、環境変化に伴い測定誤差が生じることを考慮しなければならなかった。   The two-terminal method in the film thickness direction described above is easier to measure than the four-terminal method, but is easily affected by fabrication defects such as misalignment of both electrodes in the electrode / membrane assembly, and accurately reads the film body resistance. There was a problem that it was difficult. In addition, after removing the electrolyte membrane from the conductivity measuring device under environmental control, the film thickness corresponding to the distance between the electrodes must be measured with a film thickness meter, taking into account that measurement errors occur due to environmental changes. Had to do.

本発明は、上記問題点に鑑みてなされたものであり、その目的は、膜厚方向の2端子法において、電極のズレを抑制することで測定抵抗値の再現性を向上させ、さらに伝導度測定と同時に電極間距離に相当する膜厚を正確に測定することで、より高い精度で簡便にプロトン伝導度測定を実現することにある。   The present invention has been made in view of the above problems, and its object is to improve the reproducibility of the measured resistance value by suppressing the displacement of the electrode in the two-terminal method in the film thickness direction, and to further improve the conductivity. By accurately measuring the film thickness corresponding to the distance between the electrodes simultaneously with the measurement, the proton conductivity measurement is easily realized with higher accuracy.

上記の目的を達成するために、本発明は下記の構成を有する。すなわち、電解質膜を挟む膜厚計上部と下部が電極となっていて、その一組の電極間に少なくとも2枚以上の補助電解質膜とその間に1枚あるいは複数枚の目的電解質膜を積層させて、合計3枚以上の膜厚方向のプロトン伝導度を測定する方法であり、同時に電極間距離に相当する膜厚を測定できることを特徴としている。   In order to achieve the above object, the present invention has the following configuration. That is, the film thickness measuring part and the lower part sandwiching the electrolyte membrane are electrodes, and at least two or more auxiliary electrolyte membranes and one or more target electrolyte membranes are laminated between the pair of electrodes. This is a method for measuring proton conductivity in the film thickness direction of a total of three or more sheets, and is characterized in that a film thickness corresponding to the distance between electrodes can be measured at the same time.

上記の構成によれば、一定トルク(加えられる特定の力)で電解質膜を挟むことにより電極と電解質膜との接触性が良好な状態で膜本体抵抗値を測定できるのみならず、膜厚計の上部と下部を電極とすることで電極面の中心位置がズレなくなったため、常に一定の接触面積を保持しながら正確な電極間距離を同時に測定できる。これにより、膜厚方向の2端子法において、再現性を向上させ、高い精度のプロトン伝導度測定を簡便に実施できることとなる。   According to the above configuration, not only can the membrane body resistance value be measured with good contact between the electrode and the electrolyte membrane by sandwiching the electrolyte membrane with a constant torque (specific force applied), but also a film thickness meter Since the center position of the electrode surface is not displaced by using the upper and lower portions of the electrode as electrodes, an accurate inter-electrode distance can be simultaneously measured while maintaining a constant contact area. Thereby, in the two-terminal method in the film thickness direction, reproducibility is improved, and high-accuracy proton conductivity measurement can be easily performed.

本発明にかかる2端子法によるプロトン伝導度測定法は、電極と電解質の良好な接触性のもとで、膜本体抵抗値を測定できるのみならず、同時に電極間距離に相当する膜厚を正確に測定できることから、再現性の向上により高い精度のイオン伝導度を簡便に得ることができる。   The proton conductivity measurement method by the two-terminal method according to the present invention not only can measure the membrane body resistance value under good contact between the electrode and the electrolyte, but also accurately determines the film thickness corresponding to the distance between the electrodes. Therefore, highly accurate ion conductivity can be easily obtained by improving reproducibility.

以下、本発明を実施するための形態について説明する。本発明に基づく2端子法による膜厚方向のプロトン伝導度測定では、少なくとも3枚以上の高分子電解質膜に対して実施される。まずは、膜厚計、電極、そして電解質膜の配置について図2を参照して説明する。上記装置は、図2に示すように、電解質膜を挟む膜厚計の上部と下部が一組の電極となっていることを特徴とし、膜厚計10、電流電圧電極14,15、補助高分子電解質膜11,13、目的高分子電解質膜12から構成されている。なお、16及び17は四フッ化エチレン樹脂製スペーサーであり、18はステンレス製筐体である。測定目的の電解質膜12に電流を導入する役目として、等方的なプロトン伝導性を示す補助電解質膜11,13が外側に配置されており、電極間に複数の電解質膜が積層した状態で測定が行われる。電極間に目的電解質膜のみを挟んだだけでは、電極と目的電解質膜との接触抵抗が膜本体抵抗に比べ大きいため膜本体の抵抗値の見積もりを困難にする。そこで、電解質膜の抵抗値を増加させ相対誤差を低減する目的で数枚の電解質膜を積層させ、プロトン伝導度測定を行う。この時、電解質膜同士の接触抵抗は、電極と電解質膜との接触抵抗よりとても小さいため無視することができる。尚、図2においては、電解質膜と電極の間、電解質膜同士の間を空けて記載しているが、実際に測定を行う状態では、接触して配置している。   Hereinafter, modes for carrying out the present invention will be described. The proton conductivity measurement in the film thickness direction by the two-terminal method according to the present invention is performed on at least three polymer electrolyte membranes. First, the arrangement of the film thickness meter, the electrode, and the electrolyte membrane will be described with reference to FIG. As shown in FIG. 2, the above apparatus is characterized in that the upper and lower portions of the film thickness meter sandwiching the electrolyte membrane are a pair of electrodes, and the film thickness meter 10, current voltage electrodes 14 and 15, auxiliary height It consists of molecular electrolyte membranes 11 and 13 and a target polymer electrolyte membrane 12. In addition, 16 and 17 are tetrafluoroethylene resin spacers, and 18 is a stainless steel casing. For the purpose of introducing current into the electrolyte membrane 12 for measurement purposes, the auxiliary electrolyte membranes 11 and 13 exhibiting isotropic proton conductivity are arranged outside, and measurement is performed in a state where a plurality of electrolyte membranes are laminated between the electrodes. Is done. If only the target electrolyte membrane is sandwiched between the electrodes, the contact resistance between the electrode and the target electrolyte membrane is larger than the membrane body resistance, making it difficult to estimate the resistance value of the membrane body. Therefore, several electrolyte membranes are stacked for the purpose of increasing the resistance value of the electrolyte membrane and reducing the relative error, and measure proton conductivity. At this time, since the contact resistance between the electrolyte membranes is much smaller than the contact resistance between the electrode and the electrolyte membrane, it can be ignored. In FIG. 2, the electrolyte membrane and the electrodes and the electrolyte membranes are illustrated with a space between them, but in the actual measurement state, they are arranged in contact with each other.

上記接合体では、上述の配置で積層した電解質膜及び電極を一定トルクで接触させることにより良好な接触状態を保持することができる。上記接合体に対し、積層した膜間の抵抗を交流インピーダンス法(電位制御、交流振幅10mV)により測定する。交流インピーダンス測定装置としては、Solartron社製の電気化学測定システム(Solartron1287 Electrochemical InterfaceおよびSolartron1255B Frequency Response Analyzer)を使用し、測定周波数は1kHz~1MHzとする。測定後、測定装置に付属のソフトウェア(ZView2, Scribner Associates, Inc.製)を用い、コール−コールプロットを行う。上記プロットにおける実数軸との交点を電解質膜の抵抗値とする。   In the joined body, a good contact state can be maintained by bringing the electrolyte membrane and the electrodes laminated in the above-described arrangement into contact with each other with a constant torque. The resistance between the laminated films is measured by the AC impedance method (potential control, AC amplitude 10 mV) with respect to the joined body. As an AC impedance measurement device, an electrochemical measurement system (Solartron 1287 Electrochemical Interface and Solartron 1255B Frequency Response Analyzer) manufactured by Solartron is used, and the measurement frequency is 1 kHz to 1 MHz. After the measurement, call-call plotting is performed using software (ZView2, Scribner Associates, Inc.) attached to the measurement apparatus. Let the intersection with the real number axis in the plot be the resistance value of the electrolyte membrane.

実際の環境制御下におけるプロトン伝導度測定では、まず、2枚以上の補助電解質膜を積層した状態で抵抗値(R1)を測定する。次に、目的電解質膜を電極に触れない階層に挿入した状態で、抵抗値(R2)を測定する。これら抵抗値の差(= R2 - R1)が、目的電解質膜の抵抗値(R)となる。本発明の方法と装置では、膜厚計の膜を挟む上部と下部が電極となっているため、上下電極の中心位置(軸)は複数枚の膜を挟んでも決してずれることなく、常に一定の接触面積でプロトン伝導度を測定することができる。さらに、一定トルク下での膜厚を測定することができることから、正確な電極間距離を得ることができる。以上のように得られた電解質膜の抵抗値(R)、電極間距離(L)、接触面積(A)からプロトン伝導度σを上記(1)式により算出する。   In proton conductivity measurement under actual environmental control, first, the resistance value (R1) is measured in a state where two or more auxiliary electrolyte membranes are laminated. Next, the resistance value (R2) is measured in a state where the target electrolyte membrane is inserted in a layer not touching the electrode. The difference between these resistance values (= R2−R1) becomes the resistance value (R) of the target electrolyte membrane. In the method and apparatus of the present invention, since the upper and lower portions sandwiching the film of the film thickness meter are electrodes, the center position (axis) of the upper and lower electrodes is never deviated even when a plurality of films are sandwiched, and is always constant. Proton conductivity can be measured by contact area. Furthermore, since the film thickness under a constant torque can be measured, an accurate interelectrode distance can be obtained. From the resistance value (R), interelectrode distance (L), and contact area (A) of the electrolyte membrane obtained as described above, the proton conductivity σ is calculated by the above equation (1).

尚、図2には電解質膜を3枚積層した構成を例示しているが、目的電解質膜に交流電流を導入する役割で配置されている補助電解質膜は複数枚積層することができる。ただし、導通領域が局所的に存在するような新規異方導電性電解質膜n枚を目的電解質膜に用いる場合には、(n+1)枚以上の等方的な伝導性を示す補助電解質を使用し、目的電解質膜同士が接触しないように積層させるのが好ましい。なぜなら局所的に存在する導通領域が電解質膜を積層した際に上下で一致せず、抵抗値の増加を引き起こす可能性があるからである。   Although FIG. 2 illustrates a configuration in which three electrolyte membranes are laminated, a plurality of auxiliary electrolyte membranes arranged to introduce an alternating current into the target electrolyte membrane can be laminated. However, when using n anisotropic conductive electrolyte membranes with local conductive regions as the target electrolyte membrane, (n + 1) or more auxiliary electrolytes showing isotropic conductivity are used. It is preferable to use and laminate so that the target electrolyte membranes do not contact each other. This is because locally existing conduction regions do not coincide with each other when the electrolyte membranes are stacked, which may cause an increase in resistance value.

上記電極と電解質膜の接触面積としては、0.002〜2.0 cm2が好適であり、より好ましくは0.008〜1.0 cm2、さらに好ましくは0.03〜0.4 cm2である。電極と電解質膜との間の接触面積を低下させて接触抵抗の影響を抑え、尚かつ接触状態を安定にすることにより、測定精度が向上する。 The contact area of the electrode and the electrolyte membrane, .002 to 2.0 cm 2 is preferred, more preferably from .008 to 1.0 cm 2, more preferably from 0.03 to 0.4 cm 2. Measurement accuracy is improved by reducing the contact area between the electrode and the electrolyte membrane to suppress the influence of contact resistance and stabilizing the contact state.

上記電極と電解質膜の接合において、過剰なトルクをかけると電解質膜の弾性限界を超えてしまい、膜を破損する可能性があるので、プレスやねじ込みの手法によるトルクは1〜20 Nmが好ましく、3〜10 Nmであることがより好ましい。   In the bonding of the electrode and the electrolyte membrane, if excessive torque is applied, the elastic limit of the electrolyte membrane may be exceeded and the membrane may be damaged, so the torque by pressing or screwing is preferably 1 to 20 Nm, More preferably, it is 3 to 10 Nm.

上記積層する電解質膜の枚数は、少なくとも1枚の目的電解質膜と2枚以上の補助電解質膜を含む少なくとも3枚以上で21枚以下が好適であるが、積層する枚数が少ないほど精度が向上するため、好ましくは11枚以下であり、さらに好ましくは5枚以下である。   The number of electrolyte membranes to be laminated is preferably at least 3 and at most 21 including at least one target electrolyte membrane and two or more auxiliary electrolyte membranes. However, the smaller the number of laminated electrolyte membranes, the better the accuracy. Therefore, it is preferably 11 sheets or less, and more preferably 5 sheets or less.

上記積層する膜厚は、合計50〜3000 mmが好適であるが、好ましくは1000 mm以下であり、さらに好ましくは500 mm以下である。   The film thickness to be laminated is preferably 50 to 3000 mm in total, preferably 1000 mm or less, and more preferably 500 mm or less.

上記電極としては、金、白金、銅などの金属やカーボンを用いることが好適であるが、合金でも可能である。   As the electrode, it is preferable to use a metal such as gold, platinum, copper, or carbon, but an alloy is also possible.

以下、実施例により本発明をさらに詳しく説明する。目的膜A,Bは、等方的なプロトン伝導性を示す電解質膜(Nafion112, 117)であり、目的膜Cは、本発明者により作製された新規の異方導電性電解質膜(放射線グラフト重合法により、エチレン−テトラフルオロエチレン共重合体膜にポリスチレンスルホン酸を導入した高分子電解質膜)である。補助膜にはNafion117を使用した。
(実施例1)
電解質膜(目的膜Aと補助膜)を、測定条件と同じ環境下(室温、相対湿度100%)で24時間保持した。2枚の補助膜を接触面積0.4 cm2の金電極によりトルク10 Nmで挟み、上記交流インピーダンス測定装置を使って、室温、相対湿度100%の環境下における電極間の抵抗及び膜厚を測定した。次に、2枚の補助膜間に1枚の目的膜Aを挿入し、上記と同様に電極間の抵抗及び膜厚を測定した。抵抗値の差及び目的膜の膜厚から、膜厚方向のプロトン伝導度を算出した。
(実施例2)
電解質膜(目的膜Aと補助膜)を、測定条件と同じ環境下(室温、相対湿度100%)で24時間保持した。2枚の補助膜を接触面積0.05 cm2の金電極によりトルク10 Nmで挟み、上記交流インピーダンス測定装置を使って、室温、相対湿度100%の環境下における電極間の抵抗及び膜厚を測定した。次に、2枚の補助膜間に目的膜Aを挿入し、上記と同様に電極間の抵抗及び膜厚を測定した。抵抗値の差及び目的膜の膜厚から、膜厚方向のプロトン伝導度を算出した。
(実施例3)
電解質膜(目的膜Aと補助膜)を、測定条件と同じ環境下(室温、相対湿度100%)で24時間保持した。2枚の補助膜を接触面積0.4 cm2の金電極によりトルク5 Nmで挟み、上記交流インピーダンス測定装置を使って、室温、相対湿度100%の環境下における電極間の抵抗及び膜厚を測定した。次に、2枚の補助膜間に目的膜Aを挿入し、上記と同様に電極間の抵抗及び膜厚を測定した。抵抗値の差及び目的膜の膜厚から、膜厚方向のプロトン伝導度を算出した。
(実施例4)
電解質膜(目的膜Bと補助膜)を、測定条件と同じ環境下(室温、相対湿度100%)で24時間保持した。2枚の補助膜を接触面積0.4 cm2の金電極によりトルク10 Nmで挟み、上記交流インピーダンス測定装置を使って、室温、相対湿度100%の環境下における電極間の抵抗及び膜厚を測定した。次に、2枚の補助膜間に実施例1,2で使用した膜よりも厚い目的膜Bを挿入し、上記と同様に電極間の抵抗及び膜厚を測定した。抵抗値の差及び目的膜の膜厚から、膜厚方向のプロトン伝導度を算出した。
(実施例5)
電解質膜(目的膜Cと補助膜)を、測定条件と同じ環境下(室温、相対湿度100%)で24時間保持した。2枚の補助膜を接触面積0.4 cm2の金電極によりトルク10 Nmで挟み、上記交流インピーダンス測定装置を使って、室温、相対湿度100%の環境下における電極間の抵抗及び膜厚を測定した。次に、2枚の補助膜間に目的膜Cを挿入し、電極間の抵抗及び膜厚を測定した。抵抗値の差及び目的電解質膜の膜厚から、膜厚方向のプロトン伝導度を算出した。
Hereinafter, the present invention will be described in more detail with reference to examples. The target membranes A and B are electrolyte membranes (Nafion 112 and 117) exhibiting isotropic proton conductivity, and the target membrane C is a novel anisotropic conductive electrolyte membrane (radiation graft weight) prepared by the present inventors. A polymer electrolyte membrane in which polystyrene sulfonic acid is introduced into an ethylene-tetrafluoroethylene copolymer membrane by a legal method). Nafion117 was used for the auxiliary membrane.
Example 1
The electrolyte membrane (target membrane A and auxiliary membrane) was held for 24 hours in the same environment as the measurement conditions (room temperature, relative humidity 100%). Two auxiliary membranes were sandwiched between gold electrodes with a contact area of 0.4 cm 2 at a torque of 10 Nm, and the resistance and film thickness were measured between the electrodes at room temperature and relative humidity of 100% using the AC impedance measuring device. . Next, one target film A was inserted between the two auxiliary films, and the resistance and film thickness between the electrodes were measured in the same manner as described above. The proton conductivity in the film thickness direction was calculated from the difference in resistance value and the film thickness of the target film.
(Example 2)
The electrolyte membrane (target membrane A and auxiliary membrane) was held for 24 hours in the same environment as the measurement conditions (room temperature, relative humidity 100%). Two auxiliary membranes were sandwiched by a gold electrode with a contact area of 0.05 cm 2 at a torque of 10 Nm, and the above-mentioned AC impedance measuring device was used to measure the resistance and film thickness between the electrodes at room temperature and relative humidity of 100%. . Next, the target film A was inserted between the two auxiliary films, and the resistance and film thickness between the electrodes were measured in the same manner as described above. The proton conductivity in the film thickness direction was calculated from the difference in resistance value and the film thickness of the target film.
(Example 3)
The electrolyte membrane (target membrane A and auxiliary membrane) was held for 24 hours in the same environment as the measurement conditions (room temperature, relative humidity 100%). Two auxiliary membranes were sandwiched by a gold electrode with a contact area of 0.4 cm 2 at a torque of 5 Nm, and the above-mentioned AC impedance measuring device was used to measure the resistance and film thickness between the electrodes in an environment of room temperature and relative humidity of 100%. . Next, the target film A was inserted between the two auxiliary films, and the resistance and film thickness between the electrodes were measured in the same manner as described above. The proton conductivity in the film thickness direction was calculated from the difference in resistance value and the film thickness of the target film.
Example 4
The electrolyte membrane (target membrane B and auxiliary membrane) was held for 24 hours in the same environment as the measurement conditions (room temperature, relative humidity 100%). Two auxiliary membranes were sandwiched between gold electrodes with a contact area of 0.4 cm 2 at a torque of 10 Nm, and the resistance and film thickness were measured between the electrodes at room temperature and relative humidity of 100% using the AC impedance measuring device. . Next, the target film B thicker than the film used in Examples 1 and 2 was inserted between the two auxiliary films, and the resistance and film thickness between the electrodes were measured in the same manner as described above. The proton conductivity in the film thickness direction was calculated from the difference in resistance value and the film thickness of the target film.
(Example 5)
The electrolyte membrane (target membrane C and auxiliary membrane) was held for 24 hours in the same environment as the measurement conditions (room temperature, relative humidity 100%). Two auxiliary membranes were sandwiched between gold electrodes with a contact area of 0.4 cm 2 at a torque of 10 Nm, and the resistance and film thickness were measured between the electrodes at room temperature and relative humidity of 100% using the AC impedance measuring device. . Next, the target film C was inserted between the two auxiliary films, and the resistance and film thickness between the electrodes were measured. The proton conductivity in the film thickness direction was calculated from the difference in resistance value and the film thickness of the target electrolyte membrane.

さらに本発明に対する比較例を以下に示す。
(比較例1)
本発明と異なる膜厚方向2端子法によりプロトン伝導度の測定を行った。2枚の補助膜を電流電圧電極(0.25 cm2の白金板)で挟み、伝導度測定用接合体を作製した。上記交流インピーダンス測定装置を使って、室温、相対湿度100%の環境下における電極間の抵抗を測定した。次に、目的膜Aの外側に補助膜を配置し、さらに外側から電流電圧電極(0.25 cm2の白金板)で挟むことにより、伝導度測定用接合体を作製した。上記交流インピーダンス測定装置を使って、室温、相対湿度100%の環境下における電極間の抵抗を測定した。上記接合体より積層した膜を外した後、目的膜Aの膜厚を膜厚計により測定した。得られた抵抗値と電極間距離に相当する膜厚から膜厚方向のプロトン伝導度を算出した。
(比較例2)
膜厚方向4端子法によりプロトン伝導度の測定を行った。電圧電極となる0.25 cm2の白金板を目的膜Aの両側に配置し、さらに外側に補助膜を配置し、そして1.0 cm2の電流電極で挟むことにより、伝導度測定用接合体を作製した。上記交流インピーダンス測定装置を使って、室温、相対湿度100%の環境下において電極間の抵抗を測定した。伝導度測定後に膜を外し、目的膜Aの膜厚を測定した。得られた抵抗値と電極間距離に相当する膜厚から膜厚方向のプロトン伝導度を算出した。
(比較例3)
膜厚方向4端子法によりプロトン伝導度の測定を行った。電圧電極となる0.25 cm2の白金板を目的膜Cの両側に配置し、さらに外側に補助膜を配置し、そして1.0 cm2の電流電極で挟むことにより、伝導度測定用接合体を作製した。上記交流インピーダンス測定装置を使って、室温、相対湿度100%の環境下における電極間の抵抗を測定した。伝導度測定後に膜を外し、目的膜Cの膜厚を膜厚計により測定した。得られた抵抗値と電極間距離に相当する膜厚から膜厚方向のプロトン伝導度を算出した。
Further, comparative examples for the present invention are shown below.
(Comparative Example 1)
The proton conductivity was measured by a two-terminal method in the film thickness direction different from the present invention. Two auxiliary membranes were sandwiched between current-voltage electrodes (platinum plate of 0.25 cm 2 ) to produce a conductivity measurement bonded body. Using the AC impedance measuring device, the resistance between the electrodes was measured in an environment of room temperature and 100% relative humidity. Next, an auxiliary film was disposed outside the target film A, and sandwiched between current and voltage electrodes (0.25 cm 2 platinum plate) from the outside, thereby producing a joined body for conductivity measurement. Using the AC impedance measuring device, the resistance between the electrodes was measured in an environment of room temperature and 100% relative humidity. After removing the laminated film from the joined body, the film thickness of the target film A was measured with a film thickness meter. The proton conductivity in the film thickness direction was calculated from the obtained resistance value and the film thickness corresponding to the distance between the electrodes.
(Comparative Example 2)
The proton conductivity was measured by the film thickness direction 4-terminal method. A 0.25 cm 2 platinum plate serving as a voltage electrode was placed on both sides of the target membrane A, an auxiliary membrane was placed on the outer side, and sandwiched between 1.0 cm 2 current electrodes to produce a conductivity measurement assembly. . Using the AC impedance measurement device, the resistance between the electrodes was measured in an environment of room temperature and 100% relative humidity. The film was removed after the conductivity measurement, and the film thickness of the target film A was measured. The proton conductivity in the film thickness direction was calculated from the obtained resistance value and the film thickness corresponding to the distance between the electrodes.
(Comparative Example 3)
The proton conductivity was measured by the film thickness direction 4-terminal method. A 0.25 cm 2 platinum plate serving as a voltage electrode was placed on both sides of the target membrane C, an auxiliary membrane was placed on the outside, and sandwiched between 1.0 cm 2 current electrodes to produce a conductivity measurement assembly. . Using the AC impedance measuring device, the resistance between the electrodes was measured in an environment of room temperature and 100% relative humidity. The film was removed after the conductivity measurement, and the film thickness of the target film C was measured with a film thickness meter. The proton conductivity in the film thickness direction was calculated from the obtained resistance value and the film thickness corresponding to the distance between the electrodes.

上記実施例及び比較例の結果を表1に示す。   The results of the above examples and comparative examples are shown in Table 1.

上記実施例1−4と比較例1,2を比較する。実施例1−4では、等方的なプロトン伝導性を示す電解質膜に対し接触面積、トルク、膜厚(電極間距離)を変化させて測定を行った。接触面積の減少に伴い抵抗値が大きくなった結果、抵抗値の相対誤差が小さくなったため、精度は向上した。また、上記に記載されているような測定条件の範囲で、トルク、膜厚を変えても、ほぼ一定のプロトン伝導度を得ることができた。従来の膜厚方向のプロトン伝導度測定法により得られた比較例1,2のプロトン伝導度は、ほぼ同じ値であるが、実施例1に比べわずかに高い値を示した。比較例1,2では電極間距離に相当する膜厚を伝導度測定後に測定しており、実際の伝導度測定時の状態を反映していない値を使用しているためである。   The above Example 1-4 and Comparative Examples 1 and 2 are compared. In Example 1-4, the measurement was performed by changing the contact area, torque, and film thickness (distance between electrodes) with respect to the electrolyte membrane showing isotropic proton conductivity. As a result of the increase in the resistance value with the decrease in the contact area, the relative error of the resistance value was reduced, so the accuracy was improved. In addition, almost constant proton conductivity could be obtained even when the torque and film thickness were changed within the range of the measurement conditions as described above. The proton conductivities of Comparative Examples 1 and 2 obtained by the conventional proton conductivity measurement method in the film thickness direction were almost the same values, but were slightly higher than those of Example 1. This is because in Comparative Examples 1 and 2, the film thickness corresponding to the distance between the electrodes is measured after the conductivity measurement, and a value that does not reflect the state at the time of actual conductivity measurement is used.

上記実施例5と比較例3を比較する。面内方向にはプロトン伝導性を示さない新規の異方導電性高分子膜に対してプロトン伝導度が得られた。実施例1−4と比べプロトン伝導度が小さいのは、膜素材が大きく異なるからである。比較例3のプロトン伝導度が実施例5の値に比べ高いのは、実施例1と比較例2の比較と同様に、電極間距離が異なるからである。   The above Example 5 and Comparative Example 3 are compared. Proton conductivity was obtained for a novel anisotropic conductive polymer membrane that does not show proton conductivity in the in-plane direction. The proton conductivity is smaller than that of Example 1-4 because the membrane material is greatly different. The reason why the proton conductivity of Comparative Example 3 is higher than the value of Example 5 is that the distance between the electrodes is different as in the comparison between Example 1 and Comparative Example 2.

従って、本発明は、2端子法による膜厚方向のプロトン伝導度測定方法として有効であり、尚かつ、異方導電性電解質膜の測定にも適用可能な優れた方法であることが示された。   Therefore, it was shown that the present invention is effective as a proton conductivity measurement method in the film thickness direction by the two-terminal method, and is also an excellent method applicable to the measurement of anisotropic conductive electrolyte membranes. .

本発明は、2端子法によるプロトン伝導度測定法において、電極と電解質の良好な接触性のもとで、膜本体抵抗値を測定できるのみならず、同時に電極間距離に相当する膜厚を正確に測定できることから、再現性の向上により高い精度のイオン伝導度を簡便に得ることができるので、具体的には、本発明は、プロトン伝導性を有する電解質、特に燃料電池用高分子電解質膜に対して電気伝導特性の評価を行うためのプロトン伝導度測定を行う際に利用される。     In the proton conductivity measurement method by the two-terminal method, the present invention not only can measure the membrane body resistance value with good contact between the electrode and the electrolyte, but also accurately determines the film thickness corresponding to the distance between the electrodes. In particular, the present invention can be applied to electrolytes having proton conductivity, particularly polymer electrolyte membranes for fuel cells, because it is possible to easily obtain highly accurate ion conductivity by improving reproducibility. On the other hand, it is used when measuring the proton conductivity for evaluating the electric conduction characteristics.

従来の膜厚方向の2端子法における電極/電解質膜接合体を示す模式図であり、図1(a)、(b)はそれぞれ側面図と平面図である。It is a schematic diagram which shows the electrode / electrolyte membrane assembly in the conventional 2 terminal method of the film thickness direction, and FIG. 1 (a), (b) is a side view and a top view, respectively. 本発明の実施形態を示すものである。図2(a)は正面からの模式図であり、図2(b)は側面からの模式図である。1 illustrates an embodiment of the present invention. 2A is a schematic view from the front, and FIG. 2B is a schematic view from the side.

符号の説明Explanation of symbols

1〜3:高分子電解質膜
4,5:電流電圧電極
6,7:四フッ化エチレン樹脂製ネジ
8,9:四フッ化エチレン樹脂製板
10:膜厚計
11〜13:高分子電解質膜
14,15:電流電圧電極
16,17:四フッ化エチレン樹脂製スペーサー
18:ステンレス製筐体



1-3: Polymer electrolyte membrane 4, 5: Current / voltage electrode 6, 7: Tetrafluoroethylene resin screw 8, 9: Tetrafluoroethylene resin plate 10: Film thickness meter 11-13: Polymer electrolyte membrane 14, 15: Current and voltage electrodes 16, 17: Tetrafluoroethylene resin spacer 18: Stainless steel casing



Claims (9)

一組の電流電圧電極間に積層配置された少なくとも3枚以上の電解質膜に対し、膜厚方向に電流を供給しながら、電極間の電位差に基づき電解質膜のプロトン伝導度を測定する方法において、上記一組の電極が膜厚計の試料を挟む上部と下部であり、プロトン伝導度を測定するとともに膜厚(すなわち、電極間距離)を同時に測定できることを特徴とするプロトン伝導度測定方法。   In a method for measuring proton conductivity of an electrolyte membrane based on a potential difference between the electrodes while supplying current in the film thickness direction to at least three electrolyte membranes stacked between a set of current-voltage electrodes, A method of measuring proton conductivity, wherein the pair of electrodes are an upper portion and a lower portion sandwiching a sample of the film thickness meter, and the proton conductivity can be measured and the film thickness (that is, the distance between the electrodes) can be measured simultaneously. 上記一組の電極の中心位置がずれることなく、常に一定の接触面積でプロトン伝導度を測定できることを特徴とする請求項1に記載のプロトン伝導度測定方法。   2. The proton conductivity measuring method according to claim 1, wherein the proton conductivity can always be measured with a constant contact area without shifting the center position of the pair of electrodes. 上記電極と電解質膜との接触面積が0.002〜2 cm2であることを特徴とする請求項1に記載のプロトン伝導度測定方法。 The proton conductivity measuring method according to claim 1, wherein a contact area between the electrode and the electrolyte membrane is 0.002 to 2 cm 2 . 上記膜厚計に付属した電極は、1〜20 Nmのトルクにて、プレスやねじ込みの手法により電解質膜と接合されることを特徴とする請求項1に記載のプロトン伝導度測定方法。   2. The proton conductivity measuring method according to claim 1, wherein the electrode attached to the film thickness meter is joined to the electrolyte membrane by a press or screwing method at a torque of 1 to 20 Nm. 上記積層電解質膜は、少なくとも1枚の測定目的の電解質膜と2枚以上の補助電解質膜から成り、合計枚数が21枚以下であることを特徴とする請求項1に記載のプロトン伝導度測定方法。   2. The proton conductivity measuring method according to claim 1, wherein the laminated electrolyte membrane includes at least one electrolyte membrane for measurement and two or more auxiliary electrolyte membranes, and the total number is 21 or less. . 上記電極間距離は、請求項5に記載の積層枚数の範囲内にある積層した合計膜厚が50〜3000 mm の範囲であることを特徴とする請求項1に記載のプロトン伝導度測定方法。   The proton conductivity measuring method according to claim 1, wherein the distance between the electrodes is in the range of 50 to 3000 mm in the total thickness of the stacked layers within the range of the number of stacked layers according to claim 5. 上記電流電圧電極が、金、白金、白金黒、銅などの何れかの金属、またはカーボンであることを特徴とする請求項1に記載のプロトン伝導度測定方法。   2. The proton conductivity measuring method according to claim 1, wherein the current-voltage electrode is any metal such as gold, platinum, platinum black, copper, or carbon. 上記電極は、交流インピーダンス、電流遮断、電位ステップ、電流、電位パルスのいずれかによる入力電流を与えることを特徴とする請求項1に記載のプロトン伝導度測定方法。   The proton conductivity measuring method according to claim 1, wherein the electrode provides an input current by any one of AC impedance, current interruption, potential step, current, and potential pulse. 筐体の頂部プレート上に膜厚計を設け、上記膜厚計の下方に、電極間に被測定対象物である電解質膜を挿入固定できる少なくとも1対の電流電圧電極を配置し、上記膜厚計に上記電極の少なくとも1つを上下動可能に結合したプロトン伝導度測定装置であって、
上記電流電圧電極間に積層配置された少なくとも3枚以上の電解質膜に対し、膜厚方向に電流を供給しながら、電極間の電位差に基づき電解質膜のプロトン伝導度を測定し、且つ膜厚(すなわち、電極間距離)を同時に測定することを特徴とする前記装置。



A film thickness meter is provided on the top plate of the housing, and at least one pair of current and voltage electrodes capable of inserting and fixing an electrolyte membrane as an object to be measured is disposed between the electrodes below the film thickness meter. A proton conductivity measuring device in which at least one of the electrodes is movably coupled to a meter;
The proton conductivity of the electrolyte membrane is measured based on the potential difference between the electrodes while supplying current in the thickness direction to at least three electrolyte membranes stacked between the current-voltage electrodes, and the thickness ( That is, the apparatus is characterized in that the interelectrode distance) is measured simultaneously.



JP2006043562A 2006-02-21 2006-02-21 Proton conductivity measurement method and apparatus Expired - Fee Related JP5131671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006043562A JP5131671B2 (en) 2006-02-21 2006-02-21 Proton conductivity measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006043562A JP5131671B2 (en) 2006-02-21 2006-02-21 Proton conductivity measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2007226984A true JP2007226984A (en) 2007-09-06
JP5131671B2 JP5131671B2 (en) 2013-01-30

Family

ID=38548624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006043562A Expired - Fee Related JP5131671B2 (en) 2006-02-21 2006-02-21 Proton conductivity measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP5131671B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298388A (en) * 2006-04-28 2007-11-15 Espec Corp Method of manufacturing membrane/electrode junction body for measuring ion conductivity by membrane-thickness-directional four-terminal method
JP2011021897A (en) * 2009-07-13 2011-02-03 Toyota Motor Corp Proton conductivity measuring instrument
JP2011153933A (en) * 2010-01-27 2011-08-11 Toyota Motor Corp Instrument for measuring proton conductivity
CN103728472A (en) * 2013-10-10 2014-04-16 华南理工大学 Fixture for measurement of electrical conductivity of proton exchange membrane
JP2015172546A (en) * 2014-03-12 2015-10-01 リンテック株式会社 Electric characteristic measurement device
JP2016178079A (en) * 2015-03-19 2016-10-06 パナソニックIpマネジメント株式会社 Proton conductivity measuring method and proton conductivity measuring device
CN106771629A (en) * 2017-02-15 2017-05-31 济南大学 A kind of fixture for the test of proton exchange membrane conductivity
JP2018092784A (en) * 2016-12-02 2018-06-14 本田技研工業株式会社 Film thickness evaluation method of electrolyte membrane and device thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160274046A1 (en) 2015-03-19 2016-09-22 Panasonic Intellectual Property Management Co., Ltd. Method of measuring proton conductivity and proton conductivity measurement device
CN109616691A (en) * 2018-11-09 2019-04-12 哈尔滨工业大学无锡新材料研究院 A kind of test method for the assembling equipment and the solid electrolyte conductivity being assembled into solid state battery using solid electrolyte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666751A (en) * 1992-08-18 1994-03-11 Osaka Gas Co Ltd Method for measuring ionic conductivity
JP2005326311A (en) * 2004-05-14 2005-11-24 Espec Corp Ion conductivity measuring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666751A (en) * 1992-08-18 1994-03-11 Osaka Gas Co Ltd Method for measuring ionic conductivity
JP2005326311A (en) * 2004-05-14 2005-11-24 Espec Corp Ion conductivity measuring method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298388A (en) * 2006-04-28 2007-11-15 Espec Corp Method of manufacturing membrane/electrode junction body for measuring ion conductivity by membrane-thickness-directional four-terminal method
JP2011021897A (en) * 2009-07-13 2011-02-03 Toyota Motor Corp Proton conductivity measuring instrument
JP2011153933A (en) * 2010-01-27 2011-08-11 Toyota Motor Corp Instrument for measuring proton conductivity
CN103728472A (en) * 2013-10-10 2014-04-16 华南理工大学 Fixture for measurement of electrical conductivity of proton exchange membrane
JP2015172546A (en) * 2014-03-12 2015-10-01 リンテック株式会社 Electric characteristic measurement device
JP2016178079A (en) * 2015-03-19 2016-10-06 パナソニックIpマネジメント株式会社 Proton conductivity measuring method and proton conductivity measuring device
JP2018092784A (en) * 2016-12-02 2018-06-14 本田技研工業株式会社 Film thickness evaluation method of electrolyte membrane and device thereof
CN106771629A (en) * 2017-02-15 2017-05-31 济南大学 A kind of fixture for the test of proton exchange membrane conductivity
CN106771629B (en) * 2017-02-15 2023-10-27 济南大学 Clamp for proton exchange membrane conductivity test

Also Published As

Publication number Publication date
JP5131671B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5131671B2 (en) Proton conductivity measurement method and apparatus
Pan et al. A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability
Lee et al. Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application
Williams et al. Analysis of polarization curves to evaluate polarization sources in hydrogen/air PEM fuel cells
Zhang et al. Oxygen permeation studies on alternative proton exchange membranes designed for elevated temperature operation
Nara et al. Impedance analysis of the effect of flooding in the cathode catalyst layer of the polymer electrolyte fuel cell
CN100478699C (en) Testing method and appliance for horizontal conductivity of fuel cell proton exchange membrane
Yun et al. Effect of pressure on through-plane proton conductivity of polymer electrolyte membranes
Kim et al. The Membrane–Electrode Interface in PEFCs: II. Impact on Fuel Cell Durability
Suzuki et al. Analysis of the catalyst layer of polymer electrolyte fuel cells
JP2007311204A (en) Fuel cell current distribution measurement device, stacked fuel cell current distribution measurement device, and fuel cell current distribution measurement method
Yuan et al. EIS equivalent circuits
US7972735B2 (en) Fuel cell system and activation method for fuel cell
Kwon et al. Effects of oversaturated cathode humidity conditions on the performance degradation of PEMFCs and diagnostic signals of Warburg impedance under low humidity conditions
JP2006286397A (en) Solid electrolyte membrane structure, its manufacturing method, and ion conductivity measurement device
JP2006047065A (en) Solution concentration measuring device
CN104714096B (en) A kind of method of testing of test device and electronic conductor intermediate ion electrical conductivity
JP2005326311A (en) Ion conductivity measuring method
JP4549663B2 (en) Solid polymer electrolyte and fuel cell
Novotny et al. On/off cycling test of low-temperature PEM fuel cell at fully humidified conditions
JP6101942B2 (en) Proton conductivity measuring method and proton conductivity measuring apparatus
EP3070461B1 (en) Impedance method for calculating proton conductivity of a proton-conducting membrane and proton conductivity measurement device
JP4899150B2 (en) Manufacturing method of joined body, and measuring method of 4-terminal ionic conductivity in film thickness direction
US20100081031A1 (en) Polymer electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell
JP2014049266A (en) Method and device for measuring electrolyte membrane of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees