JP2007225148A - Humidifying or dehumidifying/air cleaning method for indoor space, and heating or cooling or/and humidifying or dehumidifying/air cleaning system using the same - Google Patents

Humidifying or dehumidifying/air cleaning method for indoor space, and heating or cooling or/and humidifying or dehumidifying/air cleaning system using the same Download PDF

Info

Publication number
JP2007225148A
JP2007225148A JP2006044160A JP2006044160A JP2007225148A JP 2007225148 A JP2007225148 A JP 2007225148A JP 2006044160 A JP2006044160 A JP 2006044160A JP 2006044160 A JP2006044160 A JP 2006044160A JP 2007225148 A JP2007225148 A JP 2007225148A
Authority
JP
Japan
Prior art keywords
air
indoor space
ultrafine water
ultrafine
humidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006044160A
Other languages
Japanese (ja)
Inventor
Norihiro Amo
則博 天羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006044160A priority Critical patent/JP2007225148A/en
Publication of JP2007225148A publication Critical patent/JP2007225148A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stably humidify or dehumidify a wide indoor space and a plurality of indoor spaces, to perform air cleaning in every corner, and to save energy by reducing the amount of ventilation. <P>SOLUTION: The air mixed with ultrafine water particle, mainly having particle size of 8 μm or less is supplied to the wide indoor space or the plurality of indoor spaces through one or more duct, so that the contaminated granular substance suspending in the indoor space is captured by the ultrafine water particles, the air air mixed with contaminated ultrafine water particle is discharged from the indoor space through one or more duct to be separated into gas and liquid, then the contaminated substance is collected, and the separated clean dry air is heated or cooled and distributed to an ultrafine water particle generating device to be mixed with the ultrafine water particle again and supplied to the indoor space. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超微細水粒子混合空気によって広い室内空間及び複数の室内空間の加除湿・空気清浄を行う方法並びにそれを用いた暖冷房又は/及び加除湿・空気浄化システムに関する。   The present invention relates to a method for performing humidification / dehumidification / air purification of a wide indoor space and a plurality of indoor spaces with ultrafine water particle mixed air, and a heating / cooling and / or humidification / dehumidification / air purification system using the same.

従来、クリーンルームや病院の施設など広い室内空間もしくは複数の室内空間を有し且つ清浄性が求められる施設では、ボイラーや大型エアコンなどで調温した空気をダクトを介して室内に送気する集中暖冷房方式や、電力式やガス式のエアコンを個別に設置する暖冷房方式によって、室内空間の温度を調整している。また、加除湿・空気清浄はこれらの暖冷房方式とは別個に各室内に設置した機器を用いることが一般的に行われている。   Conventionally, in facilities that have a large indoor space or multiple indoor spaces, such as clean rooms and hospital facilities, and that require cleanliness, air that has been conditioned by a boiler or large air conditioner is sent to the room through a duct. The temperature of the indoor space is adjusted by a cooling method or a heating / cooling method in which electric or gas air conditioners are individually installed. For humidification / dehumidification and air purification, it is common to use equipment installed in each room separately from these heating / cooling systems.

関連発明にはダクトを介して空間を加湿するものがある(特許文献1参照)。また、天井埋込型の空調装置に加湿機能を加えたものもある(特許文献2参照)。また、吸込んだ室内空気と微細水粒子を混合させ空気清浄を行うものがあり(特許文献3参照)、超微細水粒子を室内空間に噴射して汚染粒子を捕捉し回収する空気清浄方法がある(特許文献4参照)。以下、特許文献により公知となっている加除湿・空気清浄方法及びその装置について説明する。   A related invention is one that humidifies a space through a duct (see Patent Document 1). In addition, there is a ceiling-embedded air conditioner with a humidification function (see Patent Document 2). In addition, there is an air cleaning method that mixes the sucked indoor air and fine water particles (see Patent Document 3), and there is an air cleaning method that captures and collects contaminating particles by injecting ultra-fine water particles into the indoor space. (See Patent Document 4). Hereinafter, a humidification / dehumidification / air cleaning method and apparatus known from the patent literature will be described.

特許文献1に記載の加湿空気搬送装置及びそのシステムは、加湿空気の吹出し位置を室内の任意の位置に配することができるように加湿装置を室外に設置し、ダクトで加湿空気を室内に供給するものである。   The humidified air conveyance device and the system described in Patent Document 1 have a humidifier installed outside the room so that the blowing position of the humidified air can be arranged at any position in the room, and the humidified air is supplied into the room through a duct. To do.

特許文献2に記載の天井埋込型空調装置は、水噴霧式で加湿を行い、かつ噴霧された霧が再び水となって室内に垂れ落ちる危険性を防止する天井埋込型の空調装置である。   The ceiling-embedded air conditioner described in Patent Document 2 is a water spray-type humidifier, and is a ceiling-embedded air conditioner that prevents the sprayed mist from becoming water again and dropping into the room. is there.

特許文献3に記載の空気清浄装置及び空気加湿装置は、装置内に室内空気を吸込み、マイナスイオン発生装置で製造された微細水滴混合空気と混合する過程で除塵及び加湿を行うものである。   The air cleaning device and the air humidifier described in Patent Document 3 perform dust removal and humidification in a process in which room air is sucked into the device and mixed with fine water droplet mixed air produced by a negative ion generator.

特許文献4に記載の空気清浄方法及びその装置は、超微細水粒子を室内に噴霧・流動させて浮遊している汚染粒子を捕獲・回収する方法及びその装置である。   The air cleaning method and apparatus described in Patent Document 4 are a method and apparatus for capturing and collecting suspended contaminant particles by spraying and flowing ultrafine water particles in a room.

これらの公知文献はいずれも、広い室内空間もしくは複数の室内空間を想定したものではなく、また暖冷房・換気・加除湿及び空気清浄の全ての機能を併せ持ったものではない。従って、既存製品にも関連発明にもこれらの機能を全て有するシステム及びその装置を見出すことができない。
特開2003−302075号公報 特開2004−226054号公報 特許第3047230号公報 特開2005−21808号公報
None of these known documents assume a wide indoor space or a plurality of indoor spaces, and do not have all the functions of heating / cooling / ventilation / humidification / dehumidification and air cleaning. Therefore, it is impossible to find a system and an apparatus having all these functions in existing products and related inventions.
JP 2003-302075 A JP 2004-226054 A Japanese Patent No. 3047230 JP 2005-21808 A

現在一般に行われている上記背景技術に記載の暖冷房方式は、いずれも室内空気の清浄性を保つために多量の換気量が必要とされ、室内温度を保持するために膨大なエネルギーを費やしている。また、多量の換気は室内温度のみならず湿度の安定化を困難にし、過度な空気の乾燥は人の体感温度を低下させるのみならず、風邪などのウイルスの活動を活発化させ、人の健康を阻害するおそれがある。更に、過度な空気の乾燥により静電気が発生し易くなりOA機器の誤動作も生じやすい。また、多量の換気は汚染粒子状物質がそのまま外部に排出されるため大気汚染の原因となり、外気に含まれる排気ガス等から生じる窒素・硫黄酸化物などの汚染物質を室内に導入することとなる。   All of the heating / cooling systems described in the background art currently in general use require a large amount of ventilation in order to maintain the cleanliness of room air, and spend a great deal of energy to maintain the room temperature. Yes. A large amount of ventilation makes it difficult to stabilize not only the room temperature but also humidity. Excessive air drying not only lowers the temperature of the human body but also increases the activity of viruses such as colds. May be disturbed. Furthermore, static electricity is likely to be generated due to excessive air drying, and malfunction of the OA equipment is likely to occur. In addition, a large amount of ventilation causes air pollution because pollutant particulate matter is discharged to the outside as it is, and pollutants such as nitrogen and sulfur oxides generated from exhaust gas etc. contained in the outside air are introduced into the room. .

この多量の換気は室内に空気流動を生じさせるが、微細な汚染粒子状物質はかえってその気流のために室内の隅部や天井面、壁面に追いやられて滞留するため排出できず、気流の停止時に沈降して繰り返し空気を汚染する状態となっている。また、従来の個別型空気清浄装置も室内の限られた範囲の空気しか吸入できず、室内の隅部や天井面、壁面付近に滞留する汚染粒子状物質を捕獲できないため、広い室内空間に複数台を設置しても十分な効果を発揮できなかった。   This large amount of ventilation causes air flow in the room, but the fine pollutant particulate matter is rather exhausted by the corners, ceiling, and walls of the room due to the air flow, so it cannot be discharged and the air flow is stopped. Sometimes it settles down and repeatedly pollutes the air. In addition, conventional individual air purifiers can only inhale a limited range of air in the room and cannot capture contaminating particulate matter that accumulates in the corners, ceilings, and walls of the room. Even if the stand was installed, the sufficient effect could not be demonstrated.

更に、従来の一般に用いられている加湿方法では100μm〜300μm程度の大きな水粒子を室内空気中に噴霧しているため、湿度の均質化が難しく、局部的に過度な湿潤部が発生し雑菌繁殖の温床になっている。   Furthermore, in the conventional generally used humidification method, large water particles of about 100 μm to 300 μm are sprayed into the indoor air, so that it is difficult to homogenize the humidity, and excessively wet parts are locally generated to propagate various bacteria. It is a hotbed.

特許文献1に記載の加湿空気搬送装置及びそのシステムは、室内の任意の位置に吹出し位置を設けることによりある程度の湿度の均質化は可能となるが、用いる微細水粒子の粒径が特定されていないため湿度の偏在は依然として生じている。また、加湿機能のみであるため、総合的な空気調和を行うには別途暖冷房装置を設置する必要があり、空気清浄機能を有しないため相当回数の換気が必要となり、省エネルギー効果を見込むことはできない。   The humidified air conveyance device and the system thereof described in Patent Document 1 can homogenize the humidity to some extent by providing a blowing position at an arbitrary position in the room, but the particle size of the fine water particles to be used is specified. There is still an uneven distribution of humidity. In addition, since it has only a humidifying function, it is necessary to install a separate heating / cooling device to perform comprehensive air conditioning, and since it does not have an air cleaning function, a considerable number of ventilations are required, and an energy saving effect is expected. Can not.

特許文献2に記載の天井埋込型空調装置は、熱交換器で暖冷房を行う天井埋込型暖冷房装置に15μm以下の微細水粒子を噴霧するノズルを設け、加湿機能を付加したものであるが、広い室内空間に用いるには複数台の設置を必要とし費用が割高となる。また空気浄化機能を有していないため別途換気を行う必要があり、この換気により室内温度及び湿度を不安定なものとし、また、その変化を回復させるために余分なエネルギーを消耗する。   The ceiling-embedded air conditioner described in Patent Document 2 is a device in which a nozzle that sprays fine water particles of 15 μm or less is added to a ceiling-embedded heating / cooling device that performs heating and cooling with a heat exchanger, and a humidifying function is added. However, a plurality of units are required for use in a large indoor space, and the cost is high. Moreover, since it does not have an air purification function, it is necessary to perform ventilation separately. This ventilation makes the room temperature and humidity unstable, and consumes extra energy to recover the change.

特許文献3に記載の空気清浄装置及び空気加湿装置は、マイナスイオン発生装置で製造した微細水滴混合空気を室内空気中に吹出すことにより加湿するものであるが、空気清浄については装置内に吸入した室内空気に微細水滴混合空気を混合する過程で汚染した大粒径の水粒子を除去する方式をとっている。株式会社アモウにおける微細水粒子の挙動に関する実験においては、水粒子は微細なものほど拡散性が増加し、室内の隅部や壁面に達し滞留した空気を流動化させる作用を持つことが判明している。この空気清浄方式はこの作用に着目し積極的に利用するものではないため、広い室内空間において適切な位置に複数台を設置し、室内空気の滞留部の空気浄化を行うことは困難である。   The air purifying device and the air humidifying device described in Patent Document 3 humidify the fine water droplet mixed air produced by the negative ion generator by blowing it into the room air. In this process, water particles with a large particle size contaminated in the process of mixing the mixed air with fine water droplets are removed. In an experiment on the behavior of fine water particles at Amou Co., Ltd., it was found that the finer the water particles, the more diffusible the water particles, the more diffusibility increases, and the fluid that stays in the corners and walls of the room is fluidized. Yes. Since this air cleaning method is not intended to be used positively by paying attention to this action, it is difficult to install a plurality of units at appropriate positions in a wide indoor space and to purify the air in the room air staying portion.

特許文献4に記載の空気浄化方法及びその装置は、粒径約10μmの超微細水粒子を室内空気中に噴霧し流動させ、その水粒子によって浮遊している汚染粒子状物質を捕獲し、それを回収することにより空気清浄を行うものであり、本願の発明の基をなすものである。しかしながら、その装置は単独の比較的狭い室内空間を想定したものであり、広い室内空間もしくは複数の室内空間ごとに複数台設置することは費用の面で不利となる。また、広い室内空間において超微細化水粒子の拡散性・流動性を最大限にいかした空気流動を得るには、個別型装置では不合理と無駄を生じる恐れがある。   In the air purification method and apparatus described in Patent Document 4, ultrafine water particles having a particle size of about 10 μm are sprayed and flowed in room air, and the suspended particulate matter is captured by the water particles. The air is purified by collecting the gas and forms the basis of the present invention. However, the apparatus assumes a single relatively small indoor space, and it is disadvantageous in terms of cost to install a plurality of devices in a wide indoor space or a plurality of indoor spaces. In addition, in order to obtain an air flow that makes the best use of the diffusibility and fluidity of ultrafine water particles in a wide indoor space, there is a risk that the individual type apparatus will be unreasonable and wasteful.

本発明は、これらの諸問題を解決し、広い室内空間及び複数の室内空間において安定的な加除湿を行い、隅々まで行き渡る空気清浄を行い、ひいては換気量を減少させることによって省エネルギーを図るためになされたものである。   The present invention solves these problems, and performs stable humidification and dehumidification in a wide indoor space and a plurality of indoor spaces, purifies air everywhere, and consequently reduces the ventilation amount to save energy. It was made.

上記の問題を解決するため、本発明の請求項1に係る加除湿・空気清浄方法は、8μm以下の粒径を主体とする超微細水粒子混合空気を1以上のダクトを介して広い室内空間もしくは複数の室内空間に供給して加湿し、その超微細水粒子によって室内空間中に浮遊する汚染粒子状物質を捕捉し、汚染した超微細水粒子混合空気を別の1以上のダクトを介してその室内空間から排出して気液分離処理を行い、汚染物質を回収し、分離した清浄な乾燥空気を再び超微細水粒子とともにその室内空間に供給することを特徴とする。   In order to solve the above problems, the humidifying / dehumidifying / air purifying method according to claim 1 of the present invention provides a wide indoor space through ultrafine water particle mixed air mainly having a particle size of 8 μm or less through one or more ducts. Or, it is supplied to a plurality of indoor spaces and humidified, and the contaminated particulate matter floating in the indoor space is captured by the ultrafine water particles, and the contaminated ultrafine water particle mixed air is passed through another one or more ducts. It is characterized in that it is discharged from the indoor space and subjected to gas-liquid separation treatment, the pollutant is collected, and the separated clean dry air is supplied again to the indoor space together with the ultrafine water particles.

請求項2に係る加除湿・空気清浄システムは、8μm以下の粒径を主体とする超微細水粒子の発生装置が1以上のダクトを介して広い室内空間もしくは複数の室内空間に連結し、そのダクトより供給する超微細水粒子混合空気によって加湿し、その超微細水粒子によって室内空間中に浮遊する汚染粒子状物質を捕捉し、汚染した超微細水粒子混合空気を別の1以上のダクトに連結した気液分離装置に導入して汚染物質を回収し、分離した清浄な乾燥空気を気液分離装置と超微細水粒子の発生装置を連結するダクトを介して超微細水粒子の発生装置に送り、再び超微細水粒子と混合してその室内空間に供給する構成を有することを特徴とする。   In the humidifying / dehumidifying / air purifying system according to claim 2, an ultrafine water particle generator mainly having a particle size of 8 μm or less is connected to a wide indoor space or a plurality of indoor spaces via one or more ducts, Humidification is performed by the ultrafine water particle mixed air supplied from the duct, the contaminated particulate matter floating in the indoor space is captured by the ultrafine water particle, and the contaminated ultrafine water particle mixed air is transferred to another one or more ducts. It introduces into the connected gas-liquid separator, collects the pollutant, and separates the clean dry air into the ultra-fine water particle generator via the duct connecting the gas-liquid separator and the ultra-fine water particle generator. It is characterized by having a configuration in which it is fed, mixed again with ultrafine water particles, and supplied to the indoor space.

請求項3に係る暖冷房及び加除湿・空気浄化システムは、請求項2記載の加除湿及び空気清浄システムにおいて、気液分離装置と超微細水粒子の発生装置の間に空気の加熱及び冷却装置を配し、気液分離装置で分離した清浄な乾燥空気を加熱または冷却して超微細水粒子の発生装置に送り、再び超微細水粒子と混合してその室内空間に供給する構成を有することを特徴とする。   The heating / cooling and humidification / dehumidification / air purification system according to claim 3 is the humidification / dehumidification / air purification system according to claim 2, wherein the air heating / cooling device is provided between the gas-liquid separator and the ultrafine water particle generator. And the clean dry air separated by the gas-liquid separator is heated or cooled, sent to the ultrafine water particle generator, mixed with the ultrafine water particles again, and supplied to the indoor space. It is characterized by.

尚、本明細書及び本願の特許請求の範囲に記載の「超微細水粒子」という言葉は、学術的に定義された言葉ではないが、ここでは10μm程度以下の粒径の水粒子に対して用い、それ以上の粒径の「微細水粒子」と区別している。また、「広い室内空間」という言葉は必ずしも絶対的な面積の大きさを意味せず、個別型の加除湿及び空気清浄装置が単独で十分な効果を上げられない規模の空間を意図している。   The term “ultrafine water particles” described in the present specification and claims of the present application is not an academically defined word, but here, for water particles having a particle size of about 10 μm or less. Used to distinguish it from “fine water particles” of larger particle size. In addition, the term “wide indoor space” does not necessarily mean the size of an absolute area, and it is intended to be a space on a scale where an individual type humidifying / dehumidifying and air purifying device cannot achieve a sufficient effect by itself. .

超微細水粒子は拡散性・流動性が高いため、室内の隅部や天井面、壁面に滞留した微細な汚染粒子状物質をも捕獲・回収し、室内の隅々まで空気清浄効果を行き渡らせることができる。更に、同様の特性から、室内の湿度を均質化させ、過度な湿潤部の発生による雑菌の繁殖を防止する。   Ultra-fine water particles are highly diffusive and fluid, so they can capture and collect even minute pollutant particulate matter that accumulates in the corners, ceilings, and walls of the room and spread the air-cleaning effect to every corner of the room. be able to. Furthermore, from the same characteristics, the humidity in the room is homogenized, and the propagation of germs due to the generation of excessive wet parts is prevented.

また、超微細水粒子の製造過程において、水の衝突現象から生じるレナード効果によりマイナスイオンを多量に発生させることができ、身体に良好な効果を生じさせる室内環境を得ることができる。   Further, in the process of producing ultrafine water particles, a large amount of negative ions can be generated by the Leonard effect resulting from the water collision phenomenon, and an indoor environment that produces a good effect on the body can be obtained.

従って、少ない換気量で室内空気の清浄性を保つことができ、室内温度を保持するために必要なエネルギーを大幅に削減できる。   Therefore, the cleanliness of the room air can be maintained with a small amount of ventilation, and the energy required to maintain the room temperature can be greatly reduced.

換気量を減少させることができるので、室内温度のみならず湿度も安定化させやすく、過度の乾燥によるウイルスの活発化など人の健康への悪影響を排除し、また静電気の発生を抑制しOA機器などの誤動作を防止することができる。   Since ventilation volume can be reduced, it is easy to stabilize not only the room temperature but also humidity, eliminating adverse effects on human health such as activation of viruses due to excessive drying, and suppressing static electricity generation, OA equipment Such a malfunction can be prevented.

更に、ダクトを用いることにより、室内の任意の位置から超微細水粒子混合空気を供給することができるため、室内全体の空気流動を考慮して超微細水粒子の高い拡散性・流動性を最大限に生かした空気調和の最適な設計が可能となる。加えて、広い室内全体もしくは複数の室内の温度・湿度・清浄度を一括管理できるようになり、個別型をはるかに凌ぐ施設全体の大幅な省エネルギーが可能となる。   Furthermore, by using a duct, it is possible to supply ultrafine water particle mixed air from any position in the room, so that the high diffusibility and fluidity of ultrafine water particles are maximized in consideration of the air flow in the entire room. Optimum design of air conditioning that makes the most of it is possible. In addition, the temperature, humidity, and cleanliness of the entire large room or multiple rooms can be managed collectively, enabling significant energy savings for the entire facility far exceeding individual types.

また、一括管理が可能となるため、気液分離した流体中に含まれる汚染粒子状物質をまとめて処理することができ、汚染粒子状物質がそのまま外部に排出されることがなく、大気汚染を防止することができ、また、換気量の減少により、室外からの吸気に含まれる排気ガス等から生じる窒素・硫黄酸化物などの外来汚染物質の導入量を低減させることができる。   In addition, since it is possible to perform collective management, the contaminated particulate matter contained in the fluid separated into gas and liquid can be processed collectively, and the contaminated particulate matter is not discharged to the outside as it is. In addition, the amount of exogenous contaminants such as nitrogen and sulfur oxides generated from exhaust gas contained in the intake air from the outside can be reduced by reducing the ventilation amount.

以下、図面に示す実施例に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings.

図1は本発明による暖冷房及び加除湿・空気清浄システムの基本構成を示し、水から超微細水粒子を製造する超微細水粒子発生装置1と、汚染した超微細水粒子混合空気を汚染水と清浄な乾燥空気に分離する気液分離装置2と、分離された清浄な乾燥空気及び導入した外気20を所定の温度に加温・冷却する加熱及び冷却装置3を有し、それぞれの装置がダクトを介して図1のように連結し、もって広い室内空間もしくは複数の室内空間の暖冷房・加除湿及び空気清浄を行うものである。   FIG. 1 shows a basic configuration of a heating / cooling and humidifying / dehumidifying / air cleaning system according to the present invention, and an ultrafine water particle generator 1 for producing ultrafine water particles from water, and contaminated ultrafine water particle mixed air into contaminated water. And a gas-liquid separation device 2 that separates into clean dry air, and a heating and cooling device 3 that heats and cools the separated clean dry air and the introduced outside air 20 to a predetermined temperature. It connects as shown in FIG. 1 via a duct, and thus performs heating / cooling / humidification / dehumidification and air cleaning of a wide indoor space or a plurality of indoor spaces.

超微細水粒子の発生装置1は、中間ダクト9で加熱及び冷却装置3と連結され、また、給気ダクト5で室内空間16及び室内空間17に設けられた給気口11と連結している。給気口11の配置は超微細水粒子の高い拡散性と流動性を生かした最適な配置とする。また、図1では複数の室内空間の場合を示しているが広い室内空間の場合も同様に給気口11の最適配置を決定する。超微細水粒子の発生装置1と給気口11の間に温度・湿度及び風量などを測定する測定装置4を配してもよい。   The ultrafine water particle generator 1 is connected to the heating and cooling device 3 by an intermediate duct 9 and is connected to an air supply port 11 provided in the indoor space 16 and the indoor space 17 by an air supply duct 5. . The arrangement of the air supply port 11 is an optimum arrangement taking advantage of the high diffusibility and fluidity of the ultrafine water particles. Moreover, although FIG. 1 shows the case of a plurality of indoor spaces, the optimal arrangement of the air supply ports 11 is similarly determined in the case of a wide indoor space. A measuring device 4 that measures temperature, humidity, air volume, and the like may be disposed between the ultrafine water particle generator 1 and the air inlet 11.

超微細水粒子発生装置1は、8μm以下の粒径を主体とする超微細粒子を発生させる機能を有するものであれば、その発生機構及び構造を問わないが、ここでは噴霧ノズルを用いたものを一例として図2に示す。   The ultrafine water particle generator 1 is not limited to the generation mechanism and structure as long as it has a function of generating ultrafine particles mainly having a particle size of 8 μm or less, but here, a spray nozzle is used. Is shown as an example in FIG.

図2の超微細水粒子発生装置は噴霧ノズル24、噴霧ノズル24を囲むようにして天井面から下方へ延出した筒状のコア隔壁26、コア隔壁26下端の開口部27、開口部27に対向する中心部に向かって傾斜する傾斜板28、コア隔壁26・傾斜板28及び超微細水粒子発生ユニット21の内壁29によって囲まれた超微細水粒子浮遊空間30、傾斜板28の下方に設けられたコンプレッサー25により吸気口31より取り入れた空気をコンプレッサー25の圧力により浮遊空間30へ送り込むための通路となる通気口32並びに超微細水粒子を超微細水粒子発生ユニット21外へ噴出する吐出口33で構成されている。   2 is opposed to the spray nozzle 24, the cylindrical core partition wall 26 extending downward from the ceiling surface so as to surround the spray nozzle 24, the opening 27 at the lower end of the core partition wall 26, and the opening 27. An inclined plate 28 inclined toward the center, the core partition wall 26, the inclined plate 28, and an ultrafine water particle floating space 30 surrounded by the inner wall 29 of the ultrafine water particle generation unit 21, are provided below the inclined plate 28. A vent 32 serving as a passage for sending the air taken in from the intake port 31 by the compressor 25 into the floating space 30 by the pressure of the compressor 25 and a discharge port 33 for ejecting ultrafine water particles out of the ultrafine water particle generating unit 21. It is configured.

噴霧ノズル24は、約50μm以下の粒径の水が噴出される細孔ノズルとし、筒状のコア隔壁26の中心部に向かって斜め下方に向け適数個設置されており、噴霧ノズル24から噴出された噴霧水は、各々中心部に向かって吐出し相互に衝突し破砕する。次に、噴霧水は下方へ向かい、コア隔壁26の内壁とも衝突し破砕を繰り返しながら開口部27からコア隔壁26外へ吐出し、更に底部に設置した傾斜板28に衝突し破砕する。この繰り返し破砕によって多くの水粒子が8μm以下の超微細水粒子となり、浮遊空間30でコンプレッサー25からの送気と混合し、空気中に浮遊した状態で吐出口33から排出される。
図2は8μm以下の粒径を主体とする超微細水粒子の発生機構及び装置の一例を模式的に示したものであり、本発明のシステムに用いる際には吐出口33に給気ダクト5が連結され、吸気口31に中間ダクト9が連結される。
The spray nozzles 24 are fine nozzles through which water having a particle diameter of about 50 μm or less is ejected, and a suitable number of nozzles are installed obliquely downward toward the center of the cylindrical core partition wall 26. The spray water ejected is discharged toward the center and collides with each other to be crushed. Next, the spray water goes downward, collides with the inner wall of the core partition wall 26 and is discharged from the opening 27 while repeating the crushing, and further collides with the inclined plate 28 installed at the bottom to be crushed. By this repeated crushing, many water particles become ultra fine water particles of 8 μm or less, mixed with the air supplied from the compressor 25 in the floating space 30, and discharged from the discharge port 33 in a state of floating in the air.
FIG. 2 schematically shows an example of a mechanism and apparatus for generating ultrafine water particles mainly having a particle diameter of 8 μm or less. When used in the system of the present invention, the air supply duct 5 is connected to the discharge port 33. And the intermediate duct 9 is connected to the air inlet 31.

本発明の暖冷房・加除湿及び空気清浄システムの構成と機能を空気の流れに従って示すと、加熱及び冷却装置3に連結した吸気ダクト7から吸入された外気20、もしくは気液分離装置2に連結した中間ダクト10から吸入された清浄な乾燥空気は、送風機13によって加圧され加熱コイル14もしくは冷却コイル15によって調温され、中間ダクト9に連結した超微細水粒子発生装置1に送られる。その際、外排気ダクト8によって空気の一部を排気し換気を図ることも可能である。加熱及び冷却装置3は必要とされる加熱・冷却及び送風能力を有するものであればその方式を問わない。   When the configuration and function of the heating / cooling / humidification / dehumidification and air purification system of the present invention are shown in accordance with the flow of air, the outside air 20 sucked from the intake duct 7 connected to the heating / cooling device 3 or the gas-liquid separation device 2 is connected. The clean dry air sucked from the intermediate duct 10 is pressurized by the blower 13, adjusted in temperature by the heating coil 14 or the cooling coil 15, and sent to the ultrafine water particle generator 1 connected to the intermediate duct 9. At that time, it is possible to exhaust a part of the air by the outer exhaust duct 8 for ventilation. The heating and cooling device 3 may be of any type as long as it has the required heating / cooling and blowing capability.

超微細水粒子発生装置1に送り込まれた空気は、超微細水粒子を付加され超微細混合空気18として給気ダクト5に連結した給気口11から室内空間16及び室内空間17に供給される。室内に放出された超微細水粒子はその高い拡散性と流動性によって室内空間16及び室内空間17の隅々まで行き渡り加湿効果を与え、また、壁際に滞留する汚染粒子状物質をも捕獲する。汚染した超微細水粒子混合空気19は室内空間16及び室内空間17の下方に設置された排気口12に吸入され連結した排気ダクト6を介して気液分離装置2に送られ、冷却コイル15で減温され汚染水と清浄な乾燥空気に分離される。気液分離には必ずしも冷却コイル15を用いる必要はなく、所定の効果が得られれば別の方法を用いることも可能である。   The air sent to the ultrafine water particle generator 1 is supplied to the indoor space 16 and the indoor space 17 from the air supply port 11 to which the ultrafine water particles are added and connected to the air supply duct 5 as the ultrafine mixed air 18. . The ultrafine water particles released into the room are distributed to every corner of the indoor space 16 and the indoor space 17 due to their high diffusibility and fluidity, and give a humidifying effect, and also trap the contaminated particulate matter staying at the wall. The contaminated ultrafine water particle mixed air 19 is sent to the gas-liquid separator 2 through the exhaust duct 6 which is sucked into and connected to the exhaust port 12 installed below the indoor space 16 and the indoor space 17, and is supplied to the cooling coil 15. Reduced temperature and separated into contaminated water and clean dry air. It is not always necessary to use the cooling coil 15 for gas-liquid separation, and another method can be used as long as a predetermined effect is obtained.

分離された清浄な乾燥空気は連結した中間ダクト10から加熱及び冷却装置3に送られ、汚染水は排水タンクに貯留され一括処理される。このような一連の過程を繰り返して本発明による循環型の暖冷房・加除湿及び空気清浄システムは機能するものである。   The separated clean dry air is sent to the heating and cooling device 3 from the connected intermediate duct 10, and the contaminated water is stored in a drainage tank and collectively processed. The circulation type heating / cooling / humidifying / dehumidifying and air cleaning system according to the present invention functions by repeating such a series of processes.

次に、上記に例示した超微細水粒子発生装置で製造される超微細水粒子の粒度分布を示し、その超微細水粒子を用いた空気清浄試験結果及び空気流動試験結果の概略を示す。   Next, the particle size distribution of the ultrafine water particles produced by the ultrafine water particle generator exemplified above is shown, and an outline of the results of the air cleaning test and the air flow test using the ultrafine water particles is shown.

上記に例示した超微細水粒子の発生装置で製造される超微細水粒子の粒度分布は図3に示すように、ほぼ1〜20μmの間に分布し7μm付近でもっとも頻度が高い。またその分布は小粒径側に偏在しており8μm以下の粒径で累積体積がほぼ70%を超える。   As shown in FIG. 3, the particle size distribution of the ultrafine water particles produced by the ultrafine water particle generator exemplified above is distributed between approximately 1 to 20 μm and is most frequently around 7 μm. Further, the distribution is unevenly distributed on the small particle size side, and the cumulative volume exceeds approximately 70% at a particle size of 8 μm or less.

試験例1Test example 1

図3に示す粒度分布を有する超微細水粒子を用いて空気清浄能力の試験を実施した。試験は約30mの換気が行われない室内空間において、
(条件1)6本/20分のペースで喫煙した場合
(条件2)4本/20分のペースで喫煙した場合
の2つの条件下で、喫煙の開始から10分後に、噴霧水量5L/min、速度0.2〜0.45/secで壁面より超微細水粒子を噴霧して、室内の中心部の高さ120cmの位置で微細粉塵の濃度変化を測定した。その試験結果を図4に示す。
A test of air cleaning ability was performed using ultrafine water particles having a particle size distribution shown in FIG. Test in a room space where ventilation is not performed approximately 30 m 3,
(Condition 1) When smoking at a pace of 6/20 minutes (Condition 2) Under two conditions when smoking at a pace of 4/20 minutes, the amount of spray water is 5 L / min 10 minutes after the start of smoking. Then, ultrafine water particles were sprayed from the wall surface at a speed of 0.2 to 0.45 / sec, and the change in the concentration of fine dust was measured at a height of 120 cm in the center of the room. The test results are shown in FIG.

図4に示すとおり、条件1及び条件2の場合ともに超微細水粒子の噴霧開始後ほぼ10分で微細粉塵が減少し始め、喫煙の終了後1時間以内でほぼ完全に排除された。また、タバコの煙の臭気成分であるアンモニアも、超微細水粒子の噴霧開始10分後には検出限界以下まで除去され、臭気強度は5(著しく強い臭い)もしくは4(強い臭い)から2(タバコの残り香と判断できる程度の気にならない臭い)となった。 As shown in FIG. 4, in both cases of condition 1 and condition 2, fine dust began to decrease almost 10 minutes after the start of spraying of ultrafine water particles, and was almost completely eliminated within 1 hour after the end of smoking. Also, ammonia, which is an odor component of tobacco smoke, is removed to below the detection limit 10 minutes after the start of spraying of ultrafine water particles, and the odor intensity is from 5 (remarkably strong odor) or 4 (strong odor) to 2 (tobacco). The odor was not enough to be judged as the remaining scent.

また、継続的に喫煙した場合、室内の良好な状態を維持するのに必要な換気量は、超微細水粒子の噴霧を行った場合で486m/h、換気のみの場合は11,000m/hが必要とされ、換気のみの場合は多量の外気の導入のため、室内の温度や湿度を良好な状態に維持することができなかった。 In addition, when smoking continuously, the ventilation required for maintaining a good indoor condition is 486 m 3 / h when spraying ultrafine water particles, and 11,000 m 3 when only ventilation is used. / H was required, and in the case of ventilation only, a large amount of outside air was introduced, so that the room temperature and humidity could not be maintained in a good state.

以上のことから、超微細水粒子は空気中に浮遊する汚染粒子状物質を捕獲し除去する能力が高く、超微細水粒子の噴霧を伴う換気により容易に室内の温度・湿度及び清浄度が維持でき、換気装置のみによる場合に比べ暖冷房費用を大幅に低減させ得ることが明らかとなった。尚、この試験によって効果が保証されていることを基として、請求項及び課題を解決するための手段における規定を8μm以下の粒径を主体とする超微細水粒子とした。 From the above, ultrafine water particles have a high ability to capture and remove pollutant particulate matter floating in the air, and the room temperature, humidity and cleanliness are easily maintained by ventilation accompanied by spraying of ultrafine water particles. It was clarified that the heating and cooling costs can be significantly reduced compared with the case of using only the ventilator. Based on the fact that the effect is guaranteed by this test, the ultrafine water particles mainly having a particle size of 8 μm or less are defined in the claims and the means for solving the problems.

試験例2Test example 2

図3に示す粒度分布を有する超微細水粒子を用いて空気流動能力の試験を実施した。一般に、室内においては壁面の近くで空気が滞留し風速が小さくなると考えられるが、超微細水粒子の存在が壁面付近の空気流動にどのような影響を与えるかを超音波風速計で測定し、解析を行った。測定空間は、6.0m(側面)×4.0m(前面・背面)×2.6m(高さ)の閉鎖空間で、水平方向100cm、垂直方向50cmの格子状に測点を配置し、超微細水粒子を噴霧している状態とそうでない状態について測定を実施した。 An air flow capability test was performed using ultrafine water particles having a particle size distribution shown in FIG. In general, it is considered that air stays near the wall surface in the room and the wind speed decreases, but the influence of the presence of ultrafine water particles on the air flow near the wall surface is measured with an ultrasonic anemometer, Analysis was performed. The measurement space is a closed space of 6.0m (side) x 4.0m (front and back) x 2.6m (height), and the measuring points are arranged in a grid of 100cm in the horizontal direction and 50cm in the vertical direction. Measurements were carried out for the state in which fine water particles were sprayed and the state in which it was not.

超微細水粒子の噴霧条件は次のとおりである。
・吹出し位置:前・背面壁際から50cm離れた中央部の2箇所
・吹出し方向:垂直上向き
・吹き出し口風量:8.5m/min×2箇所
・超微細水噴霧量:13.9mL/min×2箇所 計27.8mL/min
The spraying conditions for the ultrafine water particles are as follows.
・ Blowout position: 2 locations in the center 50cm away from the front and back walls ・ Blowing direction: Vertically upward ・ Blowing air volume: 8.5 m 3 / min × 2 ・ Ultra fine water spray amount: 13.9 mL / min × 2 locations Total 27.8 mL / min

側壁面から20cm離れた側壁平行面における風速ベクトル図を図5及び図6に示す。各測点の風速ベクトルに風速の絶対値(cm/s)を付記し、その等値線を描いた。図5及び図6より、超微細水粒子の噴霧を伴う場合には中間的な風速絶対値(20〜60cm/s)を示す範囲が拡大し、20cm/s未満の弱風速〜滞留部が縮小し、ごく僅かに見られるのみとなっている。この現象は、水粒子が分子レベルのサイズに近づいたため、高速運動を始めて拡散性が増大したためと考えられ、超微細水粒子による滞留空気の流動化及び滞留部に濃集する汚染粒子の除去効果が明瞭に示されている。 FIG. 5 and FIG. 6 show wind velocity vector diagrams on the side wall parallel surface 20 cm away from the side wall surface. An absolute value (cm / s) of the wind speed was added to the wind speed vector at each station, and its isoline was drawn. 5 and 6, when accompanied by spraying of ultrafine water particles, the range showing the intermediate absolute value of wind speed (20 to 60 cm / s) is expanded, and the weak wind speed of less than 20 cm / s to the staying part is reduced. However, it can only be seen very slightly. This phenomenon is thought to be due to the fact that the water particles approached the molecular size, and thus the diffusibility increased due to the start of high-speed movement. The effect of fluidization of stagnant air by ultrafine water particles and the removal of contaminating particles concentrated in the stagnant part Is clearly shown.

本発明は以上の試験結果によって検証された超微細水粒子の、汚染粒子状物質の高い捕獲能力並びに空気の滞留部にまで達する優れた拡散性及び流動性に基づき、ダクトを介して空気流動を考慮した最適位置から室内空間に超微細水粒子混合空気を供給することにより、広い室内空間及び複数の室内空間における空気清浄効果を最大とし、もって暖冷房に係る換気量を大幅に減少させ省エネルギーを図るものである。   The present invention is based on the ultrafine water particles verified by the above test results, and based on the high trapping capacity of the pollutant particulate matter and the excellent diffusivity and fluidity to reach the air retention part, the air flow through the duct is controlled. By supplying ultra fine water particle mixed air to the indoor space from the optimum position considered, the air purifying effect in the wide indoor space and multiple indoor spaces is maximized, thereby greatly reducing the ventilation amount for heating and cooling and saving energy. It is intended.

本発明の暖冷房・加除湿及び空気浄化システム図である。It is a heating / cooling / humidification / dehumidification and air purification system diagram of the present invention. 本発明に用いる超微細水粒子発生装置の一実施例を示す断面図である。It is sectional drawing which shows one Example of the ultrafine water particle generator used for this invention. 例示した超微細水粒子発生装置が製造する超微細水粒子の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the ultrafine water particle which the illustrated ultrafine water particle generator produces. 例示した超微細水粒子発生装置を用いて実施した空気清浄能力の試験結果を示すグラフである。It is a graph which shows the test result of the air cleaning capability implemented using the illustrated ultrafine water particle generator. 例示した超微細水粒子発生装置を用いて実施した空気流動能力の試験結果のうち、超微細水粒子を噴霧しない場合の側壁面付近の空気流動を示す風速ベクトル図である。It is a wind speed vector diagram which shows the air flow of the side wall surface vicinity in the case of not spraying an ultrafine water particle among the test results of the airflow capability implemented using the illustrated ultrafine water particle generator. 例示した超微細水粒子発生装置を用いて実施した空気流動能力の試験結果のうち、超微細水粒子を噴霧した場合の側壁面付近の空気流動を示す風速ベクトル図である。It is a wind speed vector diagram which shows the air flow of the side wall surface vicinity at the time of spraying an ultrafine water particle among the test results of the airflow capability implemented using the illustrated ultrafine water particle generator.

符号の説明Explanation of symbols

1 超微細水粒子発生装置
2 気液分離装置
3 加熱及び冷却装置
4 測定装置
5 給気ダクト
6 排気ダクト
7 吸気ダクト
8 外排気ダクト
9 中間ダクト
10 中間ダクト
11 給気口
12 排気口
13 送風機
14 加熱コイル
15 冷却コイル
16 室内空間
17 室内空間
18 超微細水粒子混合空気
19 汚染した超微細水粒子混合空気
20 外気
21 超微細水粒子発生ユニット
22 新鮮水補給装置
23 配管
24 噴霧ノズル
25 コンプレッサー
26 コア隔壁
27 開口部
28 傾斜板
29 内壁
30 超微細水粒子浮遊空間
31 吸気口
32 通気口
33 吐出口
34 底部開口部
DESCRIPTION OF SYMBOLS 1 Ultra fine water particle generator 2 Gas-liquid separation device 3 Heating and cooling device 4 Measuring device 5 Air supply duct 6 Exhaust duct 7 Intake duct 8 Outer exhaust duct 9 Intermediate duct 10 Intermediate duct 11 Inlet port 12 Exhaust port 13 Blower 14 Heating coil 15 Cooling coil 16 Indoor space 17 Indoor space 18 Ultrafine water particle mixed air 19 Contaminated ultrafine water particle mixed air 20 Outside air 21 Ultrafine water particle generation unit 22 Fresh water supply device 23 Pipe 24 Spray nozzle 25 Compressor 26 Core Partition wall 27 Opening portion 28 Inclined plate 29 Inner wall 30 Ultrafine water particle floating space 31 Intake port 32 Vent port 33 Discharge port 34 Bottom opening

Claims (3)

8μm以下の粒径を主体とする超微細水粒子混合空気を1以上のダクトを介して広い室内空間もしくは複数の室内空間に供給して加湿し、その超微細水粒子によって室内空間中に浮遊する汚染粒子状物質を捕捉し、汚染した超微細水粒子混合空気を別の1以上のダクトを介してその室内空間から排出して気液分離処理を行い、汚染物質を回収し、分離した清浄な乾燥空気を再び超微細水粒子と混合してその室内空間に供給することを特徴とする加除湿及び空気清浄方法。   Ultra fine water particle mixed air mainly having a particle size of 8 μm or less is supplied to a large indoor space or a plurality of indoor spaces via one or more ducts, humidified, and suspended in the indoor space by the ultra fine water particles. Contaminated particulate matter is captured, contaminated ultra fine water particle mixed air is discharged from the indoor space through one or more other ducts, gas-liquid separation processing is performed, the contaminant is recovered, and separated clean A humidifying / dehumidifying and air cleaning method characterized in that dry air is again mixed with ultrafine water particles and supplied to the indoor space. 8μm以下の粒径を主体とする超微細水粒子の発生装置が1以上のダクトを介して広い室内空間もしくは複数の室内空間に連結し、そのダクトより供給する超微細水粒子混合空気によって加湿し、その超微細水粒子によって室内空間中に浮遊する汚染粒子状物質を捕捉し、汚染した超微細水粒子混合空気を別の1以上のダクトに連結した気液分離装置に導入して汚染物質を回収し、分離した清浄な乾燥空気を気液分離装置と超微細水粒子の発生装置を連結するダクトを介して超微細水粒子の発生装置に送り、再び超微細水粒子と混合してその室内空間に供給する構成を有することを特徴とする加除湿及び空気清浄システム。   An ultrafine water particle generator mainly having a particle size of 8 μm or less is connected to a wide indoor space or a plurality of indoor spaces via one or more ducts, and is humidified by the ultrafine water particle mixed air supplied from the ducts. The contaminated particulate matter floating in the indoor space is captured by the ultrafine water particles, and the contaminated ultrafine water particle mixed air is introduced into a gas-liquid separation device connected to one or more other ducts to introduce the contaminants. The clean, dry air that has been recovered and separated is sent to the ultrafine water particle generator via a duct connecting the gas-liquid separator and the ultrafine water particle generator, and mixed with the ultrafine water particles again to form a room. A humidifying / dehumidifying and air purifying system having a structure for supplying to a space. 請求項2記載の加除湿及び空気清浄システムにおいて、気液分離装置と超微細水粒子の発生装置の間に空気の加熱及び冷却装置を配し、気液分離装置で分離した清浄な乾燥空気を加熱または冷却して超微細水粒子の発生装置に送り、再び超微細水粒子と混合しその室内空間に供給する構成を有することを特徴とする暖冷房及び加除湿・空気浄化システム。   3. The humidifying / dehumidifying and air cleaning system according to claim 2, wherein a heating and cooling device for air is disposed between the gas-liquid separator and the ultrafine water particle generator, and the clean dry air separated by the gas-liquid separator is used. A heating / cooling and humidifying / dehumidifying / air purifying system characterized by having a configuration in which it is heated or cooled, sent to an ultrafine water particle generator, mixed again with ultrafine water particles, and supplied to the indoor space.
JP2006044160A 2006-02-21 2006-02-21 Humidifying or dehumidifying/air cleaning method for indoor space, and heating or cooling or/and humidifying or dehumidifying/air cleaning system using the same Pending JP2007225148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044160A JP2007225148A (en) 2006-02-21 2006-02-21 Humidifying or dehumidifying/air cleaning method for indoor space, and heating or cooling or/and humidifying or dehumidifying/air cleaning system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044160A JP2007225148A (en) 2006-02-21 2006-02-21 Humidifying or dehumidifying/air cleaning method for indoor space, and heating or cooling or/and humidifying or dehumidifying/air cleaning system using the same

Publications (1)

Publication Number Publication Date
JP2007225148A true JP2007225148A (en) 2007-09-06

Family

ID=38547128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044160A Pending JP2007225148A (en) 2006-02-21 2006-02-21 Humidifying or dehumidifying/air cleaning method for indoor space, and heating or cooling or/and humidifying or dehumidifying/air cleaning system using the same

Country Status (1)

Country Link
JP (1) JP2007225148A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125750A1 (en) * 2009-04-28 2010-11-04 パナソニック株式会社 Air purifying system and air purifying method
JP2011058788A (en) * 2009-09-08 2011-03-24 Akikazu Fujisawa Large-scale air conditioner
CN109210669A (en) * 2018-10-29 2019-01-15 石家庄丽雅环保科技有限公司 Deodoration system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168548A (en) * 1989-11-24 1991-07-22 Matsushita Seiko Co Ltd Partition with air cleaner and humidifier
JPH0755188A (en) * 1993-08-12 1995-03-03 Mitsubishi Heavy Ind Ltd Air cleaning device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168548A (en) * 1989-11-24 1991-07-22 Matsushita Seiko Co Ltd Partition with air cleaner and humidifier
JPH0755188A (en) * 1993-08-12 1995-03-03 Mitsubishi Heavy Ind Ltd Air cleaning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125750A1 (en) * 2009-04-28 2010-11-04 パナソニック株式会社 Air purifying system and air purifying method
JP2011058788A (en) * 2009-09-08 2011-03-24 Akikazu Fujisawa Large-scale air conditioner
CN109210669A (en) * 2018-10-29 2019-01-15 石家庄丽雅环保科技有限公司 Deodoration system

Similar Documents

Publication Publication Date Title
JP6099058B2 (en) High performance air purification apparatus and method
US6946021B2 (en) Air cleaner
EP3081279A1 (en) Air purification apparatus and method
EP2466085A2 (en) Centrifugal, wet-type air cleaner
JP3144551U (en) Air purification system
CN105020782B (en) Air purification method and air purifier
US20230213220A1 (en) Air treatment apparatus with electrostatic precipitation function
JP7121360B2 (en) Indoor climate control system
JP2007225148A (en) Humidifying or dehumidifying/air cleaning method for indoor space, and heating or cooling or/and humidifying or dehumidifying/air cleaning system using the same
CN202803044U (en) Air purifier
CN205481454U (en) Indoor air conditioning system
CN203869220U (en) Supplied air purifying device of central air conditioner
KR20220138413A (en) air conditioner
KR20130020164A (en) Push-fan and pull-fan type air cleaning device
JP5153819B2 (en) Air purifier and equipment equipped with the same
KR20200086085A (en) Air Conditioner with Function of Fine Dust Removal
CN205388351U (en) Indoor air purification system
WO2022014110A1 (en) Air purification device and air conditioning device
JP2007032975A (en) Humidifying, dehumidifying, disinfecting and deodorizing wall unit
JP2002355517A (en) Equipment for removing impurities in the air
JP4258422B2 (en) Ventilating facilities
JP2007032974A (en) Recovery method of contaminated particulate matter
JP4492152B2 (en) Ventilating facilities
CN219995493U (en) External circulation air purification system
JP3290921B2 (en) Air conditioning method and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110715